LTC4442EMS8E-1-PBF [Linear]

High Speed Synchronous N-Channel MOSFET Drivers; 高速同步N沟道MOSFET驱动器
LTC4442EMS8E-1-PBF
型号: LTC4442EMS8E-1-PBF
厂家: Linear    Linear
描述:

High Speed Synchronous N-Channel MOSFET Drivers
高速同步N沟道MOSFET驱动器

驱动器
文件: 总12页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4442/LTC4442-1  
High Speed Synchronous  
N-Channel MOSFET Drivers  
FEATURES  
DESCRIPTION  
The LTC®4442 is a high frequency gate driver designed  
to drive two N-channel MOSFETs in a synchronous buck  
DC/DC converter topology. The powerful driver capabil-  
ity reduces switching losses in MOSFETs with high gate  
capacitance.  
Wide V Range: 6V to 9.5V  
CC  
38V Maximum Input Supply Voltage  
Adaptive Shoot-Through Protection  
2.4A Peak Pull-Up Current  
5A Peak Pull-Down Current  
8ns TG Fall Time Driving 3000pF Load  
The LTC4442 features a separate supply for the input  
logic to match the signal swing of the controller IC. If the  
input signal is not being driven, the LTC4442 activates a  
shutdown mode that turns off both external MOSFETs.  
The input logic signal is internally level-shifted to the  
bootstrapped supply, which may function at up to 42V  
above ground.  
12ns TG Rise Time Driving 3000pF Load  
Separate Supply to Match PWM Controller  
Drives Dual N-Channel MOSFETs  
Undervoltage Lockout  
Thermally Enhanced MSOP Package  
APPLICATIONS  
The LTC4442 contains undervoltage lockout circuits on  
both the driver and logic supplies that turn off the external  
MOSFETs when an undervoltage condition is present.  
The LTC4442 and LTC4442-1 have different undervoltage  
lockout thresholds to accommodate a wide variety of ap-  
plications.Anadaptiveshoot-throughprotectionfeatureis  
also built-in to prevent power loss resulting from MOSFET  
cross-conduction current.  
Distributed Power Architectures  
High Density Power Modules  
The LTC4442/LTC4442-1 are available in the thermally  
enhanced 8-lead MSOP package.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LTC4442 Driving 3000pF Capacitive Loads  
Synchronous Buck Converter Driver  
INPUT (IN)  
5V/DIV  
V
V
IN  
CC  
32V  
6V  
BOOST  
LTC4442  
BOTTOM  
GATE (BG)  
5V/DIV  
V
V
TG  
TS  
LOGIC  
CC  
TOP GATE  
(TG-TS)  
5V/DIV  
V
OUT  
PWM  
IN  
BG  
GND  
4442 TA01a  
4442 TA01b  
10ns/DIV  
4442fa  
1
LTC4442/LTC4442-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Supply Voltage  
TOP VIEW  
TG  
TS  
BG  
1
2
3
4
8 BOOST  
V ......................................................... –0.3V to 10V  
CC  
7 V  
6 V  
CC  
LOGIC  
9
V
LOGIC  
.................................................... –0.3V to 10V  
5 IN  
GND  
BOOST – TS........................................... –0.3V to 10V  
IN Voltage .................................................. –0.3V to 10V  
BOOST Voltage .......................................... –0.3V to 42V  
TS Voltage..................................................... –5V to 38V  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
T
= 125°C, θ = 160°C/W  
JMAX  
JA  
EXPOSED PAD (PIN #) IS GND, MUST BE SOLDERED TO PCB  
TS + V ...................................................................42V  
CC  
Driver Output TG (with Respect to TS)....... –0.3V to 10V  
Driver Output BG........................................ –0.3V to 10V  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature (Note 3) ............................. 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTCTJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC4442EMS8E#PBF  
LTC4442IMS8E#PBF  
LTC4442EMS8E-1#PBF  
LTC4442IMS8E-1#PBF  
LTC4442EMS8E#TRPBF  
LTC4442IMS8E#TRPBF  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
LTCTJ  
LTC4442EMS8E-1#TRPBF LTCXR  
LTC4442IMS8E-1#TRPBF LTCXR  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBOOST = 7V, VTS = GND = 0V, VLOGIC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Logic Supply (V  
)
LOGIC  
V
Operating Range  
3
9.5  
V
LOGIC  
I
DC Supply Current  
IN = Floating  
730  
850  
μA  
VLOGIC  
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.5  
2.4  
2.75  
2.65  
100  
3.0  
2.9  
V
V
mV  
LOGIC  
LOGIC  
Hysteresis  
Gate Driver Supply (V  
)
CC  
V
Operating Range  
6
9.5  
V
CC  
I
DC Supply Current  
IN = Floating  
300  
380  
μA  
VCC  
4442fa  
2
LTC4442/LTC4442-1  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBOOST = 7V, VTS = GND = 0V, VLOGIC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising (LTC4442)  
Falling (LTC4442)  
2.75  
2.60  
3.20  
3.04  
160  
3.65  
3.50  
V
V
mV  
CC  
CC  
Hysteresis (LTC4442)  
V
V
Rising (LTC4442-1)  
Falling (LTC4442-1)  
5.6  
4.7  
6.2  
5.3  
850  
6.7  
5.8  
V
V
mV  
CC  
CC  
Hysteresis (LTC4442-1)  
Bootstrapped Supply (BOOST – TS)  
I
DC Supply Current  
IN = Floating  
325  
400  
μA  
BOOST  
Input Signal (IN)  
V
V
V
V
TG Turn-On Input Threshold  
TG Turn-Off Input Threshold  
BG Turn-On Input Threshold  
BG Turn-Off Input Theshold  
V
V
≥ 5V, IN Rising  
3.0  
1.9  
3.5  
2.2  
4.0  
2.6  
V
V
IH(TG)  
IL(TG)  
IH(BG)  
IL(BG)  
IN(SD)  
LOGIC  
LOGIC  
= 3.3V, IN Rising  
V
LOGIC  
V
LOGIC  
≥ 5V, IN Falling  
= 3.3V, IN Falling  
3.25  
2.09  
V
V
V
LOGIC  
V
LOGIC  
≥ 5V, IN Falling  
= 3.3V, IN Falling  
0.8  
0.8  
1.25  
1.10  
1.6  
1.4  
V
V
V
LOGIC  
V
LOGIC  
≥ 5V, IN Rising  
= 3.3V, IN Rising  
1.50  
1.21  
V
V
I
Maximum Current Into or Out of IN in  
Shutdown Mode  
V
LOGIC  
V
LOGIC  
≥ 5V, IN Floating  
= 3.3V, IN Floating  
200  
100  
300  
150  
μA  
μA  
High Side Gate Driver Output (TG)  
V
V
TG High Output Voltage  
TG Low Output Voltage  
TG Peak Pull-Up Current  
TG Peak Pull-Down Current  
I
I
= –10mA, V  
= V  
– V  
TG  
0.7  
100  
2.4  
2.4  
V
mV  
A
OH(TG)  
OL(TG)  
PU(TG)  
PD(TG)  
TG  
OH(TG)  
BOOST  
= 100mA, V  
= V – V  
TG  
TG  
OL(TG)  
TS  
I
I
1.5  
1.5  
A
Low Side Gate Driver Output (BG)  
V
V
BG High Output Voltage  
BG Low Output Voltage  
BG Peak Pull-Up Current  
BG Peak Pull-Down Current  
I
I
= –10mA, V  
= 100mA  
= V – V  
BG  
0.7  
100  
2.4  
5.0  
V
mV  
A
OH(BG)  
OL(BG)  
PU(BG)  
PD(BG)  
BG  
OH(BG)  
CC  
BG  
I
I
1.4  
3.5  
A
Switching Time  
t
t
t
t
t
t
t
t
BG Low to TG High Propagation Delay  
IN Low to TG Low Propagation Delay  
TG Low to BG High Propagation Delay  
IN High to BG Low Propagation Delay  
TG Output Rise Time  
20  
12  
20  
12  
12  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH(TG)  
PHL(TG)  
PLH(BG)  
PHL(BG)  
r(TG)  
10% – 90%, C = 3nF  
L
TG Output Fall Time  
10% – 90%, C = 3nF  
L
f(TG)  
BG Output Rise Time  
10% – 90%, C = 3nF  
12  
5
r(BG)  
L
BG Output Fall Time  
10% – 90%, C = 3nF  
L
r(BG)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
T is calculated from the ambient temperature T and power dissipation P  
according to the following formula:  
J
A
D
T = T + (PD • θ °C/W)  
J
A
JA  
Note 3: This IC includes overtemperature protection that is intended  
Note 2: The LTC4442I/LTC4442I-1 are guaranteed to meet specifications  
from –40°C to 85°C. The LTC4442E/LTC4442E-1 are guaranteed to meet  
specifications from 0°C to 85°C with specifications over the –40°C to  
85°C operating temperature range assured by design, characterization and  
correlation with statistical process controls.  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
4442fa  
3
LTC4442/LTC4442-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Thresholds vs  
Input Thresholds for VLOGIC = 3.3V  
vs Temperature  
Input Thresholds for VLOGIC ≥ 5V  
vs Temperature  
V
LOGIC Supply Voltage  
5
4
3
2
1
0
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
V
5V  
LOGIC  
LOGIC  
V
V
IH(TG)  
IH(TG)  
V
V
IH(TG)  
V
V
V
IL(TG)  
IL(TG)  
IL(TG)  
IL(BG)  
V
V
IL(BG)  
V
IL(BG)  
V
IH(BG)  
IH(BG)  
V
IH(BG)  
3
4
5
6
7
8
9
10  
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
V
SUPPLY (V )  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOGIC  
4442 G01  
4442 G03  
4442 G02  
BG or TG Input Threshold Hysteresis  
vs VLOGIC Supply Voltage  
Quiescent Supply Current vs  
Supply Voltage  
BG or TG Input Threshold  
Hysteresis vs Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
IN FLOATING  
I
VLOGIC  
V
= 5V  
LOGIC  
V
= 3.3V  
LOGIC  
I
VCC  
I
BOOST  
–40  
–10  
20  
50  
80  
110  
3
5
6
7
8
10  
7
8
10  
4
9
3
4
5
6
9
SUPPLY VOLTAGE (V)  
V
SUPPLY (V)  
TEMPERATURE (°C)  
LOGIC  
4442 G05  
4442 G06  
4442 G04  
Quiescent Supply Current vs  
Temperature  
VLOGIC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
IN FLOATING  
V
V
= 5V  
LTC4442-1 RISING THRESHOLD  
LOGIC  
CC  
= BOOST-TS = 7V  
I
VLOGIC  
LTC4442-1 FALLING THRESHOLD  
RISING THRESHOLD  
FALLING THRESHOLD  
I
BOOST  
LTC4442 RISING THRESHOLD  
LTC4442 FALLING THRESHOLD  
I
VCC  
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4442 G07  
4442 G08  
4442 G09  
4442fa  
4
LTC4442/LTC4442-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Undervoltage Lockout Threshold  
Hysteresis vs Temperature  
Switching Supply Current vs  
Input Frequency  
Switching Supply Current vs  
Load Capacitance  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
4
3
2
1
0
100  
NO LOAD  
V
V
= 5V  
LOGIC  
= BOOST-TS = 7V  
CC  
LTC4442-1  
V
V
= 5V  
LOGIC  
CC  
V
CC  
UVLO  
= BOOST-TS = 7V  
I
OR I  
BOOST  
IN  
CC  
f
= 500kHz  
I
I
VCC  
10  
1
I
f
OR I  
BOOST  
= 100kHz  
CC  
IN  
BOOST  
LTC4442  
UVLO  
I
VLOGIC  
I
LOGIC  
V
CC  
f
= 500kHz  
IN  
1
V
UVLO  
50  
LOGIC  
0
–40  
–10  
20  
80  
110  
0
200k  
400k  
600k  
800k  
1M  
0.1  
0.3  
3
10  
30  
TEMPERATURE (°C)  
LOAD CAPACITANCE (nF)  
FREQUENCY (Hz)  
4442 G12  
4442 G10  
4442 G11  
Propagation Delay vs VLOGIC  
Supply Voltage  
Propagation Delay vs  
VCC Supply Voltage  
Propagation Delay vs Temperature  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
NO LOAD  
NO LOAD  
NO LOAD  
= 5V  
V
V
= 5V  
V
= BOOST-TS = 7V  
V
LOGIC  
CC  
CC  
LOGIC  
35  
30  
= BOOST-TS = 7V  
BOOST-TS = V  
CC  
t
t
PLH(TG)  
t
PLH(TG)  
25  
20  
15  
10  
5
t
t
PLH(TG)  
PLH(BG)  
t
PLH(BG)  
t
PLH(BG)  
PHL(TG)  
t
PHL(TG)  
t
PHL(BG)  
t
PHL(BG)  
t
PHL(TG)  
t
PHL(BG)  
0
0
0
–40  
–10  
20  
50  
80  
110  
8
SUPPLY VOLTAGE (V)  
10  
4
5
6
7
9
4
5
7
8
9
10  
3
6
TEMPERATURE (°C)  
V
V
SUPPLY VOLTAGE (V)  
CC  
LOGIC  
4442 G15  
4442 G14  
4442 G13  
Output High Voltage vs  
VCC Supply Voltage  
Rise and Fall Time vs  
VCC Supply Voltage  
Rise and Fall Time vs  
Load Capacitance  
100  
10  
1
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
V
= BOOST-TS = 7V  
BOOST-TS = V  
CC  
C
= 3.3nF  
CC  
LOAD  
BOOST-TS = V  
CC  
t
r(BG)  
t
r(TG)  
–10mA  
–1mA  
–100mA  
t
r(BG)  
t
f(TG)  
t
f(BG)  
t
r(TG)  
t
f(TG)  
f(BG)  
t
0
1
3
10  
30  
4
5
6
7
8
9
10  
4
5
7
8
9
10  
6
LOAD CAPACITANCE (nF)  
V
SUPPLY VOLTAGE (V)  
V
SUPPLY VOLTAGE (V)  
CC  
CC  
4442 G18  
4442 G17  
4442 G16  
4442fa  
5
LTC4442/LTC4442-1  
PIN FUNCTIONS  
TG (Pin 1): High Side Gate Driver Output (Top Gate). This  
pin swings between TS and BOOST.  
V
(Pin 7): Output Driver Supply. This pin powers the  
CC  
low side gate driver output directly and the high side  
gate driver output through an external diode connected  
between this pin and BOOST (Pin 8). A low ESR ceramic  
bypass capacitor should be tied between this pin and  
GND (Pin 4).  
TS (Pin 2): High Side MOSFET Source Connection (Top  
Source).  
BG (Pin 3): Low Side Gate Driver Output (Bottom Gate).  
This pin swings between V and GND.  
CC  
BOOST (Pin 8): High Side Bootstrapped Supply. An ex-  
ternal capacitor should be tied between this pin and TS  
(Pin 2). Normally, a bootstrap diode is connected between  
GND (Pin 4): Chip Ground.  
IN (Pin 5): Input Signal. Input referenced to an internal  
V
V
(Pin 7) and this pin. Voltage swing at this pin is from  
CC  
CC  
supply powered by V  
(Pin 6) and referenced to GND  
LOGIC  
– V to V + V – V , where V is the forward volt-  
D
IN  
CC  
D
D
(Pin 4). If this pin is floating, an internal resistive divider  
triggers a shutdown mode in which both BG (Pin 3) and  
TG (Pin 1) are pulled low. Trace capacitance on this pin  
should be minimized to keep the shutdown time low.  
age drop of the bootstrap diode.  
Exposed Pad (Pin 9): Ground. Must be electrically con-  
nected to GND (Pin 4) and soldered to PCB ground for  
optimal thermal performance.  
V
(Pin 6): Logic Supply. This pin powers the input  
LOGIC  
buffer and logic. Connect this pin to the power supply  
of the controller that is driving IN (Pin 5) to match input  
thresholds or to V (Pin 7) to simplify PCB routing.  
CC  
BLOCK DIAGRAM  
V
CC  
UNDERVOLTAGE  
LOCKOUT  
7
BOOST  
8
TG  
V
LEVEL  
SHIFTER  
LOGIC  
UNDERVOLTAGE  
LOCKOUT  
1
6
TS  
2
INTERNAL  
SUPPLY  
SHOOT-  
THROUGH  
PROTECTION  
7k  
V
CC  
THREE-STATE  
BG  
INPUT  
IN  
3
5
BUFFER  
7k  
GND  
GND  
4
9
4442 BD  
4442fa  
6
LTC4442/LTC4442-1  
TIMING DIAGRAM  
V
IL(TG)  
IN  
V
IL(BG)  
90%  
10%  
TG  
BG  
4442 TD  
90%  
10%  
t
t
r(TG)  
pLH(TG)  
r(BG)  
t
pLH(BG)  
t
t
t
f(BG)  
pHL(BG)  
f(TG)  
t
pHL(TG)  
t
OPERATION  
Overview  
TG HIGH  
TG LOW  
V
IH(TG)  
TG HIGH  
TG LOW  
The LTC4442 receives a ground-referenced, low voltage  
digitalinputsignaltodrivetwoN-channelpowerMOSFETs  
in a synchronous buck power supply configuration. The  
V
V
IL(TG)  
IN  
gateofthelowsideMOSFETisdriveneithertoV orGND,  
CC  
BG LOW  
BG HIGH  
depending on the state of the input. Similarly, the gate of  
the high side MOSFET is driven to either BOOST or TS by  
a supply bootstrapped off of the switch node (TS).  
V
IL(BG)  
BG LOW  
BG HIGH  
IH(BG)  
4442 F01  
Input Stage  
Figure 1. Three-State Input Operation  
TheLTC4442employsauniquethree-stateinputstagewith  
Thethresholdsarepositionedtoallowforaregioninwhich  
both BG and TG are low. An internal resistive divider will  
pull IN into this region if the signal driving the IN pin goes  
into a high impedance state.  
transition thresholds that are proportional to the V  
LOGIC  
supply. The V  
supply can be tied to the controller  
IC’s power supply so that the input thresholds will match  
LOGIC  
thoseofthecontroller’soutputsignal.Alternatively,V  
LOGIC  
One application of this three-state input is to keep both of  
the power MOSFETs off while an undervoltage condition  
exists on the controller IC power supply. This can be ac-  
complished by driving the IN pin with a logic buffer that  
has an enable pin. With the enable pin of the buffer tied  
to the power good pin of the controller IC, the logic buf-  
fer output will remain in a high impedance state until the  
controllerconfirmsthatitssupplyisnotinanundervoltage  
state. The three-state input of the LTC4442 will therefore  
pull IN into the region where TG and BG are low until the  
controller has enough voltage to operate predictably.  
can be tied to V to simplify routing. An internal voltage  
CC  
regulator in the LTC4442 limits the input threshold values  
for V  
supply voltages greater than 5V.  
LOGIC  
Therelationshipbetweenthetransitionthresholdsandthe  
three input states of the LTC4442 is illustrated in Figure 1.  
WhenthevoltageonINisgreaterthanthethresholdV  
,
IH(TG)  
TG is pulled up to BOOST, turning the high side MOSFET  
on. This MOSFET will stay on until IN falls below V  
.
IL(TG)  
, BG is pulled up  
Similarly, when IN is less than V  
IH(BG)  
to V , turning the low side (synchronous) MOSFET on.  
BG will stay high until IN increases above the threshold  
CC  
V
.
IL(BG)  
4442fa  
7
LTC4442/LTC4442-1  
OPERATION  
The hysteresis between the corresponding V and V  
voltage levels eliminates false triggering due to noise  
during switch transitions; however, care should be taken  
to keep noise from coupling into the IN pin, particularly  
in high frequency, high voltage applications.  
V
IN  
IH  
IL  
UP TO 38V  
8
LTC4442  
BOOST  
C
GD  
Q1  
HIGH SIDE  
POWER  
TG  
TS  
1
2
7
MOSFET  
N1  
C
GS  
LOAD  
Undervoltage Lockout  
INDUCTOR  
V
CC  
TheLTC4442containsundervoltagelockoutdetectorsthat  
monitor both the V and V  
supplies. When V falls  
falls below 2.65V, the output pins  
CC  
LOGIC  
LOGIC  
CC  
Q2  
N2  
C
GD  
below 3.04V or V  
LOW SIDE  
POWER  
BG  
3
4
BG and TG are pulled to GND and TS, respectively. This  
turns off both of the external MOSFETs. When V and  
MOSFET  
Q3  
C
GS  
CC  
GND  
4442 F02  
V
have adequate supply voltage for the LTC4442 to  
LOGIC  
operate reliably, normal operation will resume.  
Figure 2. Capacitance Seen by BG and TG During Switching  
Adaptive Shoot-Through Protection  
Rise/Fall Time  
Internal adaptive shoot-through protection circuitry  
monitors the voltages on the external MOSFETs to ensure  
that they do not conduct simultaneously. The LTC4442  
does not allow the bottom MOSFET to turn on until the  
gate-source voltage on the top MOSFET is sufficiently  
low, and vice-versa. This feature improves efficiency by  
eliminating cross-conduction current from flowing from  
SincethepowerMOSFETgenerallyaccountsforthemajor-  
ity of power loss in a converter, it is important to quickly  
turn it on and off, thereby minimizing the transition time  
and power loss. The LTC4442’s peak pull-up current of  
2.4A for both BG and TG (Q1 and Q2) produces a rapid  
turn-on transition for the MOSFETs. This high current is  
capable of driving a 3nF load with a 12ns rise time.  
the V supply through the MOSFETs to ground during a  
IN  
switch transition.  
It is also important to turn the power MOSFETs off quickly  
to minimize power loss due to transition time; however,  
an additional benefit of a strong pull-down on the driver  
outputsisthepreventionofcross-conductioncurrent. For  
example, when BG turns the low-side power MOSFET off  
and TG turns the high-side power MOSFET on, the volt-  
Output Stage  
A simplified version of the LTC4442’s output stage is  
shown in Figure 2. The pull-up device on both the BG and  
TG outputs is an NPN bipolar junction transistor (Q1 and  
Q2). The BG and TG outputs are pulled up to within an  
NPN V (~0.7V) of their positive rails (V and BOOST,  
age on the TS pin will rise to V very rapidly. This high  
IN  
frequency positive voltage transient will couple through  
BE  
CC  
respectively).BothBGandTGhaveN-channelMOSFETpull-  
down devices (N1 and N2) which pull BG and TG down to  
theirnegativerails,GNDandTS.AnadditionalNPNbipolar  
junction transistor (Q3) is present on BG to increase its  
pull-downdrivecurrentcapacity.Thelargevoltageswingof  
the BG and TG output pins is important in driving external  
the C capacitance of the low side power MOSFET to  
GD  
the BG pin. If the BG pin is not held down sufficiently, the  
voltage on the BG pin will rise above the threshold volt-  
age of the low side power MOSFET, momentarily turning  
it back on. As a result, both the high side and low side  
MOSFETs will be conducting, which will cause significant  
cross-conduction current to flow through the MOSFETs  
power MOSFETs, whose R  
is inversely proportional  
GS  
DS(ON)  
to its gate overdrive voltage (V – V ).  
fromV toground,therebyintroducingsubstantialpower  
TH  
IN  
loss. A similar effect occurs on TG due to the C and C  
GS  
GD  
capacitances of the high side MOSFET.  
4442fa  
8
LTC4442/LTC4442-1  
OPERATION  
TG results in a rapid 8ns fall time with a 3nF load. These  
powerful pull-down devices minimize the power loss as-  
sociatedwithMOSFETturn-offtimeandcross-conduction  
current.  
The LTC4442’s powerful parallel combination of the  
N-channelMOSFET(N2)andNPN(Q3)ontheBGpull-down  
generates a phenomenal 5ns fall time on BG while driving  
a 3nF load. Similarly, the 1Ω pull-down MOSFET (N1) on  
APPLICATIONS INFORMATION  
Power Dissipation  
The gate charge losses are primarily due to the large AC  
currentsrequiredtochargeanddischargethecapacitance  
of the external MOSFETs during switching. For identical  
To ensure proper operation and long-term reliability, the  
LTC4442 must not operate beyond its maximum tem-  
perature rating. Package junction temperature can be  
calculated by:  
pure capacitive loads C  
on TG and BG at switching  
LOAD  
frequency fin, the load losses would be:  
2
2
P
= (C  
)(f )[(V  
– TS) + (V ) ]  
CLOAD  
LOAD IN  
BOOST CC  
T = T + (P )(θ )  
J
A
D
JA  
In a typical synchronous buck configuration, V  
– TS  
BOOST  
where:  
is equal to V – V , where V is the forward voltage  
CC  
D
D
T = Junction temperature  
drop across the diode between V and BOOST. If this  
J
CC  
T = Ambient temperature  
drop is small relative to V , the load losses can be  
A
CC  
P = Power dissipation  
approximated as:  
D
JA  
θ
= Junction-to-ambient thermal resistance  
2
P
≈ 2(C )(f )(V )  
LOAD IN CC  
CLOAD  
Power dissipation consists of standby, switching and  
capacitive load power losses:  
Unlike a pure capacitive load, a power MOSFET’s gate  
capacitance seen by the driver output varies with its V  
GS  
P = P + P + P  
voltagelevelduringswitching.AMOSFET’scapacitiveload  
D
DC  
AC  
QG  
power dissipation can be calculated using its gate charge,  
where:  
Q . The Q value corresponding to the MOSFET’s V  
GS  
G
G
P
AC  
P
= Quiescent power loss  
DC  
value (V in this case) can be readily obtained from the  
CC  
P
= Internal switching loss at input frequency f  
IN  
manufacturer’s Q vs V curves. For identical MOSFETs  
G
GS  
= Loss due turning on and off the external MOSFET  
QG  
on TG and BG:  
with gate charge Q at frequency f  
G
IN  
P
≈ 2(V )(Q )(f )  
QG  
CC  
G
IN  
The LTC4442 consumes very little quiescent current. The  
DC power loss at V = 5V and V = V − TS = 7V  
To avoid damaging junction temperatures due to power  
dissipation, the LTC4442 includes a temperature monitor  
that will pull BG and TG low if the junction temperature  
exceeds 160°C. Normal operation will resume when the  
junction temperature cools to less than 135°C.  
LOGIC  
CC  
BOOST  
is only (730ꢀA)(5V) + (625ꢀA)(7V) = 8mW.  
Ataparticularswitchingfrequency,theinternalpowerloss  
increases due to both AC currents required to charge and  
discharge internal nodal capacitances and cross-conduc-  
tion currents in the internal logic gates. The sum of the  
quiescent current and internal switching current with no  
loadareshownintheTypicalPerformanceCharacteristics  
plot of Switching Supply Current vs Input Frequency.  
Bypassing and Grounding  
TheLTC4442requiresproperbypassingontheV  
,V  
LOGIC CC  
and V  
– TS supplies due to its high speed switching  
BOOST  
(nanoseconds)andlargeACcurrents(Amperes).Careless  
component placement and PCB trace routing may cause  
excessive ringing and undershoot/overshoot.  
4442fa  
9
LTC4442/LTC4442-1  
APPLICATIONS INFORMATION  
To obtain the optimum performance from the LTC4442:  
A. Mount the bypass capacitors as close as possible  
C. Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for  
the input pin and the output power stage.  
between the V  
and GND pins, the V and GND  
LOGIC  
CC  
pins, and the BOOST and TS pins. The leads should  
be shortened as much as possible to reduce lead  
inductance.  
D. Keep the copper traces between the driver output pins  
and the load short and wide.  
B. Use a low inductance, low impedance ground plane  
to reduce any ground drop and stray capacitance.  
Remember that the LTC4442 switches greater than  
5A peak currents and any significant ground drop will  
degrade signal integrity.  
E. Be sure to solder the Exposed Pad on the back side of  
the LTC4442 packages to the board. Correctly soldered  
2
to a 2500mm double-sided 1oz copper board, the  
LTC4442 has a thermal resistance of approximately  
40°C/W. Failure to make good thermal contact between  
the exposed back side and the copper board will result  
in thermal resistances far greater.  
TYPICAL APPLICATION  
LTC7510/LTC4442-1 12V to 1.5V/30A Digital Step-Down DC/DC Converter with PMBus Serial Interface  
7V V  
DRIVE  
12V  
5V  
R1  
R2  
D2  
C5  
SDATA  
V
12SEN  
CMDSH3  
0.22μF  
PMBus  
V
SCLK  
CC  
INTERFACE  
V
SMB_AL_N  
D33  
V
C2  
BOOST  
D25  
LTC7510  
M1  
RJK0305  
×2  
+
POWER  
MANAGEMENT  
INTERFACE  
V
V
TG  
PWRGD  
OUTEN  
LOGIC  
CC  
L1  
C4  
C1  
C3  
LTC4442-1  
0.3μH  
GND  
TS  
V
OUT  
M2  
C6  
R3  
PWM  
IN  
BG  
+
RJK0301  
×2  
330μF  
×6  
GND  
1μF  
SYNC_IN  
MULTIPHASE  
INTERFACE  
D1  
R
SYNC_OUT  
CM  
TEMPSEN  
LOAD  
I
SENN  
FAULT1  
FAULT2  
R
FAULT  
OUTPUTS  
SENSE  
I
SENP  
SENP  
SENN  
V
V
1k  
1k  
1k  
1k  
1k  
I
4442 TA02  
OUT/ISH  
SADDR  
RTN  
I-SHARE  
I
SH_GND  
V
SET  
FSET  
RESET_N  
V
TRIM  
I
MAXSET  
4442fa  
10  
LTC4442/LTC4442-1  
PACKAGE DESCRIPTION  
MS8E Package  
8-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1662 Rev D)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.081 ± .004)  
1
1.83 ± 0.102  
(.072 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
2.794 ± 0.102  
(.110 ± .004)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
2.083 ± 0.102  
(.082 ± .004)  
8
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0307 REV D  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
4442fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC4442/LTC4442-1  
RELATED PARTS  
PART NUMBER  
LTC1154  
LTC1155  
LT®1161  
DESCRIPTION  
COMMENTS  
High Side Micropower MOSFET Driver  
Dual Micropower High/Low Side Driver  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
High Speed Single/Dual N-Channel MOSFET Driver  
Synchronous Rectifier Driver for Forward Converter  
Internal Charge Pump, 4.5V to 18V Supply Range  
Internal Charge Pump, 4.5V to 18V Supply Range  
8V to 48V Supply Range, t = 200μs, t = 28μs  
ON  
OFF  
LTC1163  
LTC1693  
LTC3900  
LTC3901  
1.8V to 6V Supply Range, t = 95μs, t = 45μs  
ON OFF  
CMOS Compatible Input, V Range: 4.5V to 13.2V  
CC  
Pulse Transformer Synchronization Input  
Gate Drive Transformer Synchronous Input  
Secondary Side Synchronous Driver for Push-Pull and  
Full-Bridge Converter  
LTC4440  
LTC4441  
LTC7510  
High Speed, High Voltage, High Side Gate Driver  
6A MOSFET Driver  
Wide Operating V Range: Up to 80V DC, 100V Transient  
IN  
Adjustable Gate Drive from 5V to 8V, 5V ≤ V ≤ 28V  
IN  
Digital DC/DC Controller with PMBus Interface  
Digital Controller, PMBus Serial Interface, 150kHz to 2MHz  
Switching Frequency  
4442fa  
LT 0108 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY