LTC4446IMS8E-TRPBF [Linear]

High Voltage High Side/Low Side N-Channel MOSFET Driver; 高电压高侧/低侧N沟道MOSFET驱动器
LTC4446IMS8E-TRPBF
型号: LTC4446IMS8E-TRPBF
厂家: Linear    Linear
描述:

High Voltage High Side/Low Side N-Channel MOSFET Driver
高电压高侧/低侧N沟道MOSFET驱动器

驱动器
文件: 总12页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4446  
High Voltage High Side/  
Low Side N-Channel  
MOSFET Driver  
FEATURES  
DESCRIPTION  
The LTC®4446 is a high frequency high voltage gate driver  
that drives two N-channel MOSFETs in a DC/DC converter  
with supply voltages up to 100V. The powerful driver ca-  
pability reduces switching losses in MOSFETs with high  
gate capacitance. The LTC4446’s pull-up for the top gate  
driver has a peak output current of 2.5A and its pull-down  
has an output impedance of 1.2Ω. The pull-up for the bot-  
tom gate driver has a peak output current of 3A and the  
pull-down has an output impedance of 0.55Ω.  
n
Bootstrap Supply Voltage Up to 114V  
n
Wide V Voltage: 7.2V to 13.5V  
CC  
n
2.5A Peak Top Gate Pull-Up Current  
n
3A Peak Bottom Gate Pull-Up Current  
n
1.2Ω Top Gate Driver Pull-Down  
n
0.55Ω Bottom Gate Driver Pull-Down  
n
5ns Top Gate Fall Time Driving 1nF Load  
n
8ns Top Gate Rise Time Driving 1nF Load  
n
3ns Bottom Gate Fall Time Driving 1nF Load  
n
6ns Bottom Gate Rise Time Driving 1nF Load  
The LTC4446 is configured for two supply-independent  
inputs. The high side input logic signal is internally  
level-shifted to the bootstrapped supply, which may  
function at up to 114V above ground.  
n
Drives Both High and Low Side N-Channel MOSFETs  
n
Undervoltage Lockout  
n
Thermally Enhanced 8-Pin MSOP Package  
The LTC4446 contains undervoltage lockout circuits that  
disable the external MOSFETs when activated.  
APPLICATIONS  
n
Distributed Power Architectures  
The LTC4446 is available in the thermally enhanced 8-lead  
MSOP package.  
n
Automotive Power Supplies  
n
High Density Power Modules  
Telecommunication Systems  
The LTC4446 does not have adaptive shoot-through pro-  
tection. For similar drivers with adaptive shoot-through  
protection, please refer to the chart below.  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6677210.  
PARAMETER  
Shoot-Through Protection  
Absolute Max TS  
LTC4446  
No  
100V  
LTC4444  
Yes  
100V  
LTC4444-5  
Yes  
100V  
MOSFET Gate Drive  
7.2V to 13.5V 7.2V to 13.5V 4.5V to 13.5V  
+
V
CC  
V
CC  
UV  
UV  
6.6V  
6.6V  
4V  
6.15V  
6.15V  
3.55V  
TYPICAL APPLICATION  
Two Switch Forward Converter  
LTC4446 Driving a 1000pF Capacitive Load  
V
IN  
BINP  
V
CC  
36V TO 72V  
5V/DIV  
BG  
7.2V TO 13.5V  
(100V ABS MAX)  
BOOST  
10V/DIV  
V
TG  
TS  
BG  
CC  
LTC4446  
TINP  
PWM1  
(FROM CONTROLLER IC)  
PWM2  
(FROM CONTROLLER IC)  
5V/DIV  
TINP  
BINP  
TO  
SECONDARY  
CIRCUIT  
TG-TS  
10V/DIV  
GND  
4446 TA01b  
20ns/DIV  
4446 TA01a  
4446f  
1
LTC4446  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage  
TINP  
BINP  
1
2
3
4
8 TS  
7 TG  
6 BOOST  
5 NC  
V ......................................................... –0.3V to 14V  
CC  
9
BOOST – TS........................................... –0.3V to 14V  
TINP Voltage................................................. –2V to 14V  
BINP Voltage................................................. –2V to 14V  
BOOST Voltage ........................................ –0.3V to 114V  
TS Voltage................................................... –5V to 100V  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Junction Temperature (Note 3) ............................. 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
V
CC  
BG  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
T
= 125°C, θ = 40°C/W, θ = 10°C/W (NOTE 4)  
JA JC  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4446EMS8E#PBF  
LTC4446IMS8E#PBF  
TAPE AND REEL  
PART MARKING*  
LTDPZ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC4446EMS8E#TRPBF  
LTC4446IMS8E#TRPBF  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
LTDPZ  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBOOST = 12V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Gate Driver Supply, V  
CC  
V
Operating Voltage  
7.2  
13.5  
550  
V
CC  
I
DC Supply Current  
TINP = BINP = 0V  
350  
μA  
VCC  
l
l
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
6.00  
5.60  
6.60  
6.15  
450  
7.20  
6.70  
V
V
mV  
CC  
CC  
Hysteresis  
Bootstrapped Supply (BOOST – TS)  
DC Supply Current  
Input Signal (TINP, BINP)  
I
TINP = BINP = 0V  
0.1  
2
μA  
BOOST  
l
l
l
l
V
V
V
V
BG Turn-On Input Threshold  
BG Turn-Off Input Threshold  
TG Turn-On Input Threshold  
TG Turn-Off Input Threshold  
Input Pin Bias Current  
BINP Ramping High  
BINP Ramping Low  
TINP Ramping High  
TINP Ramping Low  
2.25  
1.85  
2.25  
1.85  
2.75  
2.3  
3.25  
2.75  
3.25  
2.75  
2
V
V
IH(BG)  
IL(BG)  
2.75  
2.3  
V
IH(TG)  
V
IL(TG)  
I
0.01  
μA  
TINP(BINP)  
High Side Gate Driver Output (TG)  
V
V
TG High Output Voltage  
TG Low Output Voltage  
TG Peak Pull-Up Current  
TG Pull-Down Resistance  
I
I
= –10mA, V  
= 100mA, V  
= V  
– V  
TG  
0.7  
120  
2.5  
1.2  
V
mV  
A
OH(TG)  
OL(TG)  
PU(TG)  
TG  
OH(TG)  
OL(TG)  
BOOST  
l
l
l
= V –V  
220  
2.2  
TG  
TG  
TS  
I
1.7  
R
Ω
DS(TG)  
4446f  
2
LTC4446  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBOOST = 12V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Low Side Gate Driver Output (BG)  
V
V
BG High Output Voltage  
BG Low Output Voltage  
BG Peak Pull-Up Current  
BG Pull-Down Resistance  
I
I
= –10mA, V  
= 100mA  
= V – V  
BG  
0.7  
55  
V
mV  
A
OH(BG)  
OL(BG)  
PU(BG)  
BG  
OH(BG)  
CC  
l
l
l
110  
1.1  
BG  
I
2
3
R
0.55  
Ω
DS(BG)  
Switching Time (BINP (TINP) is Tied to Ground While TINP (BINP) is Switching. Refer to Timing Diagram)  
l
l
l
l
l
l
t
t
t
t
t
t
t
TG Low-High (Turn-On) Propagation Delay  
TG High-Low (Turn-Off) Propagation Delay  
BG Low-High (Turn-On) Propagation Delay  
BG High-Low (Turn-Off) Propagation Delay  
Delay Matching BG Turn-Off and TG Turn-On  
Delay Matching TG Turn-Off and BG Turn-On  
TG Output Rise Time  
25  
22  
19  
14  
10  
–3  
45  
40  
35  
30  
35  
25  
ns  
ns  
ns  
ns  
ns  
ns  
PLH(TG)  
PHL(TG)  
PLH(BG)  
PHL(BG)  
DM(BGTG)  
DM(TGBG)  
r(TG)  
–15  
–25  
10% – 90%, C = 1nF  
8
80  
ns  
ns  
L
10% – 90%, C = 10nF  
L
t
t
t
TG Output Fall Time  
BG Output Rise Time  
BG Output Fall Time  
10% – 90%, C = 1nF  
5
ns  
ns  
f(TG)  
r(BG)  
f(BG)  
L
10% – 90%, C = 10nF  
50  
L
10% – 90%, C = 1nF  
6
60  
ns  
ns  
L
10% – 90%, C = 10nF  
L
10% – 90%, C = 1nF  
3
30  
ns  
ns  
L
10% – 90%, C = 10nF  
L
with statistical process controls. The LTC4446I is guaranteed over the full  
–40°C to 85°C operating temperature range.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formula:  
D
Note 2: The LTC4446E is guaranteed to meet specifications from  
0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
T = T + (P • θ °C/W)  
Note 4: Failure to solder the exposed back side of the MS8E package to the  
PC board will result in a thermal resistance much higher than 40°C/W.  
J
A
D
JA  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC Supply Quiescent Current  
vs Voltage  
BOOST-TS Supply Quiescent  
Current vs Voltage  
VCC Supply Current vs  
Temperature  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
380  
370  
360  
350  
340  
330  
320  
310  
300  
T
= 25°C  
= 12V  
V
= BOOST = 12V  
CC  
T
= 25°C  
A
CC  
A
TINP = 12V, BINP = 0V  
TINP = 0V, BINP = 12V  
V
TS = GND  
BOOST = 12V  
TS = GND  
TINP = BINP = 0V  
TINP(BINP) = 12V  
TS = GND  
TINP = BINP = 0V  
TINP(BINP) = 12V  
TINP = BINP = 0V  
0
0
–40 –25 –10  
5
20 35 50 65 80 95 110  
TEMPERATURE (°C)  
125  
0
1
2
3
4
5
14  
0
1
2
3
4
5
14  
6
7
8
9 10 11 12 13  
6
7
8
9 10 11 12 13  
V
SUPPLY VOLTAGE (V)  
BOOST SUPPLY VOLTAGE (V)  
CC  
4446 G03  
4446 G01  
4446 G02  
4446f  
3
LTC4446  
TYPICAL PERFORMANCE CHARACTERISTICS  
Boost Supply Current  
vs Temperature  
Output Low Voltage (VOL  
)
Output High Voltage (VOH) vs  
Supply Voltage  
vs Supply Voltage  
15  
14  
13  
12  
11  
10  
9
160  
400  
350  
300  
250  
200  
150  
100  
50  
V
= BOOST = 12V  
TINP = 12V  
BINP = 0V  
T = 25°C  
A
CC  
TS = GND  
BOOST = V  
TS = GND  
CC  
140  
120  
V
OL(TG)  
OL(BG)  
TINP = 0V  
–1mA  
100  
80  
60  
40  
20  
BINP = 12V  
–10mA  
–100mA  
V
8
T
= 25°C  
A
7
I
= 100mA  
CC  
TG(BG)  
BOOST = V  
TS = GND  
6
TINP = BINP = 0V  
0
5
0
7
9
10  
11  
12  
13  
14  
8
9
11  
12  
13  
14  
–40 –25 –10  
5
20 35 50 65 80 95 110  
TEMPERATURE (°C)  
7
10  
8
125  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4446 G06  
4446 G05  
4446 G04  
Input Thresholds (TINP, BINP) vs  
Supply Voltage  
Input Thresholds (TINP, BINP) vs  
Temperature  
Input Thresholds (TINP, BINP)  
Hysteresis vs Voltage  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
500  
475  
450  
425  
400  
375  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
V
= BOOST = 12V  
T
= 25°C  
CC  
T
= 25°C  
CC  
A
A
TS = GND  
V
= BOOST  
BOOST = V  
TS = GND  
CC  
TS = GND  
V
IH(TG,BG)  
V
IH(TG,BG)  
V
IL(TG,BG)  
V
IL(TG,BG)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
4446 G08  
7
9
10  
11  
12  
13  
14  
7
8
9
10  
11  
12  
13  
14  
8
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4446 G07  
4446 G09  
Input Thresholds (TINP, BINP)  
Hysteresis vs Temperature  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
Rise and Fall Time vs  
VCC Supply Voltage  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
500  
475  
450  
425  
400  
375  
6.7  
6.6  
BOOST = V  
CC  
TS = GND  
T
= 25°C  
V
= BOOST = 12V  
A
CC  
BOOST = V  
TS = GND  
TS = GND  
CC  
t
C
= 3.3nF  
r(TG)  
r(BG)  
L
RISING THRESHOLD  
6.5  
6.4  
6.3  
6.2  
6.1  
t
t
f(TG)  
FALLING THRESHOLD  
t
f(BG)  
6
6.0  
7
9
10  
11  
12  
13  
14  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
110 125  
35 50 65 80 95  
8
–40  
5
–25 –10  
20  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4446 G12  
4446 G10  
4446 G11  
4446f  
4
LTC4446  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Driver Pull-Down  
Resistance vs Temperature  
Rise and Fall Time vs  
Load Capacitance  
Peak Driver (TG, BG) Pull-Up  
Current vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
3.4  
3.2  
V
= BOOST = 12V  
T
= 25°C  
CC  
CC  
A
TS = GND  
V
= BOOST = 12V  
BOOST-TS = 12V  
BOOST-TS = 7V  
TS = GND  
I
3.0  
t
PU(BG)  
r(TG)  
R
DS(TG)  
BOOST-TS = 14V  
= 12V  
2.8  
2.6  
2.4  
2.2  
t
r(BG)  
V
CC  
V
= 7V  
CC  
I
PU(TG)  
t
t
f(TG)  
V
= 14V  
CC  
R
DS(BG)  
f(BG)  
2.0  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
5
6
1
2
3
4
7
8
9
10  
–40  
5
35 50 65 80 95 110 125  
–25 –10  
20  
TEMPERATURE (°C)  
LOAD CAPACITANCE (nF)  
4446 G15  
4445 G13  
4446 G14  
Propagation Delay vs  
VCC Supply Voltage  
Propagation Delay vs Temperature  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
37  
32  
T
= 25°C  
V
= BOOST = 12V  
A
CC  
BOOST = V  
TS = GND  
TS = GND  
CC  
t
PLH(TG)  
t
PLH(TG)  
27  
t
PHL(TG)  
t
PHL(TG)  
22  
17  
12  
7
t
t
PLH(BG)  
PLH(BG)  
t
PHL(BG)  
t
PHL(BG)  
13  
2
7
9
10  
11  
12  
14  
8
–40  
5
35 50 65 80 95 110 125  
–25 –10  
20  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4444 G16  
4446 G17  
Switching Supply Current vs  
Input Frequency  
Switching Supply Current vs  
Load Capacitance  
4.0  
3.5  
3.0  
2.5  
T
= 25°C  
CC  
A
I
BOOST  
V
= BOOST = 12V  
(TG SWITCHING  
AT 500kHz)  
I
VCC  
TS = GND  
I
(BG SWITCHING  
AT 1MHz)  
BOOST  
100  
10  
1
(TG SWITCHING)  
I
VCC  
I
(BG SWITCHING)  
BOOST  
(TG SWITCHING  
AT 1MHz)  
2.0  
1.5  
I
VCC  
(BG SWITCHING  
AT 500kHz)  
I
VCC  
I
(TG SWITCHING  
AT 1MHz)  
VCC  
1.0  
0.5  
0
I
(TG SWITCHING AT 500kHz)  
VCC  
(TG SWITCHING)  
I
(BG SWITCHING AT 1MHz OR 5OOkHz)  
BOOST  
I
(BG SWITCHING)  
BOOST  
0.1  
200  
400  
800  
0
1000  
600  
1
2
3
4
5
6
7
8
9
10  
LOAD CAPACITANCE (nF)  
SWITCHING FREQUENCY (kHz)  
4446 G19  
4446 G18  
4446f  
5
LTC4446  
PIN FUNCTIONS  
TINP (Pin 1): High Side Input Signal. Input referenced  
to GND. This input controls the high side driver output  
(TG).  
BOOST (Pin 6): High Side Bootstrapped Supply. An ex-  
ternal capacitor should be tied between this pin and TS  
(Pin 8). Normally, a bootstrap diode is connected between  
V
V
(Pin 3) and this pin. Voltage swing at this pin is from  
CC  
CC  
BINP (Pin 2): Low Side Input Signal. This input controls  
the low side driver output (BG).  
– V to V + V – V , where V is the forward volt-  
D
IN  
CC  
D
D
age drop of the bootstrap diode.  
V
CC  
(Pin 3): Supply. This pin powers input buffers, logic  
TG (Pin 7): High Side Gate Driver Output (Top Gate). This  
pin swings between TS and BOOST.  
and the low side gate driver output directly and the high  
side gate driver output through an external diode con-  
nected between this pin and BOOST (Pin 6). A low ESR  
ceramic bypass capacitor should be tied between this pin  
and GND (Pin 9).  
TS (Pin 8): High Side MOSFET Source Connection (Top  
Source).  
Exposed Pad (Pin 9): Ground. Must be soldered to PCB  
ground for optimal thermal performance.  
BG (Pin 4): Low Side Gate Driver Output (Bottom Gate).  
This pin swings between V and GND.  
CC  
NC (Pin 5): No Connect. No connection required.  
BLOCK DIAGRAM  
6
BOOST  
V
IN  
V
CC  
UP TO 100V  
3
9
V
UVLO  
CC  
7.2V TO  
13.5V  
GND  
TG  
TS  
HIGH SIDE  
LEVEL SHIFTER  
7
8
LDO  
V
INT  
TINP  
BINP  
V
V
CC  
CC  
1
2
BG  
LOW SIDE  
LEVEL SHIFTER  
4
NC  
5
4446 BD  
TIMING DIAGRAM  
INPUT RISE/FALL TIME < 10ns  
90%  
TINP (BINP)  
10%  
BINP (TINP)  
BG (TG)  
90%  
10%  
90%  
10%  
TG (BG)  
4444 TD  
t
t
r
f
t
t
PLH  
PHL  
4446f  
6
LTC4446  
OPERATION  
Overview  
LTC4446  
V
BOOST  
6
IN  
UP TO 100V  
TheLTC4446receivesground-referenced,lowvoltagedigi-  
talinputsignalstodrivetwoN-channelpowerMOSFETsin  
asynchronousbuckpowersupplyconfiguration. Thegate  
Q1  
C
C
GD  
TG  
7
HIGH SIDE  
POWER  
MOSFET  
of the low side MOSFET is driven either to V or GND,  
CC  
M1  
GS  
TS  
8
depending on the state of the input. Similarly, the gate of  
the high side MOSFET is driven to either BOOST or TS by  
a supply bootstrapped off of the switching node (TS).  
LOAD  
INDUCTOR  
V
CC  
3
Q2  
C
C
Input Stage  
GD  
BG  
4
LOW SIDE  
POWER  
The LTC4446 employs CMOS compatible input thresholds  
that allow a low voltage digital signal to drive standard  
power MOSFETs. The LTC4446 contains an internal  
voltage regulator that biases both input buffers for high  
side and low side inputs, allowing the input thresholds  
MOSFET  
M2  
GS  
GND  
9
4446 F01  
Figure 1. Capacitance Seen by BG and TG During Switching  
(V = 2.75V, V = 2.3V) to be independent of variations in  
IH  
IL  
V .The450mVhysteresisbetweenV andV eliminates  
CC  
IH  
IL  
Rise/Fall Time  
false triggering due to noise during switching transitions.  
However, care should be taken to keep both input pins  
(TINP and BINP) from any noise pickup, especially in high  
frequency, high voltage applications. The LTC4446 input  
buffers have high input impedance and draw negligible  
input current, simplifying the drive circuitry required for  
the inputs.  
The LTC4446’s rise and fall times are determined by the  
peak current capabilities of Q1 and M1. The predriver that  
drivesQ1andM1usesanonoverlappingtransitionscheme  
to minimize cross-conduction currents. M1 is fully turned  
off before Q1 is turned on and vice versa.  
Since the power MOSFET generally accounts for the ma-  
jority of the power loss in a converter, it is important to  
quickly turn it on or off, thereby minimizing the transition  
time in its linear region. An additional benefit of a strong  
pull-downonthedriveroutputsisthepreventionofcross-  
conduction current. For example, when BG turns the low  
side (synchronous) power MOSFET off and TG turns the  
high side power MOSFET on, the voltage on the TS pin  
will rise to V very rapidly. This high frequency positive  
voltage transient will couple through the C capacitance  
of the low side power MOSFET to the BG pin. If there is  
an insufficient pull-down on the BG pin, the voltage on  
the BG pin can rise above the threshold voltage of the low  
side power MOSFET, momentarily turning it back on. With  
Output Stage  
AsimplifiedversionoftheLTC4446’soutputstageisshown  
in Figure 1. The pull-up devices on the BG and TG outputs  
are NPN bipolar junction transistors (Q1 and Q2). The BG  
and TG outputs are pulled up to within an NPN V (~0.7V)  
of their positive rails (V and BOOST, respectively). Both  
BG and TG have N-channel MOSFET pull-down devices  
(M1 and M2) which pull BG and TG down to their nega-  
tive rails, GND and TS. The large voltage swing of the BG  
and TG output pins is important in driving external power  
MOSFETs, whose R  
gate overdrive voltage (V − V ).  
BE  
CC  
IN  
GD  
is inversely proportional to the  
DS(ON)  
GS  
TH  
4446f  
7
LTC4446  
OPERATION  
load with 6ns rise and 3ns fall times using a supply volt-  
both the high side and low side MOSFETs conducting,  
age V of 12V.  
significant cross-conduction current will flow through the  
CC  
MOSFETs from V to ground and will cause substantial  
IN  
Undervoltage Lockout (UVLO)  
power loss. A similar effect occurs on TG due to the C  
GS  
and C capacitances of the high side MOSFET.  
GD  
The LTC4446 contains an undervoltage lockout detector  
that monitors V supply. When V falls below 6.15V,  
CC  
CC  
The powerful output driver of the LTC4446 reduces the  
switching losses of the power MOSFET, which increase  
with transition time. The LTC4446’s high side driver is  
capable of driving a 1nF load with 8ns rise and 5ns fall  
times using a bootstrapped supply voltage V  
12V while its low side driver is capable of driving a 1nF  
the output pins BG and TG are pulled down to GND and  
TS, respectively. This turns off both external MOSFETs.  
When V has adequate supply voltage, normal operation  
CC  
will resume.  
of  
BOOST-TS  
APPLICATIONS INFORMATION  
Power Dissipation  
The LTC4446 consumes very little quiescent current. The  
DC power loss at V = 12V and V  
= 12V is only  
CC  
BOOST-TS  
To ensure proper operation and long-term reliability, the  
LTC4446 must not operate beyond its maximum tem-  
perature rating. Package junction temperature can be  
calculated by:  
(350μA)(12V) = 4.2mW.  
Ataparticularswitchingfrequency,theinternalpowerloss  
increases due to both AC currents required to charge and  
discharge internal node capacitances and cross-conduc-  
tion currents in the internal logic gates. The sum of the  
quiescent current and internal switching current with no  
loadareshownintheTypicalPerformanceCharacteristics  
plot of Switching Supply Current vs Input Frequency.  
T = T + P (θ )  
J
A
D
JA  
where:  
T = Junction temperature  
J
T = Ambient temperature  
A
The gate charge losses are primarily due to the large AC  
currentsrequiredtochargeanddischargethecapacitance  
of the external MOSFETs during switching. For identical  
P = Power dissipation  
D
θ
= Junction-to-ambient thermal resistance  
JA  
pure capacitive loads C  
on TG and BG at switching  
LOAD  
Power dissipation consists of standby and switching  
power losses:  
frequency f , the load losses would be:  
IN  
2
2
P
= (C  
)(f)[(V  
) + (V ) ]  
CLOAD  
LOAD  
BOOST-TS  
CC  
P = P + P + P  
D
DC  
AC  
QG  
In a typical synchronous buck configuration, V  
BOOST-TS  
where:  
is equal to V – V , where V is the forward voltage  
CC  
D
D
drop across the diode between V and BOOST. If this  
P
= Quiescent power loss  
CC  
DC  
drop is small relative to V , the load losses can be  
CC  
P
AC  
= Internal switching loss at input frequency, f  
IN  
approximated as:  
P
= Loss due turning on and off the external MOSFET  
QG  
2
P
= 2(C  
)(f )(V )  
LOAD IN CC  
CLOAD  
with gate charge QG at frequency f  
IN  
4446f  
8
LTC4446  
APPLICATIONS INFORMATION  
Unlike a pure capacitive load, a power MOSFET’s gate  
B. Use a low inductance, low impedance ground plane  
to reduce any ground drop and stray capacitance.  
Remember that the LTC4446 switches greater than  
3A peak currents and any significant ground drop will  
degrade signal integrity.  
capacitance seen by the driver output varies with its V  
GS  
voltagelevelduringswitching.AMOSFET’scapacitiveload  
power dissipation can be calculated using its gate charge,  
Q . The Q value corresponding to the MOSFET’s V  
GS  
G
G
value (V in this case) can be readily obtained from the  
CC  
C. Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for  
the input pin and the output power stage.  
manufacturer’s Q vs V curves. For identical MOSFETs  
G
GS  
on TG and BG:  
P
= 2(V )(Q )(f )  
QG  
CC  
G
IN  
To avoid damage due to power dissipation, the LTC4446  
includes a temperature monitor that will pull BG and TG  
low if the junction temperature rises above 160°C. Normal  
operationwillresumewhenthejunctiontemperaturecools  
to less than 135°C.  
D. Keep the copper trace between the driver output pin  
and the load short and wide.  
E. Be sure to solder the Exposed Pad on the back side of  
the LTC4446 package to the board. Correctly soldered  
2
to a 2500mm doublesided 1oz copper board, the  
LTC4446 has a thermal resistance of approximately  
40°C/W for the MS8E package. Failure to make good  
thermal contact between the exposed back side and  
the copper board will result in thermal resistances far  
greater than 40°C/W.  
Bypassing and Grounding  
The LTC4446 requires proper bypassing on the V  
CC  
and V  
supplies due to its high speed switching  
BOOST-TS  
(nanoseconds)andlargeACcurrents(Amperes).Careless  
component placement and PCB trace routing may cause  
excessive ringing.  
To obtain the optimum performance from the LTC4446:  
A. Mount the bypass capacitors as close as possible  
between the V and GND pins and the BOOST and  
CC  
TS pins. The leads should be shortened as much as  
possible to reduce lead inductance.  
4446f  
9
LTC4446  
TYPICAL APPLICATION  
4446f  
10  
LTC4446  
PACKAGE DESCRIPTION  
MS8E Package  
8-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1662 Rev D)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 0.102  
(.081 .004)  
1
1.83 0.102  
(.072 .004)  
0.889 0.127  
(.035 .005)  
2.794 0.102  
(.110 .004)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
2.083 0.102  
(.082 .004)  
8
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0307 REV D  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
4446f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC4446  
TYPICAL APPLICATION  
LTC4446 Fast Turn-On/Turn-Off DC Switch  
12V  
V
IN  
0V TO 100V  
0.33μF  
3
6
0.01μF  
100V  
BZX84C12L  
12V  
15k  
4.7k  
4.7nF  
V
TINP  
BOOST  
TG  
CC  
BAS21  
BAS21  
7
8
1
2
200Ω  
LTC4446  
TS  
BINP  
100k  
BG  
GND  
BAS21  
3.3nF  
MMBT2369  
9
LOAD  
4446 TA03  
RELATED PARTS  
PART NUMBER  
LTC1693 Family  
LT®1952/LTC3900  
DESCRIPTION  
COMMENTS  
High Speed Dual MOSFET Drivers  
36V to 72V Input Isolated DC/DC Converter Chip Sets  
1.5A Peak Output Current, 4.5V ≤ V ≤ 13.2V  
IN  
Synchronous Rectification; Overcurrent, Overvoltage, UVLO Protection;  
Power Good Output Signal; Compact Solution  
LT3010/LT3010-5  
LTC3703  
50mA, 3V to 80V Low Dropout Micropower Regulators Low Quiescent Current (30μA), Stable with Small (1μF) Ceramic Capacitor  
, Synchronizable Voltage Mode Control  
SENSE  
100V Synchronous Switching Regulator Controller  
No R  
LTC3722-1/  
LTC3722-2  
Synchronous Dual Mode Phase Modulated Full-Bridge Adaptive Zero Voltage Switching, High Output Power Levels (Up to  
Controllers  
Kilowatts)  
LTC3723-1/  
LTC3723-2  
Synchronous Push-Pull PWM Controllers  
Current Mode or Voltage Mode Push-Pull Controllers  
LTC3780  
LTC3785  
LTC3810  
High Power Buck-Boost Controller  
Buck-Boost Controller  
Four Switch, 4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 30V, High Efficiency  
IN  
OUT  
High Efficiency, Four Switch, 2.7V ≤ V ≤ 10V, 2.7V ≤ V  
≤ 10V  
IN  
OUT  
100V Current Mode Synchronous Step-Down Switching No R  
Regulator Controller  
, Synchronizable Tracking, Power Good Signal  
SENSE  
LTC3813  
LT3845  
100V Current Mode Synchronous Step-Up Controller  
High Power Synchronous DC/DC Controller  
No R  
, On-Board 1Ω Gate Drivers, Synchronizable  
SENSE  
Current Mode Control, V Up to 60V, Low I  
IN  
Q
LTC3901  
Secondary Side Synchronous Driver for Push-Pull and Programmable Time Out, Reverse Inductor Current Sense  
Full-Bridge Converters  
LTC4440/  
LTC4440-5  
High Speed, High Voltage, High Side Gate Drivers  
Wide Operating V Range: Up to 80V DC, 100V Transient  
IN  
LTC4441  
6A MOSFET Driver  
Adjustable Gate Drive from 5V to 8V, 5V ≤ V ≤ 28V  
IN  
LTC4442/LTC4442-1 High Speed Synchronous N-Channel MOSFET Drivers  
5A Peak Output Current, 6V to 9.5V Gate Drive Supply, 38V Max Input  
Supply  
LTC4443/LTC4443-1 High Speed Synchronous N-Channel MOSFET Driver  
with Integrated Schottky Diode  
5A Peak Output Current, 6V to 9.5V Gate Drive Supply, 38V Max Input  
Supply  
LTC4444  
High Voltage Synchronous N-Channel MOSFET Driver  
High Voltage Synchronous N-Channel MOSFET Driver  
is a trademark of Linear Technology Corporation.  
3A/2.5A Peak Output Current, 7.2V to 13.5V Gate Drive Supply, 100V Max  
Input Supply, Adaptive Shoot-Through Protection  
LTC4444-5  
1.75A/1.5A Peak Output Current, 4.5V to 13.5V Gate Drive Supply,  
100V Max Input Supply, Adaptive Shoot-Through Protection  
No R  
SENSE  
4446f  
LT 0508 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY