LTC485C [Linear]

Low Power RS485 Interface Transceiver; 低功率RS485接口收发器
LTC485C
型号: LTC485C
厂家: Linear    Linear
描述:

Low Power RS485 Interface Transceiver
低功率RS485接口收发器

文件: 总12页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC485  
Low Power RS485  
Interface Transceiver  
U
DESCRIPTIO  
EATURE  
S
F
Low Power: ICC = 300µA Typ  
Designed for RS485 Interface Applications  
Single 5V supply  
7V to 12V Bus Common-Mode Range Permits  
±7V Ground Difference Between Devices on the Bus  
Thermal Shutdown Protection  
Power-Up/Down Glitch-Free Driver Outputs  
Permit Live Insertion or Removal of Transceiver  
Driver Maintains High Impedance in Three-State  
or with the Power Off  
Combined Impedance of a Driver Output and  
Receiver Allows Up to 32 Transceivers on the Bus  
70mV Typical Input Hysteresis  
30ns Typical Driver Propagation Delays  
with 5ns Skew  
Pin Compatible with the SN75176A, DS75176A  
and µA96176  
TheLTC485isalowpowerdifferentialbus/linetransceiver  
designedformultipointdatatransmissionstandardRS485  
applications with extended common-mode range (12V to  
7V). It also meets the requirements of RS422.  
TheCMOSdesignofferssignificantpowersavingsoverits  
bipolarcounterpartwithoutsacrificingruggednessagainst  
overload of ESD damage.  
The driver and receiver feature three-state outputs, with  
the driver outputs maintaining high impedance over the  
entire common-mode range. Excessive power dissipation  
caused by bus contention or faults is prevented by a  
thermal shutdown circuit which forces the driver outputs  
into a high impedance state.  
The receiver has a fail-safe feature which guarantees a  
high output state when the inputs are left open.  
The LTC485 is fully specified over the commercial and  
extended industrial temperature range.  
O U  
PPLICATI  
S
A
Low Power RS485/RS422 Transceiver  
Level Translator  
U
O
TYPICAL APPLICATI  
Driver Outputs  
RO1  
RE1  
DE1  
DI1  
V
CC1  
R
A
Rt  
Rt  
D
GND1  
RO2  
RE2  
DE2  
DI2  
V
CC2  
R
B
D
GND2  
LTC485 • TA01  
LTC485 • TA02  
1
LTC485  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
Supply Voltage ....................................................... 12V  
Control Input Voltages ................... 0.5V to VCC + 0.5V  
Driver Input Voltage....................... 0.5V to VCC + 0.5V  
Driver Output Voltage ........................................... ±14V  
Receiver Input Voltage.......................................... ±14V  
Receiver Output Voltages .............. 0.5V to VCC + 0.5V  
Operating Temperature Range  
LTC485I...................................... 40°C TA 85°C  
LTC485C.......................................... 0°C TA 70°C  
LTC485M.................................. 55°C TA 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
NUMBER  
RO  
RE  
DE  
DI  
1
2
3
4
V
B
A
8
7
6
5
CC  
R
LTC485CJ8  
LTC485CN8  
LTC485CS8  
LTC485IN8  
LTC485IS8  
LTC485MJ8  
D
GND  
J8 PACKAGE  
N8 PACKAGE  
8-LEAD CERAMIC DIP 8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
S8 PART MARKING  
TJMAX = 155°C, θJA = 100°C/ W (J)  
TJMAX = 100°C, θJA = 130°C/ W (N)  
JMAX = 100°C, θJA = 170°C/ W (S)  
485  
485I  
T
VCC = 5V ±5%, unless otherwise noted. (Notes 2 and 3)  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OD1  
V
OD2  
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (with Load)  
I = 0  
5
V
O
R = 50(RS422)  
R = 27(RS485), Figure 1  
2
1.5  
V
V
5
V  
Change in Magnitude of Driver  
DifferentialOutput Voltage for  
Complementary States  
R = 27or R = 50, Figure 1  
0.2  
V
OD  
V
Driver Common-Mode Output Voltage  
R = 27or R = 50, Figure 1  
R = 27or R = 50, Figure 1  
3
V
V
OC  
V  
Change in Magnitude of Driver  
Common-Mode Output Voltage  
for Complementary States  
0.2  
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
2
V
V
IH  
0.8  
±2  
IL  
I
I
µA  
mA  
mA  
V
IN1  
IN2  
Input Current (A, B)  
DE = 0, V = 0V  
V
V
= 12V  
= 7V  
±1  
CC  
IN  
IN  
or 5.25V  
0.8  
0.2  
V
TH  
Differential Input Threshold Voltage  
for Receiver  
7V V 12V  
0.2  
3.5  
CM  
V  
Receiver Input Hysteresis  
Receiver Output High Voltage  
Receiver Outpu Low Voltage  
V
CM  
= 0V  
70  
mV  
V
TH  
V
V
I = 4mA, V = 200mV  
O ID  
OH  
I = 4mA, V = 200mV  
O
0.4  
V
OL  
ID  
I
Three-State (High Impedance) Output  
Current at Receiver  
V
CC  
= Max, 0.4V V 2.4V  
±1  
µA  
OZR  
O
R
Receiver Input Resistance  
Supply Current  
7V V 12V  
12  
kΩ  
µA  
IN  
CM  
I
No Load, Pins 2, Outputs Enabled  
3, 4 = 0V or 5V  
500  
300  
100  
100  
900  
500  
250  
250  
85  
CC  
Outputs Disabled  
µA  
I
I
I
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
Receiver Short-Circuit Current  
= HIGH  
= LOW  
V = 7V  
O
35  
35  
7
mA  
mA  
mA  
OSD1  
OSD2  
OSR  
OUT  
V = 10V  
O
OUT  
0V V V  
O
CC  
2
LTC485  
U
SWITCHI G CHARACTERISTICS VCC = 5V ±5%, unless otherwise noted. (Notes 2 and 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
30  
30  
5
MAX  
50  
UNITS  
ns  
t
t
t
Driver Input to Output  
R
DIFF  
= 54, C = C = 100pF,  
10  
PLH  
L1  
L2  
(Figures 3 and 5)  
Driver Input to Output  
10  
50  
ns  
PHL  
Driver Output to Output  
Driver Rise or Fall Time  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
Receiver Input to Output  
10  
ns  
SKEW  
t , t  
r
3
15  
40  
40  
40  
40  
90  
90  
13  
20  
20  
20  
20  
25  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
C = 100pF (Figures 4 and 6) S2 Closed  
L
70  
ns  
ZH  
ZL  
LZ  
HZ  
C = 100pF (Figures 4 and 6) S1 Closed  
L
70  
ns  
C = 15pF (Figures 4 and 6) S1 Closed  
L
70  
ns  
C = 15pF (Figures 4 and 6) S2 Closed  
L
70  
ns  
R
DIFF  
= 54, C = C = 100pF,  
30  
30  
200  
200  
ns  
PLH  
PHL  
SKD  
ZL  
L1  
L2  
(Figures 3 and 7)  
ns  
t
– t  
Differential Receiver Skew  
PHL  
ns  
PLH  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
C
RL  
C
RL  
C
RL  
C
RL  
= 15pF (Figures 2 and 8) S1 Closed  
= 15pF (Figures 2 and 8) S2 Closed  
= 15pF (Figures 2 and 8) S1 Closed  
= 15pF (Figures 2 and 8) S2 Closed  
50  
50  
50  
50  
ns  
ns  
ZH  
ns  
LZ  
ns  
HZ  
The  
denotes specifications which apply over the full operating  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC A  
temperature range.  
Note 1: Absolute maximum ratings are those beyond which the safety of  
the device cannot be guaranteed.  
Note 4: The LTC485 is guaranteed by design to be functional over a supply  
voltage range of 5V ±10%. Data sheet parameters are guaranteed over the  
tested supply voltage range of 5V ±5%.  
Note 2: All currents into device pins are positive; all currents out ot device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
TEST CIRCUITS  
A
S1  
S2  
TEST POINT  
C
R
1k  
RECEIVER  
OUTPUT  
V
CC  
V
OD  
1k  
RL  
15pF  
V
R
OC  
LTC485 • F02  
B
LTC485 • F01  
Figure 1. Driver DC Test Load  
Figure 2. Receiver Timing Test Load  
3V  
DE  
S1  
A
A
B
C
V
L1  
CC  
RO  
DI  
500Ω  
OUTPUT  
UNDER TEST  
R
DIFF  
B
S2  
C
L2  
RE  
C
L
15pF  
LTC485 • F02  
LTC485 • F03  
Figure 3. Driver/Receiver Timing Test Circuit  
Figure 4. Driver Timing Test Load #2  
3
LTC485  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
DI  
1.5V  
f = 1MHz, t 10ns, t 10ns  
1.5V  
r
f
0V  
B
1/2 V  
O
t
t
PLH  
PLH  
V
O
A
t
t
SKEW  
1/2 V  
SKEW  
O
90%  
20%  
V
O
80%  
V
= V(A) – V(B)  
0V  
DIFF  
10%  
–V  
O
LTC485 • F05  
t
t
f
r
Figure 5. Driver Propagation Delays  
3V  
0V  
5V  
1.5V  
f = 1MHz, t 10ns, t 10ns  
1.5V  
DI  
r
f
t
t
LZ  
ZL  
A, B  
A, B  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
V
2.3V  
t
LTC485 • F06  
t
HZ  
ZH  
Figure 6. Driver Enable and Disable Times  
V
OH  
1.5V  
1.5V  
R
OUTPUT  
V
OL  
f = 1MHz, t 10ns, t 10ns  
t
t
PLH  
r
f
PHL  
V
A, B  
–V  
OD2  
OD2  
0V  
INPUT  
LTC485 • F07  
Figure 7. Receiver Propagation Delays  
3V  
0V  
5V  
1.5V  
f = 1MHz, t 10ns, t 10ns  
1.5V  
RE  
R
r
f
t
t
LZ  
ZL  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
R
1.5V  
0V  
t
LTC485 • F08  
t
HZ  
ZH  
Figure 8. Receiver Enable and Disable Times  
4
LTC485  
U
U
U U  
U
FU CTIO TABLES  
PI FU CTIO S  
LTC485 Transmitting  
PIN #  
NAME  
DESCRIPTION  
INPUTS  
OUTPUTS  
1
RO  
Receiver Output. If the receiver output is enabled  
(RE low), then if A > B by 200mV, RO will be  
high. If A < B by 200mV, then RO will be low.  
Receiver Output Enable. A low enables the  
receiver output, RO. A high input forces the  
receiver output into a high impedance state.  
Driver Outputs Enable. A high on DE enables the  
driver output. A and B, and the chip will function  
as a line driver. A low input will force the driver  
outputs into a high impedance state and the chip  
will function as a line receiver.  
Driver Input. If the driver outputs are enabled  
(DE high), then a low on DI forces the outputs A  
low and B high. A high on DI with the driver  
outputs enabled will force A high and B low.  
LINE  
CONDITION  
RE  
X
DE  
1
DI  
1
B
A
1
0
Z
Z
No Fault  
No Fault  
X
0
1
Z
Z
2
3
RE  
DE  
X
1
0
X
0
X
X
X
1
Fault  
LTC485 Receiving  
INPUTS  
OUTPUTS  
4
DI  
RE  
0
DE  
0
A – B  
0.2V  
R
1
0
1
Z
0
0
0.2V  
Inputs Open  
X
5
6
7
8
GND  
A
B
Ground Connection.  
Driver Output/Receiver Input.  
Driver Output/Receiver Input.  
0
0
1
0
V
Positive Supply; 4.75 < V < 5.25  
CC  
CC  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Output Low Voltage  
vs Output Current  
Receiver Output High Voltage  
vs Output Current  
Receiver Output High Voltage  
vs Temperature  
36  
32  
28  
24  
20  
16  
12  
8
–18  
–16  
–14  
–12  
–10  
–8  
4.8  
T
A
= 25°C  
T
= 25°C  
I = 8mA  
A
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
– 6  
–4  
4
–2  
0
0
3.0  
0
0.5  
2.0  
5
4
–50 –25  
0
25  
50  
125  
1.0  
1.5  
3
2
75 100  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LTC485 • TPC01  
LTC485 • TPC02  
LTC485 • TPC03  
5
LTC485  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Receiver Output Low Voltage  
vs Temperature  
Driver Differential Output Voltage  
vs Output Current  
Driver Differential Output Voltage  
vs Temperature  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
72  
64  
56  
48  
40  
32  
24  
16  
8
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
T
= 25°C  
RI = 54Ω  
I = 8mA  
A
0
0
1.5  
–50 –25  
0
25  
50  
125  
0
1
3
4
–50 –25  
0
25  
50  
125  
75 100  
2
75 100  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LTC485 • TPC03  
LTC485 • TPC05  
LTC485 • TPC06  
Driver Output Low Voltage  
vs Output Current  
Driver Output High Voltage  
vs Output Current  
TTL Input Threshold  
vs Temperature  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
1.58  
1.57  
1.56  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–108  
–96  
–84  
–72  
–60  
–48  
–36  
–24  
–12  
T
= 25°C  
T
= 25°C  
A
A
1.55  
0
0
–50 –25  
0
25  
50  
125  
0
1
3
4
0
1
3
4
75 100  
2
2
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
LTC485 • TPC09  
LTC485 • TPC07  
LTC485 • TPC08  
Receiver tPLH – tPHL  
vs Temperature  
Driver Skew vs Temperature  
Supply Current vs Temperature  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
5.4  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
640  
580  
520  
460  
400  
340  
280  
220  
160  
DRIVER ENABLED  
DRIVER DISABLED  
3.0  
0
100  
–50 –25  
0
25  
50  
125  
–50 –25  
0
25  
50  
125  
75 100  
75 100  
–50 –25  
0
25  
50  
125  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LTC485 • TPC10  
LTC485 • TPC11  
LTC485 • TPC12  
6
LTC485  
U U  
W
U
APPLICATIO S I FOR ATIO  
Basic Theory of Operation  
(D1) or the N + /P-substrate diode (D2) respectively will  
turn on and clamp the output to the supply. Thus, the  
output stage is no longer in a high impedance state and is  
not able to meet the RS485 common-mode range require-  
ment. In addition, the large amount of current flowing  
through either diode will induce the well known CMOS  
latchup condition, which could destroy the device.  
Previous RS485 transceivers have been designed using  
bipolar technology because the common-mode range of  
thedevicemustextendbeyondthesuppliesandthedevice  
must be immune to ESD damage and latchup. Unfortu-  
nately, the bipolar devices draw a large amount of supply  
current, which is unacceptable for the numerous applica-  
tions that require low power consumption. The LTC485 is  
the first CMOS RS485/RS422 transceiver which features  
ultra-lowpowerconsumptionwithoutsacrificingESDand  
latchup immunity.  
The LTC485 output stage of Figure 9 eliminates these  
problems by adding two Schottky diodes, SD3 and SD4.  
The Schottky diodes are fabricated by a proprietary modi-  
fication to the standard N-well CMOS process. When the  
output stage is operating normally, the Schottky diodes  
are forward biased and have a small voltage drop across  
them. When the output is in the high impedance state and  
is driven above VCC or below ground, the parasitic diodes  
D1 or D2 still turn on, but SD3 or SD4 will reverse bias and  
prevent current from flowing into the N-well or the sub-  
strate. Thus, the high impedance state is maintained even  
with the output voltage beyond the supplies. With no  
minority carrier current flowing into the N-well or sub-  
strate, latchup is virtually eliminated under power-up or  
power-down conditions.  
The LTC485 uses a proprietary driver output stage, which  
allows a common-mode range that extends beyond the  
power supplies while virtually eliminating latchup and  
providing excellent ESD protection. Figure 9 shows the  
LTC485 output stage while Figure 10 shows a conven-  
tional CMOS output stage.  
When the conventional CMOS output stage of Figure 10  
enters a high impedance state, both the P-channel (P1)  
and the N-channel (N1) are turned off. If the output is then  
driven above VCC or below ground, the P + /N-well diode  
V
CC  
V
CC  
SD3  
P1  
P1  
D1  
D1  
OUTPUT  
OUTPUT  
D2  
LOGIC  
LOGIC  
SD4  
N1  
N1  
D2  
LTC485 • F10  
LTC485 • F09  
Figure 10. Conventional CMOS Output Stage  
Figure 9. LTC485 Output Stage  
7
LTC485  
APPLICATIO S I FOR ATIO  
U U  
W
U
The LTC485 output stage will maintain a high impedance  
state until the breakdown of the N-channel or P-channel is  
reached when going positive or negative respectively. The  
output will be clamped to either VCC or ground by a Zener  
voltage plus a Schottky diode drop, but this voltage is way  
beyond the RS485 operating range. This clamp protects  
the MOS gates from ESD voltages well over 2000V.  
BecausetheESDinjectedcurrentintheN-wellorsubstrate  
consists of majority carriers, latchup is prevented by  
careful layout techniques.  
Propagation Delay  
Many digital encoding schemes are dependent upon the  
difference in the propagation delay times of the driver and  
the receiver. Using the test circuit of Figure 13, Figures 11  
and 12 show the typical LTC485 receiver propagation  
delay.  
The receiver delay times are:  
tPLH – tPHL = 9ns Typ, VCC = 5V  
The driver skew times are:  
Skew = 5ns Typ, VCC = 5V  
10ns Max, VCC = 5V, TA = 40°C to 85°C  
A
A
DRIVER  
OUTPUTS  
DRIVER  
OUTPUTS  
B
B
RECEIVER  
RO  
RECEIVER  
RO  
OUTPUT  
OUTPUT  
LTC485 • F11  
LTC485 • F12  
Figure 11. Receiver tPHL  
Figure 12. Receiver tPLH  
100pF  
BR  
RECEIVER  
OUT  
R
TTL IN  
t , t < 6ns  
D
R
100Ω  
r
f
LTC485 • F13  
100pF  
Figure 13. Receiver Propagation Delay Test Circuit  
8
LTC485  
U U  
W
U
APPLICATIO S I FOR ATIO  
LTC485 Line Length vs Data Rate  
Figures 17 and 18 show that the LTC485 is able to  
comfortably drive 4000 feet of wire at 110kHz.  
The maximum line length allowable for the RS422/RS485  
standard is 4000 feet.  
RO  
100Ω  
C
A
B
TTL  
OUT  
COMMON-MODE  
VOLTAGE (A + B)/2  
LTC485  
LTC485  
D
4000 FT 26AWG  
TWISTED PAIR  
NOISE  
TTL  
IN  
GENERATOR  
DI  
LTC485 • F17  
Figure 14. Line Length Test Circuit  
Figure 17. System Common-Mode Voltage at 110kHz  
Using the test circuit in Figure 14, Figures 15 and 16 show  
that with ~20VP-P common-mode noise injected on the  
line, The LTC485 is able to reconstruct the data stream at  
the end of 4000 feet of twisted pair wire.  
RO  
COMMON-MODE  
VOLTAGE (A – B)  
RO  
DI  
COMMON-MODE  
LTC485 • F18  
VOLTAGE (A + B)/2  
Figure 18. System Differential Voltage at 110kHz  
DI  
When specifying line length vs maximum data rate the  
curve in Figure 19 should be used:  
LTC485 • F15  
Figure 15. System Common-Mode Voltage at 19.2kHz  
10k  
1k  
RO  
DIFFERENTIAL  
VOLTAGE A – B  
100  
10  
DI  
10k  
100k  
1M 2.5M  
10M  
MAXIMUM DATA RATE  
LTC485 • F16  
LTC485 • F19  
Figure 19. Cable Length vs Maximum Data Rate  
Figure 16. System Differential Voltage at 19.2kHz  
9
LTC485  
TYPICAL APPLICATIO S  
U
Typical RS485 Network  
R
t
R
t
LTC485 • TA03  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead Ceramic DIP  
0.405  
(10.287)  
0.005  
MAX  
(0.127)  
MIN  
6
5
4
8
7
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
1
2
3
0.200  
(5.080)  
MAX  
0.290 – 0.320  
(7.366 – 8.128)  
CORNER LEADS OPTION  
(4 PLCS)  
0.015 – 0.060  
(0.381 – 1.524)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
0.045 – 0.068  
(1.143 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP OR TIN PLATE LEADS.  
(0.360 – 0.660)  
J8 0293  
10  
LTC485  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
8
7
6
3
5
4
0.250 ± 0.010  
(6.350 ± 0.254)  
1
2
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.197)  
(3.810 – 3.988)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0392  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC485  
U.S. Area Sales Offices  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
International Sales Offices  
FRANCE  
KOREA  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
UNITED KINGDOM  
GERMANY  
SINGAPORE  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Phone: 44-276-677676  
FAX: 44-276-64851  
Linear Techonolgy GMBH  
Untere Hauptstr. 9  
D-85386 Eching  
Germany  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Phone: 65-293-5322  
FAX: 65-292-0398  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
06/24/93  
LT/GP 0294 5K REV E • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1994  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY