LTC4441MPMSE#TRPBF [Linear]

LTC4441 - N-Channel MOSFET Gate Driver; Package: MSOP; Pins: 10; Temperature Range: -55°C to 125°C;
LTC4441MPMSE#TRPBF
型号: LTC4441MPMSE#TRPBF
厂家: Linear    Linear
描述:

LTC4441 - N-Channel MOSFET Gate Driver; Package: MSOP; Pins: 10; Temperature Range: -55°C to 125°C

驱动器 栅极 MOSFET栅极驱动
文件: 总12页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4441/LTC4441-1  
N-Channel MOSFET  
Gate Driver  
U
FEATURES  
DESCRIPTIO  
The LTC®4441/LTC4441-1 is an N-channel MOSFET gate  
driver that can supply up to 6A of peak output current. The  
chip is designed to operate with a supply voltage of up to  
25V and has an adjustable linear regulator for the gate  
drive. The gate drive voltage can be programmed between  
5V and 8V.  
6A Peak Output Current  
Wide VIN Supply Range: 5V to 25V  
Adjustable Gate Drive Voltage: 5V to 8V  
Logic Input can be Driven Below Ground  
30ns Propagation Delay  
Supply Independent CMOS/TTL Input Thresholds  
Undervoltage Lockout  
The LTC4441/LTC4441-1 features a logic threshold driver  
input. This input can be driven below ground or above the  
driver supply. A dual function control input is provided to  
disable the driver or to force the chip into shutdown mode  
with <12µA of supply current. Undervoltage lockout and  
overtemperature protection circuits will disable the driver  
output when activated. The LTC4441 also comes with an  
open-drain output that provides adjustable leading edge  
blanking to prevent ringing when sensing the source  
current of the power MOSFETs.  
Low Shutdown Current: <12µA  
Overtemperature Protection  
Adjustable Blanking Time for MOSFET’s  
Current Sense Signal (LTC4441)  
Available in SO-8 and 10-Lead MSOP  
(Exposed Pad) Packages  
U
APPLICATIO S  
Power Supplies  
The LTC4441 is available in a thermally enhanced 10-lead  
MSOP package. The LTC4441-1 is the SO-8 version with-  
out the blanking function.  
, LTC and LT are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents  
including 6677210.  
Motor/Relay Control  
Line Drivers  
Charge Pumps  
U
TYPICAL APPLICATIO  
D1  
L1  
10µH 20A  
MBR10100  
V
52V  
2A  
OUT  
V
IN  
6V TO 24V  
+
+
22µF  
25V  
X7R  
RISE/FALL Time vs CLOAD  
C
OUT  
R1  
R5  
200  
180  
160  
140  
120  
100  
80  
330k  
V
IN  
T = 25°C  
A
FB  
DRV  
CC  
DRV = 5V  
C
CC  
VCC  
R2  
86.6k  
SHUTDOWN  
Q2 R6  
10µF  
X5R  
Si7370  
×2  
SGND  
OUT  
LTC4441  
EN/SHDN  
R3  
5m  
RISE TIME  
R7  
LTC3803  
RBLANK  
IN  
PGND  
SWITCHING  
60  
CONTROLLER  
BLANK  
GATE  
R4  
100Ω  
40  
FALL TIME  
+
20  
SENSE  
0
R8  
GND  
FB  
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
511k  
C
LOAD  
4441 TA01b  
R9  
8.06k  
4441 TA01  
44411f  
1
LTC4441/LTC4441-1  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Supply Voltage  
RBLANK, BLANK (LTC4441 Only) .......... –0.3V to 5V  
OUT Output Current ............................................ 100mA  
Operating Temperature Range (Note 2) .. – 40°C to 85°C  
Junction Temperature (Note 8)............................ 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
VIN ...................................................................... 28V  
DRVCC .................................................................. 9V  
Input Voltage  
IN .......................................................... –15V to 15V  
FB, EN/SHDN ........................ –0.3V to DRVCC + 0.3V  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
PGND  
BLANK  
RBLANK  
SGND  
IN  
1
2
3
4
5
10 OUT  
PGND  
SGND  
1
2
3
4
8
7
6
5
OUT  
DRV  
9
8
7
6
DRV  
CC  
LTC4441EMSE  
LTC4441IMSE  
LTC4441ES8-1  
LTC4441IS8-1  
11  
V
IN  
FB  
EN/SHDN  
CC  
IN  
V
IN  
EN/SHDN  
FB  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PART  
MARKING  
S8 PART  
MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 38°C/W (NOTE 3)  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
LTBJQ  
LTBJP  
44411  
4441I1  
TJMAX = 125°C, θJA = 150°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 7.5V, DRVCC = 5V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Driver Supply Programmable Range  
5
8
V
DRVCC  
VIN  
I
V
Supply Current  
EN/SHDN = 0V, IN = 0V  
EN/SHDN = 5V, IN = 0V  
5
250  
3
12  
500  
6
µA  
µA  
mA  
IN  
f
= 100kHz, C  
= 4.7nF (Note 4)  
IN  
OUT  
DRV Regulator  
CC  
V
Regulator Feedback Voltage  
Regulator Line Regulation  
Load Regulation  
V
V
= 7.5V  
1.11  
1.21  
9
1.31  
40  
V
mV  
%
FB  
IN  
IN  
V  
V  
= 7.5V to 25V  
DRVCC(LINE)  
DRVCC(LOAD)  
DROPOUT  
Load = 0mA to 40mA  
Load = 40mA  
–0.1  
370  
V
V
Regulator Dropout Voltage  
FB Pin UVLO Voltage  
mV  
Rising Edge  
Falling Edge  
1.09  
0.97  
V
V
UVLO  
Input  
V
V
IN Pin High Input Threshold  
IN Pin Low Input Threshold  
IN Pin Input Voltage Hysteresis  
IN Pin Input Current  
Rising Edge  
2
1
2.4  
1.4  
2.8  
1.8  
V
V
IH  
IL  
Falling Edge  
V -V  
Rising-Falling Edge  
1
V
IH IL  
I
I
V
V
= ±10V  
±0.01  
±0.01  
0.45  
±10  
±1  
µA  
µA  
V
INP  
IN  
EN/SHDN  
EN/SHDN Pin Input Current  
EN/SHDN Pin Shutdown Threshold  
EN/SHDN Pin Enable Threshold  
= 9V  
EN/SHDN  
V
V
Falling Edge  
SHDN  
EN  
Rising Edge  
Falling Edge  
1.21  
1.09  
V
V
1.036  
1.145  
V
EN/SHDN Pin Enable Hysteresis  
Rising-Falling Edge  
0.12  
V
EN(HYST)  
44411f  
2
LTC4441/LTC4441-1  
ELECTRICAL CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 7.5V, DRVCC = 5V, unless otherwise specified.  
SYMBOL  
Output  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
Driver Output Pull-Down Resistance  
Driver Output Peak Pull-Up Current  
Driver Output Peak Pull-Down Current  
BLANK Pin Pull-Down Resistance  
RBLANK Pin Voltage  
I
= 100mA  
OUT  
0.35  
6
0.8  
A
ONL  
I
I
DRV = 8V  
CC  
PU  
PD  
DRV = 8V  
6
A
CC  
R
IN = 0V, I  
= 100mA LTC4441 Only  
BLANK  
11  
1.3  
V
ON(BLANK)  
V
R
= 200kLTC4441 Only  
BLANK  
RBLANK  
Switching Timing  
t
t
t
t
t
Driver Output High-Low Propagation Delay  
Driver Output Low-High Propagation Delay  
Driver Output Rise Time  
C
C
C
C
= 4.7nF (Note 5)  
= 4.7nF (Note 5)  
= 4.7nF (Note 5)  
= 4.7nF (Note 5)  
30  
36  
13  
8
ns  
ns  
ns  
ns  
ns  
PHL  
OUT  
OUT  
OUT  
OUT  
PLH  
r
Driver Output Fall Time  
f
Driver Output High to BLANK Pin High  
R
= 200k(Note 6)  
BLANK  
200  
BLANK  
current will vary with supply voltage, switching frequency and the external  
MOSFETs used.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: Rise and fall times are measured using 10% and 90% levels. Delay  
times are measured from 50% of input to 20%/80% levels at driver  
output.  
Note 6: Blanking time is measured from 50% of OUT leading edge to 10%  
of BLANK with a 1kpull-up at BLANK pin. LTC4441 only.  
Note 2: The LTC4441E/LTC4441E-1 are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTC4441I/LTC4441I-1 are  
guaranteed and tested over the 40°C to 85°C operating temperature  
range.  
Note 3: Failure to solder the Exposed Pad of the MSE package to the PC  
board will result in a thermal resistance much higher than 38°C/W.  
Note 4: Supply current in normal operation is dominated by the current  
Note 7: Guaranteed by design, not subject to test.  
Note 8: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. The junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the maximum operating junction temperature  
may impair device reliability.  
needed to charge and discharge the external power MOSFET gate. This  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
IN Low Threshold Voltage  
vs Temperature  
IN High Threshold Voltage  
vs Temperature  
EN Pin Input Threshold Voltage  
vs Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
V
= 7.5V  
CC  
V
= 7.5V  
CC  
V
= 7.5V  
IN  
IN  
IN  
DRV = 5V  
DRV = 5V  
DRV = 5V  
CC  
RISING EDGE  
FALLING EDGE  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4441 G01  
4441 G02  
4441 G03  
44411f  
3
LTC4441/LTC4441-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
FB Pin UVLO Threshold  
vs Temperature  
SD Pin Input Threshold Voltage  
vs Temperature  
DRVCC Voltage vs Temperature  
1.20  
1.16  
1.12  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
V
IN  
= 7.5V  
V
= 7.5V  
CC  
R1 = 330k  
R2 = 100k  
IN  
DRV = 5V  
RISING EDGE  
RISING EDGE  
V
= 25V  
IN  
V
IN  
= 7.5V  
FALLING EDGE  
FALLING EDGE  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4441 G04  
4441 G05  
4441 G06  
DRVCC Dropout Voltage vs  
Temperature  
DRVCC Load Regulation  
DRVCC Line Regulation  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
T
= 25°C  
V
= 7.5V  
CC  
= 40mA  
V
T
= 7.5V  
A
IN  
IN  
A
R1 = 330k  
R2 = 100k  
DRV = 5V  
= 25°C  
I
R1 = 330k  
R2 = 100k  
LOAD  
–25  
0
50  
75 100 125  
–50  
25  
20 40  
80 100 120 140 160 180 200  
5
10  
15  
(V)  
20  
25  
30  
0
60  
0
TEMPERATURE (°C)  
I
(mA)  
V
LOAD  
IN  
4441 G09  
4441 G07  
4441 G08  
OUT Pin Pull-Down Resistance vs  
Temperature  
tPLH, tPHL vs DRVCC  
tPLH, tPHL vs Temperature  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 7.5V  
CC  
DRV = 5V  
CC  
T
= 25°C  
LOAD  
IN  
DRV = 5V  
A
C
LOAD  
= 4.7nF  
C
= 4.7nF  
t
PLH  
t
t
PLH  
t
PHL  
PHL  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
5.0 5.5  
6.5 7.0 7.5 8.0 8.5 9.0  
6.0  
4.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRV (V)  
CC  
4441 G10  
4441 G12  
4441 G11  
44411f  
4
LTC4441/LTC4441-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RISE/FALL Time vs Temperature  
tPLH, tPHL vs CLOAD  
RISE/FALL Time vs DRVCC  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
30  
25  
20  
15  
10  
5
T
= 25°C  
CC  
DRV = 5V  
CC  
T
= 25°C  
LOAD  
A
A
DRV = 5V  
C
LOAD  
= 4.7nF  
C
= 4.7nF  
25  
20  
15  
10  
5
t
PLH  
RISE TIME  
FALL TIME  
RISE TIME  
FALL TIME  
t
PHL  
0
0
–25  
0
50  
75 100 125  
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
–50  
25  
5.0 5.5  
6.5 7.0 7.5 8.0 8.5 9.0  
6.0  
4.5  
C
TEMPERATURE (°C)  
DRV (V)  
CC  
LOAD  
4441 G13  
4441 G15  
4441 G14  
RISE/FALL Time vs CLOAD  
Blanking Time vs RBLANK  
Blanking Time vs Temperature  
200  
180  
160  
140  
120  
100  
80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
T
= 25°C  
CC  
T
= 25°C  
V
= 7.5V  
CC  
A
A
IN  
DRV = 5V  
DRV = 5V  
CC  
DRV = 5V  
LTC4441  
LTC4441  
RISE TIME  
60  
40  
FALL TIME  
20  
0
0
100 200  
400 500 600 700  
–25  
0
50  
75 100 125  
0
300  
–50  
25  
0
5
10 15 20 25 30 35 40 45 50  
R
BLANK  
(k)  
TEMPERATURE (°C)  
C
(nF)  
LOAD  
4441 G17  
4441 G18  
4441 G16  
VIN Operating Supply Current vs  
Temperature  
VIN Standby Supply Current vs  
Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
15  
14  
13  
12  
11  
10  
9
EN = 5V  
IN = 0V  
EN = 0V  
IN = 0V  
V
IN  
= 25V  
V
IN  
= 25V  
V
= 7.5V  
IN  
8
7
V
= 7.5V  
IN  
6
5
4
0
3
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4441 G19  
4441 G20  
44411f  
5
LTC4441/LTC4441-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
IVIN vs fIN  
IVIN vs CLOAD  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
LOAD  
T
f
= 25°C  
= 100kHz  
A
A
IN  
C
= 4.7nF  
DRV = 5V  
CC  
DRV = 9V  
CC  
DRV = 9V  
CC  
DRV = 5V  
CC  
0
0
100 200 300 400 500 600 700 800 9001000  
(kHz)  
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
f
IN  
C
LOAD  
4441 G21  
4441 G22  
U
U
U
PI FU CTIO S  
MSOP/SO-8  
PGND (Pin 1/Pin 1): Driver Ground. Connect the DRVCC  
bypass capacitor directly to this pin, as close as possible  
to the IC. In addition, connect the PGND and SGND pins  
together close to the IC, and then connect this node to the  
source of the power MOSFET (or current sense resistor)  
with as short and wide a PCB trace as possible.  
EN/SHDN (Pin 6/Pin 4): Enable/Shutdown Input. Pulling  
this pin above 1.21V allows the driver to switch. Pulling  
this pin below 1.09V forces the driver output to go  
low. Pulling this pin below 0.45V forces the LTC4441/  
LTC4441-1 into shutdown mode; the DRVCC regulator  
turns off and the supply current drops below 12µA.  
BLANK (Pin 2/NA): Current Sense Blanking Output. Use  
this pin to assert a blanking time in the power MOSFET’s  
source current sense signal. The LTC4441 pulls this  
open-drain output to SGND if the driver output is low. The  
output becomes high impedance after a programmable  
blanking time from the driver leading edge output. This  
blanking time can be adjusted with the RBLANK pin.*  
FB (Pin 7/Pin 5): DRVCC Regulator Feedback Input. Con-  
nect this pin to the center tap of an external resistive  
divider between DRVCC and SGND to program the DRVCC  
regulator output voltage. To ensure loop stability, use the  
value of 330kfor the top resistor, R1.  
VIN (Pin 8/Pin 6): Main Supply Input. This pin powers the  
DRVCC linearregulator.BypassthispintoSGNDwitha1µF  
ceramic, tantalum or other low ESR capacitor in close  
proximity to the LTC4441/LTC4441-1.  
RBLANK (Pin 3/NA):Blanking Time Adjust Input. Connect  
a resistor from this pin to SGND to set the blanking time.  
A small resistor value gives a shorter delay. Leave this pin  
floating if the BLANK pin is not used.*  
DRVCC (Pin9/Pin7): LinearRegulatorOutput. Thisoutput  
pinpowersthedriverandthecontrolcircuitry. Bypassthis  
pin to PGND using a 10µF ceramic, low ESR (X5R or X7R)  
capacitor in close proximity to the LTC4441/LTC4441-1.  
SGND (Pin 4/Pin 2):Signal Ground. Ground return for the  
DRVCC regulator and low power circuitry.  
IN (Pin 5/Pin 3): Driver Logic Input. This is the non-  
inverting driver input under normal operating conditions.  
OUT (Pin 10/Pin 8): Driver Output.  
Exposed Pad (Pin 11/NA): Ground. The Exposed Pad  
must be soldered to the PCB ground.  
*Available only on the lo-lead version of the LTC4441.  
44411f  
6
LTC4441/LTC4441-1  
W
BLOCK DIAGRA  
V
IN  
+
BIAS  
1.21V  
REG  
M
REG  
FB  
UVLO  
DRV  
CC  
1.09V  
IN  
Q1  
INB  
P1  
N1  
OUT  
EN/SHDN  
PGND  
EN  
THERMAL  
1.21V  
0.45V  
SHUTDOWN  
RBLANK  
LEADING  
EDGE DELAY  
BLANK  
MB  
SHUTDOWN  
SHDN  
SGND  
FOR 10-LEAD  
LTC4441  
ONLY  
4441 BD  
W U U  
U
APPLICATIO S I FOR ATIO  
Overview  
provides the flexibility to use either standard threshold or  
logic level MOSFETs.  
Power MOSFETs generally account for the majority of  
powerlostinaconverter.Itisimportanttochoosenotonly  
the type of MOSFET used, but also its gate drive circuitry.  
The LTC4441/LTC4441-1 is designed to drive an N-chan-  
nelpowerMOSFETwithlittleefficiencyloss.TheLTC4441/  
LTC4441-1 can deliver up to 6A of peak current using a  
combined NPN Bipolar and MOSFET output stage. This  
helps to turn the power MOSFET fully “on” or “off” with a  
very brief transition region.  
DRVCC Regulator  
An internal, P-channel low dropout linear regulator pro-  
vides the DRVCC supply to power the driver and the pre-  
driver logic circuitry as shown in Figure 1. The regulator  
output voltage can be programmed between 5V and 8V  
with an external resistive divider between DRVCC and  
SGND and a center tap connected to the FB pin. The  
regulatorneedsanR1valueofaround330ktoensureloop  
The LTC4441/LTC4441-1 includes a programmable linear  
regulator to regulate the gate drive voltage. This regulator  
44411f  
7
LTC4441/LTC4441-1  
W U U  
U
APPLICATIO S I FOR ATIO  
signal to drive standard power MOSFETs. The LTC4441/  
LTC4441-1 contains an internal voltage regulator that  
biases the input buffer, allowing the input thresholds (VIH  
= 2.4V, VIL = 1.4V) to be independent of the programmed  
driver supply, DRVCC, or the input supply, VIN. The 1V  
hysteresis between VIH and VIL eliminates false triggering  
due to noise during switching transitions. However, care  
should be taken to isolate this pin from any noise pickup,  
especially in high frequency, high voltage applications.  
The LTC4441/LTC4441-1 input buffer has high input  
impedanceanddrawsnegligibleinputcurrent,simplifying  
the drive circuitry required for the input. This input can  
withstand voltages up to 15V above and below ground.  
This makes the chip more tolerant to ringing on the input  
digital signal caused by parasitic inductance.  
V
LTC4441  
IN  
+
1.21V  
R1  
330k  
REG  
M
REG  
FB  
R2  
ENABLE  
DRIVER  
UVLO  
DRV  
CC  
1.09V  
C
VCC  
OUT  
DRIVER  
PGND  
4441 F01  
Figure 1. DRVCC Regulator  
Driver Output Stage  
stability; the value of R2 can be varied to achieve the  
required DRVCC voltage:  
A simplified version of the LTC4441/LTC4441-1’s driver  
output stage is shown in Figure 2.  
406k  
R2 =  
V
IN  
DRVCC – 1.21V  
LOAD  
DRV  
CC  
LTC4441  
OUT  
Q1  
INDUCTOR  
TheDRVCC regulatorcansupplyupto100mAandisshort-  
circuit protected. The output must be bypassed to the  
PGND pin in very close proximity to the IC pins with a  
minimum of 10µF ceramic, low ESR (X5R or X7R) capaci-  
tor. Good bypassing is necessary as high transient supply  
currents are required by the driver. If the input supply  
voltage, VIN,isclosetotherequiredgatedrivevoltage, this  
regulatorcanbedisabledbyconnectingtheDRVCC andFB  
pins to VIN.  
P1  
C
C
GD  
POWER  
MOSFET  
R
N1  
O
GS  
N2  
N3  
DRV  
CC  
PGND  
4441 F02  
Figure 2. Driver Output Stage  
The pull-up device is the combination of an NPN transis-  
tor, Q1, andaP-channelMOSFET, P1. Thisprovidesboth  
the ability to swing to rail (DRVCC) and deliver large peak  
charging currents.  
TheLTC4441/LTC4441-1monitorstheFBpinforDRVCC’s  
UVLO condition (UVLO in Figure 1). During power-up, the  
driver output is held low until the DRVCC voltage reaches  
90% of the programmed value. Thereafter, if the DRVCC  
voltage drops more than 20% below the programmed  
value, the driver output is forced low.  
The pull-down device is an N-channel MOSFET, N1, with  
a typical on resistance of 0.35. The low impedance of N1  
provides fast turn-off of the external power MOSFET and  
holdsthepowerMOSFET’sgatelowwhenitsdrainvoltage  
switches. When the power MOSFET’s gate is pulled low  
(gate shorted to source through N1) by the LTC4441/  
LTC4441-1,itsdrainvoltageispulledhighbyitsload(e.g.,  
Logic Input Stage  
TheLTC4441/LTC4441-1driveremploysTTL/CMOScom-  
patible input thresholds that allow a low voltage digital  
44411f  
8
LTC4441/LTC4441-1  
W U U  
APPLICATIO S I FOR ATIO  
U
inductor or resistor). The slew rate of the drain voltage  
causes current to flow to the MOSFET’s gate through its  
gate-to-drain capacitance. If the MOSFET driver does not  
have sufficient sink current capability (low output imped-  
ance), the current through the power MOSFET’s CGD can  
momentarily pull the gate high and turn the MOSFET  
back on.  
driver starts switching according to the input logic signal.  
The driver enable comparator has a small hysteresis of  
120mV.  
Blanking  
In some switcher applications, a current sense resistor is  
placed between the low side power MOSFET’s source  
terminal and ground to sense the current in the MOSFET.  
With this configuration, the switching controller must  
incorporate some timing interval to blank the ringing on  
the current sense signal immediately after the MOSFET is  
turned on. This ringing is caused by the parasitic induc-  
tance and capacitance of the PCB trace and the MOSFET.  
The duration of the ringing is thus dependent on the PCB  
layout and the components used and can be longer than  
the blanking interval provided by the controller.  
A similar situation occurs during power-up when VIN is  
ramping up with the DRVCC regulator output still low. N1  
is off and the driver output, OUT, may momentarily pull  
high through the power MOSFET’s CGD, turning on the  
power MOSFET. The N-channel MOSFETs N2 and N3,  
shown in Figure 2, prevent the driver output from going  
high in this situation. If DRVCC is low, N3 is off. If OUT is  
pulled high through the power MOSFET’s CGD, the gate of  
N2 gets pulled high through RO. This turns N2 on, which  
then pulls OUT low. Once DRVCC is >1V, N3 turns on to  
hold the N2 gate low, thus disabling N2.  
The 10-Lead LTC4441 includes an open-drain output that  
can be used to extend this blanking interval. The 8-Lead  
LTC4441-1 does not have this blanking function. Figure 3  
shows the BLANK pin connection. The BLANK pin is  
connected directly to the switching controller’s SENSE+  
input. Figure 4 shows the blanking waveforms. If the  
driver input is low, the external power MOSFET is off and  
MB turns on to hold SENSE+ low. If the driver input goes  
high, the power MOSFET turns on after the driver’s propa-  
gation delay. MB remains on, attenuating the ringing seen  
by the controller’s SENSE+ input. After the programmed  
blanking time, MB turns off to enable the current sense  
The predriver that drives Q1, P1 and N1 uses an adaptive  
method to minimize cross-conduction currents. This is  
done with a 5ns nonoverlapping transition time. N1 is fully  
turned off before Q1 is turned on and vice-versa using this  
5ns buffer time. This minimizes any cross-conduction  
currents while Q1 and N1 are switching on and off without  
affecting their rise and fall times.  
Thermal Shutdown  
The LTC4441/LTC4441-1 has a thermal detector that  
disables the DRVCC regulator and pulls the driver output  
low when activated. If the junction temperature exceeds  
150°C,thedriverpull-updevices,Q1andP1,turnoffwhile  
the pull-down device, N1, turns on briskly for 200ns to  
quickly pull the output low. The thermal shutdown circuit  
has 20°C of hysteresis.  
V
IN  
TO  
LOAD  
LTC4441  
OUT  
SWITCHING  
CONTROLLER’S  
CURRENT  
SENSE  
INDUCTOR  
POWER  
MOSFET  
R4  
DRIVER  
INPUT  
+
SENSE  
LEADING  
EDGE DELAY  
R3  
SENSE  
Enable/Shutdown Input  
BLANK  
The EN/SHDN pin serves two functions. Pulling this pin  
below 0.45V forces the LTC4441/LTC4441-1 into shut-  
down mode. In shutdown mode, the internal circuitry and  
the DRVCC regulator are off and the supply current drops  
to <12µA. If the input voltage is between 0.45V and 1.21V,  
the DRVCC regulator and internal circuit power up but the  
driver output stays low. If the input goes above 1.21V, the  
MB  
SGND  
PGND  
KEEP THIS  
TRACE SHORT  
RBLANK  
4441 F03  
R7  
Figure 3. Blanking Circuit  
44411f  
9
LTC4441/LTC4441-1  
W U U  
U
APPLICATIO S I FOR ATIO  
where:  
IN  
IQ =LTC4441/LTC4441-1staticquiescentcurrent,typi-  
cally 250µA  
OUT  
POWER  
MOSFET’s  
CURRENT  
f = Logic input switching frequency  
QG =PowerMOSFETtotalgatechargeatcorresponding  
VGS voltage equal to DRVCC  
POWER MOSFET’s  
SOURCE TERMINAL  
VIN = LTC4441/LTC4441-1 input supply voltage  
TJ = Junction temperature  
MB GATE  
TA = Ambient temperature  
+
BLANK/SENSE  
θJA = Junction-to-ambient thermal resistance. The  
10-pin MSOP package has a thermal resistance of  
θJA = 38°C/W.  
4441 F04  
BLANKING TIME  
Figure 4. Blanking Waveforms  
The total supply current, IQ(TOT), consists of the LTC4441/  
LTC4441-1’s static quiescent current, IQ, and the current  
required to drive the gate of the power MOSFET, with the  
latter usually much higher than the former. The dissipated  
power, PD, includes the efficiency loss of the DRVCC  
regulator. With a programmed DRVCC, a high VIN results  
in higher efficiency loss.  
signal. MB is designed to turn on and turn off at a  
controlled slew rate. This is to prevent the gate switching  
noise from coupling into the current sense signal.  
The blanking interval can be adjusted using resistor R7  
connected to the RBLANK pin. A small resistance value  
gives a shorter interval with a default minimum of 75ns.  
Asanexample,consideranapplicationwithVIN =12V.The  
switching frequency is 300kHz and the maximum ambient  
temperature is 70°C. The power MOSFET chosen is three  
pieces of IRFB31N20D, which has a maximum RDS(ON) of  
82m(at room temperature) and a typical total gate  
charge of 70nC (the temperature coefficient of the gate  
charge is low).  
The value of the resistor R4 and the on-resistance of MB  
(typically 11) form a resistive divider attenuating the  
ringing. R4needstobelargeforeffectiveblanking, butnot  
so large as to cause delay to the sense signal. A resistance  
value of 1k to 10k is recommended.  
For optimum performance, the LTC4441/LTC4441-1  
should be placed as close as possible to the power  
MOSFET and current sense resistor, R3.  
IQ(TOT) = 500µA + 210nC • 300kHz = 63.5mA  
PIC = 12V • 63.5mA = 0.762W  
TJ = 70°C + 38°C/W • 0.762W = 99°C  
Power Dissipation  
This demonstrates how significant the gate charge cur-  
rent can be when compared to the LTC4441/LTC4441-1’s  
static quiescent current. To prevent the maximum junc-  
tion temperature from being exceeded, the input supply  
current must be checked when switching at high VIN. A  
tradeoff between the operating frequency and the size of  
the power MOSFET may be necessary to maintain a  
reliable LTC4441/LTC4441-1 junction temperature. Prior  
to lowering the operating frequency, however, be sure to  
To ensure proper operation and long-term reliability, the  
LTC4441/LTC4441-1 must not operate beyond its maxi-  
mumtemperaturerating. Thejunctiontemperaturecanbe  
calculated by:  
IQ(TOT) = IQ + f • QG  
PD = VIN • (IQ + f • QG)  
TJ = TA + PD θJA  
44411f  
10  
LTC4441/LTC4441-1  
W U U  
APPLICATIO S I FOR ATIO  
U
check with power MOSFET manufacturers for their  
innovations on low QG, low RDS(ON) devices. Power  
MOSFET manufacturing technologies are continually im-  
proving, with newer and better performing devices being  
introduced.  
C. Keep the PCB ground trace between the LTC4441/  
LTC4441-1 ground pins (PGND and SGND) and the exter-  
nal current sense resistor as short and wide as possible.  
D. Planthegroundroutingcarefully. Knowwherethelarge  
loadswitchingcurrentpathsare.Maintainseparateground  
return paths for the input pin and output pin to avoid  
sharing small-signal ground with large load ground re-  
turn. Terminate these two ground traces only at the GND  
pin of the driver (STAR network).  
PC Board Layout Checklist  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of the  
LTC4441/LTC4441-1:  
E. Keep the copper trace between the driver output pin and  
the load short and wide.  
A. Mount the bypass capacitors as close as possible  
between the DRVCC and PGND pins and between the VIN  
and SGND pins. The PCB trace loop areas should be  
tightened as much as possible to reduce inductance.  
F. Place the small-signal components away from the high  
frequency switching nodes. These components include  
the resistive networks connected to the FB, RBLANK and  
EN/SHDN pins.  
B. Use a low inductance, low impedance ground plane to  
reduce any ground drop. Remember that the LTC4441/  
LTC4441-1 switches 6A peak current and any significant  
ground drop will degrade signal integrity.  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.081 ± .004)  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
1
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
10  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
GAUGE PLANE  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
10 9  
8
7 6  
DETAIL “A”  
0.18  
(.007)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0603  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
1
2
3
4 5  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
44411f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC4441/LTC4441-1  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
RELATED PARTS  
PART NUMBER  
LTC1154  
LTC1155  
LT®1161  
DESCRIPTION  
COMMENTS  
High Side Micropower MOSFET Driver  
Dual Micropower High/Low Side Driver  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
High Speed Single/Dual N-Channel MOSFET Driver  
Synchronous Rectifier Driver for Forward Converter  
Internal Charge Pump, 4.5V to 48V Supply Range  
Internal Charge Pump, 4.5V to 18V Supply Range  
8V to 48V Supply Range, t = 200ms, t = 28ms  
ON  
OFF  
LTC1163  
LTC1693  
LTC3900  
LTC3901  
1.8V to 48V Supply Range, t = 95ms, t = 45ms  
ON OFF  
CMOS Compatible Input, V Range: 4.5V to 12V  
CC  
Pulse Transformer Synchronization Input  
Gate Drive Transformer Synchronous Input  
Secondary Side Synchronous Driver for Push-Pull and  
Full-Bridge Converter  
LTC4440  
High Speed, High Voltage, High Side Gate Driver  
Wide Operating V Range: Up to 80V DC, 100V Transient  
IN  
44411f  
LT/TP 1104 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY