LTC486CN#PBF [Linear]

LTC486 - Quad Low Power RS485 Driver; Package: PDIP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC486CN#PBF
型号: LTC486CN#PBF
厂家: Linear    Linear
描述:

LTC486 - Quad Low Power RS485 Driver; Package: PDIP; Pins: 16; Temperature Range: 0°C to 70°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总14页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC486  
Quad Low Power  
RS485 Driver  
FEATURES  
DESCRIPTION  
The LTC®486 is a low power differential bus/line driver  
designedformultipointdatatransmissionstandardRS485  
applications with extended common-mode range (12V to  
–7V). It also meets RS422 requirements.  
n
Very Low Power: I = 110µA Typ  
CC  
n
Designed for RS485 or RS422 Applications  
n
Single 5V Supply  
n
–7V to 12V Bus Common-Mode Range Permits 7V  
GND Difference Between Devices on the Bus  
The CMOS design offers significant power savings over  
its bipolar counterpart without sacrificing ruggedness  
against overload or ESD damage.  
n
Thermal Shutdown Protection  
n
Power-Up/Down Glitch-Free Driver Outputs Permit  
Live Insertion/Removal of Package  
n
The driver features three-state outputs, with the driver  
outputs maintaining high impedance over the entire  
common-moderange.Excessivepowerdissipationcaused  
by bus contention or faults is prevented by a thermal  
shutdown circuit which forces the driver outputs into a  
high impedance state.  
Driver Maintains High Impedance in Three-State or  
with the Power Off  
n
28ns Typical Driver Propagation Delays with 5ns  
Skew  
n
Pin Compatible with the SN75172, DS96172,  
µA96172, and DS96F172  
Both AC and DC specifications are guaranteed from 0°C  
to 70°C (Commercial), –40°C to 85°C (Industrial), over  
the 4.75V to 5.25V supply voltage range.  
APPLICATIONS  
n
Low Power RS485/RS422 Drivers  
L, LT, LTC, LTM, Linear Technology, µModule and the Linear logo are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
n
Level Translator  
TYPICAL APPLICATION  
RS485 Length Specification  
10k  
EN  
4
EN  
1k  
4
RECEIVER  
1/4 LTC488  
2
1
1
120Ω  
3
120Ω  
DI  
DRIVER  
12  
RO  
100  
10  
4000 FT BELDEN 9841  
1/4 LTC486  
EN  
486 TA01a  
10k  
100k  
1M 2.5M  
10M  
DATA RATE (bps)  
486 TA01b  
* APPLIES FOR 24 GAUGE, POLYETHYLENE  
DIELECTRIC TWISTED PAIR  
486fc  
1
LTC486  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Supply Voltage (V ) ................................................12V  
CC  
TOP VIEW  
Control Input Voltages .......................0.5V to V + 0.5V  
CC  
DI1  
DO1A  
DO1B  
EN  
1
2
3
4
5
6
7
8
16 V  
CC  
Driver Input Voltages ...................... –0.5V to V + 0.5V  
CC  
15 DI4  
Driver Output Voltages............................................ 14V  
Control Input Currents ......................................... 25mA  
Driver Input Currents ........................................... 25mA  
Operating Temperature Range  
14 DO4A  
13 DO4B  
DO2B  
DO2A  
DI2  
12  
EN  
11 DO3B  
10 DO3A  
LTC486C .................................................. 0°C to 70°C  
LTC486I................................................–40°C to 85°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
GND  
9
DI3  
N PACKAGE  
SW PACKAGE  
16-LEAD PLASTIC DIP 16-LEAD PLASTIC SO  
T
JMAX  
= 125°C, θ = 70°C/W (N)  
JA  
JMAX  
T
= 150°C, θ = 95°C/W (SW)  
JA  
Consult factory for Military grade parts.  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC486CN#PBF  
LTC486CSW#PBF  
LTC486IN#PBF  
TAPE AND REEL  
PART MARKING  
LTC486CN  
PACKAGE DESCRIPTION  
16-Lead Plastic DIP  
16-Lead Plastic SO  
16-Lead Plastic DIP  
16-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
LTC486CN#TRPBF  
LTC486CSW#TRPBF  
LTC486IN#TRPBF  
LTC486ISW#TRPBF  
LTC486CSW  
LTC486IN  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
LTC486ISW#PBF  
LTC486ISW  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
486fc  
2
LTC486  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V 5%, 0°C ≤ Temperature ≤ 70°C (Commercial), –40°C ≤ Temperature ≤ 85°C (Industrial) (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
MAX  
UNITS  
V
V
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (With Load)  
I
5
V
V
V
V
OD1  
OD2  
OUT  
R = 50Ω; (RS422)  
2
R = 27Ω; (RS485) (Figure 1)  
1.5  
5
V
V
Change in Magnitude of Driver Differential  
Output Voltage for Complementary Output States  
R = 27Ω or R = 50Ω  
(Figure 1)  
0.2  
OD  
OC  
Driver Common-Mode Output Voltage  
3
V
V
|V  
|
OC  
Change in Magnitude of Driver Common-Mode  
Output Voltage for Complementary Output States  
0.2  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
DI, EN, EN  
2.0  
V
V
IH  
0.8  
2
IL  
IN1  
CC  
I
I
µA  
Supply Current  
No Load  
Output Enabled  
Output Disabled  
110  
110  
200  
200  
µA  
µA  
I
I
I
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
= High  
= Low  
V
OUT  
V
OUT  
V
OUT  
= –7V  
= 12V  
100  
100  
10  
250  
250  
200  
mA  
mA  
µA  
OSD1  
OSD2  
OZ  
OUT  
OUT  
High Impedance State Output Current  
= –7V to 12V  
SWITCHING CHARACTERISTICS  
VCC = 5V 5%, 0°C ≤ Temperature ≤ 70°C (Commercial), –40°C ≤ Temperature ≤ 85°C (Industrial) (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
= 54Ω, C = C = 100pF  
MIN  
10  
TYP  
MAX  
50  
50  
15  
25  
70  
70  
70  
70  
UNITS  
ns  
t
t
t
Driver Input to Output  
R
30  
30  
5
PLH  
DIFF  
L1  
L2  
(Figures 2, 4)  
Driver Input to Output  
10  
ns  
PHL  
Driver Output to Output  
Driver Rise or Fall Time  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
ns  
SKEW  
t , t  
r
5
15  
35  
35  
35  
35  
ns  
f
t
t
t
t
C = 100pF (Figures 3, 5) S2 Closed  
L
ns  
ZH  
ZL  
LZ  
HZ  
C = 100pF (Figures 3, 5) S1 Closed  
L
ns  
C = 15pF (Figures 3, 5) S1 Closed  
L
ns  
C = 15pF (Figures 3, 5) S2 Closed  
L
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 3: All typicals are given for V = 5V and temperature = 25°C.  
CC  
486fc  
3
LTC486  
SWITCHING TIME WAVEFORMS  
3V  
f = 1MHz : t 10ns : t 10ns  
DI  
<
<
f
1.5V  
1.5V  
r
0V  
B
t
t
PHL  
PLH  
V
O
A
t
t
SKEW  
1/2 V  
1/2 V  
SKEW  
O
O
V
O
90%  
20%  
80%  
V
= V(A) – V(B)  
DIFF  
–V  
10%  
O
t
t
f
r
486 F01  
Figure 1. Driver Propagation Delays  
3V  
0V  
5V  
f = 1MHz : t 10ns : t 10ns  
f
EN  
r
1.5V  
1.5V  
LZ  
t
t
ZL  
A, B  
V
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
2.3V  
2.3V  
0.5V  
OL  
V
OH  
0.5V  
A, B  
0V  
t
t
HZ  
ZH  
486 F02  
Figure 2. Driver Enable and Disable Times  
486fc  
4
LTC486  
TYPICAL PERFORMANCE CHARACTERISTICS  
Driver Output High Voltage  
vs Output Current TA = 25°C  
Driver Differential Output Voltage  
vs Output Current TA = 25°C  
Driver Output Low Voltage  
vs Output Current TA = 25°C  
64  
48  
–96  
–72  
80  
60  
32  
16  
0
–48  
–24  
0
40  
20  
0
0
0
1
2
3
4
1
2
3
4
0
1
2
3
4
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
486 G02  
486 G01  
486 G03  
TTL Input Threshold  
vs Temperature  
Driver Skew vs Temperature  
1.63  
1.61  
1.59  
1.57  
1.55  
5
4
3
2
1
–50  
0
50  
100  
–50  
0
50  
100  
TEMPERATURE (°C )  
TEMPERATURE (°C )  
486 G05  
486 G04  
Driver Differential Output Voltage  
vs Temperature RO = 54Ω  
Supply Current vs Temperature  
130  
120  
110  
100  
90  
2.3  
2.1  
1.9  
1.7  
1.5  
–50  
0
50  
100  
–50  
0
50  
100  
TEMPERATURE (°C )  
TEMPERATURE (°C )  
486 G06  
486 G07  
486fc  
5
LTC486  
FUNCTION TABLE  
INPUT  
ENABLES  
OUTPUTS  
OUTA  
DI  
EN  
EN  
OUTB  
H
L
H
H
X
X
L
X
X
L
H
L
H
L
Z
L
H
L
H
Z
H: High Level  
H
L
L: Low Level  
L
X: Irrelevant  
Z: High Impedance (Off)  
X
H
PIN FUNCTIONS  
DI1 (Pin 1): Driver 1 Input. If Driver 1 is enabled, then a  
low on DI1 forces the driver outputs DO1A low and DO1B  
high. A high on DI1 with the driver outputs enabled will  
force DO1A high and DO1B low.  
GND (Pin 8): Ground Connection.  
DI3 (Pin 9): Driver 3 Input. Refer to DI1.  
DO3A (Pin 10): Driver 3 Output.  
DO3B (Pin 11): Driver 3 Output.  
DO1A (Pin 2): Driver 1 Output.  
DO1B (Pin 3): Driver 1 Output.  
EN (Pin 12): Driver Outputs Disabled. See Function Table  
for details.  
EN (Pin 4): Driver Outputs Enabled. See Function Table  
fordetails.  
DO4B (Pin 13): Driver 4 Output.  
DO4A (Pin 14): Driver 4 Output.  
DI4 (Pin 15): Driver 4 Input. Refer to DI1.  
DO2B (Pin 5): Driver 2 Output.  
DO2A (Pin 6): Driver 2 Output.  
DI2 (Pin 7): Driver 2 Input. Refer to DI1  
V
(Pin 16): Positive Supply; 4.75V < V < 5.25V  
CC  
CC  
486fc  
6
LTC486  
TEST CIRCUITS  
A
B
R
R
V
OD  
V
OC  
486 F03  
Figure 3. Driver DC Test Load  
EN  
CI1  
A
DI  
DRIVER  
R
DIFF  
B
CI2  
486 F04  
EN  
Figure 4. Driver Timing Test Circuit  
S1  
V
CC  
500Ω  
OUTPUT  
UNDER TEST  
C
L
S2  
486 F05  
Figure 5. Driver Timing Test Load #2  
486fc  
7
LTC486  
APPLICATIONS INFORMATION  
EN  
EN  
SHIELD  
SHIELD  
4
4
3
2
3
1
120Ω  
120Ω  
DX  
RX  
DX  
RX  
2
1
12  
EN  
1/4 LTC486  
12  
EN  
EN  
EN  
1/4 LTC488  
4
4
3
1
3
1
DX  
DX  
RX  
RX  
2
2
12  
EN  
1/4 LTC486  
12  
EN  
1/4 LTC488  
486 F06  
Figure 6. Typical Connection  
Typical Application  
Cable and Data Rate  
A typical connection of the LTC486 is shown in Figure 6.  
A twisted pair of wires connect up to 32 drivers and  
receivers for half duplex data transmission. There are no  
restrictionsonwherethechipsareconnectedtothewires,  
and it isn’t necessary to have the chips connected at the  
ends. However, the wires must be terminated only at the  
endswitharesistorequaltotheircharacteristicimpedance,  
typically 120Ω. The optional shields around the twisted  
pair help reduce unwanted noise, and are connected to  
GND at one end.  
The transmission line of choice for RS485 applications is  
a twisted pair. There are coaxial cables (twinaxial) made  
for this purpose that contain straight pairs, but these are  
less flexible, more bulky, and more costly than twisted  
pairs. Many cable manufacturers offer a broad range of  
120Ω cables designed for RS485 applications.  
Lossesinatransmissionlineareacomplexcombinationof  
DCconductorloss,AClosses(skineffect),leakage,andAC  
losses in the dielectric. In good polyethylene cables such  
as the Belden 9841, the conductor losses and dielectric  
losses are of the same order of magnitude, with relatively  
low overall loss (Figure 7).  
Thermal Shutdown  
TheLTC486hasathermalshutdownfeaturewhichprotects  
the part from excessive power dissipation. If the outputs  
of the driver are accidently shorted to a power supply or  
low impedance source, up to 250mA can flow through  
the part. The thermal shutdown circuit disables the driver  
outputs when the internal temperature reaches 150°C and  
turns them back on when the temperature cools to 130°C.  
If the outputs of two or more LTC486 drivers are shorted  
directly, the driver outputs cannot supply enough current  
to activate the thermal shutdown. Thus, the thermal shut-  
down circuit will not prevent contention faults when two  
drivers are active on the bus at the same time.  
10  
1
0.1  
0.1  
1
10  
100  
FREQUENCY (MHz)  
486 F07  
Figure 7. Attenuation vs Frequency for Belden 9841  
486fc  
8
LTC486  
APPLICATIONS INFORMATION  
10k  
When using low loss cables, Figure 8 can be used as a  
guidelineforchoosingthemaximumlinelengthforagiven  
datarate. WithlowerqualityPVCcables, thedielectricloss  
factor can be 1000 times worse. PVC twisted pairs have  
terrible losses at high data rates (>100kbs) and greatly  
reduce the maximum cable length. At low data rates how-  
ever, they are acceptable and much more economical.  
1k  
100  
10  
Cable Termination  
The proper termination of the cable is very important. If  
the cable is not terminated with its characteristic imped-  
ance, distorted waveforms will result. In severe cases,  
distorted (false) data and nulls will occur. A quick look  
at the output of the driver will tell how well the cable is  
terminated. It is best to look at a driver connected to the  
end of the cable, since this eliminates the possibility of  
getting reflections from two directions. Simply look at the  
driver output while transmitting square wave data. If the  
cable is terminated properly, the waveform will look like  
a square wave (Figure 9).  
10k  
100k  
1M 2.5M  
10M  
DATA RATE (bps)  
486 F08  
Figure 8. Cable Length vs Data Rate  
PROBE HERE  
Rt  
DX  
DRIVER  
RECEIVER  
RX  
If the cable is loaded excessively (e.g., 47Ω), the signal  
initially sees the surge impedance of the cable and jumps  
to an initial amplitude. The signal travels down the cable  
and is reflected back out of phase because of the mister-  
mination. When the reflected signal returns to the driver,  
the amplitude will be lowered. The width of the pedestal  
is equal to twice the electrical length of the cable (about  
1.5ns/ft). If the cable is lightly loaded (e.g., 470Ω), the  
signal reflects in phase and increases the amplitude at the  
driver output. An input frequency of 30kHz is adequate for  
tests out to 4000 ft. of cable.  
Rt = 120Ω  
Rt = 47Ω  
Rt = 470Ω  
486 F09  
Figure 9. Termination Effects  
AC Cable Termination  
Cable termination resistors are necessary to prevent un-  
wanted reflections, but they consume power. The typical  
differential output voltage of the driver is 2V when the  
cable is terminated with two 120Ω resistors. When no  
data is being sent 33mA of DC current flows in the cable.  
This DC current is about 220 times greater than the supply  
current of the LTC486. One way to eliminate the unwanted  
current is by AC coupling the termination resistors as  
shown in Figure 10.  
120Ω  
RECEIVER  
RX  
C
C = LINE LENGTH (FT) × 16.3pF  
486 F10  
Figure 10. AC Coupled Termination  
486fc  
9
LTC486  
APPLICATIONS INFORMATION  
Thecouplingcapacitorallowshighfrequencyenergytoow  
tothetermination, butblocksDCandlowfrequencies. The  
dividing line between high and low frequency depends on  
the length of the cable. The coupling capacitor must pass  
frequencies above the point where the line represents an  
electrical one-tenth wavelength. The value of the coupling  
capacitorshouldthereforebesetat16.3pFperfootofcable  
length for 120Ω cables. With the coupling capacitors in  
place, power is consumed only on the signal edges, not  
when the driver output is idling at a 1 or 0 state. A 100nF  
capacitor is adequate for lines up to 4000 feet in length.  
Be aware that the power savings start to decrease once  
the data rate surpasses 1/(120Ω × C).  
Receiver Open-Circuit Fail-Safe  
Some data encoding schemes require that the output of  
the receiver maintains a known state (usually a logic 1)  
when the data is finished transmitting and all drivers on  
thelineareforcedintothree-state.AllLTCRS485receivers  
have a fail-safe feature which guarantees the output to be  
in a logic 1 state when the receiver inputs are left floating  
(open-circuit). However, whenthecableisterminatedwith  
120Ω, the differential inputs to the receiver are shorted  
together, not left floating.  
If the receiver output must be forced to a known state, the  
circuits of Figure 11 can be used.  
The termination resistors are used to generate a DC bias  
which forces the receiver output to a known state, in this  
case a logic 0. The first method consumes about 208mW  
andthesecondabout8mW.Thelowestpowersolutionisto  
use an AC termination with a pull-up resistor. Simply swap  
the receiver inputs for data protocols ending in logic 1.  
5V  
110Ω  
110Ω  
130Ω  
130Ω  
RECEIVER  
RECEIVER  
RX  
RX  
5V  
1.5k  
Fault Protection  
140Ω  
All of LTC’s RS485 products are protected against ESD  
transients up to 2kV using the human body model  
(100pF, 1.5kΩ). However, some applications need greater  
protection. The best protection method is to connect a  
bidirectional TransZorb from each line side pin to ground  
(Figure 12).  
1.5k  
C
100k  
5V  
120Ω  
RECEIVER  
RX  
A TransZorb is a silicon transient voltage suppressor that  
has exceptional surge handling capabilities, fast response  
time, and low series resistance. They are available from  
General Semiconductor Industries and come in a variety  
of breakdown voltages and prices. Be sure to pick a break-  
down voltage higher than the common-mode voltage  
required for your application (typically 12V). Also, don’t  
forget to check how much the added parasitic capacitance  
will load down the bus.  
486 F11  
Figure 11. Forcing “0” When All Drivers Are Off  
Y
120Ω  
DRIVER  
Z
486 F12  
Figure 12. ESD Protection  
486fc  
10  
LTC486  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
16-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-03-1510 Rev Iꢂ  
.770ꢀ  
(19.553ꢂ  
MAX  
14  
12  
10  
9
3
15  
1ꢁ  
11  
16  
.255 .015ꢀ  
(6.477 0.ꢁ31ꢂ  
2
1
4
6
5
7
.ꢁ00 – .ꢁ25  
(7.620 – 3.255ꢂ  
.1ꢁ0 .005  
(ꢁ.ꢁ02 0.127ꢂ  
.045 – .065  
(1.14ꢁ – 1.651ꢂ  
.020  
(0.503ꢂ  
MIN  
.065  
(1.651ꢂ  
TYP  
.003 – .015  
(0.20ꢁ – 0.ꢁ31ꢂ  
+.0ꢁ5  
–.015  
.ꢁ25  
.120  
(ꢁ.043ꢂ  
MIN  
.013 .00ꢁ  
(0.457 0.076ꢂ  
.100  
(2.54ꢂ  
BSC  
+0.339  
3.255  
(
)
–0.ꢁ31  
N16 REV I 0711  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
ꢀTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mmꢂ  
486fc  
11  
LTC486  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
486fc  
12  
LTC486  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
11/12 Order Information: corrected Package Descriptions  
Added Related Parts section  
2
14  
486fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
13  
LTC486  
TYPICAL APPLICATION  
RS232 to RS485 Level Translator with Hysteresis  
R = 220k  
Y
10k  
120Ω  
RS232 IN  
DRIVER  
5.6k  
|VY - VZ|  
19k  
R
486 TA14  
Z
1/4 LTC486  
———— ——  
HYSTERESIS = 10k ×  
R
RELATED PARTS  
PART NUMBER  
RS485 Quad Drivers  
LTC487  
DESCRIPTION  
COMMENTS  
Low Power RS485 Quad Drivers  
10Mbps, 4kV ESD, Two DE Pins, SO(W)-16 or DIP-16 Package  
100Mbps, 4kV ESD, One-Half DE Pins, SO-16 Package  
LTC1688/LTC1689 High Speed RS485 Quad Drivers  
RS485 Quad Receivers  
LTC1518/LTC1519 High Speed RS485 Quad Receivers  
52Mbps, 4kV ESD, SO-16 Package  
LTC1520  
Precision RS485 Quad Receivers  
Low Power RS485 Quad Receivers  
50Mbps, 18ns Propagation Delay, SO-16 Package  
10Mbps, 10kV ESD, One-Half DE Pins, SO(W)-16 or DIP-16 Package  
LTC488/LTC489  
Fault Protected 3V to 5.5V RS485 Transceivers  
LTC2862  
LTC2863  
LTC2864  
LTC2865  
60V Fault Protected RS485 Transceiver Half Duplex, 20Mbps or 250kbps, 25kV Common Mode Range, 15kV, Enable Pins,  
SO-8 or 3mm × 3mm DFN-8 Package  
60V Fault Protected RS485 Transceiver Full Duplex, 20Mbps or 250kbps, 25kV Common Mode Range, 15kV,  
SO-8 or 3mm × 3mm DFN-8 Package  
60V Fault Protected RS485 Transceiver Full Duplex, 20Mbps or 250kbps, 25kV Common Mode Range, 15kV, Enable Pins,  
SO-14 or 3mm × 3mm DFN-10 Package  
60V Fault Protected RS485 Transceiver Full Duplex, Selectable 20Mbps or 250kbps, 25kV Common Mode Range, 15kV,  
Enable Pins, Logic Supply, MSOP-12 or 4mm × 3mm DFN-12  
Isolated RS485 Transceivers  
LTM2881  
Complete Isolated RS485 µModule®  
Transceiver + Power  
2500V  
Isolation, 3.3V or 5V Supply, No External Components, 1W DC/DC Converter,  
RMS  
Switchable Termination, 20Mbps, 30kV/µs Common Mode, 15kV ESD, 15mm × 11.25mm  
LGA or BGA Package  
LTC1535  
Isolated RS485 Transceiver  
5V Supply, 250kbps, 8kV ESD, SO(W)-28  
486fc  
LT 1112 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY