LTC485CS8#TR [Linear]

LTC485 - Low Power RS485 Interface Transceiver; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC485CS8#TR
型号: LTC485CS8#TR
厂家: Linear    Linear
描述:

LTC485 - Low Power RS485 Interface Transceiver; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总14页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC485  
Low Power RS485  
Interface Transceiver  
FeaTures  
DescripTion  
The LTC®485 is a low power differential bus/line trans-  
ceiverdesignedformultipointdatatransmissionstandard  
RS485 applications with extended common mode range  
(12V to –7V). It also meets the requirements of RS422.  
n
Low Power: I = 300μA Typ  
CC  
n
Designed for RS485 Interface Applications  
n
Single 5V supply  
n
–7V to 12V Bus Common Mode Range Permits  
±7V ꢀround Difference Between Devices on the Bus  
The CMOS design offers significant power savings over  
its bipolar counterpart without sacrificing ruggedness  
against overload of ESD damage.  
n
Thermal Shutdown Protection  
n
Power-Up/Down ꢀlitch-Free Driver Outputs  
Permit Live Insertion or Removal of Transceiver  
n
The driver and receiver feature three-state outputs, with  
the driver outputs maintaining high impedance over the  
entire common mode range. Excessive power dissipa-  
tion caused by bus contention or faults is prevented by a  
thermal shutdown circuit which forces the driver outputs  
into a high impedance state.  
Driver Maintains High Impedance in Three-State  
or with the Power Off  
n
Combined Impedance of a Driver Output and  
Receiver Allows Up to 32 Transceivers on the Bus  
n
70mV Typical Input Hysteresis  
n
30ns Typical Driver Propagation Delays  
with 5ns Skew for Up to 2.5MB Operation  
The receiver has a fail-safe feature which guarantees a  
high output state when the inputs are left open.  
n
Pin Compatible with ±±0V Protected LT1785 and  
52Mbps LTC1±85  
The LTC485 is fully specified over the commercial and  
extended industrial temperature range.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
applicaTions  
n
Low Power RS485/RS422 Transceiver  
Level Translator  
n
Typical applicaTion  
Driver Outputs  
RO1  
RE1  
DE1  
DI1  
V
CC1  
R
A
Rt  
Rt  
D
GND1  
RO2  
RE2  
DE2  
DI2  
V
CC2  
R
B
D
GND2  
485 TA01a  
485 TA01b  
485fi  
1
LTC485  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Supply Voltage..........................................................12V  
RO  
RE  
DE  
DI  
1
2
3
4
V
B
A
8
7
6
5
CC  
Control Input Voltages .....................–0.5V to V + 0.5V  
R
CC  
Driver Input Voltage.........................–0.5V to V + 0.5V  
CC  
Driver Output Voltage..............................................±14V  
D
GND  
Receiver Input Voltage............................................±14V  
Receiver Output Voltages................ –0.5V to V + 0.5V  
N8 PACKAGE  
S8 PACKAGE  
CC  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
Operating Temperature Range  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
LTC485I......................................... –40°C ≤ T ≤ 85°C  
A
T
= 125°C, θ = 100°C/W (N)  
JA  
JMAX  
LTC485C ........................................... 0°C ≤ T ≤ 70°C  
A
T
= 150°C, θ = 150°C/W (S)  
JMAX  
JA  
T
= 155°C, θ = 100°C/W (J)  
LTC485M..................................... –55°C ≤ T ≤ 125°C  
JMAX  
JA  
A
Lead Temperature (Soldering, 10 sec) .................. 300°C  
orDer inForMaTion  
LEAD FREE FINISH  
LTC485CN8#PBF  
LTC485CS8#PBF  
LTC485IN8#PBF  
LTC485IS8#PBF  
LEAD BASED FINISH  
LTC485CN8  
TAPE AND REEL  
LTC485CN8#TRPBF  
LTC485CS8#TRPBF  
LTC485IN8#TRPBF  
LTC485IS8#TRPBF  
TAPE AND REEL  
LTC485CN8#TR  
LTC485CS8#TR  
LTC485IN8#TR  
PART MARKING*  
LTC485CN8  
485  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic SOIC  
8-Lead Plastic DIP  
8-Lead Plastic SOIC  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic SOIC  
8-Lead Plastic DIP  
8-Lead Plastic SOIC  
8-Lead Ceramic DIP  
TEMPERATURE RANGE  
0°C to 70°C  
0°C to 70°C  
LTC485IN8  
485I  
–40°C to 85°C  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
LTC485CN8  
485  
LTC485CS8  
0°C to 70°C  
LTC485IN8  
LTC485IN8  
485I  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
LTC485IS8  
LTC485IS8#TR  
LTC485MJ8  
LTC485MJ8#TR  
LTC485MJ8  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V 5ꢀ, unless otherwise noted. (Notes 2 and 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (with Load)  
I = 0  
5
V
OD1  
OD2  
O
l
l
R = 50Ω (RS422)  
R = 27Ω (RS485), Figure 1  
2
1.5  
V
V
5
l
ΔV  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary States  
R = 27Ω or R = 50Ω, Figure 1  
0.2  
V
OD  
l
l
V
Driver Common Mode Output Voltage  
R = 27Ω or R = 50Ω, Figure 1  
R = 27Ω or R = 50Ω, Figure 1  
3
V
V
OC  
Δ|V  
|
Change in Magnitude of Driver Common Mode  
Output Voltage for Complementary States  
0.2  
OC  
485fi  
2
LTC485  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V 5ꢀ, unless otherwise noted. (Notes 2 and 3)  
SYMBOL PARAMETER  
CONDITIONS  
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
2
V
V
IH  
IL  
0.8  
±2  
I
I
μA  
IN1  
IN2  
l
l
Input Current (A, B)  
DE = 0, V = 0V or 5.25V  
V
IN  
V
IN  
= 12V  
= –7V  
±1  
–0.8  
mA  
mA  
CC  
l
l
l
l
l
V
Differential Input Threshold Voltage for Receiver –7V ≤ V ≤ 12V  
–0.2  
3.5  
0.2  
V
mV  
V
TH  
CM  
ΔV  
Receiver Input Hysteresis  
Receiver Output High Voltage  
Receiver Output Low Voltage  
V
= 0V  
CM  
70  
TH  
V
V
I = –4mA, V = 200mV  
O ID  
OH  
I = 4mA, V = –200mV  
O
0.4  
±1  
V
OL  
ID  
I
Three-State (High Impedance) Output Current  
at Receiver  
V
= Max, 0.4V ≤ V ≤ 2.4V  
μA  
OZR  
CC  
O
l
R
Receiver Input Resistance  
–7V ≤ V ≤ 12V  
12  
kΩ  
IN  
CM  
swiTching characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V 5ꢀ, unless otherwise noted. (Notes 2 and 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
I
CC  
Supply Current  
No Load, Pins 2, 3, 4 = 0V or 5V Outputs Enabled  
Outputs Disabled  
500  
300  
900  
500  
μA  
μA  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
I
I
I
t
t
t
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
Receiver Short-Circuit Current  
Driver Input to Output  
= HIꢀH V = – 7V  
35  
35  
7
100  
100  
250  
250  
85  
mA  
mA  
mA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OSD1  
OSD2  
OSR  
OUT  
O
= LOW V = 10V  
OUT  
O
0V ≤ V ≤ V  
O
CC  
R
= 54Ω, C = C = 100pF,  
10  
10  
30  
30  
5
50  
PLH  
DIFF  
L1  
L2  
(Figures 3 and 5)  
Driver Input to Output  
50  
PHL  
Driver Output to Output  
10  
SKEW  
t , t  
r
Driver Rise or Fall Time  
3
15  
40  
40  
40  
40  
90  
90  
13  
20  
20  
20  
20  
25  
f
t
t
t
t
t
t
t
t
t
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
Receiver Input to Output  
C = 100pF (Figures 4 and ±) S2 Closed  
L
70  
ZH  
ZL  
LZ  
HZ  
C = 100pF (Figures 4 and ±) S1 Closed  
L
70  
C = 15pF (Figures 4 and ±) S1 Closed  
L
70  
C = 15pF (Figures 4 and ±) S2 Closed  
L
70  
R
= 54Ω, CL1 = CL2 = 100pF,  
30  
30  
200  
200  
PLH  
PHL  
SKD  
ZL  
DIFF  
(Figures 3 and 7)  
|t  
– t | Differential Receiver Skew  
PHL  
PLH  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
C
RL  
C
RL  
C
RL  
C
RL  
= 15pF (Figures 2 and 8) S1 Closed  
= 15pF (Figures 2 and 8) S2 Closed  
= 15pF (Figures 2 and 8) S1 Closed  
= 15pF (Figures 2 and 8) S2 Closed  
50  
50  
50  
50  
ZH  
LZ  
HZ  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC  
A
Note 4: The LTC485 is guaranteed by design to be functional over a supply  
voltage range of 5V ±10ꢁ. Data sheet parameters are guaranteed over the  
tested supply voltage range of 5V ±5ꢁ.  
Note 2: All currents into device pins are positive; all currents out ot device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
485fi  
3
LTC485  
Typical perForMance characTerisTics  
Receiver Output Low Voltage  
vs Output Current  
Receiver Output High Voltage  
vs Output Current  
Receiver Output High Voltage  
vs Temperature  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
36  
32  
28  
24  
20  
16  
12  
8
–18  
–16  
–14  
–12  
–10  
–8  
T
= 25°C  
T
= 25°C  
A
I = 8mA  
A
–6  
–4  
4
–2  
3.0  
0
0
–50 –25  
0
25  
50  
125  
75 100  
0
0.5  
2.0  
1.0  
1.5  
5
4
3
2
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
485 G03  
485 G01  
485 G02  
Receiver Output Low Voltage  
vs Temperature  
Driver Differential Output Voltage  
vs Output Current  
Driver Differential Output Voltage  
vs Temperature  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
72  
64  
56  
48  
40  
32  
24  
16  
8
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
RI = 54Ω  
T
= 25°C  
I = 8mA  
A
1.5  
0
0
–50 –25  
0
25  
50  
125  
0
1
3
4
75 100  
–50 –25  
0
25  
50  
125  
2
75 100  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
485 G06  
485 G05  
485 G04  
Driver Output Low Voltage  
vs Output Current  
Driver Output High Voltage  
vs Output Current  
TTL Input Threshold  
vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
1.58  
1.57  
1.56  
–108  
–96  
–84  
–72  
–60  
–48  
–36  
–24  
–12  
T
= 25°C  
T
= 25°C  
A
A
0
1.55  
0
0
1
3
4
–50 –25  
0
25  
50  
125  
2
0
1
3
4
75 100  
2
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
485 G07  
485 G09  
485 G08  
485fi  
4
LTC485  
Typical perForMance characTerisTics  
Receiver |tPLH – tPHL  
|
vs Temperature  
Driver Skew vs Temperature  
Supply Current vs Temperature  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
5.4  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
640  
580  
520  
460  
400  
340  
280  
220  
160  
DRIVER ENABLED  
DRIVER DISABLED  
3.0  
0
100  
–50 –25  
0
25  
50  
125  
75 100  
–50 –25  
0
25  
50  
125  
–50 –25  
0
25  
50  
125  
75 100  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
485 G10  
485 G11  
485 G12  
pin FuncTions  
RO (Pin 1): Receiver Output. If the receiver output is en-  
abled (RE low), then if A > B by 200mV, RO will be high.  
If A < B by 200mV, then RO will be low.  
DI (Pin 4): Driver Input. If the driver outputs are enabled  
(DE high), then a low on DI forces the outputs A low and  
B high. A high on DI with the driver outputs enabled will  
force A high and B low.  
RE (Pin 2): Receiver Output Enable. A low enables the  
receiveroutput,RO.Ahighinputforcesthereceiveroutput  
into a high impedance state.  
GND (Pin 5): ꢀround Connection.  
A (Pin 6): Driver Output/Receiver Input.  
B (Pin 7): Driver Output/Receiver Input.  
DE (Pin 3): Driver Outputs Enable. A high on DE enables  
the driver output. A and B, and the chip will function as a  
line driver. A low input will force the driver outputs into a  
high impedance state and the chip will function as a line  
receiver.  
V
(Pin 8): Positive Supply; 4.75 < V < 5.25.  
CC  
CC  
485fi  
5
LTC485  
TesT circuiTs  
A
S1  
S2  
TEST POINT  
C
1k  
R
R
RECEIVER  
OUTPUT  
V
CC  
V
OD  
1k  
RL  
15pF  
V
OC  
485 F02  
B
485 F01  
Figure 1. Driver DC Test Load  
Figure 2. Receiver Timing Test Load  
3V  
DE  
A
S1  
A
B
C
C
L1  
L2  
RO  
V
DI  
CC  
R
DIFF  
500  
OUTPUT  
UNDER TEST  
B
S2  
RE  
15pF  
C
L
485 F04  
485 F03  
Figure 3. Driver/Receiver Timing Test Circuit  
Figure 4. Driver Timing Test Load #2  
swiTching TiMe waveForMs  
3V  
DI  
1.5V  
f = 1MHz, t ≤ 10ns, t ≤ 10ns  
1.5V  
r
f
0V  
B
1/2 V  
O
t
t
PLH  
PLH  
V
O
A
t
t
SKEW  
1/2 V  
SKEW  
O
90%  
20%  
V
O
80%  
V
= V(A) – V(B)  
0V  
–V  
DIFF  
10%  
O
485 F05  
t
t
f
r
Figure 5. Driver Propagation Delays  
485fi  
6
LTC485  
swiTching TiMe waveForMs  
3V  
1.5V  
f = 1MHz, t ≤ 10ns, t ≤ 10ns  
1.5V  
DI  
A, B  
A, B  
r
f
0V  
5V  
t
t
LZ  
ZL  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
V
2.3V  
t
HZ  
485 F06  
t
ZH  
Figure 6. Driver Enable and Disable Times  
V
OH  
1.5V  
1.5V  
R
OUTPUT  
V
OL  
f = 1MHz, t ≤ 10ns, t ≤ 10ns  
t
t
PLH  
r
f
PHL  
V
A, B  
–V  
OD2  
OD2  
0V  
INPUT  
485 F07  
Figure 7. Receiver Propagation Delays  
3V  
0V  
5V  
1.5V  
f = 1MHz, t ≤ 10ns, t ≤ 10ns  
1.5V  
RE  
R
r
f
t
ZL  
t
LZ  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
R
1.5V  
0V  
t
485 F08  
t
HZ  
ZH  
Figure 8. Receiver Enable and Disable Times  
FuncTion Tables  
LTC485 Receiving  
OUTPUTS  
LTC485 Transmitting  
INPUTS  
OUTPUTS  
INPUTS  
LINE  
RE  
0
DE  
0
A – B  
≥ 0.2V  
R
1
0
1
Z
RE  
X
DE  
1
DI  
1
CONDITION  
No Fault  
No Fault  
X
B
0
1
Z
Z
A
1
0
Z
Z
0
0
≤ –0.2V  
Inputs Open  
X
X
1
0
0
0
X
0
X
X
1
0
X
1
Fault  
485fi  
7
LTC485  
applicaTions inForMaTion  
Basic Theory of Operation  
diode (D1) or the N + /P-substrate diode (D2) respectively  
will turn on and clamp the output to the supply. Thus,  
the output stage is no longer in a high impedance state  
and is not able to meet the RS485 common mode range  
requirement. In addition, the large amount of current  
flowing through either diode will induce the well known  
CMOS latchup condition, which could destroy the device.  
Previous RS485 transceivers have been designed using  
bipolar technology because the common mode range  
of the device must extend beyond the supplies and the  
device must be immune to ESD damage and latchup.  
Unfortunately, the bipolar devices draw a large amount of  
supply current, which is unacceptable for the numerous  
applications that require low power consumption. The  
LTC485isthefirstCMOSRS485/RS422transceiverwhich  
features ultralow power consumption without sacrificing  
ESD and latchup immunity.  
The LTC485 output stage of Figure 9 eliminates these  
problems by adding two Schottky diodes, SD3 and SD4.  
The Schottky diodes are fabricated by a proprietary modi-  
fication to the standard N-well CMOS process. When the  
output stage is operating normally, the Schottky diodes  
are forward biased and have a small voltage drop across  
them. When the output is in the high impedance state and  
The LTC485 uses a proprietary driver output stage, which  
allows a common-mode range that extends beyond the  
power supplies while virtually eliminating latchup and  
providing excellent ESD protection. Figure 9 shows the  
LTC485outputstagewhileFigure10showsaconventional  
CMOS output stage.  
is driven above V or below ground, the parasitic diodes  
CC  
D1 or D2 still turn on, but SD3 or SD4 will reverse bias  
and prevent current from flowing into the N-well or the  
substrate. Thus, the high impedance state is maintained  
even with the output voltage beyond the supplies. With  
no minority carrier current flowing into the N-well or  
substrate, latchup is virtually eliminated under power-up  
or power-down conditions.  
When the conventional CMOS output stage of Figure 10  
enters a high impedance state, both the P-channel (P1)  
and the N-channel (N1) are turned off. If the output is  
then driven above V or below ground, the P + /N-well  
CC  
V
CC  
V
CC  
SD3  
P1  
P1  
D1  
D1  
OUTPUT  
OUTPUT  
D2  
LOGIC  
LOGIC  
SD4  
N1  
N1  
D2  
485 F09  
485 F10  
Figure 9. LTC485 Output Stage  
Figure 10. Conventional CMOS Output Stage  
485fi  
8
LTC485  
applicaTions inForMaTion  
The LTC485 output stage will maintain a high impedance  
state until the breakdown of the N-channel or P-channel  
is reached when going positive or negative respectively.  
Propagation Delay  
Many digital encoding schemes are dependent upon the  
difference in the propagation delay times of the driver and  
the receiver. Using the test circuit of Figure 13, Figures 11  
and12showthetypicalLTC485receiverpropagationdelay.  
The output will be clamped to either V or ground by a  
CC  
Zener voltage plus a Schottky diode drop, but this voltage  
is way beyond the RS485 operating range. This clamp  
protects the MOS gates from ESD voltages well over  
2000V. Because the ESD injected current in the N-well or  
substrateconsistsofmajoritycarriers,latchupisprevented  
by careful layout techniques.  
The receiver delay times are:  
|t  
PLH  
– t | = 9ns Typ, V = 5V  
PHL CC  
The driver skew times are:  
Skew = 5ns Typ, V = 5V  
CC  
10ns Max, V = 5V, T = 40°C to 85°C  
CC  
A
A
A
DRIVER  
OUTPUTS  
DRIVER  
OUTPUTS  
B
B
RECEIVER  
OUTPUTS  
RECEIVER  
OUTPUTS  
RO  
RO  
485 F11  
485 F12  
Figure 11. Receiver tPHL  
Figure 12. Receiver tPLH  
100pF  
BR  
RECEIVER  
OUT  
R
TTL IN  
t , t < 6ns  
D
R
100Ω  
r
f
485 F13  
100pF  
Figure 13. Receiver Propagation Delay Test Circuit  
485fi  
9
LTC485  
applicaTions inForMaTion  
LTC485 Line Length vs Data Rate  
Figures 17 and 18 show that the LTC485 is able to com-  
fortably drive 4000 feet of wire at 110kHz.  
The maximum line length allowable for the RS422/RS485  
standard is 4000 feet.  
100Ω  
RO  
C
A
COMMON MODE  
VOLTAGE (A + B)/2  
TTL  
OUT  
LTC485  
LTC485  
D
B
4000 FT 26AWG  
TWISTED PAIR  
NOISE  
GENERATOR  
TTL  
IN  
DI  
485 F14  
485 F17  
Figure 14. Line Length Test Circuit  
Figure 17. System Common Mode Voltage at 110kHz  
Using the test circuit in Figure 14, Figures 15 and 1± show  
that with ~20V common mode noise injected on the  
P-P  
line, The LTC485 is able to reconstruct the data stream at  
the end of 4000 feet of twisted pair wire.  
RO  
COMMON MODE  
VOLTAGE (A – B)  
DI  
RO  
COMMON MODE  
VOLTAGE (A + B)/2  
485 F18  
Figure 18. System Differential Voltage at 110kHz  
DI  
When specifying line length vs maximum data rate the  
curve in Figure 19 should be used.  
485 F15  
10k  
Figure 15. System Common Mode Voltage at 19.2kHz  
1k  
RO  
DIFFERENTIAL  
VOLTAGE A – B  
100  
10  
DI  
10k  
100k  
1M 2.5M  
10M  
MAXIMUM DATA RATE  
485 F16  
485 F19  
Figure 16. System Differential Voltage at 19.2kHz  
Figure 19. Cable Length vs Maximum Data Rate  
485fi  
10  
LTC485  
Typical applicaTion  
Typical RS485 Network  
R
R
t
t
485 TA02  
package DescripTion  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWꢀ # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
2
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
3
.200  
.300 BSC  
(5.080)  
MAX  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
485fi  
11  
LTC485  
package DescripTion  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWꢀ # 05-08-1510)  
.400*  
(10.160)  
MAX  
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.255 .015*  
(6.477 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
3
.325  
.018 .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 0.076)  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWꢀ # 05-08-1±10)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
485fi  
12  
LTC485  
revision hisTory (Revision history begins at Rev I)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
I
4/11  
Removed lead free version of LTC485MJ8 from Order Information section.  
2
485fi  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
13  
LTC485  
relaTeD parTs  
PART NUMBER  
LTC48±/LTC487  
LTC488/LTC489  
LTC490/LTC491  
LTC1480  
DESCRIPTION  
COMMENTS  
Low Power Quad RS485 Drivers  
110μA Supply Current  
Low Power Quad RS485 Receivers  
Low Power Full-Duplex RS485 Transceivers  
3.3V Supply RS485 Transceiver  
7mA Supply Current  
300μA Supply Current  
Lower Supply Voltage  
LTC1481  
Low Power RS485 Transceiver with Shutdown  
RS485 Transceiver with Carrier Detect  
Low Power, Low EMI RS485 Transceiver  
RS485 Transceiver with Fail-Safe  
Lowest Power  
LTC1482  
±15kV ESD, Fail-Safe  
LTC1483  
Slew Rate Limited Driver Outputs, Lowest Power  
±15kV ESD, MSOP Package  
LTC1484  
LTC1485  
10Mbps RS485 Transceiver  
High Speed  
LTC1518/LTC1519  
LTC1520  
52Mbps Quad RS485 Receivers  
Higher Speed, LTC488/LTC489 Pin-Compatible  
100mV Threshold, Low Channel-to-Channel Skew  
Full-Duplex, Self-Powered Using External Transformer  
Industry-Standard Pinout, 500ps Propagation Delay Skew  
LTC490/LTC491 Pin Compatible  
Highest Speed, LTC48±/LTC487 Pin Compatible  
±15kV ESD, LTC490 Pin Compatible  
±15kV ESD, Fail-Safe (LT1785A)  
±15kV ESD, Fail-Safe (LT1791A)  
±15kV ESD, 20Mbps, 900ꢂA Supply Current, Fail-Safe  
LVDS-Compatible Quad Receiver  
LTC1535  
2500V Isolated RS485 Transceiver  
52Mbps RS485 Transceiver  
LTC1±85  
LTC1±8±/LTC1±87  
LTC1±88/LTC1±89  
LTC1±90  
52Mbps Full-Duplex RS485 Transceivers  
100Mbps Quad RS485 Drivers  
Full-Duplex RS485 Transceiver with Fail-Safe  
±±0V Protected RS485 Transceivers  
±±0V Protected Full-Duplex RS485 Transceivers  
3.3V Supply RS485 Transceivers  
LT1785/LTC1785A  
LT1791/LTC1791A  
LTC2850/LTC2851/  
LTC2852  
LTC2854/LTC2855  
3.3V Supply RS485 Transceivers  
20Mbps RS485 Transceivers  
20Mbps RS485 Transceivers  
±15kV ESD, 20Mbps, 900ꢂA Supply Current,  
Integrated Switchable Termination  
LTC285±/LTC2857/  
LTC2858  
±15kV ESD, 900ꢂA Supply Current, Fail-Safe  
LTC2859/LTC28±1  
±15kV ESD, 900ꢂA Supply Current, Integrated Switchable Termination  
485fi  
LT 0411 REV I • PRINTED IN USA  
LinearTechnology Corporation  
1±30 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
l
l
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY