LTC4447EDD-PBF [Linear]

High Speed Synchronous N-Channel MOSFET Driver; 高速同步N沟道MOSFET驱动器
LTC4447EDD-PBF
型号: LTC4447EDD-PBF
厂家: Linear    Linear
描述:

High Speed Synchronous N-Channel MOSFET Driver
高速同步N沟道MOSFET驱动器

驱动器
文件: 总12页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4447  
High Speed Synchronous  
N-Channel MOSFET Driver  
FEATURES  
DESCRIPTION  
TheLTC®4447isahighfrequencygatedriverwithintegrat-  
ed bootstrap Schottky diode that is designed to drive two  
N-Channel MOSFETs in a synchronous DC/DC converter.  
Thepowerfulrail-to-raildrivercapabilityreducesswitching  
losses in MOSFETs with high gate capacitance.  
Integrated Schottky Diode  
4V to 6.5V V Operating Voltage  
CC  
38V Maximum Input Supply Voltage  
Adaptive Shoot-Through Protection  
Rail-to-Rail Output Drivers  
3.2A Peak Pull-Up Current  
TheLTC4447featuresaseparatesupplyfortheinputlogic  
to match the signal swing of the controller IC. If the input  
signal is not being driven, the LTC4447 activates a shut-  
downmodethatturnsoffbothexternalMOSFETs.Theinput  
logic signal is internally level-shifted to the bootstrapped  
supply, which functions at up to 42V above ground. The  
Schottky diode required for the bootstrapped supply is  
integrated to simplify layout and reduce parts count.  
4.5A Peak Pull-Down Current  
8ns TG Risetime Driving 3000pF Load  
7ns TG Falltime Driving 3000pF Load  
Separate Supply to Match PWM Controller  
Drives Dual N-Channel MOSFETs  
Undervoltage Lockout  
Low Profile (0.75mm) 3mm × 3mm DFN Package  
The LTC4447 contains undervoltage lockout circuits on  
both the driver and logic supplies that turn off the external  
MOSFETs when an undervoltage condition is present. An  
adaptive shoot-through protection feature is also built-in  
to prevent the power loss resulting from MOSFET cross-  
conduction current.  
APPLICATIONS  
Distributed Power Architectures  
High Density Power Modules  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All  
other trademarks are the property of their respective owners.  
The LTC4447 is available in the 3mm × 3mm DFN  
package.  
TYPICAL APPLICATION  
Synchronous Buck Converter Driver  
LTC4447 Driving 3000pF Capacitive Loads  
V
CC  
4V TO 6.5V  
INPUT (IN)  
5V/DIV  
V
CC  
V
IN  
BOOST  
TO 38V  
V
LOGIC  
TOP GATE  
(TG - TS)  
5V/DIV  
LTC4447  
GND  
TG  
TS  
BG  
V
OUT  
BOTTOM GATE  
(BG) 5V/DIV  
PWM  
IN  
4447 TA01a  
4447 TA01b  
10ns/DIV  
4447f  
1
LTC4447  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Supply Voltage  
TOP VIEW  
V
...................................................... –0.3V to 7V  
LOGIC  
NC  
NC  
1
2
3
4
5
6
12 BOOST  
11 BOOST  
10 BOOST  
V ........................................................... –0.3V to 7V  
CC  
TG  
BOOST – TS............................................. –0.3V to 7V  
13  
TS  
9
8
7
V
V
CC  
BOOST Voltage .......................................... –0.3V to 42V  
BG  
LOGIC  
BOOST – V ............................................................38V  
GND  
IN  
CC  
TS + V ....................................................................42V  
CC  
DDMA PACKAGE  
12-LEAD (3mm 3mm) PLASTIC DFN  
IN Voltage .................................................... –0.3V to 7V  
Driver Output TG (with Respect to TS)......... –0.3V to 7V  
Driver Output BG.......................................... –0.3V to 7V  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Junction Temperature (Note 3) ............................. 125°C  
Storage Temperature Range................... –65°C to 150°C  
θ
= 43°C/W, θ = 3°C/W  
JA  
JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4447EDD#PBF  
LTC4447IDD#PBF  
TAPE AND REEL  
PART MARKING*  
LDHD  
PACKAGE DESCRIPTION  
12-Lead (3mm × 3mm) Plastic DFN  
12-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 85°C  
LTC4447EDD#TRPBF  
LTC4447IDD#TRPBF  
LDHD  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VLOGIC = 5V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Logic Supply (V  
)
LOGIC  
V
Operating Range  
3
6.5  
V
LOGIC  
I
DC Supply Current  
IN = Floating  
730  
900  
μA  
VLOGIC  
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.5  
2.4  
2.75  
2.65  
100  
3
2.9  
V
V
mV  
LOGIC  
LOGIC  
Hysteresis  
Gate Driver Supply (V  
)
CC  
V
Operating Range  
4
6.5  
V
CC  
I
DC Supply Current  
IN = Floating  
600  
800  
μA  
VCC  
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.75  
2.60  
3.20  
3.04  
160  
3.65  
3.50  
V
V
mV  
CC  
CC  
Hysteresis  
V
Schottky Diode Forward Voltage  
I = 10mA  
D
0.38  
0.48  
V
V
D
D
I = 100mA  
4447f  
2
LTC4447  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VLOGIC = 5V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Signal (IN)  
V
V
V
V
TG Turn-On Input Threshold  
TG Turn-Off Input Threshold  
BG Turn-On Input Threshold  
BG Turn-Off Input Theshold  
V
V
≥ 5V, IN Rising  
3
3.5  
2.2  
4
V
V
IH(TG)  
IL(TG)  
IH(BG)  
IL(BG)  
IN(SD)  
LOGIC  
LOGIC  
= 3.3V, IN Rising  
1.9  
2.6  
V
V
≥ 5V, IN Falling  
= 3.3V, IN Falling  
2.75  
1.8  
3.25  
2.09  
3.75  
2.5  
V
V
LOGIC  
LOGIC  
V
V
≥ 5V, IN Falling  
= 3.3V, IN Falling  
0.8  
0.8  
1.25  
1.1  
1.6  
1.4  
V
V
LOGIC  
LOGIC  
V
V
≥ 5V, IN Rising  
= 3.3V, IN Rising  
1.05  
0.9  
1.5  
1.21  
1.85  
1.5  
V
V
LOGIC  
LOGIC  
I
Maximum Current Into or Out of IN in  
Shutdown Mode  
V
V
≥ 5V, IN Floating  
= 3.3V, IN Floating  
150  
75  
300  
150  
μA  
μA  
LOGIC  
LOGIC  
High Side Gate Driver Output (TG)  
V
V
TG High Output Voltage  
TG Low Output Voltage  
TG Peak Pull-Up Current  
TG Peak Pull-Down Current  
I
I
= –100mA, V  
= V  
– V  
TG  
140  
80  
mV  
mV  
A
OH(TG)  
OL(TG)  
PU(TG)  
PD(TG)  
TG  
OH(TG)  
BOOST  
= 100mA, V  
= V – V  
TG TS  
TG  
OL(TG)  
I
I
2
3.2  
2.4  
1.5  
A
Low Side Gate Driver Output (BG)  
V
BG High Output Voltage  
BG Low Output Voltage  
BG Peak Pull-Up Current  
BG Peak Pull-Down Current  
I
I
= –100mA, V  
= 100mA  
= V – V  
100  
100  
3.2  
4.5  
mV  
mV  
A
OH(BG)  
OL(BG)  
PU(BG)  
PD(BG)  
BG  
BG  
OH(BG)  
CC  
BG  
V
I
I
2
3
A
Switching Time  
t
t
t
t
t
t
t
t
BG Low to TG High Propagation Delay  
IN Low toTG Low Propagation Delay  
TG Low to BG High Propagation Delay  
IN High to BG Low Propagation Delay  
TG Output Risetime  
14  
13  
13  
11  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH(TG)  
PHL(TG)  
PLH(BG)  
PHL(BG)  
r(TG)  
10% to 90%, C = 3nF  
L
TG Output Falltime  
10% to 90%, C = 3nF  
7
f(TG)  
L
BG Output Risetime  
10% to 90%, C = 3nF  
7
r(BG)  
L
BG Output Falltime  
10% to 90%, C = 3nF  
4
f(BG)  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC4447I is guaranteed to meet specifications from –40°C  
to 85°C. The LTC4447E is guaranteed to meet specifications from 0°C  
to 85°C with specifications over the –40°C to 85°C temperature range  
assured by design, characterization and correlation with statistical  
process controls.  
T is calculated from the ambient temperature T and power dissipation  
J A  
P
according to the following formula:  
D
T = T + (PD • 43°C/W)  
J
A
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
4447f  
3
LTC4447  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Thresholds vs VLOGIC Supply  
Voltage  
Input Thresholds for VLOGIC = 3.3V  
vs Temperature  
Input Thresholds for VLOGIC ≥ 5V  
vs Temperature  
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
≥ 5V  
V
= 3.3V  
LOGIC  
V
LOGIC  
IH(TG)  
V
V
V
V
IH(TG)  
IL(TG)  
IH(TG)  
IL(TG)  
V
IL(TG)  
V
IL(BG)  
1.5  
1.0  
0.5  
0
V
IL(BG)  
V
IL(BG)  
V
IH(BG)  
V
V
IH(BG)  
IH(BG)  
–40  
–10  
20  
50  
80  
110  
3.0 3.5 4.0 4.5 5.0  
5.5 6.0 6.5  
–40  
–10  
20  
50  
80  
110  
TEMPERATURE (°C)  
V
SUPPLY (V)  
TEMPERATURE (°C)  
LOGIC  
4447 G03  
4447 G01  
4447 G02  
BG or TG Input Threshold Hysteresis  
vs VLOGIC Supply Voltage  
BG or TG Input Threshold Hysteresis  
vs Temperature  
Quiescent Supply Current vs  
Supply Voltage  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IN FLOATING  
TS = GND  
I
VLOGIC  
V
= 5V  
LOGIC  
I
VCC  
V
= 3.3V  
LOGIC  
20  
–40  
–10  
50  
80  
110  
3.0 3.5 4.0 4.5 5.0  
5.5 6.0 6.5  
3.0  
4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
3.5  
V
SUPPLY (V)  
TEMPERATURE (°C)  
LOGIC  
4447 G05  
4447 G04  
4447 G06  
VLOGIC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
Undervoltage Lockout Threshold  
Hysteresis vs Temperature  
2.9  
2.8  
2.7  
2.6  
2.5  
3.3  
3.2  
3.1  
3.0  
2.9  
250  
200  
150  
100  
50  
V
UVLO  
UVLO  
CC  
RISING THRESHOLD  
FALLING THRESHOLD  
RISING THRESHOLD  
FALLING THRESHOLD  
V
LOGIC  
0
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4447 G08  
4447 G09a  
4447 G09b  
4447f  
4
LTC4447  
TYPICAL PERFORMANCE CHARACTERISTICS  
Schottky Diode Forward Voltage  
vs Diode Current  
Schottky Diode Forward Voltage  
vs Temperature  
Supply Current vs Input  
Frequency  
6
5
4
0.6  
0.5  
0.6  
0.5  
NO LOAD  
LOGIC  
TS = GND  
V
= V = 5V  
CC  
I
= 100mA  
D
0.4  
0.3  
0.4  
0.3  
0.2  
0.1  
I
I
D
= 10mA  
VCC  
3
2
1
0
I
= 1mA  
D
0.2  
0.1  
0
I
VLOGIC  
600k  
0
200k  
400k  
1M  
0
800k  
–40  
–10  
20  
50  
80  
110  
0
50  
100  
150  
200  
FREQUENCY (Hz)  
DIODE CURRENT (mA)  
TEMPERATURE (°C)  
4447 G12  
4447 G11  
4447 G10  
Switching Supply Current vs Load  
Capacitance  
Rise and Fall Time vs VCC Supply  
Voltage  
Rise and Fall Time vs Load  
Capacitance  
100  
10  
1
100  
10  
1
15  
V
= V = 5V  
V
= 5V  
CC  
C
= 3.3nF  
LOGIC  
CC  
LOAD  
TS = GND  
TS = GND  
TS = GND  
t
r(TG)  
I
CC  
f
IN  
= 500kHz  
10  
5
t
I
f(TG)  
CC  
t
f(TG)  
t
r(TG)  
f
IN  
= 100kHz  
t
r(BG)  
t
I
r(BG)  
LOGIC  
f
IN  
= 500kHz  
t
f(BG)  
t
f(BG)  
0.1  
0
30  
1
3
LOAD CAPACITANCE (nF)  
10  
30  
3.5  
5.0  
SUPPLY VOLTAGE (V)  
5.5  
6.0  
6.5  
1
3
10  
4.0  
4.5  
LOAD CAPACITANCE (nF)  
V
CC  
4447 G13  
4447 G15  
4447 G14  
Propagation Delay vs VLOGIC  
Supply Voltage  
Propagation Delay vs  
VCC Supply Voltage  
Propagation Delay vs  
Temperature  
25  
20  
15  
25  
20  
15  
10  
5
20  
15  
10  
5
NO LOAD  
NO LOAD  
NO LOAD  
LOGIC  
TS = GND  
V
= 5V  
V
= V  
= 5V  
V
= 5V  
CC  
CC  
LOGIC  
t
pHL(TG)  
TS = GND  
TS = GND  
t
pLH(TG)  
t
t
pLH(TG)  
pLH(BG)  
t
t
pLH(TG)  
t
t
pLH(BG)  
t
pHL(TG)  
pLH(BG)  
t
pHL(TG)  
t
pHL(BG)  
t
pHL(BG)  
10  
5
pHL(BG)  
0
–40  
–10  
20  
50  
80  
110  
5.5  
SUPPLY VOLTAGE (V)  
6.5  
3.0 3.5 4.0 4.5  
5.0  
6.0  
5.5  
SUPPLY VOLTAGE (V)  
6.5  
4.0  
4.5  
5.0  
6.0  
TEMPERATURE (°C)  
V
V
LOGIC  
CC  
4447 G18  
4447 G16  
4447 G17  
4447f  
5
LTC4447  
PIN FUNCTIONS  
NC (Pins 1, 2): No Connection Required.  
of the controller that is driving IN (Pin 7) to match input  
thresholds or to V (Pin 9) to simplify PCB routing.  
CC  
TG (Pin 3): High Side Gate Driver Output (Top Gate). This  
pin swings between TS and BOOST.  
V
(Pin 9): Output Driver Supply. This pin powers the  
CC  
low side gate driver output directly and the high side gate  
driver output through an internal Schottky diode con-  
nected between this pin and BOOST. A low ESR ceramic  
bypass capacitor should be tied between this pin and  
GND (Pin 6).  
TS (Pin 4): High Side MOSFET Source Connection (Top  
Source).  
BG (Pin 5): Low Side Gate Driver Output (Bottom Gate).  
This pin swings between V and GND.  
CC  
GND (Pin 6): Chip Ground.  
BOOST (Pins 10, 11, 12): High Side Bootstrapped Supply.  
An external capacitor should be tied between these pins  
and TS (Pin 4). An internal Schottky diode is connected  
IN (Pin 7): Input Signal. Input referenced to an internal  
supply baised off of V  
(Pin 8) and GND (Pin 6). If  
LOGIC  
betweenV (Pin 9)andthesepins.Voltageswingatthese  
CC  
this pin is floating, an internal resistive divider triggers a  
shutdown mode in which both BG (Pin 5) and TG (Pin 3)  
are pulled low. Trace capacitance on this pin should be  
minimized to keep the shutdown time low.  
pins is from V – V to V + V – V , where V is the  
CC  
D
IN  
CC  
D
D
forward voltage drop of the Schottky diode.  
Exposed Pad (Pin 13): Ground. The exposed pad must be  
soldered to PCB ground for optimal electrical and thermal  
performance.  
V
(Pin 8): Logic Supply. This pin powers the input  
LOGIC  
buffer and logic. Connect this pin to the power supply  
BLOCK DIAGRAM  
V
12  
CC  
UNDERVOLTAGE  
LOCKOUT  
9
11  
BOOST  
10  
TG  
V
LEVEL  
SHIFTER  
LOGIC  
UNDERVOLTAGE  
LOCKOUT  
3
8
TS  
4
INTERNAL  
SUPPLY  
SHOOT-  
THROUGH  
PROTECTION  
7k  
V
CC  
THREE-STATE  
INPUT  
BUFFER  
BG  
IN  
5
7
7k  
GND  
GND  
6
13  
4447 BD  
4447f  
6
LTC4447  
TIMING DIAGRAM  
V
IL(TG)  
IN  
V
V
IL(BG)  
IL(BG)  
90%  
10%  
TG  
BG  
t
t
r(TG)  
f(TG)  
90%  
10%  
4447 TD  
t
t
r(BG)  
pLH(BG)  
pLH(TG)  
t
t
f(BG)  
t
t
pHL(TG)  
pHL(BG)  
OPERATION  
Overview  
TG HIGH  
TG LOW  
V
IH(TG)  
TG HIGH  
The LTC4447 receives a ground-referenced, low voltage  
digitalinputsignaltodrivetwoN-channelpowerMOSFETs  
in a synchronous power supply configuration. The gate  
V
V
IL(TG)  
TG LOW  
IN  
of the low side MOSFET is driven either to V or GND,  
CC  
depending on the state of the input. Similarly, the gate of  
the high side MOSFET is driven to either BOOST or TS by  
a supply bootstrapped off of the switch node (TS).  
BG LOW  
BG HIGH  
V
IL(BG)  
BG LOW  
BG HIGH  
IH(BG)  
4447 F01  
Input Stage  
Figure 1. Three-State Input Operation  
TheLTC4447employsauniquethree-stateinputstagewith  
Thethresholdsarepositionedtoallowforaregioninwhich  
both BG and TG are low. An internal resistive divider will  
pull IN into this region if the signal driving the IN pin goes  
into a high impedance state.  
transition thresholds that are proportional to the V  
LOGIC  
supply. The V  
supply can be tied to the controller  
IC’s power supply so that the input thresholds will match  
LOGIC  
thoseofthecontroller’soutputsignal.Alternatively,V  
LOGIC  
One application of this three-state input is to keep both of  
the power MOSFETs off while an undervoltage condition  
exists on the controller IC power supply. This can be ac-  
complished by driving the IN pin with a logic buffer that  
has an enable pin. With the enable pin of the buffer tied  
to the power good pin of the controller IC, the logic buf-  
fer output will remain in a high impedance state until the  
controllerconfirmsthatitssupplyisnotinanundervoltage  
state. The three-state input of the LTC4447 will therefore  
pull IN into the region where TG and BG are low until the  
controller has enough voltage to operate predictably.  
can be tied to V to simplify routing. An internal voltage  
CC  
regulator in the LTC4447 limits the input threshold values  
for V  
supply voltages greater than 5V.  
LOGIC  
The relationship between the transition thresholds and  
the three input states of the LTC4447 is illustrated in  
Figure 1. When the voltage on IN is greater than the  
threshold V  
, TG is pulled up to BOOST, turning the  
IH(TG)  
high side MOSFET on. This MOSFET will stay on until IN  
falls below V  
. Similarly, when IN is less than V  
IL(TG)  
,
IH(BG)  
BG is pulled up to V , turning the low side (synchronous)  
CC  
MOSFET on. BG will stay high until IN increases above  
the threshold V  
.
IL(BG)  
4447f  
7
LTC4447  
OPERATION  
The hysteresis between the corresponding V and V  
V
IN  
IH  
IL  
LTC4447  
BOOST  
voltage levels eliminates false triggering due to noise  
during switch transitions; however, care should be taken  
to keep noise from coupling into the IN pin, particularly  
in high frequency, high voltage applications.  
C
GD  
Q1  
P1  
N1  
HIGH SIDE  
POWER  
MOSFET  
TG  
TS  
C
GS  
LOAD  
INDUCTOR  
Undervoltage Lockout  
V
CC  
TheLTC4447containsundervoltagelockoutdetectorsthat  
monitor both the V and V  
supplies. When V falls  
C
Q2  
Q3  
P2  
N2  
GD  
CC  
LOGIC  
LOGIC  
CC  
LOW SIDE  
POWER  
BG  
below 3.04V or V  
falls below 2.65V, the output pins  
MOSFET  
BG and TG are pulled to GND and TS, respectively. This  
C
GS  
turns off both of the external MOSFETs. When V and  
GND  
CC  
4447 F02  
V
have adequate supply voltage for the LTC4447 to  
LOGIC  
operate reliably, normal operation will resume.  
Figure 2. Capacitance Seen by BG and TG During Switching  
Adaptive Shoot-Through Protection  
Rise/Fall Time  
Internal adaptive shoot-through protection circuitry  
monitors the voltages on the external MOSFETs to ensure  
that they do not conduct simultaneously. The LTC4447  
does not allow the bottom MOSFET to turn on until the  
gate-source voltage on the top MOSFET is sufficiently  
low, and vice-versa. This feature improves efficiency by  
eliminating cross-conduction current from flowing from  
SincethepowerMOSFETsgenerallyaccountforthemajor-  
ity of power loss in a converter, it is important to quickly  
turn them on and off, thereby minimizing the transition  
time and power loss. The LTC4447’s peak pull-up current  
of 3.2A for both BG and TG produces a rapid turn-on  
transition for the MOSFETs. This high current is capable  
of driving a 3nF load with an 8ns risetime.  
the V supply through the MOSFETs to ground during a  
IN  
switch transition.  
It is also important to turn the power MOSFETs off quickly  
to minimize power loss due to transition time; however,  
an additional benefit of a strong pull-down on the driver  
outputs is the prevention of cross-conduction current. For  
example, when BG turns the low side power MOSFET off  
and TG turns the high side power MOSFET on, the volt-  
Output Stage  
A simplified version of the LTC4447’s output stage is  
shown in Figure 2. The pull-up device on both the BG and  
TG outputs is an NPN bipolar junction transistor (Q1 and  
Q2) in parallel with a low resistance P-channel MOSFET  
(P1 and P2). This powerful combination rapidly pulls  
age on the TS pin will rise to V very rapidly. This high  
IN  
frequencypositivevoltagetransientwillcouplethroughthe  
the BG and TG outputs to their positive rails (V and  
C
GD  
capacitance of the low side power MOSFET to the BG  
CC  
BOOST, respectively). Both BG and TG have N-channel  
MOSFET pull-down devices (N1 and N2) which pull BG  
and TG down to their negative rails, GND and TS. An ad-  
ditional NPN bipolar junction transistor (Q3) is present on  
BG to increase its pull-down drive current capacity. The  
rail-to-rail voltage swing of the BG and TG output pins  
is important in driving external power MOSFETs, whose  
pin. If the BG pin is not held down sufficiently, the voltage  
on the BG pin will rise above the threshold voltage of the  
lowsidepowerMOSFET,momentarilyturningitbackon.As  
a result, both the high side and low side MOSFETs will be  
conducting, which will cause significant cross-conduction  
current to flow through the MOSFETs from V to ground,  
IN  
therebyintroducingsubstantialpowerloss.Asimilareffect  
R
is inversely proportional to its gate overdrive  
occurs on TG due to the C and C capacitances of the  
DS(ON)  
GS GD  
voltage (V – V ).  
high side MOSFET.  
GS  
TH  
4447f  
8
LTC4447  
OPERATION  
The LTC4447’s powerful parallel combination of the  
N-channel MOSFET (N2) and NPN (Q3) on the BG  
pull-down generates a phenomenal 4ns fall time on BG  
while driving a 3nF load. Similarly, the 0.8Ω pull-down  
MOSFET (N1) on TG results in a rapid 7ns fall time with  
a 3nF load. These powerful pull-down devices minimize  
the power loss associated with MOSFET turn-off time and  
cross-conduction current.  
APPLICATIONS INFORMATION  
Power Dissipation  
loadareshownintheTypicalPerformanceCharacteristics  
plot of Switching Supply Current vs Input Frequency.  
To ensure proper operation and long-term reliability,  
the LTC4447 must not operate beyond its maximum  
temperature rating. Package junction temperature can  
be calculated by:  
The gate charge losses are primarily due to the large AC  
currentsrequiredtochargeanddischargethecapacitance  
of the external MOSFETs during switching. For identical  
pure capacitive loads C  
on TG and BG at switching  
LOAD  
T = T + (P )(θ )  
J
A
D
JA  
frequency fin, the load losses would be:  
where:  
2
2
P
= (C )(f )[(V  
LOAD IN  
) + (V ) ]  
CLOAD  
BOOST – TS  
CC  
T = junction temperature  
J
In a typical synchronous buck configuration, V  
BOOST – TS  
T = ambient temperature  
A
is equal to V – V , where V is the forward voltage drop  
CC  
D
D
P = power dissipation  
D
JA  
of the internal Schottky diode between V and BOOST.  
CC  
θ
= junction-to-ambient thermal resistance  
If this drop is small relative to V , the load losses can  
CC  
Power dissipation consists of standby, switching and  
capacitive load power losses:  
be approximated as:  
2
P
≈ 2(C )(f )(V )  
LOAD IN CC  
CLOAD  
P = P + P + P  
D
DC  
AC  
QG  
Unlike a pure capacitive load, a power MOSFET’s gate  
capacitance seen by the driver output varies with its V  
where:  
GS  
voltagelevelduringswitching.AMOSFET’scapacitiveload  
P
AC  
= quiescent power loss  
= internal switching loss at input frequency f  
= loss due turning on and off the external  
DC  
P
QG  
power dissipation can be calculated using its gate charge,  
IN  
Q . The Q value corresponding to the MOSFET’s V  
GS  
G
G
P
value (V in this case) can be readily obtained from the  
CC  
MOSFET with gate charge Q at frequency f  
G
IN  
manufacturer’s Q vs V curves. For identical MOSFETs  
G
GS  
The LTC4447 consumes very little quiescent current. The  
on TG and BG:  
DC power loss at V  
= 5V and V = 5V is only (730ꢀA  
LOGIC  
CC  
P
≈ 2(V )(Q )(f )  
QG  
CC  
G
IN  
+ 600μA)(5V) = 6.65mW.  
To avoid damaging junction temperatures due to power  
dissipation, the LTC4447 includes a temperature monitor  
that will pull BG and TG low if the junction temperature  
exceeds 160°C. Normal operation will resume when the  
junction temperature cools to less than 135°C.  
Ataparticularswitchingfrequency,theinternalpowerloss  
increases due to both AC currents required to charge and  
discharge internal nodal capacitances and cross-conduc-  
tion currents in the internal logic gates. The sum of the  
quiescent current and internal switching current with no  
4447f  
9
LTC4447  
APPLICATIONS INFORMATION  
Bypassing and Grounding  
5A peak currents and any significant ground drop will  
degrade signal integrity.  
TheLTC4447requiresproperbypassingontheV  
,V  
LOGIC CC  
and V  
supplies due to its high speed switching  
• Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for the  
input pin and the output power stage.  
BOOST – TS  
(nanoseconds) and large AC currents (amperes). Careless  
component placement and PCB trace routing may cause  
excessive ringing and under/overshoot.  
To obtain the optimum performance from the LTC4447:  
• Mount the bypass capacitors as close as possible  
• Keep the copper trace between the driver output pin  
and the load short and wide.  
between the V  
and GND pins, the V and GND  
• Be sure to solder the Exposed Pad on the back side of  
the LTC4447 packages to the board. Correctly soldered  
to a double-sided copper board, the LTC4447 has a  
thermal resistance of approximately 43°C/W. Failure  
to make good thermal contact between the exposed  
back side and the copper board will result in thermal  
resistances far greater.  
LOGIC  
CC  
pins, and the BOOST and TS pins. The leads should  
be shortened as much as possible to reduce lead  
inductance.  
• Use a low inductance, low impedance ground plane  
to reduce any ground drop and stray capacitance.  
Remember that the LTC4447 switches greater than  
TYPICAL APPLICATION  
LTC7510/LTC4447 12V to 1.5V/30A Digital Step-Down DC/DC Converter with PMBus Serial Interface  
12V  
5V  
R1  
C5  
0.22μF  
SDATA  
V
12SEN  
PMBus  
V
SCLK  
CC  
INTERFACE  
V
D33  
SMB_AL_N  
V
C2  
BOOST  
D25  
LTC7510  
R2  
M1  
RJK0305  
×2  
+
L1  
0.3μH  
POWER  
MANAGEMENT  
INTERFACE  
V
V
TG  
PWRGD  
OUTEN  
LOGIC  
C4  
C1  
R
C3  
LTC4447  
V
OUT  
GND  
TS  
CC  
C6  
R3  
+
M2  
RJK0301  
×2  
330μF  
×6  
PWM  
IN  
BG  
GND  
1μF  
SYNC_IN  
MULTIPHASE  
INTERFACE  
D1  
SYNC_OUT  
CM  
TEMPSEN  
LOAD  
I
SENN  
FAULT1  
FAULT2  
R
FAULT  
OUTPUTS  
SENSE  
I
SENP  
SENP  
SENN  
V
V
1k  
1k  
1k  
1k  
1k  
I
4447 TA02  
OUT/ISH  
SADDR  
RTN  
I-SHARE  
I
SH_GND  
V
SET  
FSET  
RESET_N  
V
TRIM  
I
MAXSET  
4447f  
10  
LTC4447  
PACKAGE DESCRIPTION  
DDMA Package  
12-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1743 Rev A)  
0.70 0.05  
1.19 0.05  
0.93 0.05  
2.25 REF  
0.57 0.05  
2.38 0.05  
1.35 0.05  
3.50 0.05  
2.10 0.05  
0.81 0.05  
PACKAGE  
OUTLINE  
1.07 0.05  
0.25 0.05  
0.45 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
0.11 0.05  
TYP  
7
3.00 0.10  
12  
0.40 0.10  
0.81 0.10  
2.38 0.10  
1.35 0.10  
0.63 0.05  
3.00 0.10  
PIN 1 NOTCH  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
R = 0.05  
TYP  
6
1
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.00 – 0.05  
0.200 REF  
2.25 REF  
(DD12MA) DFN 0507 REV A  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD AND TIE BARS SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
4447f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
11  
LTC4447  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1154  
High Side Micropower MOSFET Driver  
Dual Micropower High/Low Side Driver  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
High Speed Single/Dual N-Channel MOSFET Drivers  
Synchronous Rectifier Driver for Forward Converters  
Internal Charge Pump 4.5V to 18V Supply Range  
Internal Charge Pump 4.5V to 18V Supply Range  
LTC1155  
LT®1161  
8V to 48V Supply Range, t = 200μs, t  
= 28μs  
OFF  
ON  
LTC1163  
1.8V to 6V Supply Range, t = 95μs, t  
= 45μs  
OFF  
ON  
LTC1693 Family  
LTC3900  
1.5A Peak Output Current, 4.5V ≤ V ≤ 13.2V  
IN  
Pulse Drive Transformer Synchronous Input  
Gate Drive Transformer Synchronous Input  
LTC3901  
Secondary Side Synchronous Driver for Push-Pull and  
Full-Bridge Converters  
LTC4440  
LTC4440-5  
LTC4441  
High Speed, High Voltage High Side Gate Driver  
High Speed, High Voltage High Side Gate Driver  
6A MOSFET Driver  
High Side Source Up to 100V, 8V ≤ V ≤ 15V  
CC  
High Side Source Up to 80V, 4V ≤ V ≤ 15V  
CC  
6A Peak Output Current, Adjustable Gate Drive from 5V to 8V,  
5V ≤ V ≤ 25V  
IN  
LTC4442/LTC4442-1 High Speed Synchronous N-Channel MOSFET Driver  
LTC4443/LTC4443-1 High Speed Synchronous N-Channel MOSFET Driver  
5A Peak Output Current, Three-State Input, 38V Maximum  
Input Supply Voltage, 6V ≤ V ≤ 9.5V, MS8E Package  
CC  
5A Peak Output Current, Internal Schottky Diode, 38V Maximum  
Input Supply Voltage, 6V ≤ V ≤ 9.5V, 3mm × 3mm DFN-12  
CC  
LTC4444/LTC4444-5 High Voltage/High Speed Synchronous N-Channel MOSFET  
Driver  
3A Peak Output Current, 100V Maximum Input Supply Voltage,  
4.5V ≤ V ≤ 13.5V, with Adaptive Shoot Through Protection  
CC  
LTC4446  
High Voltage High Side/Low Side N-Channel MOSFET Driver  
3A Output Current, 100V Input Supply Voltage, 7.2V ≤ V ≤ 13.5V,  
CC  
without Adaptive Shoot Through Protection  
LTC7510  
Digital DC/DC Controller with PMBus Interface  
Digital Controller, PMBus Serial Interface, 150kHz to 2MHz  
Switching Frequency  
4447f  
LT 0608 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC4447EDD-TRPBF

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4447IDD-PBF

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4447IDD-TRPBF

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4449

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4449EDCB

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4449EDCB#PBF

LTC4449 - High Speed Synchronous N-Channel MOSFET Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC4449EDCB#TRMPBF

LTC4449 - High Speed Synchronous N-Channel MOSFET Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC4449EDCB#TRPBF

LTC4449 - High Speed Synchronous N-Channel MOSFET Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC4449EDCBPBF

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4449EDCBTRPBF

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4449IDCB

High Speed Synchronous N-Channel MOSFET Driver
Linear

LTC4449IDCB#TRMPBF

LTC4449 - High Speed Synchronous N-Channel MOSFET Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear