LTC4441_15 [Linear]

N-Channel MOSFET Gate Driver;
LTC4441_15
型号: LTC4441_15
厂家: Linear    Linear
描述:

N-Channel MOSFET Gate Driver

文件: 总16页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4441/LTC4441-1  
N-Channel MOSFET  
Gate Driver  
FeaTures  
DescripTion  
The LTC®4441/LTC4441-1 is an N-channel MOSFET gate  
driver that can supply up to 6A of peak output current.  
The chip is designed to operate with a supply voltage of  
up to 25V and has an adjustable linear regulator for the  
gate drive. The gate drive voltage can be programmed  
between 5V and 8V.  
n
6A Peak Output Current  
n
Wide V Supply Range: 5V to 25V  
IN  
n
n
n
n
n
n
n
n
Adjustable Gate Drive Voltage: 5V to 8V  
Logic Input Can Be Driven Below Ground  
30ns Propagation Delay  
Supply Independent CMOS/TTL Input Thresholds  
Undervoltage Lockout  
Low Shutdown Current: <12µA  
Overtemperature Protection  
Adjustable Blanking Time for MOSFET’s  
Current Sense Signal (LTC4441)  
Available in SO-8 and 10-Lead MSOP  
(Exposed Pad) Packages  
The LTC4441/LTC4441-1 features a logic threshold driver  
input. This input can be driven below ground or above the  
driver supply. A dual function control input is provided to  
disable the driver or to force the chip into shutdown mode  
with <12µA of supply current. Undervoltage lockout and  
overtemperature protection circuits will disable the driver  
output when activated. The LTC4441 also comes with an  
open-drain output that provides adjustable leading edge  
blanking to prevent ringing when sensing the source cur-  
rent of the power MOSFETs.  
n
applicaTions  
n
Power Supplies  
The LTC4441 is available in a thermally enhanced 10-lead  
MSOPpackage.TheLTC4441-1istheSO-8versionwithout  
the blanking function.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6677210.  
n
Motor/Relay Control  
n
Line Drivers  
Charge Pumps  
n
Typical applicaTion  
D1  
L1  
MBR10100  
10µH 20A  
V
52V  
2A  
OUT  
V
IN  
RISE/FALL Time vs CLOAD  
6V TO 24V  
+
+
22µF  
25V  
X7R  
200  
180  
160  
140  
120  
100  
80  
C
OUT  
T
= 25°C  
A
R1  
330k  
R5  
DRV = 5V  
CC  
V
IN  
FB  
DRV  
CC  
C
VCC  
10µF  
X5R  
R2  
86.6k  
SHUTDOWN  
Q2 R6  
Si7370  
×2  
SGND  
OUT  
LTC4441  
EN/SHDN  
RISE TIME  
R3  
5mΩ  
R7  
LTC3803  
RBLANK  
IN  
60  
PGND  
SWITCHING  
CONTROLLER  
40  
FALL TIME  
BLANK  
GATE  
R4  
20  
100Ω  
+
SENSE  
0
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
GND  
FB  
R8  
C
LOAD  
511k  
4441 TA01b  
R9  
8.06k  
4441 TA01a  
44411fa  
1
LTC4441/LTC4441-1  
(Notes 1, 8)  
absoluTe MaxiMuM raTings  
Supply Voltage  
IN  
OUT Output Current ............................................ 100mA  
Operating Junction Temperature Range  
(Note 2).................................................. –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V ............................................................................28V  
DRV .........................................................................9V  
CC  
Input Voltage  
IN.............................................................–15V to 15V  
FB, EN/SHDN ..........................–0.3V to DRV + 0.3V  
CC  
RBLANK, BLANK (LTC4441 Only)............ –0.3V to 5V  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
PGND  
BLANK  
RBLANK  
SGND  
IN  
1
2
3
4
5
10 OUT  
PGND  
SGND  
1
2
3
4
8
7
6
5
OUT  
DRV  
9
8
7
6
DRV  
CC  
CC  
11  
V
IN  
FB  
EN/SHDN  
IN  
V
IN  
EN/SHDN  
FB  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 125°C, θ = 38°C/W (Note 3)  
JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
T
JMAX  
= 125°C, θ = 150°C/W  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
LTC4441EMSE#PBF  
LTC4441IMSE#PBF  
LTC4441MPMSE#PBF  
LTC4441ES8-1#PBF  
LTC4441IS8-1#PBF  
LEAD BASED FINISH  
LTC4441EMSE  
TAPE AND REEL  
PART MARKING*  
LTBJQ  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic SO  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTC4441EMSE#TRPBF  
LTC4441IMSE#TRPBF  
LTBJP  
LTC4441MPMSE#TRPBF LTBJP  
LTC4441ES8-1#TRPBF  
LTC4441IS8-1#TRPBF  
TAPE AND REEL  
44411  
4441I1  
8-Lead Plastic SO  
PART MARKING*  
LTBJQ  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic SO  
LTC4441EMSE#TR  
LTC4441IMSE#TR  
LTC4441MPMSE#TR  
LTC4441ES8-1#TR  
LTC4441IS8-1#TR  
LTC4441IMSE  
LTBJP  
LTC4441MPMSE  
LTC4441ES8-1  
LTBJP  
44411  
LTC4441IS8-1  
4441I1  
8-Lead Plastic SO  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
44411fa  
2
LTC4441/LTC4441-1  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 7.5V, DRVCC = 5V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Driver Supply Programmable Range  
5
8
V
DRVCC  
VIN  
l
l
I
V
Supply Current  
EN/SHDN = 0V, IN = 0V  
EN/SHDN = 5V, IN = 0V  
IN  
5
250  
3
12  
500  
6
μA  
μA  
mA  
IN  
f
= 100kHz, C  
= 4.7nF (Note 4)  
OUT  
DRV Regulator  
CC  
l
V
Regulator Feedback Voltage  
Regulator Line Regulation  
Load Regulation  
V
V
= 7.5V  
1.11  
1.21  
9
1.31  
40  
V
mV  
%
FB  
IN  
ΔV  
ΔV  
= 7.5V to 25V  
DRVCC(LINE)  
DRVCC(LOAD)  
DROPOUT  
IN  
Load = 0mA to 40mA  
Load = 40mA  
–0.1  
370  
V
V
Regulator Dropout Voltage  
FB Pin UVLO Voltage  
mV  
Rising Edge  
Falling Edge  
1.09  
0.97  
V
V
UVLO  
Input  
l
l
V
V
IN Pin High Input Threshold  
IN Pin Low Input Threshold  
IN Pin Input Voltage Hysteresis  
IN Pin Input Current  
Rising Edge  
2
1
2.4  
1.4  
2.8  
1.8  
V
V
IH  
IL  
Falling Edge  
V -V  
IH IL  
Rising-Falling Edge  
1
V
l
l
I
I
V
V
= 10V  
0.01  
0.01  
0.45  
10  
1
μA  
μA  
V
INP  
IN  
EN/SHDN Pin Input Current  
EN/SHDN Pin Shutdown Threshold  
EN/SHDN Pin Enable Threshold  
= 9V  
EN/SHDN  
EN/SHDN  
V
V
Falling Edge  
SHDN  
Rising Edge  
Falling Edge  
1.21  
1.09  
V
V
EN  
l
l
1.036  
1.145  
0.8  
V
EN/SHDN Pin Enable Hysteresis  
Rising-Falling Edge  
0.12  
V
EN(HYST)  
Output  
R
Driver Output Pull-Down Resistance  
Driver Output Peak Pull-Up Current  
Driver Output Peak Pull-Down Current  
BLANK Pin Pull-Down Resistance  
RBLANK Pin Voltage  
I
= 100mA  
0.35  
6
Ω
A
ONL  
OUT  
I
PU  
I
PD  
DRV = 8V  
CC  
DRV = 8V  
6
A
CC  
R
IN = 0V, I  
= 100mA LTC4441 Only  
11  
1.3  
Ω
V
ON(BLANK)  
RBLANK  
BLANK  
V
RBLANK = 200kΩ LTC4441 Only  
Switching Timing  
t
t
t
t
t
Driver Output High-Low Propagation Delay  
Driver Output Low-High Propagation Delay  
Driver Output Rise Time  
C
C
C
C
= 4.7nF (Note 5)  
= 4.7nF (Note 5)  
= 4.7nF (Note 5)  
= 4.7nF (Note 5)  
30  
36  
13  
8
ns  
ns  
ns  
ns  
ns  
PHL  
OUT  
OUT  
OUT  
OUT  
PLH  
r
Driver Output Fall Time  
f
Driver Output High to BLANK Pin High  
RBLANK = 200kΩ (Note 6)  
200  
BLANK  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
guaranteed over the –40°C to 125°C operating junction temperature  
range. The LTC4441MP is guaranteed and tested over the full –55°C to  
125°C operating junction temperature range. Note that the maximum  
ambient temperature consistent with these specifications is determined by  
specific operating conditions in conjunction with board layout, the rated  
package thermal impedance and other environmental factors. The junction  
Note 2: The LTC4441/LTC4441-1 are tested under pulsed load conditions  
such that T ≈ T . The LTC4441E/LTC4441E-1 are guaranteed to meet  
J
A
temperature (T , in °C) is calculated from the ambient temperature  
J
performance specifications from 0°C to 85°C operating junction  
temperature. Specifications over the –40°C to 125°C operating junction  
temperature range are assured by design characterization and correlation  
with statistical process controls. The LTC4441I/LTC4441I-1 grade are  
(T , in °C) and power dissipation (P , in Watts) according to the formula:  
A
D
T = T + (P θ )  
JA  
J
A
D
where θ (in °C/W) is the package thermal impedance.  
JA  
44411fa  
3
LTC4441/LTC4441-1  
elecTrical characTerisTics  
Note 3: Failure to solder the Exposed Pad of the MSE package to the PC  
Note 6: Blanking time is measured from 50% of OUT leading edge to 10%  
board will result in a thermal resistance much higher than 38°C/W.  
of BLANK with a 1kΩ pull-up at BLANK pin. LTC4441 only.  
Note 4: Supply current in normal operation is dominated by the current  
needed to charge and discharge the external power MOSFET gate. This  
current will vary with supply voltage, switching frequency and the external  
MOSFETs used.  
Note 5: Rise and fall times are measured using 10% and 90% levels.  
Delay times are measured from 50% of input to 20%/80% levels at driver  
output.  
Note 7: Guaranteed by design, not subject to test.  
Note 8: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. The junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the maximum operating junction temperature  
may impair device reliability.  
Typical perForMance characTerisTics  
IN Pin Low Threshold Voltage  
vs Temperature  
IN Pin High Threshold Voltage  
vs Temperature  
EN Pin Input Threshold Voltage  
vs Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
V
= 7.5V  
CC  
V
= 7.5V  
CC  
V
= 7.5V  
CC  
IN  
IN  
IN  
DRV = 5V  
DRV = 5V  
DRV = 5V  
RISING EDGE  
FALLING EDGE  
–25  
0
50 75 100 125  
–25  
0
50 75 100 125  
–25  
0
50 75 100 125  
–75 –50  
25  
–75 –50  
25  
–75 –50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4441 G01  
4441 G02  
4441 G03  
FB Pin UVLO Threshold  
vs Temperature  
SD Pin Input Threshold Voltage  
vs Temperature  
DRVCC Voltage vs Temperature  
1.20  
1.16  
1.12  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
V
= 7.5V  
V
= 7.5V  
IN  
CC  
R1 = 330k  
R2 = 100k  
IN  
DRV = 5V  
RISING EDGE  
RISING EDGE  
V
= 25V  
IN  
FALLING EDGE  
V
= 7.5V  
IN  
FALLING EDGE  
–25  
0
50 75 100 125  
–25  
0
50 75 100 125  
–25  
0
50 75 100 125  
–75 –50  
25  
–75 –50  
25  
–75 –50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4441 G04  
4441 G05  
4441 G06  
44411fa  
4
LTC4441/LTC4441-1  
Typical perForMance characTerisTics  
DRVCC Dropout Voltage  
vs Temperature  
1000  
DRVCC Load Regulation  
DRVCC Line Regulation  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
T
= 25°C  
V
A
= 7.5V  
V
= 7.5V  
IN  
A
IN  
R1 = 330k  
R2 = 100k  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
DRV = 5V  
CC  
LOAD  
R1 = 330k  
R2 = 100k  
I
= 40mA  
20 40  
80 100 120 140 160 180 200  
5
10  
15  
(V)  
20  
25  
30  
–25  
0
50 75 100 125  
0
60  
0
–75 –50  
25  
I
(mA)  
V
TEMPERATURE (°C)  
LOAD  
IN  
4441 G07  
4441 G08  
4441 G09  
OUT Pin Pull-Down Resistance  
vs Temperature  
tPLH, tPHL vs DRVCC  
tPLH, tPHL vs Temperature  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 7.5V  
CC  
T
= 25°C  
LOAD  
V
C
= 5V  
DRVCC  
IN  
A
DRV = 5V  
C
= 4.7nF  
= 4.7nF  
LOAD  
t
PLH  
t
t
PLH  
t
PHL  
PHL  
–25  
0
50 75 100 125  
5.0 5.5  
6.5 7.0 7.5 8.0 8.5 9.0  
–25  
0
50 75 100 125  
–75 –50  
25  
4.5  
6.0  
–75 –50  
25  
TEMPERATURE (°C)  
DRV (V)  
TEMPERATURE (°C)  
CC  
4441 G10  
4441 G11  
4441 G12  
tPLH, tPHL vs CLOAD  
RISE/FALL Time vs DRVCC  
RISE/FALL Time vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
T
= 25°C  
CC  
T
= 25°C  
LOAD  
V
C
= 5V  
DRVCC  
A
A
DRV = 5V  
C
= 4.7nF  
= 4.7nF  
LOAD  
t
PLH  
RISE TIME  
RISE TIME  
FALL TIME  
t
PHL  
FALL TIME  
0
0
5.0 5.5  
6.5 7.0 7.5 8.0 8.5 9.0  
–25  
0
50  
75 100 125  
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
4.5  
6.0  
–50  
25  
C
DRV (V)  
CC  
TEMPERATURE (°C)  
LOAD  
4441 G13  
4441 G14  
4441 G15  
44411fa  
5
LTC4441/LTC4441-1  
Typical perForMance characTerisTics  
RISE/FALL Time vs CLOAD  
Blanking Time vs RBLANK  
Blanking Time vs Temperature  
200  
180  
160  
140  
120  
100  
80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
V
= 7.5V  
T
= 25°C  
CC  
T = 25°C  
A
IN  
A
DRV = 5V  
CC  
DRV = 5V  
DRV = 5V  
CC  
LTC4441  
LTC4441  
RISE TIME  
60  
40  
FALL TIME  
20  
0
0
100 200  
400 500 600 700  
(k)  
–25  
0
50 75 100 125  
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
0
300  
–75 –50  
25  
C
R
BLANK  
TEMPERATURE (°C)  
LOAD  
4441 G16  
4441 G17  
4441 G18  
VIN Operating Supply Current  
vs Temperature  
VIN Standby Supply Current  
vs Temperature  
500  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
EN = 5V  
IN = 0V  
EN = 0V  
IN = 0V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 25V  
IN  
V
= 25V  
IN  
V
= 7.5V  
IN  
V
= 7.5V  
IN  
4
3
2
1
0
0
–25  
0
50 75 100 125  
–25  
0
50 75 100 125  
–75 –50  
25  
–75 –50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4441 G19  
4441 G20  
IVIN vs fIN  
IVIN vs CLOAD  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
LOAD  
T
IN  
= 25°C  
= 100kHz  
A
A
C
= 4.7nF  
f
DRV = 5V  
CC  
DRV = 9V  
CC  
DRV = 9V  
CC  
DRV = 5V  
CC  
0
0
100 200 300 400 500 600 700 800 9001000  
(kHz)  
0
5
10 15 20 25 30 35 40 45 50  
(nF)  
f
C
LOAD  
IN  
4441 G21  
4441 G22  
44411fa  
6
LTC4441/LTC4441-1  
pin FuncTions (MSOP/SO-8)  
PGND (Pin 1/Pin 1): Driver Ground. Connect the DRV  
bypass capacitor directly to this pin, as close as possible  
to the IC. In addition, connect the PGND and SGND pins  
together close to the IC, and then connect this node to the  
source of the power MOSFET (or current sense resistor)  
with as short and wide a PCB trace as possible.  
EN/SHDN (Pin 6/Pin 4): Enable/Shutdown Input. Pulling  
this pin above 1.21V allows the driver to switch. Pulling  
this pin below 1.09V forces the driver output to go low.  
Pullingthispinbelow0.45VforcestheLTC4441/LTC4441-1  
CC  
into shutdown mode; the DRV regulator turns off and  
CC  
the supply current drops below 12μA.  
BLANK (Pin 2/NA): Current Sense Blanking Output. Use  
this pin to assert a blanking time in the power MOSFET’s  
source current sense signal. The LTC4441 pulls this open-  
drainoutputtoSGNDifthedriveroutputislow. Theoutput  
becomes high impedance after a programmable blanking  
time from the driver leading edge output. This blanking  
time can be adjusted with the RBLANK pin.*  
FB(Pin7/Pin5):DRV RegulatorFeedbackInput.Connect  
CC  
this pin to the center tap of an external resistive divider  
betweenDRV andSGNDtoprogramtheDRV regulator  
CC  
CC  
output voltage. To ensure loop stability, use the value of  
330kΩ for the top resistor, R1.  
V (Pin 8/Pin 6): Main Supply Input. This pin powers the  
IN  
DRV linear regulator. Bypass this pin to SGND with a  
CC  
RBLANK (Pin 3/NA): Blanking Time Adjust Input. Connect  
a resistor from this pin to SGND to set the blanking time.  
A small resistor value gives a shorter delay. Leave this pin  
floating if the BLANK pin is not used.*  
1μF ceramic, tantalum or other low ESR capacitor in close  
proximity to the LTC4441/LTC4441-1.  
DRV (Pin9/Pin7):LinearRegulatorOutput. Thisoutput  
CC  
pin powers the driver and the control circuitry. Bypass this  
pin to PGND using a 10μF ceramic, low ESR (X5R or X7R)  
capacitor in close proximity to the LTC4441/LTC4441-1.  
SGND (Pin 4/Pin 2): Signal Ground. Ground return for the  
DRV regulator and low power circuitry.  
CC  
IN(Pin5/Pin3):DriverLogicInput.Thisisthenoninverting  
OUT (Pin 10/Pin 8): Driver Output.  
driver input under normal operating conditions.  
GND (Exposed Pad Pin 11/NA): Ground. The exposed pad  
must be soldered to the PCB ground.  
*Available only on the 10-lead version of the LTC4441.  
44411fa  
7
LTC4441/LTC4441-1  
block DiagraM  
V
IN  
+
BIAS  
1.21V  
REG  
M
REG  
FB  
UVLO  
DRV  
CC  
1.09V  
IN  
Q1  
INB  
P1  
N1  
OUT  
EN/SHDN  
PGND  
EN  
THERMAL  
1.21V  
0.45V  
SHUTDOWN  
RBLANK  
LEADING  
EDGE DELAY  
BLANK  
MB  
SHUTDOWN  
SHDN  
SGND  
FOR 10-LEAD  
LTC4441  
ONLY  
4441 BD  
44411fa  
8
LTC4441/LTC4441-1  
applicaTions inForMaTion  
Overview  
V
LTC4441  
IN  
Power MOSFETs generally account for the majority of  
powerlostinaconverter. Itisimportanttochoosenotonly  
the type of MOSFET used, but also its gate drive circuitry.  
TheLTC4441/LTC4441-1isdesignedtodriveanN-channel  
power MOSFET with little efficiency loss. The LTC4441/  
LTC4441-1 can deliver up to 6A of peak current using a  
combined NPN Bipolar and MOSFET output stage. This  
helps to turn the power MOSFET fully “on” or “off” with  
a very brief transition region.  
1.21V  
R1  
330k  
REG  
M
REG  
FB  
+
R2  
ENABLE  
DRIVER  
UVLO  
DRV  
CC  
1.09V  
C
VCC  
OUT  
DRIVER  
TheLTC4441/LTC4441-1includesaprogrammablelinear-  
regulator to regulate the gate drive voltage. This regulator  
provides the flexibility to use either standard threshold or  
logic level MOSFETs.  
PGND  
4441 F01  
Figure 1. DRVCC Regulator  
DRV Regulator  
The LTC4441/LTC4441-1 monitors the FB pin for DRV ’s  
CC  
CC  
UVLO condition (UVLO in Figure 1). During power-up, the  
Aninternal,P-channellowdropoutlinearregulatorprovides  
driver output is held low until the DRV voltage reaches  
CC  
the DRV supply to power the driver and the pre-driver  
CC  
90% of the programmed value. Thereafter, if the DRV  
CC  
logic circuitry as shown in Figure 1. The regulator output  
voltage drops more than 20% below the programmed  
voltage can be programmed between 5V and 8V with an  
value, the driver output is forced low.  
external resistive divider between DRV and SGND and a  
CC  
center tap connected to the FB pin. The regulator needs an  
Logic Input Stage  
R1 value of around 330k to ensure loop stability; the value  
of R2 can be varied to achieve the required DRV voltage:  
The LTC4441/LTC4441-1 driver employs TTL/CMOS com-  
patible input thresholds that allow a low voltage digital  
signal to drive standard power MOSFETs. The LTC4441/  
LTC4441-1 contains an internal voltage regulator that  
CC  
406k  
DRVCC 1.21V  
R2 =  
biases the input buffer, allowing the input thresholds (V  
IH  
The DRV regulator can supply up to 100mA and is  
CC  
= 2.4V, V = 1.4V) to be independent of the programmed-  
IL  
short-circuit protected. The output must be bypassed  
to the PGND pin in very close proximity to the IC pins  
with a minimum of 10µF ceramic, low ESR (X5R or X7R)  
capacitor. Good bypassing is necessary as high transient  
supply currents are required by the driver. If the input  
driver supply, DRV , or the input supply, V . The 1V  
CC  
IN  
hysteresis between V and V eliminates false triggering  
IH  
IL  
due to noise during switching transitions. However, care  
should be taken to isolate this pin from any noise pickup,  
especiallyinhighfrequency,highvoltageapplications.The  
LTC4441/LTC4441-1inputbufferhashighinputimpedance  
and draws negligible input current, simplifying the drive  
circuitry required for the input. This input can withstand  
voltages up to 15V above and below ground. This makes  
the chip more tolerant to ringing on the input digital signal  
caused by parasitic inductance.  
supply voltage, V , is close to the required gate drive  
IN  
voltage, this regulator can be disabled by connecting the  
DRV and FB pins to V .  
CC  
IN  
44411fa  
9
LTC4441/LTC4441-1  
applicaTions inForMaTion  
Driver Output Stage  
The pre-driver that drives Q1, P1 and N1 uses an adap-  
tive method to minimize cross-conduction currents. This  
is done with a 5ns nonoverlapping transition time. N1 is  
fullyturnedoffbeforeQ1isturnedonandvice-versausing  
this5nsbuffertime. Thisminimizesanycross-conduction  
currents while Q1 and N1 are switching on and off without  
affecting their rise and fall times.  
A simplified version of the LTC4441/LTC4441-1’s driver-  
output stage is shown in Figure 2.  
V
IN  
LOAD  
DRV  
CC  
LTC4441  
OUT  
Q1  
INDUCTOR  
P1  
C
C
GD  
POWER  
MOSFET  
Thermal Shutdown  
R
N1  
O
GS  
N2  
The LTC4441/LTC4441-1 has a thermal detector that dis-  
N3  
DRV  
CC  
ables the DRV regulator and pulls the driver output low  
PGND  
CC  
whenactivated.Ifthejunctiontemperatureexceeds150°C,  
the driver pull-up devices, Q1 and P1, turn off while the  
pull-downdevice, N1, turnsonbrisklyfor200nstoquickly  
pulltheoutputlow.Thethermalshutdowncircuithas20°C  
of hysteresis.  
4441 F02  
Figure 2. Driver Output Stage  
The pull-up device is the combination of an NPN transis-  
tor, Q1, and a P-channel MOSFET, P1. This provides both  
the ability to swing to rail (DRV ) and deliver large peak  
CC  
Enable/Shutdown Input  
charging currents.  
The EN/SHDN pin serves two functions. Pulling this pin  
below0.45VforcestheLTC4441/LTC4441-1intoshutdown  
mode. In shutdown mode, the internal circuitry and the  
The pull-down device is an N-channel MOSFET, N1, with  
a typical on resistance of 0.35Ω. The low impedance of  
N1 provides fast turn-off of the external power MOSFET  
and holds the power MOSFET’s gate low when its drain  
voltageswitches.WhenthepowerMOSFET’sgateispulled  
low (gate shorted to source through N1) by the LTC4441/  
LTC4441-1, itsdrainvoltageispulledhighbyitsload(e.g.,  
inductor or resistor). The slew rate of the drain voltage  
causes current to flow to the MOSFET’s gate through its  
gate-to-drain capacitance. If the MOSFET driver does not  
have sufficient sink current capability (low output imped-  
DRV regulator are off and the supply current drops to  
CC  
<12µA. If the input voltage is between 0.45V and 1.21V,  
the DRV regulator and internal circuit power up but the  
CC  
driver output stays low. If the input goes above 1.21V, the  
driver starts switching according to the input logic signal.  
The driver enable comparator has a small hysteresis of  
120mV.  
Blanking  
ance), the current through the power MOSFET’s C can  
GD  
In some switcher applications, a current sense resistor  
is placed between the low side power MOSFET’s source  
terminal and ground to sense the current in the MOSFET.  
With this configuration, the switching controller must  
incorporate some timing interval to blank the ringing  
onthe current sense signal immediately after the MOSFET  
is turned on. This ringing is caused by the parasitic induc-  
tance and capacitance of the PCB trace and the MOSFET.  
The duration of the ringing is thus dependent on the PCB  
layout and the components used and can be longer than  
the blanking interval provided by the controller.  
momentarily pull the gate high and turn the MOSFET  
back on.  
A similar situation occurs during power-up when V is-  
IN  
rampingupwiththeDRV regulatoroutputstilllow. N1is  
CC  
off and the driver output, OUT, may momentarily pull high  
through the power MOSFET’s C , turning on the power  
GD  
MOSFET. The N-channel MOSFETs N2 and N3,shown in  
Figure 2, prevent the driver output from going high in this  
situation. If DRV is low, N3 is off. If OUT is pulled high  
CC  
through the power MOSFET’s C , the gate of N2 gets  
GD  
pulled high through RO. This turns N2 on, which then  
pulls OUT low. Once DRV is >1V, N3 turns on to hold  
CC  
the N2 gate low, thus disabling N2.  
44411fa  
10  
LTC4441/LTC4441-1  
applicaTions inForMaTion  
The 10-Lead LTC4441 includes an open-drain output that  
can be used to extend this blanking interval. The 8-Lead  
LTC4441-1 does not have this blanking function. Figure 3  
shows the BLANK pin connection. The BLANK pin is con-  
IN  
OUT  
+
POWER  
MOSFET’s  
CURRENT  
nected directly to the switching controller’s SENSE input.  
Figure 4 shows the blanking waveforms. If the driver input  
is low, the external power MOSFET is off and MB turns  
POWER MOSFET’s  
SOURCE TERMINAL  
+
on to hold SENSE low. If the driver input goes high, the  
power MOSFET turns on after the driver’s propagation  
delay. MB remains on, attenuating the ringing seen by the  
MB GATE  
+
controller’sSENSE input. Aftertheprogrammedblanking  
time, MB turns off to enable the current sense signal. MB  
isdesignedtoturnonandturnoffatacontrolledslewrate.  
This is to prevent the gate switching noise from coupling  
into the current sense signal.  
+
BLANK/SENSE  
4441 F04  
BLANKING TIME  
V
IN  
Figure 4. Blanking Waveforms  
TO  
SWITCHING  
CONTROLLER’S  
CURRENT  
SENSE  
LOAD  
LTC4441  
OUT  
Power Dissipation  
INDUCTOR  
POWER  
MOSFET  
R4  
To ensure proper operation and long-term reliability, the  
LTC4441/LTC4441-1 must not operate beyond its maxi-  
mum temperature rating. The junction temperature can  
be calculated by:  
DRIVER  
INPUT  
+
SENSE  
LEADING  
EDGE DELAY  
R3  
SENSE  
I
= I + ƒ • Q  
Q G  
Q(TOT)  
BLANK  
P = V • (I + ƒ • Q )  
D
IN  
Q
G
MB  
SGND  
PGND  
T = T + P θ  
J
A
D
JA  
KEEP THIS  
TRACE SHORT  
RBLANK  
4441 F03  
where:  
R7  
I = LTC4441/LTC4441-1 static quiescent current,  
Q
Figure 3. Blanking Circuit  
typically 250µA  
ƒ = Logic input switching frequency  
The blanking interval can be adjusted using resistor R7  
connected to the RBLANK pin. A small resistance value  
gives a shorter interval with a default minimum of 75ns.  
Q = Power MOSFET total gate charge at corre-  
G
sponding V voltage equal to DRV  
GS  
CC  
The value of the resistor R4 and the on-resistance of MB  
(typically 11Ω) form a resistive divider attenuating the  
ringing. R4needstobelargeforeffectiveblanking, butnot  
so large as to cause delay to the sense signal. A resistance  
value of 1k to 10k is recommended.  
V = LTC4441/LTC4441-1 input supply voltage  
IN  
T = Junction temperature  
J
T = Ambient temperature  
A
θ
JA  
= Junction-to-ambient thermal resistance. The  
Foroptimumperformance,theLTC4441/LTC4441-1should  
be placed as close as possible to the powerMOSFET and  
current sense resistor, R3.  
10-pin MSOP package has a thermal resistance of  
= 38°C/W.  
θ
JA  
44411fa  
11  
LTC4441/LTC4441-1  
applicaTions inForMaTion  
The total supply current, I  
, consists of the LTC4441/  
PC Board Layout Checklist  
Q(TOT)  
LTC4441-1’s static quiescent current, I , and the current  
Q
When laying out the printed circuit board, the following-  
checklist should be used to ensure proper operation of  
the LTC4441/LTC4441-1:  
required to drive the gate of the power MOSFET, with  
thelatter usually much higher than the former. The dissi-  
pated power, P , includes the efficiency loss of the DRV  
D
CC  
A. Mount the bypass capacitors as close as possible be-  
tween the DRV and PGND pins and between the V  
regulator. With a programmed DRV , a high V results  
CC  
IN  
in higher efficiency loss.  
CC  
IN  
and SGND pins. The PCB trace loop areas should be  
tightened as much as possible to reduce inductance.  
As an example, consider an application with V = 12V.  
IN  
The switching frequency is 300kHz and the maximum  
ambient temperature is 70°C. The power MOSFET chosen  
is three pieces of IRFB31N20D, which has a maximum  
B. Use a low inductance, low impedance ground plane to  
reduce any ground drop. Remember that the LTC4441/  
LTC4441-1switches6Apeakcurrentandanysignificant  
ground drop will degrade signal integrity.  
R
of 82mΩ (at room temperature) and a typical  
DS(ON)  
total gatecharge of 70nC (the temperature coefficient of  
the gate charge is low).  
C. Keep the PCB ground trace between the LTC4441/  
LTC4441-1 ground pins (PGND and SGND) and the  
external current sense resistor as short and wide as  
possible.  
I
= 500µA + 210nC • 300kHz = 63.5mA  
Q(TOT)  
P = 12V • 63.5mA = 0.762W  
IC  
T = 70°C + 38°C/W • 0.762W = 99°C  
J
D. Planthegroundroutingcarefully. Knowwherethelarge  
load switching current paths are. Maintain separate  
ground return paths for the input pin and output pin  
to avoid sharing small-signal ground with large load  
ground return. Terminate these two ground traces only  
at the GND pin of the driver (STAR network).  
This demonstrates how significant the gate charge cur-  
rent can be when compared to the LTC4441/LTC4441-1’s  
static quiescent current. To prevent the maximum junc-  
tion temperature from being exceeded, the input supply  
current must be checked when switching at high V . A  
IN  
tradeoff between the operating frequency and the size of  
thepowerMOSFETmaybenecessarytomaintainareliable  
LTC4441/LTC4441-1 junction temperature. Prior to lower-  
ingtheoperatingfrequency,however,besuretocheckwith  
powerMOSFETmanufacturersfortheirinnovationsonlow  
E. Keep the copper trace between the driver output pin  
andthe load short and wide.  
F. Place the small-signal components away from the high  
frequencyswitchingnodes. Thesecomponentsinclude  
the resistive networks connected to the FB, RBLANK  
and EN/SHDN pins.  
Q , low R  
devices. Power MOSFET manufacturing  
G
DS(ON)  
technologies are continually improving, with newer and  
better performing devices being introduced.  
44411fa  
12  
LTC4441/LTC4441-1  
package DescripTion  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1664 Rev G)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ± 0.102  
(.074 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.23  
(.206)  
MIN  
1.68 ± 0.102 3.20 – 3.45  
(.066 ± .004) (.126 – .136)  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
1
2
3
4 5  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0910 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
44411fa  
13  
LTC4441/LTC4441-1  
package DescripTion  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
44411fa  
14  
LTC4441/LTC4441-1  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
03/11 Added MP-grade part. Changes reflected throughout the data sheet.  
1-16  
44411fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC4441/LTC4441-1  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC4440/  
LTC4440-5  
High Voltage, High Speed, High Side N-Channel  
Gate Driver  
Up to 80V Supply Voltage, 8V ≤ V ≤ 15V,  
CC  
2.4A Peak Pull-Up/1.5Ω Peak Pull-Down  
LTC4442  
LTC4449  
High Speed Synchronous N-Channel MOSFET Driver  
High Speed Synchronous N-Channel MOSFET Driver  
Up to 38V Supply Voltage, 6V ≤ V ≤ 9.5V  
CC  
Up to 38V Supply Voltage, 4.5V ≤ V ≤ 6.5V  
CC  
LTC4444/  
LTC4444-5  
High Voltage Synchronous N-Channel MOSFET Driver  
with Shoot Thru Protection  
Up to 100V Supply Voltage, 4.5V/7.2V ≤ V ≤ 13.5V,  
CC  
3A Peak Pull-Up/0.55Ω Peak Pull-Down  
LTC4446  
LTC1154  
High Voltage Synchronous N-Channel MOSFET Driver  
without Shoot Thru Protection  
Up to 100V Supply Voltage, 7.2V ≤ V ≤ 13.5V,  
CC  
3A Peak Pull-Up/0.55Ω Peak Pull-Down  
High Side Micropower MOSFET Driver  
Up to 18V Supply Voltage, 85µA Quiescent Current, Internal Charge Pump  
44411fa  
LT 0311 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY