LTC4449EDCB#TRMPBF [Linear]

LTC4449 - High Speed Synchronous N-Channel MOSFET Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LTC4449EDCB#TRMPBF
型号: LTC4449EDCB#TRMPBF
厂家: Linear    Linear
描述:

LTC4449 - High Speed Synchronous N-Channel MOSFET Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

驱动器
文件: 总12页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4449  
High Speed Synchronous  
N-Channel MOSFET Driver  
FEATURES  
DESCRIPTION  
The LTC®4449 is a high frequency gate driver that  
is designed to drive two N-Channel MOSFETs in a  
synchronous DC/DC converter. The powerful rail-to-rail  
driver capability reduces switching losses in MOSFETs  
with high gate capacitance.  
n
4V to 6.5V V Operating Voltage  
CC  
n
38V Maximum Input Supply Voltage  
n
Adaptive Shoot-Through Protection  
n
Rail-to-Rail Output Drivers  
n
3.2A Peak Pull-Up Current  
n
4.5A Peak Pull-Down Current  
The LTC4449 features a separate supply for the input logic  
to match the signal swing of the controller IC. If the input  
signalisnotbeingdriven,theLTC4449activatesashutdown  
modethatturnsoffbothexternalMOSFETs.Theinputlogic  
signalisinternallylevel-shiftedtothebootstrappedsupply,  
which functions at up to 42V above ground.  
n
8ns TG Risetime Driving 3000pF Load  
n
7ns TG Falltime Driving 3000pF Load  
n
Separate Supply to Match PWM Controller  
n
Drives Dual N-Channel MOSFETs  
Undervoltage Lockout  
n
n
Low Profile (0.75mm) 2mm × 3mm DFN Package  
The LTC4449 contains undervoltage lockout circuits on  
both the driver and logic supplies that turn off the external  
MOSFETs when an undervoltage condition is present. An  
adaptive shoot-through protection feature is also built-in  
to prevent the power loss resulting from MOSFET cross-  
conduction current.  
APPLICATIONS  
n
Distributed Power Architectures  
High Density Power Modules  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
The LTC4449 is available in the 2mm × 3mm DFN  
package.  
TYPICAL APPLICATION  
Synchronous Buck Converter Driver  
LTC4449 Driving 3000pF Capacitive Loads  
V
CC  
4V TO 6.5V  
V
CC  
INPUT (IN)  
5V/DIV  
V
IN  
BOOST  
TO 38V  
V
LOGIC  
LTC4449  
GND  
TOP GATE  
(TG - TS)  
5V/DIV  
TG  
TS  
BG  
V
OUT  
PWM  
IN  
BOTTOM GATE  
(BG) 5V/DIV  
4449 TA01a  
4449 TA01b  
10ns/DIV  
4449f  
1
LTC4449  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Supply Voltage  
TOP VIEW  
V
...................................................... –0.3V to 7V  
LOGIC  
8
7
6
5
TG  
TS  
1
2
3
4
BOOST  
V ........................................................... –0.3V to 7V  
CC  
V
V
CC  
9
BOOST – TS............................................. –0.3V to 7V  
BOOST Voltage .......................................... –0.3V to 42V  
TS .................................................................5V to 38V  
IN Voltage .................................................... –0.3V to 7V  
Driver Output TG (with Respect to TS)......... –0.3V to 7V  
Driver Output BG.......................................... –0.3V to 7V  
Operating Junction Temperature Range  
BG  
LOGIC  
GND  
IN  
DCB PACKAGE  
8-LEAD (2mm s 3mm) PLASTIC DFN  
θ
JA  
= 64°C/W, θ = 10.6°C/W  
JC  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
(Notes 2, 3)............................................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4449EDCB#PBF  
LTC4449IDCB#PBF  
TAPE AND REEL  
PART MARKING*  
LFKC  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC4449EDCB#TRPBF  
LTC4449IDCB#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
8-Lead (2mm × 3mm) Plastic DFN  
8-Lead (2mm × 3mm) Plastic DFN  
LFKC  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TA = 25°C. VCC = VLOGIC = VBOOST = 5V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Logic Supply (V  
)
LOGIC  
V
Operating Range  
3
6.5  
V
LOGIC  
I
DC Supply Current  
IN = Floating  
730  
900  
μA  
VLOGIC  
l
l
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.5  
2.4  
2.75  
2.65  
100  
3
2.9  
V
V
mV  
LOGIC  
LOGIC  
Hysteresis  
Gate Driver Supply (V  
)
CC  
V
Operating Range  
4
6.5  
V
CC  
I
DC Supply Current  
IN = Floating  
300  
400  
μA  
VCC  
l
l
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.75  
2.60  
3.20  
3.04  
160  
3.65  
3.50  
V
V
mV  
CC  
CC  
Hysteresis  
I
DC Supply Current  
IN = Floating  
300  
400  
μA  
BOOST  
4449f  
2
LTC4449  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TA = 25°C. VCC = VLOGIC = VBOOST = 5V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Signal (IN)  
l
l
V
V
V
V
TG Turn-On Input Threshold  
TG Turn-Off Input Threshold  
BG Turn-On Input Threshold  
BG Turn-Off Input Theshold  
V
V
≥ 5V, IN Rising  
3
3.5  
2.2  
4
V
V
IH(TG)  
IL(TG)  
IH(BG)  
IL(BG)  
IN(SD)  
LOGIC  
LOGIC  
= 3.3V, IN Rising  
1.9  
2.6  
l
l
V
LOGIC  
V
LOGIC  
≥ 5V, IN Falling  
= 3.3V, IN Falling  
2.75  
1.8  
3.25  
2.09  
3.75  
2.5  
V
V
l
l
V
LOGIC  
V
LOGIC  
≥ 5V, IN Falling  
= 3.3V, IN Falling  
0.8  
0.8  
1.25  
1.1  
1.6  
1.4  
V
V
l
l
V
LOGIC  
V
LOGIC  
≥ 5V, IN Rising  
= 3.3V, IN Rising  
1.05  
0.9  
1.5  
1.21  
1.85  
1.5  
V
V
I
Maximum Current Into or Out of IN in  
Shutdown Mode  
V
LOGIC  
V
LOGIC  
≥ 5V, IN Floating  
= 3.3V, IN Floating  
150  
75  
300  
150  
μA  
μA  
High Side Gate Driver Output (TG)  
V
V
TG High Output Voltage  
TG Low Output Voltage  
TG Peak Pull-Up Current  
TG Peak Pull-Down Current  
I
I
= –100mA, V  
= V  
– V  
TG  
140  
80  
mV  
mV  
A
OH(TG)  
OL(TG)  
PU(TG)  
PD(TG)  
TG  
OH(TG)  
BOOST  
= 100mA, V  
= V – V  
TG TS  
TG  
OL(TG)  
l
l
I
I
2
3.2  
2.4  
1.5  
A
Low Side Gate Driver Output (BG)  
V
V
BG High Output Voltage  
BG Low Output Voltage  
BG Peak Pull-Up Current  
BG Peak Pull-Down Current  
I
I
= –100mA, V  
= 100mA  
= V – V  
BG  
100  
100  
3.2  
mV  
mV  
A
OH(BG)  
OL(BG)  
PU(BG)  
PD(BG)  
BG  
OH(BG)  
CC  
BG  
l
l
I
I
2
3
4.5  
A
Switching Time  
t
t
t
t
t
t
t
t
BG Low to TG High Propagation Delay  
IN Low to TG Low Propagation Delay  
TG Low to BG High Propagation Delay  
IN High to BG Low Propagation Delay  
TG Output Risetime  
14  
13  
13  
11  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH(TG)  
PHL(TG)  
PLH(BG)  
PHL(BG)  
r(TG)  
10% to 90%, C = 3nF  
L
TG Output Falltime  
10% to 90%, C = 3nF  
7
f(TG)  
L
BG Output Risetime  
10% to 90%, C = 3nF  
7
r(BG)  
L
BG Output Falltime  
10% to 90%, C = 3nF  
4
f(BG)  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC4449I is guaranteed to meet specifications over the full  
–40°C to 125°C operating junction temperature range. The LTC4449E is  
guaranteed to meet specifications from 0°C to 85°C with specifications  
over the –40°C to 85°C operating junction temperature range assured by  
design, characterization and correlation with statistical process controls.  
The junction temperature T is calculated from the ambient temperature T  
J A  
and power dissipation P according to the following formula:  
D
T = T + (PD • 64°C/W)  
J
A
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
4449f  
3
LTC4449  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Thresholds  
vs VLOGIC Supply Voltage  
Input Thresholds for VLOGIC = 3.3V  
vs Temperature  
Input Thresholds for VLOGIC ≥ 5V  
vs Temperature  
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
≥ 5V  
V
= 3.3V  
LOGIC  
V
LOGIC  
IH(TG)  
V
V
V
V
IH(TG)  
IL(TG)  
IH(TG)  
IL(TG)  
V
IL(TG)  
V
IL(BG)  
1.5  
1.0  
0.5  
0
V
IL(BG)  
V
IL(BG)  
V
IH(BG)  
V
V
IH(BG)  
IH(BG)  
–40  
–10  
20  
50  
80  
110  
3.0 3.5 4.0 4.5 5.0  
5.5 6.0 6.5  
–40  
–10  
20  
50  
80  
110  
TEMPERATURE (°C)  
V
SUPPLY (V)  
TEMPERATURE (°C)  
LOGIC  
4449 G03  
4449 G01  
4449 G02  
BG or TG Input Threshold Hysteresis  
vs VLOGIC Supply Voltage  
BG or TG Input Threshold Hysteresis  
vs Temperature  
Quiescent Supply Current  
vs Supply Voltage  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IN FLOATING  
TS = GND  
I
VLOGIC  
V
= 5V  
LOGIC  
I
I
BOOST  
V
= 3.3V  
LOGIC  
20  
VCC  
–40  
–10  
50  
80  
110  
3.0 3.5 4.0 4.5 5.0  
5.5 6.0 6.5  
3.0  
4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
3.5  
V
SUPPLY (V)  
TEMPERATURE (°C)  
LOGIC  
4449 G05  
4449 G04  
4449 G06  
VLOGIC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
Undervoltage Lockout Threshold  
Hysteresis vs Temperature  
2.9  
2.8  
2.7  
2.6  
2.5  
3.3  
3.2  
3.1  
3.0  
2.9  
250  
200  
150  
100  
50  
V
UVLO  
UVLO  
CC  
RISING THRESHOLD  
FALLING THRESHOLD  
RISING THRESHOLD  
FALLING THRESHOLD  
V
LOGIC  
0
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
–40  
–10  
20  
50  
80  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4449 G08  
4449 G09a  
4449 G09b  
4449f  
4
LTC4449  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current  
vs Input Frequency  
Switching Supply Current  
vs Load Capacitance  
Rise and Fall Time  
vs VCC (Boost) Supply Voltage  
100  
10  
1
15  
6
5
4
V
= V = 5V  
CC  
NO LOAD  
LOGIC  
TS = GND  
C
= 3.3nF  
LOGIC  
LOAD  
TS = GND  
V
= V = 5V  
TS = GND  
CC  
I
CC  
= 500kHz  
f
IN  
10  
5
t
I
CC  
f(TG)  
t
I
r(TG)  
VCC  
f
= 100kHz  
IN  
3
2
1
0
t
I
r(BG)  
LOGIC  
f
= 500kHz  
IN  
t
f(BG)  
I
VLOGIC  
600k  
0.1  
0
200k  
400k  
1M  
5.5  
(BOOST) SUPPLY VOLTAGE (V)  
6.5  
0
800k  
1
3
10  
30  
3.5  
5.0  
6.0  
4.0  
V
CC  
4.5  
LOAD CAPACITANCE (nF)  
FREQUENCY (Hz)  
4449 G13  
4449 G12  
4449 G14  
Rise and Fall Time  
vs Load Capacitance  
Propagation Delay  
Propagation Delay  
vs VLOGIC Supply Voltage  
vs VCC (Boost) Supply Voltage  
100  
10  
1
25  
20  
15  
20  
15  
10  
5
V
= 5V  
CC  
NO LOAD  
NO LOAD  
TS = GND  
V
= BOOST = 5V  
V
= 5V  
CC  
LOGIC  
t
r(TG)  
TS = GND  
TS = GND  
t
pLH(TG)  
t
t
pLH(BG)  
pLH(TG)  
t
f(TG)  
t
t
pLH(BG)  
pHL(BG)  
t
r(BG)  
t
pHL(TG)  
t
pHL(TG)  
t
pHL(BG)  
t
f(BG)  
10  
5
1
3
10  
30  
5.5  
SUPPLY VOLTAGE (V)  
6.5  
5.0  
5.5  
6.0  
6.5  
3.0 3.5 4.0 4.5  
5.0  
6.0  
4.0  
4.5  
LOAD CAPACITANCE (nF)  
V
V
(BOOST) SUPPLY VOLTAGE (V)  
CC  
LOGIC  
4449 G15  
4449 G16  
4449 G17  
Propagation Delay  
vs Temperature  
25  
20  
15  
10  
5
NO LOAD  
V
= V  
= 5V  
CC  
LOGIC  
t
pHL(TG)  
TS = GND  
t
pLH(TG)  
t
pLH(BG)  
t
pHL(BG)  
0
–40  
–10  
20  
50  
80  
110  
TEMPERATURE (°C)  
4449 G18  
4449f  
5
LTC4449  
PIN FUNCTIONS  
TG (Pin 1): High Side Gate Driver Output (Top Gate). This  
pin swings between TS and BOOST.  
V
(Pin 6): Logic Supply. This pin powers the input  
LOGIC  
buffer and logic. Connect this pin to the power supply  
of the controller that is driving IN (Pin 7) to match input  
TS (Pin 2): High Side MOSFET Source Connection (Top  
Source).  
thresholds or to V (Pin 9) to simplify PCB routing.  
CC  
V
(Pin 7): Output Driver Supply. This pin powers the low  
CC  
BG (Pin 3): Low Side Gate Driver Output (Bottom Gate).  
This pin swings between V and GND.  
side gate driver output directly and the high side gate driver  
outputthroughanexternalSchottkydiodeconnectedbetween  
this pin and BOOST. A low ESR ceramic bypass capacitor  
should be tied between this pin and GND (Pin 6).  
CC  
GND (Pin 4, Exposed Pad Pin 9): Chip Ground. The  
exposed pad must be soldered to PCB ground for optimal  
electrical and thermal performance.  
BOOST (Pin 8): High Side Bootstrapped Supply. An  
external capacitor should be tied between this pin and TS  
(Pin 4). Normally an external Schottky diode is connected  
IN (Pin 5): Input Signal. Input referenced to an internal  
supply baised off of V  
(Pin 8) and GND (Pin 6). If  
LOGIC  
this pin is floating, an internal resistive divider triggers a  
shutdown mode in which both BG (Pin 5) and TG (Pin 3)  
are pulled low. Trace capacitance on this pin should be  
minimized to keep the shutdown time low.  
between V (Pin 9) and this pin. Voltage swing at this  
CC  
pin is from V – V to V + V – V , where V is the  
CC  
D
IN  
CC  
D
D
forward voltage drop of the Schottky diode.  
BLOCK DIAGRAM  
V
CC  
UNDERVOLTAGE  
LOCKOUT  
7
BOOST  
8
TG  
V
LEVEL  
SHIFTER  
LOGIC  
UNDERVOLTAGE  
LOCKOUT  
1
6
TS  
2
INTERNAL  
SUPPLY  
SHOOT-  
THROUGH  
PROTECTION  
7k  
V
CC  
THREE-STATE  
BG  
INPUT  
IN  
3
5
BUFFER  
7k  
GND  
GND  
4
9
4449 BD  
4449f  
6
LTC4449  
TIMING DIAGRAM  
V
IL(TG)  
IN  
V
V
IL(BG)  
IL(BG)  
90%  
10%  
TG  
BG  
t
t
r(TG)  
f(TG)  
90%  
10%  
4449 TD  
t
t
r(BG)  
pLH(BG)  
pLH(TG)  
t
t
f(BG)  
t
t
pHL(TG)  
pHL(BG)  
OPERATION  
Overview  
TG HIGH  
TG LOW  
V
IH(TG)  
TG HIGH  
The LTC4449 receives a ground-referenced, low voltage  
digitalinputsignaltodrivetwoN-channelpowerMOSFETs  
in a synchronous power supply configuration. The gate  
V
V
IL(TG)  
TG LOW  
IN  
of the low side MOSFET is driven either to V or GND,  
CC  
depending on the state of the input. Similarly, the gate of  
the high side MOSFET is driven to either BOOST or TS by  
a supply bootstrapped off of the switch node (TS).  
BG LOW  
BG HIGH  
V
IL(BG)  
BG LOW  
BG HIGH  
IH(BG)  
4449 F01  
Input Stage  
Figure 1. Three-State Input Operation  
TheLTC4449employsauniquethree-stateinputstagewith  
Thethresholdsarepositionedtoallowforaregioninwhich  
both BG and TG are low. An internal resistive divider will  
pull IN into this region if the signal driving the IN pin goes  
into a high impedance state.  
transition thresholds that are proportional to the V  
LOGIC  
supply. The V  
supply can be tied to the controller  
IC’s power supply so that the input thresholds will match  
LOGIC  
thoseofthecontroller’soutputsignal.Alternatively,V  
LOGIC  
One application of this three-state input is to keep both of  
the power MOSFETs off while an undervoltage condition  
exists on the controller IC power supply. This can be  
accomplished by driving the IN pin with a logic buffer  
that has an enable pin. With the enable pin of the buffer  
tied to the power good pin of the controller IC, the logic  
bufferoutputwillremaininahighimpedancestateuntilthe  
controllerconfirmsthatitssupplyisnotinanundervoltage  
state. The three-state input of the LTC4449 will therefore  
pull IN into the region where TG and BG are low until the  
controller has enough voltage to operate predictably.  
can be tied to V to simplify routing. An internal voltage  
CC  
regulator in the LTC4449 limits the input threshold values  
for V  
supply voltages greater than 5V.  
LOGIC  
The relationship between the transition thresholds and  
the three input states of the LTC4449 is illustrated in  
Figure 1. When the voltage on IN is greater than the  
threshold V  
, TG is pulled up to BOOST, turning the  
IH(TG)  
high side MOSFET on. This MOSFET will stay on until IN  
falls below V  
. Similarly, when IN is less than V  
,
IL(TG)  
IH(BG)  
BG is pulled up to V , turning the low side (synchronous)  
CC  
MOSFET on. BG will stay high until IN increases above  
the threshold V  
.
IL(BG)  
4449f  
7
LTC4449  
OPERATION  
The hysteresis between the corresponding V and V  
V
IN  
IH  
IL  
LTC4449  
BOOST  
voltage levels eliminates false triggering due to noise  
during switch transitions; however, care should be taken  
to keep noise from coupling into the IN pin, particularly  
in high frequency, high voltage applications.  
C
GD  
Q1  
P1  
N1  
HIGH SIDE  
POWER  
MOSFET  
TG  
TS  
C
GS  
LOAD  
INDUCTOR  
Undervoltage Lockout  
V
CC  
TheLTC4449containsundervoltagelockoutdetectorsthat  
monitor both the V and V  
supplies. When V falls  
C
Q2  
Q3  
P2  
N2  
GD  
CC  
LOGIC  
LOGIC  
CC  
LOW SIDE  
POWER  
MOSFET  
BG  
below 3.04V or V  
falls below 2.65V, the output pins  
BG and TG are pulled to GND and TS, respectively. This  
C
GS  
turns off both of the external MOSFETs. When V and  
GND  
CC  
V
have adequate supply voltage for the LTC4449 to  
4449 F02  
LOGIC  
operate reliably, normal operation will resume.  
Figure 2. Capacitance Seen by BG and TG During Switching  
Adaptive Shoot-Through Protection  
Rise/Fall Time  
Internal adaptive shoot-through protection circuitry  
monitors the voltages on the external MOSFETs to ensure  
that they do not conduct simultaneously. The LTC4449  
does not allow the bottom MOSFET to turn on until the  
gate-source voltage on the top MOSFET is sufficiently  
low, and vice-versa. This feature improves efficiency by  
eliminating cross-conduction current from flowing from  
Since the power MOSFETs generally account for the  
majority of power loss in a converter, it is important to  
quickly turn them on and off, thereby minimizing the  
transition time and power loss. The LTC4449’s peak pull-  
up current of 3.2A for both BG and TG produces a rapid  
turn-on transition for the MOSFETs. This high current is  
capable of driving a 3nF load with an 8ns risetime.  
the V supply through the MOSFETs to ground during a  
IN  
switch transition.  
It is also important to turn the power MOSFETs off quickly  
to minimize power loss due to transition time; however,  
an additional benefit of a strong pull-down on the driver  
outputs is the prevention of cross-conduction current. For  
example,whenBGturnsthelowsidepowerMOSFEToffand  
TG turns the high side power MOSFET on, the voltage on  
Output Stage  
A simplified version of the LTC4449’s output stage is  
shown in Figure 2. The pull-up device on both the BG and  
TG outputs is an NPN bipolar junction transistor (Q1 and  
Q2) in parallel with a low resistance P-channel MOSFET  
(P1 and P2). This powerful combination rapidly pulls the  
the TS pin will rise to V very rapidly. This high frequency  
positive voltage transient will couple through the C  
IN  
GD  
BG and TG outputs to their positive rails (V and BOOST,  
capacitance of the low side power MOSFET to the BG pin.  
If the BG pin is not held down sufficiently, the voltage on  
the BG pin will rise above the threshold voltage of the low  
side power MOSFET, momentarily turning it back on. As  
a result, both the high side and low side MOSFETs will be  
conducting, which will cause significant cross-conduction  
CC  
respectively). Both BG and TG have N-channel MOSFET  
pull-down devices (N1 and N2) which pull BG and TG  
down to their negative rails, GND and TS. An additional  
NPN bipolar junction transistor (Q3) is present on BG  
to increase its pull-down drive current capacity. The  
rail-to-rail voltage swing of the BG and TG output pins  
is important in driving external power MOSFETs, whose  
current to flow through the MOSFETs from V to ground,  
IN  
therebyintroducingsubstantialpowerloss.Asimilareffect  
R
is inversely proportional to its gate overdrive  
occurs on TG due to the C and C capacitances of the  
DS(ON)  
voltage (V – V ).  
GS  
GD  
high side MOSFET.  
GS  
TH  
4449f  
8
LTC4449  
OPERATION  
The LTC4449’s powerful parallel combination of the  
N-channel MOSFET (N2) and NPN (Q3) on the BG  
pull-down generates a phenomenal 4ns fall time on BG  
while driving a 3nF load. Similarly, the 0.8Ω pull-down  
MOSFET (N1) on TG results in a rapid 7ns fall time with  
a 3nF load. These powerful pull-down devices minimize  
the power loss associated with MOSFET turn-off time and  
cross-conduction current.  
APPLICATIONS INFORMATION  
Power Dissipation  
load are shown in the Typical Performance Characteristics  
plot of Switching Supply Current vs Input Frequency.  
To ensure proper operation and long-term reliability,  
the LTC4449 must not operate beyond its maximum  
temperature rating. Package junction temperature can  
be calculated by:  
The gate charge losses are primarily due to the large AC  
currentsrequiredtochargeanddischargethecapacitance  
of the external MOSFETs during switching. For identical  
pure capacitive loads C  
on TG and BG at switching  
LOAD  
T = T + (P )(θ )  
J
A
D
JA  
frequency fin, the load losses would be:  
where:  
2
2
P
= (C  
)(f )[(V  
) + (V ) ]  
CLOAD  
LOAD IN  
BOOST – TS  
CC  
T = junction temperature  
J
In a typical synchronous buck configuration, V  
BOOST – TS  
T = ambient temperature  
A
is equal to V – V , where V is the forward voltage drop  
CC  
D
D
P = power dissipation  
D
JA  
of the external Schottky diode between V and BOOST.  
CC  
θ
= junction-to-ambient thermal resistance  
If this drop is small relative to V , the load losses can  
CC  
Power dissipation consists of standby, switching and  
capacitive load power losses:  
be approximated as:  
2
P
≈ 2(C )(f )(V )  
LOAD IN CC  
CLOAD  
P = P + P + P  
D
DC  
AC  
QG  
Unlike a pure capacitive load, a power MOSFET’s gate  
capacitance seen by the driver output varies with its V  
where:  
GS  
voltagelevelduringswitching.AMOSFET’scapacitiveload  
P
AC  
P
= quiescent power loss  
= internal switching loss at input frequency f  
= loss due turning on and off the external  
DC  
power dissipation can be calculated using its gate charge,  
P
IN  
Q . The Q value corresponding to the MOSFET’s V  
GS  
G
G
QG  
value (V in this case) can be readily obtained from the  
CC  
MOSFET with gate charge Q at frequency f  
G
IN  
manufacturer’s Q vs V curves. For identical MOSFETs  
G
GS  
The LTC4449 consumes very little quiescent current. The  
DC power loss at V = 5V and V = 5V is only (730ꢀA  
on TG and BG:  
LOGIC  
CC  
P
≈ 2(V )(Q )(f )  
QG  
CC  
G
IN  
+ 600μA)(5V) = 6.65mW.  
To avoid damaging junction temperatures due to power  
dissipation, the LTC4449 includes a temperature monitor  
that will pull BG and TG low if the junction temperature  
exceeds 160°C. Normal operation will resume when the  
junction temperature cools to less than 135°C.  
Ataparticularswitchingfrequency, theinternalpowerloss  
increases due to both AC currents required to charge and  
discharge internal nodal capacitances and cross-conduc-  
tion currents in the internal logic gates. The sum of the  
quiescent current and internal switching current with no  
4449f  
9
LTC4449  
APPLICATIONS INFORMATION  
Bypassing and Grounding  
5A peak currents and any significant ground drop will  
degrade signal integrity.  
TheLTC4449requiresproperbypassingontheV  
,V  
LOGIC CC  
and V  
supplies due to its high speed switching  
• Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for  
the input pin and the output power stage.  
BOOST – TS  
(nanoseconds)andlargeACcurrents(amperes).Careless  
component placement and PCB trace routing may cause  
excessive ringing and under/overshoot.  
To obtain the optimum performance from the LTC4449:  
• Mount the bypass capacitors as close as possible  
• Keep the copper trace between the driver output pin  
and the load short and wide.  
between the V  
and GND pins, the V and GND  
• Be sure to solder the Exposed Pad on the back side of  
the LTC4449 packages to the board. Correctly soldered  
to a double-sided copper board, the LTC4449 has a  
thermal resistance of approximately 64°C/W. Failure  
to make good thermal contact between the exposed  
back side and the copper board will result in thermal  
resistances far greater.  
LOGIC  
CC  
pins, and the BOOST and TS pins. The leads should  
be shortened as much as possible to reduce lead  
inductance.  
• Use a low inductance, low impedance ground plane  
to reduce any ground drop and stray capacitance.  
Remember that the LTC4449 switches greater than  
4449f  
10  
LTC4449  
TYPICAL APPLICATION  
R U N 1  
W P M 1  
W P M 2  
P G O O D 2  
P H S M D  
C L K O U T  
C L K I N  
P G O O D 1  
G A V  
I
V I N S N S  
T R A C K / S S 1  
F R E Q  
T R A C K / S S 2  
C C  
V
4449f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC4449  
PACKAGE DESCRIPTION  
DCB Package  
8-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1718 Rev A)  
R = 0.115  
2.00 p0.10  
(2 SIDES)  
0.40 p 0.10  
TYP  
R = 0.05  
TYP  
5
8
0.70 p0.05  
1.35 p0.10  
1.35 p0.05  
1.65 p 0.05  
3.50 p0.05  
2.10 p0.05  
1.65 p 0.10  
3.00 p0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR 0.25  
s 45o CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DCB8) DFN 0106 REV A  
4
1
0.23 p 0.05  
0.25 p 0.05  
0.45 BSC  
0.45 BSC  
0.75 p0.05  
0.200 REF  
1.35 REF  
1.35 REF  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC4442/LTC4442-1 High Speed Synchronous N-Channel MOSFET Driver  
5A Peak Output Current, Three-State Input, 38V Maximum Input  
Supply Voltage, 6V ≤ V ≤ 9.5V, MS8E Package  
CC  
LTC4444/LTC4444-5 High Voltage/High Speed Synchronous N-Channel MOSFET  
Driver  
3A Peak Output Current, 100V Maximum Input Supply Voltage,  
4.5V ≤ V ≤ 13.5V, with Adaptive Shoot Through Protection  
CC  
LTC4446  
High Voltage High Side/Low Side N-Channel MOSFET Driver  
3A Output Current, 100V Input Supply Voltage, 7.2V ≤ V ≤ 13.5V,  
CC  
without Adaptive Shoot Through Protection  
LTC1693-1/-2/-3/-5 High Speed Single/Dual N-Channel MOSFET Drivers  
1.5A Peak Output Current, 4.5V ≤ V ≤ 13.2V  
IN  
LTC4440  
LTC4440-5  
LTC4441  
High Speed, High Voltage High Side Gate Driver  
High Speed, High Voltage High Side Gate Driver  
6A MOSFET Driver  
High Side Source Up to 100V, 8V ≤ V ≤ 15V  
CC  
High Side Source Up to 80V, 4V ≤ V ≤ 15V  
CC  
6A Peak Output Current, Adjustable Gate Drive from 5V to 8V,  
5V ≤ V ≤ 25V  
IN  
LTC3900  
LTC3901  
Synchronous Rectifier Driver for Forward Converters  
Pulse Drive Transformer Synchronous Input  
Gate Drive Transformer Synchronous Input  
Secondary Side Synchronous Driver for Push-Pull and  
Full-Bridge Converters  
LTC1154  
LTC1155  
LT®1161  
LTC1163  
LTC3860  
High Side Micropower MOSFET Driver  
Internal Charge Pump 4.5V to 18V Supply Range  
Internal Charge Pump 4.5V to 18V Supply Range  
8V to 48V Supply Range, t = 200μs, t = 28μs  
Dual Micropower High/Low Side Driver  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
Dual Phase/Dual Channel Step-Down Voltage Mode Controller  
ON  
OFF  
1.8V to 6V Supply Range, t = 95μs, t = 45μs  
ON  
OFF  
Optimized for High Current Outputs, 3V ≤ V ≤ 20V  
IN  
4449f  
LT 0110 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY