LTC485CN8#PBF [Linear]

暂无描述;
LTC485CN8#PBF
型号: LTC485CN8#PBF
厂家: Linear    Linear
描述:

暂无描述

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总12页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC485  
Low Power RS485  
Interface Transceiver  
U
FEATURES  
DESCRIPTIO  
The LTC®485 is a low power differential bus/line trans-  
ceiverdesignedformultipointdatatransmissionstandard  
RS485 applications with extended common mode range  
(12V to 7V). It also meets the requirements of RS422.  
Low Power: ICC = 300µA Typ  
Designed for RS485 Interface Applications  
Single 5V supply  
7V to 12V Bus Common Mode Range Permits  
±7V Ground Difference Between Devices on the Bus  
TheCMOSdesignofferssignificantpowersavingsoverits  
bipolarcounterpartwithoutsacrificingruggednessagainst  
overload of ESD damage.  
Thermal Shutdown Protection  
Power-Up/Down Glitch-Free Driver Outputs  
Permit Live Insertion or Removal of Transceiver  
Driver Maintains High Impedance in Three-State  
or with the Power Off  
Combined Impedance of a Driver Output and  
Receiver Allows Up to 32 Transceivers on the Bus  
70mV Typical Input Hysteresis  
30ns Typical Driver Propagation Delays  
with 5ns Skew  
Pin Compatible with ±60V Protected LT1785 and  
52Mbps LTC1685  
The driver and receiver feature three-state outputs, with  
the driver outputs maintaining high impedance over the  
entire common mode range. Excessive power dissipation  
caused by bus contention or faults is prevented by a  
thermal shutdown circuit which forces the driver outputs  
into a high impedance state.  
The receiver has a fail-safe feature which guarantees a  
high output state when the inputs are left open.  
The LTC485 is fully specified over the commercial and  
U
extended industrial temperature range.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Low Power RS485/RS422 Transceiver  
Level Translator  
U
TYPICAL APPLICATIO  
Driver Outputs  
RO1  
RE1  
DE1  
DI1  
V
CC1  
R
Rt  
Rt  
A
D
GND1  
RO2  
RE2  
DE2  
DI2  
V
CC2  
R
B
D
GND2  
LTC485 • TA01  
LTC485 • TA02  
sn 485LTC485ffs  
1
LTC485  
W W W  
U
W U  
ABSOLUTE AXI U RATI GS  
(Note 1)  
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
NUMBER  
Supply Voltage ....................................................... 12V  
Control Input Voltages ................... 0.5V to VCC + 0.5V  
Driver Input Voltage....................... 0.5V to VCC + 0.5V  
Driver Output Voltage ........................................... ±14V  
Receiver Input Voltage.......................................... ±14V  
Receiver Output Voltages .............. 0.5V to VCC + 0.5V  
Operating Temperature Range  
LTC485I...................................... 40°C TA 85°C  
LTC485C ......................................... 0°C TA 70°C  
LTC485M (OBSOLETE) .......... 55°C TA 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
RO  
RE  
DE  
DI  
1
2
3
4
V
B
A
8
7
6
5
CC  
R
LTC485CN8  
LTC485CS8  
LTC485IN8  
LTC485IS8  
D
GND  
N8 PACKAGE  
S8 PACKAGE  
S8 PART MARKING  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
TJMAX = 125°C, θJA = 100°C/ W (N)  
TJMAX = 150°C, θJA = 150°C/ W (S)  
485  
485I  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
TJMAX = 155°C, θJA = 100°C/ W (J)  
ORDER PART  
NUMBER  
LTC485CJ8  
LTC485MJ8  
OBSOLETE PACKAGE  
Consider the N8 Package for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V ±5%, unless otherwise noted. (Notes 2 and 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (with Load)  
I = 0  
5
V
OD1  
OD2  
O
R = 50(RS422)  
R = 27(RS485), Figure 1  
2
1.5  
V
V
5
V  
OD  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary States  
R = 27or R = 50, Figure 1  
0.2  
V
V
Driver Common Mode Output Voltage  
R = 27or R = 50, Figure 1  
3
V
V
OC  
V  
OC  
Change in Magnitude of Driver Common-Mode R = 27or R = 50, Figure 1  
Output Voltage for Complementary States  
0.2  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
2
V
V
IH  
IL  
0.8  
±2  
I
I
µA  
mA  
mA  
V
IN1  
IN2  
Input Current (A, B)  
DE = 0, V = 0V  
V
V
= 12V  
= 7V  
±1  
CC  
IN  
IN  
or 5.25V  
0.8  
0.2  
V
Differential Input Threshold Voltage  
for Receiver  
7V V 12V  
0.2  
3.5  
TH  
CM  
V  
Receiver Input Hysteresis  
Receiver Output High Voltage  
Receiver Output Low Voltage  
V
= 0V  
CM  
70  
mV  
V
TH  
V
V
I = 4mA, V = 200mV  
O ID  
OH  
I = 4mA, V = 200mV  
O
0.4  
V
OL  
ID  
I
Three-State (High Impedance) Output  
Current at Receiver  
V
= Max, 0.4V V 2.4V  
±1  
µA  
OZR  
CC  
O
R
IN  
Receiver Input Resistance  
7V V 12V  
12  
kΩ  
CM  
sn485 LTC485ffs  
2
LTC485  
U
SWITCHI G CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.VCC = 5V ±5%, unless otherwise noted. (Notes 2 and 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
500  
300  
100  
100  
MAX  
900  
500  
250  
250  
85  
UNITS  
µA  
µA  
mA  
mA  
mA  
ns  
I
Supply Current  
No Load, Pins 2, Outputs Enabled  
3, 4 = 0V or 5V  
CC  
Outputs Disabled  
I
I
I
t
t
t
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
Receiver Short-Circuit Current  
Driver Input to Output  
= HIGH  
= LOW  
V = 7V  
O
35  
35  
7
OSD1  
OSD2  
OSR  
OUT  
V = 10V  
O
OUT  
0V V V  
O
CC  
R
DIFF  
= 54, C = C = 100pF,  
10  
10  
30  
30  
5
50  
PLH  
L1  
L2  
(Figures 3 and 5)  
Driver Input to Output  
50  
ns  
PHL  
Driver Output to Output  
10  
ns  
SKEW  
t , t  
r
Driver Rise or Fall Time  
3
15  
40  
40  
40  
40  
90  
90  
13  
20  
20  
20  
20  
25  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
Receiver Input to Output  
C = 100pF (Figures 4 and 6) S2 Closed  
L
70  
ns  
ZH  
ZL  
LZ  
HZ  
C = 100pF (Figures 4 and 6) S1 Closed  
L
70  
ns  
C = 15pF (Figures 4 and 6) S1 Closed  
L
70  
ns  
C = 15pF (Figures 4 and 6) S2 Closed  
L
70  
ns  
R
DIFF  
= 54, C = C = 100pF,  
30  
30  
200  
200  
ns  
PLH  
PHL  
SKD  
ZL  
L1  
L2  
(Figures 3 and 7)  
ns  
t  
– t Differential Receiver Skew  
PHL  
ns  
PLH  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
C
C
C
C
= 15pF (Figures 2 and 8) S1 Closed  
= 15pF (Figures 2 and 8) S2 Closed  
= 15pF (Figures 2 and 8) S1 Closed  
= 15pF (Figures 2 and 8) S2 Closed  
50  
50  
50  
50  
ns  
RL  
RL  
RL  
RL  
ns  
ZH  
ns  
LZ  
ns  
HZ  
Note 1: Absolute maximum ratings are those beyond which the safety of  
the device cannot be guaranteed.  
Note 2: All currents into device pins are positive; all currents out ot device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC A  
Note 4: The LTC485 is guaranteed by design to be functional over a supply  
voltage range of 5V ±10%. Data sheet parameters are guaranteed over the  
tested supply voltage range of 5V ±5%.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Output Low Voltage  
vs Output Current  
Receiver Output High Voltage  
vs Output Current  
Receiver Output High Voltage  
vs Temperature  
36  
32  
28  
24  
20  
16  
12  
8
–18  
–16  
–14  
–12  
–10  
–8  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
T
= 25°C  
T
= 25°C  
I = 8mA  
A
A
– 6  
–4  
4
–2  
0
0
3.0  
0
0.5  
2.0  
5
4
–50 –25  
0
25  
50  
125  
1.0  
1.5  
3
2
75 100  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LTC485 • TPC01  
LTC485 • TPC02  
LTC485 • TPC03  
sn 485LTC485ffs  
3
LTC485  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Receiver Output Low Voltage  
vs Temperature  
Driver Differential Output Voltage  
vs Output Current  
Driver Differential Output Voltage  
vs Temperature  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
72  
64  
56  
48  
40  
32  
24  
16  
8
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
T
= 25°C  
RI = 54  
I = 8mA  
A
0
0
1.5  
–50 –25  
0
25  
50  
125  
0
1
3
4
–50 –25  
0
25  
50  
125  
75 100  
2
75 100  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LTC485 • TPC03  
LTC485 • TPC05  
LTC485 • TPC06  
Driver Output Low Voltage  
vs Output Current  
Driver Output High Voltage  
vs Output Current  
TTL Input Threshold  
vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–108  
–96  
–84  
–72  
–60  
–48  
–36  
–24  
–12  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
1.58  
1.57  
1.56  
T
= 25°C  
T
A
= 25°C  
A
0
0
1.55  
0
1
3
4
0
1
3
4
–50 –25  
0
25  
50  
75 100 125  
2
2
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LTC485 • TPC07  
LTC485 • TPC08  
LTC485 • TPC09  
Receiver  
tPLH – tPHL⏐  
vs Temperature  
Driver Skew vs Temperature  
Supply Current vs Temperature  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
5.4  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
640  
580  
520  
460  
400  
340  
280  
220  
160  
DRIVER ENABLED  
DRIVER DISABLED  
3.0  
0
100  
–50 –25  
0
25  
50  
125  
–50 –25  
0
25  
50  
125  
–50 –25  
0
25  
50  
125  
75 100  
75 100  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LTC485 • TPC10  
LTC485 • TPC11  
LTC485 • TPC12  
sn485 LTC485ffs  
4
LTC485  
U U  
U
PI FU CTIO S  
DI (Pin 4): Driver Input. If the driver outputs are enabled  
(DE high), then a low on DI forces the outputs A low and  
B high. A high on DI with the driver outputs enabled will  
force A high and B low.  
RO (Pin 1): Receiver Output. If the receiver output is  
enabled(RE low), then if A > B by 200mV, RO will be high.  
If A < B by 200mV, then RO will be low.  
RE (Pin 2): Receiver Output Enable. A low enables the  
receiver output, RO. A high input forces the receiver  
output into a high impedance state.  
GND (Pin 5): Ground Connection.  
A (Pin 6): Driver Output/Receiver Input.  
B (Pin 7): Driver Output/Receiver Input.  
DE (Pin 3): Driver Outputs Enable. A high on DE enables  
the driver output. A and B, and the chip will function as a  
line driver. A low input will force the driver outputs into a  
high impedance state and the chip will function as a line  
receiver.  
V
CC (Pin 8): Positive Supply; 4.75 < VCC < 5.25.  
TEST CIRCUITS  
A
S1  
S2  
TEST POINT  
C
R
1k  
RECEIVER  
OUTPUT  
V
CC  
V
OD  
1k  
RL  
15pF  
V
R
OC  
LTC485 • F02  
B
LTC485 • F01  
Figure 1. Driver DC Test Load  
Figure 2. Receiver Timing Test Load  
3V  
DE  
S1  
A
A
B
C
V
L1  
CC  
RO  
DI  
500Ω  
OUTPUT  
UNDER TEST  
R
DIFF  
B
S2  
C
L2  
RE  
C
L
15pF  
LTC485 • F02  
LTC485 • F03  
Figure 3. Driver/Receiver Timing Test Circuit  
Figure 4. Driver Timing Test Load #2  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
DI  
1.5V  
f = 1MHz, t 10ns, t 10ns  
1.5V  
r
f
0V  
B
1/2 V  
O
t
t
PLH  
PLH  
V
O
A
t
t
SKEW  
1/2 V  
SKEW  
O
90%  
20%  
V
O
80%  
V
= V(A) – V(B)  
0V  
–V  
DIFF  
10%  
O
LTC485 • F05  
t
t
f
r
Figure 5. Driver Propagation Delays  
sn 485LTC485ffs  
5
LTC485  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
1.5V  
f = 1MHz, t 10ns, t 10ns  
1.5V  
DI  
A, B  
A, B  
r
f
0V  
5V  
t
t
LZ  
ZL  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
V
2.3V  
t
LTC485 • F06  
t
HZ  
ZH  
Figure 6. Driver Enable and Disable Times  
V
OH  
1.5V  
1.5V  
R
OUTPUT  
V
OL  
OD2  
OD2  
f = 1MHz, t 10ns, t 10ns  
t
t
PLH  
r
f
PHL  
V
A, B  
–V  
0V  
INPUT  
LTC485 • F07  
Figure 7. Receiver Propagation Delays  
3V  
0V  
5V  
1.5V  
f = 1MHz, t 10ns, t 10ns  
1.5V  
RE  
R
r
f
t
t
LZ  
ZL  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
R
1.5V  
0V  
t
LTC485 • F08  
t
HZ  
ZH  
Figure 8. Receiver Enable and Disable Times  
U
U
FU CTIO TABLES  
LTC485 Transmitting  
LTC485 Receiving  
OUTPUTS  
INPUTS  
INPUTS  
OUTPUTS  
LINE  
RE  
X
DE  
1
DI  
1
B
0
1
Z
Z
A
1
0
Z
Z
CONDITION  
RE  
0
DE  
0
A – B  
0.2V  
R
No Fault  
No Fault  
X
1
X
1
0
0
0
0.2V  
0
X
0
X
X
0
0
Inputs Open  
X
1
X
1
Fault  
1
0
Z
sn485 LTC485ffs  
6
LTC485  
U U  
W
U
APPLICATIO S I FOR ATIO  
Basic Theory of Operation  
(D1) or the N + /P-substrate diode (D2) respectively will  
turn on and clamp the output to the supply. Thus, the  
output stage is no longer in a high impedance state and is  
not able to meet the RS485 common-mode range require-  
ment. In addition, the large amount of current flowing  
through either diode will induce the well known CMOS  
latchup condition, which could destroy the device.  
Previous RS485 transceivers have been designed using  
bipolar technology because the common-mode range of  
thedevicemustextendbeyondthesuppliesandthedevice  
must be immune to ESD damage and latchup. Unfortu-  
nately, the bipolar devices draw a large amount of supply  
current, which is unacceptable for the numerous applica-  
tions that require low power consumption. The LTC485 is  
the first CMOS RS485/RS422 transceiver which features  
ultra-lowpowerconsumptionwithoutsacrificingESDand  
latchup immunity.  
The LTC485 output stage of Figure 9 eliminates these  
problems by adding two Schottky diodes, SD3 and SD4.  
The Schottky diodes are fabricated by a proprietary modi-  
fication to the standard N-well CMOS process. When the  
output stage is operating normally, the Schottky diodes  
are forward biased and have a small voltage drop across  
them. When the output is in the high impedance state and  
is driven above VCC or below ground, the parasitic diodes  
D1 or D2 still turn on, but SD3 or SD4 will reverse bias and  
prevent current from flowing into the N-well or the sub-  
strate. Thus, the high impedance state is maintained even  
with the output voltage beyond the supplies. With no  
minority carrier current flowing into the N-well or sub-  
strate, latchup is virtually eliminated under power-up or  
power-down conditions.  
The LTC485 uses a proprietary driver output stage, which  
allows a common-mode range that extends beyond the  
power supplies while virtually eliminating latchup and  
providing excellent ESD protection. Figure 9 shows the  
LTC485 output stage while Figure 10 shows a conven-  
tional CMOS output stage.  
When the conventional CMOS output stage of Figure 10  
enters a high impedance state, both the P-channel (P1)  
and the N-channel (N1) are turned off. If the output is then  
driven above VCC or below ground, the P + /N-well diode  
V
CC  
V
CC  
SD3  
P1  
P1  
D1  
D1  
OUTPUT  
OUTPUT  
D2  
LOGIC  
LOGIC  
SD4  
N1  
N1  
D2  
LTC485 • F10  
LTC485 • F09  
Figure 10. Conventional CMOS Output Stage  
Figure 9. LTC485 Output Stage  
sn 485LTC485ffs  
7
LTC485  
APPLICATIO S I FOR ATIO  
U U  
W
U
The LTC485 output stage will maintain a high impedance  
state until the breakdown of the N-channel or P-channel is  
reached when going positive or negative respectively. The  
output will be clamped to either VCC or ground by a Zener  
voltage plus a Schottky diode drop, but this voltage is way  
beyond the RS485 operating range. This clamp protects  
the MOS gates from ESD voltages well over 2000V.  
BecausetheESDinjectedcurrentintheN-wellorsubstrate  
consists of majority carriers, latchup is prevented by  
careful layout techniques.  
Propagation Delay  
Many digital encoding schemes are dependent upon the  
difference in the propagation delay times of the driver and  
the receiver. Using the test circuit of Figure 13, Figures 11  
and 12 show the typical LTC485 receiver propagation  
delay.  
The receiver delay times are:  
tPLH – tPHL= 9ns Typ, VCC = 5V  
The driver skew times are:  
Skew = 5ns Typ, VCC = 5V  
10ns Max, VCC = 5V, TA = 40°C to 85°C  
A
A
DRIVER  
OUTPUTS  
DRIVER  
OUTPUTS  
B
B
RECEIVER  
RO  
RECEIVER  
RO  
OUTPUT  
OUTPUT  
LTC485 • F11  
LTC485 • F12  
Figure 11. Receiver tPHL  
Figure 12. Receiver tPLH  
100pF  
BR  
RECEIVER  
OUT  
R
TTL IN  
t , t < 6ns  
D
R
100  
r
f
LTC485 • F13  
100pF  
Figure 13. Receiver Propagation Delay Test Circuit  
sn485 LTC485ffs  
8
LTC485  
U U  
W
U
APPLICATIO S I FOR ATIO  
LTC485 Line Length vs Data Rate  
Figures 17 and 18 show that the LTC485 is able to  
comfortably drive 4000 feet of wire at 110kHz.  
The maximum line length allowable for the RS422/RS485  
standard is 4000 feet.  
RO  
100  
C
A
B
TTL  
OUT  
COMMON MODE  
VOLTAGE (A + B)/2  
LTC485  
LTC485  
D
4000 FT 26AWG  
TWISTED PAIR  
NOISE  
TTL  
IN  
GENERATOR  
DI  
LTC485 • F17  
Figure 14. Line Length Test Circuit  
Figure 17. System Common Mode Voltage at 110kHz  
Using the test circuit in Figure 14, Figures 15 and 16 show  
that with ~20VP-P common mode noise injected on the  
line, The LTC485 is able to reconstruct the data stream at  
the end of 4000 feet of twisted pair wire.  
RO  
COMMON MODE  
VOLTAGE (A – B)  
RO  
DI  
COMMON MODE  
LTC485 • F18  
VOLTAGE (A + B)/2  
Figure 18. System Differential Voltage at 110kHz  
DI  
When specifying line length vs maximum data rate the  
curve in Figure 19 should be used:  
LTC485 • F15  
Figure 15. System Common Mode Voltage at 19.2kHz  
10k  
1k  
RO  
DIFFERENTIAL  
VOLTAGE A – B  
100  
10  
DI  
10k  
100k  
1M 2.5M  
10M  
MAXIMUM DATA RATE  
LTC485 • F16  
LTC485 • F19  
Figure 16. System Differential Voltage at 19.2kHz  
Figure 19. Cable Length vs Maximum Data Rate  
sn 485LTC485ffs  
9
LTC485  
TYPICAL APPLICATIO S  
U
Typical RS485 Network  
R
t
R
t
LTC485 • TA03  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
2
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
3
0.200  
0.300 BSC  
(5.080)  
MAX  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
OBSOLETE PACKAGE  
sn485 LTC485ffs  
10  
LTC485  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
N8 1098  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
SO8 1298  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
sn 485LTC485ffs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC485  
RELATED PARTS  
PART NUMBER  
LTC486/LTC487  
LTC488/LTC489  
LTC490/LTC491  
LTC1480  
DESCRIPTION  
COMMENTS  
Low Power Quad RS485 Drivers  
110µA Supply Current  
Low Power Quad RS485 Receivers  
Low Power Full-Duplex RS485 Transceivers  
3.3V Supply RS485 Transceiver  
7mA Supply Current  
300µA Supply Current  
Lower Supply Voltage  
LTC1481  
Low Power RS485 Transceiver with Shutdown  
RS485 Transceiver with Carrier Detect  
Low Power, Low EMI RS485 Transceiver  
RS485 Transceiver with Fail-Safe  
Lowest Power  
LTC1482  
±15kV ESD, Fail-Safe  
LTC1483  
Slew Rate Limited Driver Outputs, Lowest Power  
±15kV ESD, MSOP Package  
LTC1484  
LTC1485  
10Mbps RS485 Transceiver  
High Speed  
LTC1518/LTC1519  
LTC1520  
52Mbps Quad RS485 Receivers  
Higher Speed, LTC488/LTC489 Pin-Compatible  
100mV Threshold, Low Channel-to-Channel Skew  
Full-Duplex, Self-Powered Using External Transformer  
Industry-Standard Pinout, 500ps Propagation Delay Skew  
LTC490/LTC491 Pin Compatible  
Highest Speed, LTC486/LTC487 Pin Compatible  
±15kV ESD, LTC490 Pin Compatible  
±15kV ESD, Fail-Safe (LT1785A)  
±15kV ESD, Fail-Safe (LT1791A)  
LVDS-Compatible Quad Receiver  
LTC1535  
2500V Isolated RS485 Transceiver  
52Mbps RS485 Transceiver  
LTC1685  
LTC1686/LTC1687  
LTC1688/LTC1689  
LTC1690  
52Mbps Full-Duplex RS485 Transceiver  
100Mbps Quad RS485 Drivers  
Full-Duplex RS485 Transceiver with Fail-Safe  
±60V Protected RS485 Transceivers  
±60V Protected Full-Duplex RS485 Transceivers  
LT1785/LTC1785A  
LT1791/LTC1791A  
sn485 LTC485ffs  
LT/LCG 1101 1.5K REV F • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC485CN8#TR

IC LINE TRANSCEIVER, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Line Driver or Receiver
Linear

LTC485CS8

Low Power RS485 Interface Transceiver
Linear

LTC485CS8#PBF

LTC485 - Low Power RS485 Interface Transceiver; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC485CS8#TR

LTC485 - Low Power RS485 Interface Transceiver; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC485CS8#TRMPBF

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8
Linear

LTC485CS8#TRPBF

LTC485 - Low Power RS485 Interface Transceiver; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC485CSW

暂无描述
Linear

LTC485I

Low Power RS485 Interface Transceiver
Linear

LTC485IN8

Low Power RS485 Interface Transceiver
Linear

LTC485IN8#TR

IC LINE TRANSCEIVER, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Line Driver or Receiver
Linear

LTC485IN8#TRPBF

IC LINE TRANSCEIVER, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Line Driver or Receiver
Linear

LTC485IS8

Low Power RS485 Interface Transceiver
Linear