LTC486CN [Linear]

Quad Low Power RS485 Driver; 四通道,低功耗RS485驱动器
LTC486CN
型号: LTC486CN
厂家: Linear    Linear
描述:

Quad Low Power RS485 Driver
四通道,低功耗RS485驱动器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总8页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC486  
Quad Low Power  
RS485 Driver  
U
EATURE  
Very Low Power: ICC = 110µA Typ  
Designed for RS485 or RS422 Applications  
Single 5V Supply  
7V to 12V Bus Common-Mode Range Permits  
±7V GND Difference Between Devices on the Bus  
Thermal Shutdown Protection  
Power-Up/Down Glitch-Free Driver Outputs Permit  
Live Insertion/Removal of Package  
Driver Maintains High Impedance in Three-State or  
with the Power Off  
S
F
DESCRIPTIO  
The LTC486 is a low power differential bus/line driver  
designedformultipointdatatransmissionstandardRS485  
applications with extended common-mode range (12V to  
–7V). It also meets RS422 requirements.  
TheCMOSdesignofferssignificantpowersavingsoverits  
bipolarcounterpartwithoutsacrificingruggednessagainst  
overload or ESD damage.  
The driver features three-state outputs, with the driver  
outputs maintaining high impedance over the entire  
common-moderange.Excessivepowerdissipationcaused  
by bus contention or faults is prevented by a thermal  
shutdown circuit which forces the driver outputs into a  
high impedance state.  
28ns Typical Driver Propagation Delays  
with 5ns Skew  
Pin Compatible with the SN75172, DS96172,  
µA96172, and DS96F172  
Both AC and DC specifications are guaranteed from 0°C to  
70°C (Commercial), 40°C to 85°C (Industrial), over the  
4.75V to 5.25V supply voltage range.  
O U  
PPLICATI  
A
S
Low Power RS485/RS422 Drivers  
Level Translator  
U
O
TYPICAL APPLICATI  
RS485 Cable Length Specification*  
10k  
EN  
4
EN  
1k  
4
RECEIVER  
1/4 LTC488  
2
1
1
120Ω  
3
120Ω  
DI  
DRIVER  
12  
RO  
100  
10  
4000 FT BELDEN 9841  
1/4 LTC486  
EN  
LTC486 • TA01  
10k  
100k  
1M 2.5M  
10M  
DATA RATE (bps)  
LTC486 • TA09  
* APPLIES FOR 24 GAUGE, POLYETHYLENE  
DIELECTRIC TWISTED PAIR  
1
LTC486  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
Supply Voltage (VCC) ............................................... 12V  
Control Input Voltages .................... 0.5V to VCC + 0.5V  
Driver Input Voltages ...................... 0.5V to VCC + 0.5V  
Driver Output Voltages ......................................... ±14V  
Control Input Currents ....................................... ±25mA  
Driver Input Currents ......................................... ±25mA  
Operating Temperature Range  
LTC486C................................................ 0°C to 70°C  
LTC486I ............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
DI1  
DO1A  
DO1B  
EN  
1
2
3
4
5
6
7
8
16 V  
CC  
NUMBER  
15 DI4  
14 DO4A  
13 DO4B  
LTC486CN  
LTC486CS  
LTC486IN  
LTC486IS  
DO2B  
DO2A  
DI2  
12  
EN  
11 DO3B  
10 DO3A  
GND  
9
DI3  
N PACKAGE  
S PACKAGE  
16-LEAD PLASTIC DIP 16-LEAD PLASTIC SOL  
TJMAX = 125°C, θJA = 70°C/W (N)  
JMAX = 150°C, θJA = 95°C/W (S)  
T
Consult factory for Military grade parts  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V ±5%, 0°C Temperature 70°C (Commercial), 40°C Temperature 85°C (Industrial) (Note 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (With Load)  
I = 0  
5
V
V
V
V
OD1  
OD2  
O
R = 50; (RS422)  
2
R = 27; (RS485) (Figure 1)  
1.5  
5
V
V
Change in Magnitude of Driver Differential  
Output Voltage for Complementary Output States  
R = 27or R = 50Ω  
(Figure 1)  
0.2  
OD  
Driver Common-Mode Output Voltage  
3
V
V
OC  
V  
Change in Magnitude of Driver Common-Mode  
Output Voltage for Complementary Output States  
0.2  
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
DI, EN, EN  
2.0  
V
V
IH  
0.8  
±2  
IL  
I
I
µA  
µA  
µA  
mA  
mA  
µA  
IN1  
CC  
Supply Current  
No Load  
Output Enabled  
Output Disabled  
110  
110  
100  
100  
±10  
200  
200  
250  
250  
±200  
I
I
I
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
= High  
= Low  
V = 7V  
O
OSD1  
OSD2  
OZ  
OUT  
V = 12V  
O
OUT  
High Impedance State Output Current  
V = 7V to 12V  
O
U
SWI I  
TCH G CHARACTERISTICS  
VCC = 5V ±5%, 0°C Temperature 70°C (Commercial), 40°C Temperature 85°C (Industrial) (Note 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
R = 54Ω, C = C = 100pF  
DIFF  
(Figures 2, 4)  
MIN  
10  
TYP  
30  
30  
5
MAX  
50  
UNITS  
ns  
t
t
t
Driver Input to Output  
Driver Input to Output  
Driver Output to Output  
Driver Rise or Fall Time  
Driver Enable to Output High  
PLH  
L1  
L2  
10  
50  
ns  
PHL  
15  
ns  
SKEW  
t t  
r, f  
5
15  
35  
25  
ns  
t
C = 100pF (Figures 3, 5) S2 Closed  
L
70  
ns  
ZH  
2
LTC486  
U
SWI I  
TCH G CHARACTERISTICS  
VCC = 5V ±5%, 0°C Temperature 70°C (Commercial), 40°C Temperature 85°C (Industrial) (Note 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
C = 100pF (Figures 3, 5) S1 Closed  
MIN  
TYP  
35  
MAX  
UNITS  
ns  
t
t
t
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
70  
70  
70  
ZL  
LZ  
HZ  
L
C = 15pF (Figures 3, 5) S1 Closed  
L
35  
ns  
C = 15pF (Figures 3, 5) S2 Closed  
L
35  
ns  
Note 1: Absolute maximum ratings are those beyond which the safety of  
the device cannot be guaranteed.  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 2: All currents into device pins are positive; all currents out of device  
Note 3: All typicals are given for V = 5V and temperature = 25°C.  
CC  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz : t 10ns : t 10ns  
DI  
<
<
f
1.5V  
1.5V  
r
0V  
B
t
t
PHL  
PLH  
V
O
A
t
t
SKEW  
1/2 V  
1/2 V  
SKEW  
O
O
V
O
90%  
20%  
80%  
V
= V(A) – V(B)  
DIFF  
–V  
10%  
O
t
t
f
r
Figure 4. Driver Propagation Delays  
LTC486 • TA05  
3V  
0V  
5V  
f = 1MHz : t 10ns : t 10ns  
f
EN  
r
1.5V  
1.5V  
LZ  
t
t
ZL  
A, B  
V
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
2.3V  
2.3V  
0.5V  
OL  
V
OH  
0.5V  
A, B  
0V  
t
t
HZ  
ZH  
LTC486 • TA06  
Figure 5. Driver Enable and Disable Times  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Driver Output High Voltage  
vs Output Current TA = 25°C  
Driver Differential Output Voltage  
vs Output Current TA = 25°C  
Driver Output Low Voltage  
vs Output Current TA = 25°C  
–96  
–72  
64  
48  
80  
60  
– 4 8  
–24  
0
32  
16  
0
40  
20  
0
0
0
1
2
3
4
1
2
3
4
0
1
2
3
4
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
LTC486• TPC02  
LTC486 • TPC01  
OUTPUT VOLTAGE (V)  
LTC486 • TPC03  
3
LTC486  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
TTL Input Threshold vs Temperature  
Driver Skew vs Temperature  
1.63  
5
4
3
2
1
1.61  
1.59  
1.57  
1.55  
–50  
0
50  
100  
–50  
0
50  
100  
TEMPERATURE (°C )  
LTC486 • TPC04  
TEMPERATURE (°C )  
LTC486 • TPC05  
Driver Differential Output Voltage  
vs Temperature RO = 54Ω  
Supply Current vs Temperature  
130  
120  
110  
100  
90  
2.3  
2.1  
1.9  
1.7  
1.5  
–50  
0
50  
100  
–50  
0
50  
100  
TEMPERATURE (°C )  
LTC486 • TPC06  
TEMPERATURE (°C )  
LTC486 • TPC07  
O
U
U
FU CTI  
TABLE  
INPUT  
ENABLES  
OUTPUTS  
OUTB  
DI  
EN  
EN  
OUTA  
H
L
H
L
H
H
X
X
L
X
X
L
L
H
H
L
H
L
Z
L
H
L
H
Z
H: High Level  
L: Low Level  
X: Irrelevant  
X
Z: High Impedance (Off)  
4
LTC486  
U
O
U
U
PI  
FU CTI  
S
GND (Pin 8): Ground Connection.  
DI3 (Pin 9): Driver 3 Input. Refer to DI1.  
DO3A (Pin 10): Driver 3 Output.  
DO3B (Pin 11): Driver 3 Output.  
DI1(Pin1):Driver1Input.IfDriver1isenabled,thenalow  
onDI1forcesthedriveroutputsDO1AlowandDO1Bhigh.  
A high on DI1 with the driver outputs enabled will force  
DO1A high and DO1B low.  
DO1A (Pin 2): Driver 1 Output.  
DO1B (Pin 3): Driver 1 Output.  
EN (Pin 12): Driver Outputs Disabled. See Function Table  
for details.  
EN(Pin4): DriverOutputsEnabled. SeeFunctionTablefor  
details.  
DO4B (Pin 13): Driver 4 Output.  
DO4A (Pin 14): Driver 4 Output.  
DI4 (Pin 15): Driver 4 Input. Refer to DI1.  
DO2B (Pin 5): Driver 2 Output.  
DO2A (Pin 6): Driver 2 Output.  
V
CC (Pin 16): Positive Supply; 4.75V < VCC < 5.25V .  
DI2 (Pin 7): Driver 2 Input. Refer to DI1.  
TEST CIRCUITS  
EN  
S1  
A
V
CC  
CI1  
500Ω  
R
OUTPUT  
UNDER TEST  
A
V
OD  
DI  
DRIVER  
R
DIFF  
C
L
R
S2  
V
OC  
B
B
CI2  
LTC486 • TA04  
LTC486 • TA03  
EN  
LTC486 • TA02  
Figure 1. Driver DC Test Load  
Figure 2. Driver Timing Test Circuit  
Figure 3. Driver Timing Test Load #2  
W
U
O U  
I FOR ATIO  
S
PPLICATI  
A
Typical Application  
supply or low impedance source, up to 250mA can flow  
through the part. The thermal shutdown circuit disables  
the driver outputs when the internal temperature reaches  
150°Candturnsthembackonwhenthetemperaturecools  
to 130°C. If the outputs of two or more LTC486 drivers are  
shorted directly, the driver outputs can not supply enough  
current to activate the thermal shutdown. Thus, the ther-  
mal shutdown circuit will not prevent contention faults  
when two drivers are active on the bus at the same time.  
A typical connection of the LTC486 is shown in Figure 6.  
A twisted pair of wires connect up to 32 drivers and  
receivers for half duplex data transmission. There are no  
restrictions on where the chips are connected to the  
wires, and it isn’t necessary to have the chips connected  
at the ends. However, the wires must be terminated only  
at the ends with a resistor equal to their characteristic  
impedance, typically 120. The optional shields around  
the twisted pair help reduce unwanted noise, and are  
connected to GND at one end.  
Cable and Data Rate  
The transmission line of choice for RS485 applications is  
atwistedpair.Therearecoaxialcables(twinaxial)madefor  
this purpose that contain straight pairs, but these are less  
flexible, more bulky, and more costly than twisted pairs.  
Many cable manufacturers offer a broad range of 120Ω  
cables designed for RS485 applications.  
Thermal Shutdown  
The LTC486 has a thermal shutdown feature which pro-  
tects the part from excessive power dissipation. If the  
outputs of the driver are accidently shorted to a power  
5
LTC486  
W
I FOR ATIO  
S
EN  
U
O U  
PPLICATI  
A
EN  
SHIELD  
SHIELD  
4
3
4
2
3
1
120Ω  
120Ω  
DX  
RX  
DX  
RX  
2
1
12  
12  
EN  
EN  
EN  
1/4 LTC486  
EN  
1/4 LTC488  
4
4
3
1
3
1
DX  
DX  
RX  
RX  
2
2
12  
EN  
1/4 LTC486  
12  
EN  
1/4 LTC488  
LTC486 • TA07  
Figure 6. Typical Connection  
10k  
Losses in a transmission line are a complex combination  
of DC conductor loss, AC losses (skin effect), leakage, and  
AC losses in the dielectric. In good polyethylene cables  
such as the Belden 9841, the conductor losses and dielec-  
tric losses are of the same order of magnitude, with  
relatively low overall loss (Figure 7).  
1k  
100  
10  
10  
10k  
100k  
1M 2.5M  
10M  
DATA RATE (bps)  
1
LTC486 • TA09  
Figure 8. Cable Length vs Data Rate  
distorted waveforms will result. In severe cases, distorted  
(false) data and nulls will occur. A quick look at the output  
of the driver will tell how well the cable is terminated. It is  
best to look at a driver connected to the end of the cable,  
since this eliminates the possibility of getting reflections  
from two directions. Simply look at the driver output while  
transmitting square wave data. If the cable is terminated  
properly, the waveform will look like a square wave  
(Figure 9).  
0.1  
0.1  
1
10  
100  
FREQUENCY (MHz)  
LTC486 • TA08  
Figure 7. Attenuation vs Frequency for Belden 9841  
When using low loss cables, Figure 8 can be used as a  
guidelineforchoosingthemaximumlinelengthforagiven  
data rate. With lower quality PVC cables, the dielectric loss  
factor can be 1000 times worse. PVC twisted pairs have  
terrible losses at high data rates (>100kbs) and greatly  
reduce the maximum cable length. At low data rates  
however, they are acceptable and much more economical.  
If the cable is loaded excessively (e.g., 47), the signal  
initially sees the surge impedance of the cable and jumps  
to an initial amplitude. The signal travels down the cable  
and is reflected back out of phase because of the  
mistermination. When the reflected signal returns to the  
driver, the amplitude will be lowered. The width of the  
pedestal is equal to twice the electrical length of the cable  
(about1.5ns/ft). If the cable is lightly loaded (e.g., 470),  
Cable Termination  
Theproperterminationofthecableisveryimportant.Ifthe  
cable is not terminated with its characteristic impedance,  
6
LTC486  
W
U
O U  
S
I FOR ATIO  
PPLICATI  
A
PROBE HERE  
represents an electrical one-tenth wavelength. The value  
of the coupling capacitor should therefore be set at 16.3pF  
perfootofcablelengthfor120cables. Withthecoupling  
capacitors in place, power is consumed only on the signal  
edges, not when the driver output is idling at a 1 or 0 state.  
A 100nF capacitor is adequate for lines up to 4000 feet in  
length. Be aware that the power savings start to decrease  
once the data rate surpasses 1/(120Ω × C).  
Rt  
DX  
DRIVER  
RECEIVER  
RX  
Rt = 120Ω  
Rt = 47Ω  
Receiver Open-Circuit Fail-Safe  
Some data encoding schemes require that the output of  
the receiver maintains a known state (usually a logic 1)  
when the data is finished transmitting and all drivers on  
the line are forced into three-state. All LTC RS485  
receivers have a fail-safe feature which guarantees the  
output to be in a logic 1 state when the receiver inputs  
areleftfloating(open-circuit). However, whenthecable  
is terminated with 120, the differential inputs to the  
receiver are shorted together, not left floating.  
Rt = 470Ω  
LTC486 • TA10  
Figure 9. Termination Effects  
the signal reflects in phase and increases the amplitude at  
the driver output. An input frequency of 30kHz is adequate  
for tests out to 4000 ft. of cable.  
AC Cable Termination  
If the receiver output must be forced to a known state,  
the circuits of Figure 11 can be used.  
Cable termination resistors are necessary to prevent un-  
wanted reflections, but they consume power. The typical  
differentialoutputvoltageofthedriveris2Vwhenthecable  
is terminated with two 120resistors. When no data is  
being sent 33mA of DC current flows in the cable . This DC  
current is about 220 times greater than the supply current  
of the LTC486. One way to eliminate the unwanted current  
is by AC coupling the termination resistors as shown in  
Figure 10.  
The termination resistors are used to generate a DC bias  
which forces the receiver output to a known state, in this  
case a logic 0. The first method consumes about  
208mW and the second about 8mW. The lowest power  
5V  
110Ω  
110Ω  
130Ω  
130Ω  
RECEIVER  
RECEIVER  
RX  
RX  
5V  
120Ω  
1.5k  
RECEIVER  
RX  
C
140Ω  
1.5k  
C = LINE LENGTH (FT) × 16.3pF  
LTC486 • TA11  
C
100k  
Figure 10. AC Coupled Termination  
5V  
120Ω  
The coupling capacitor allows high frequency energy to  
flow to the termination, but blocks DC and low frequen-  
cies. The dividing line between high and low frequency  
depends on the length of the cable. The coupling capacitor  
must pass frequencies above the point where the line  
RECEIVER  
RX  
LTC486 • TA12  
Figure 11. Forcing “0” When All Dirvers Are Off  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC486  
PPLICATI  
solution is to use an AC termination with a pull-up resistor.  
Simply swap the receiver inputs for data protocols ending  
in logic 1.  
W
U
O U  
I FOR ATIO  
S
A
breakdown voltages and prices. Be sure to pick a break-  
down voltage higher than the common-mode voltage  
required for your application (typically 12V). Also, don’t  
forget to check how much the added parasitic capacitance  
will load down the bus.  
Fault Protection  
All of LTC’s RS485 products are protected against ESD  
transients up to ±2kV using the human body model  
(100pF,1.5k).However,someapplicationsneedgreater  
protection. The best protection method is to connect a  
bidirectionalTransZorb® fromeachlinesidepintoground  
(Figure 12).  
A TransZorb® is a silicon transient voltage suppressor that  
has exceptional surge handling capabilities, fast response  
time, and low series resistance. They are available from  
GeneralSemiconductorIndustriesandcomeinavarietyof  
Y
120Ω  
DRIVER  
Z
LTC486 • TA13  
Figure 12. ESD Protection  
TransZorb® is a registrated trademark of General Instruments, GSI  
U
O
TYPICAL APPLICATI  
RS232 to RS485 Level Translator with Hysteresis  
R = 220k  
Y
10k  
120Ω  
RS232 IN  
5.6k  
DRIVER  
VY - VZ  
R
19k  
Z
1/4 LTC486  
———— ——  
HYSTERESIS = 10k ×  
R
LTC486 • TA14  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
0.770  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
8
15  
13  
11  
16  
0.015  
(0.381)  
MIN  
0.260 ± 0.010  
(6.604 ± 0.254)  
N Package  
16-Lead Plastic DIP  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
–0.015  
2
1
3
4
6
5
7
0.325  
0.125  
(3.175)  
MIN  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.398 – 0.413  
(10.109 – 10.490)  
(NOTE 2)  
0.291 – 0.299  
(7.391 – 7.595)  
(NOTE 2)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
15 14  
12  
10  
9
16  
13  
11  
0.005  
(0.127)  
RAD MIN  
0.010 – 0.029  
× 45°  
(0.254 – 0.737)  
S Package  
16-Lead Plastic SOL  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
2
3
5
7
8
1
4
6
LT/GP 0294 5K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1994  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LTC486CN#PBF

LTC486 - Quad Low Power RS485 Driver; Package: PDIP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC486CN#TRPBF

IC QUAD LINE DRIVER, PDIP16, 0.300 INCH, PLASTIC, LEAD FREE, DIP-16, Line Driver or Receiver
Linear

LTC486CS

Quad Low Power RS485 Driver
Linear

LTC486CSW

Quad Low Power RS485 Driver
Linear

LTC486CSW#PBF

LTC486 - Quad Low Power RS485 Driver; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC486CSW#TR

LTC486 - Quad Low Power RS485 Driver; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC486CSW#TRPBF

LTC486 - Quad Low Power RS485 Driver; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC486I

Quad Low Power RS485 Driver
Linear

LTC486IN

Quad Low Power RS485 Driver
Linear

LTC486IN#PBF

暂无描述
Linear

LTC486IN#TRPBF

IC QUAD LINE DRIVER, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, SOL-16, Line Driver or Receiver
Linear

LTC486IS

Quad Low Power RS485 Driver
Linear