LTC489ISWPBF [Linear]

暂无描述;
LTC489ISWPBF
型号: LTC489ISWPBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总12页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC488/LTC489  
Quad RS485 Line Receiver  
U
EATURE  
S
F
DESCRIPTIO  
Low Power: ICC = 7mA Typ  
Designed for RS485 or RS422 Applications  
Single 5V Supply  
7V to 12V Bus Common Mode Range Permits ±7V  
Ground Difference Between Devices on the Bus  
60mV Typical Input Hysteresis  
Receiver Maintains High Impedance in Three-State or  
with the Power Off  
The LTC®488 and LTC489 are low power differential bus/  
line receivers designed for multipoint data transmission  
standardRS485applicationswithextendedcommonmode  
range (12V to 7V). They also meet the requirements of  
RS422.  
TheCMOSdesignofferssignificantpowersavingsoverits  
bipolarcounterpartwithoutsacrificingruggednessagainst  
overload or ESD damage.  
28ns Typical Receiver Propagation Delay  
Pin Compatible with the SN75173 (LTC488)  
Pin Compatible with the SN75175 (LTC489)  
Thereceiverfeaturesthree-stateoutputs,withthereceiver  
output maintaining high impedance over the entire com-  
mon mode range.  
O U  
The receiver has a fail-safe feature which guarantees a  
high output state when the inputs are left open.  
PPLICATI  
S
A
Low Power RS485/RS422 Receivers  
Level Translator  
Both AC and DC specifications are guaranteed 4.75V to  
5.25V supply voltage range.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
EN  
EN  
EN  
EN  
4
2
1
12  
DRIVER  
1/4 LTC486  
RECEIVER  
1/4 LTC488  
3
120Ω  
120Ω  
RO  
DI  
4000 FT 24 GAUGE TWISTED PAIR  
EN12  
EN12  
4
2
1
DRIVER  
1/4 LTC487  
RECEIVER  
1/4 LTC489  
3
120Ω  
120Ω  
RO  
DI  
4000 FT 24 GAUGE TWISTED PAIR  
LTC488/9 TA01  
1
LTC488/LTC489  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Supply Voltage (VCC) .............................................. 12V  
Control Input Currents ........................ – 25mA to 25mA  
Control Input Voltages ................ – 0.5V to (VCC + 0.5V)  
Receiver Input Voltages ........................................ ±14V  
Receiver Output Voltages ........... – 0.5V to (VCC + 0.5V)  
Operating Temperature Range  
LTC488C/LTC489C ................................. 0°C to 70°C  
LTC488I/LTC489I .............................. – 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
1
2
3
4
5
6
7
8
V
CC  
16  
15  
14  
13  
12  
11  
10  
9
B1  
A1  
1
2
3
4
5
6
7
8
V
CC  
16  
15  
14  
13  
12  
11  
10  
9
NUMBER  
B1  
A1  
NUMBER  
R
R
R
R
B4  
B4  
R
R
R
A4  
RO1  
EN  
A4  
RO1  
EN12  
RO2  
A2  
LTC489CN  
LTC489CS  
LTC489IN  
LTC489IS  
LTC488CN  
LTC488CS  
LTC488IN  
LTC488IS  
RO4  
EN  
RO4  
EN34  
RO3  
A3  
RO2  
A2  
RO3  
A3  
B2  
B2  
R
B3  
GND  
B3  
GND  
S PACKAGE  
16-LEAD PLASTIC SOL  
N PACKAGE  
16-LEAD PLASTIC DIP  
S PACKAGE  
16-LEAD PLASTIC SOL  
N PACKAGE  
16-LEAD PLASTIC DIP  
TJMAX = 150°C, θJA = 70°C/W (N PKG)  
TJMAX = 150°C, θJA = 90°C/W (S PKG)  
TJMAX = 150°C, θJA = 70°C/W (N PKG)  
TJMAX = 150°C, θJA = 90°C/W (S PKG)  
Consult factory for Military grade parts.  
DC LECTRICAL CHARACTERISTICS VCC = 5V (Notes 2, 3), unless otherwise noted.  
E
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
EN, EN, EN12, EN34  
EN, EN, EN12, EN34  
EN, EN, EN12, EN34  
2.0  
V
V
INH  
INL  
IN1  
IN2  
0.8  
I
I
±2  
µA  
Input Current (A, B)  
V
CC  
V
CC  
= 0V or 5.25V, V = 12V  
= 0V or 5.25V, V = – 7V  
1.0  
– 0.8  
mA  
mA  
IN  
IN  
V
Differential Input Threshold Voltage for Receiver  
Receiver Input Hysteresis  
7V V 12V  
– 0.2  
3.5  
0.2  
V
mV  
V
TH  
CM  
V  
V
CM  
= 0V  
60  
7
TH  
V
V
Receiver Output High Voltage  
Receiver Output Low Voltage  
Three-State Output Current at Receiver  
Supply Current  
I = – 4mA, V = 0.2V  
OH  
O
ID  
I = 4mA, V = – 0.2V  
0.4  
±1  
V
OL  
OZR  
CC  
O
ID  
I
I
V
CC  
= Max 0.4V V 2.4V  
µA  
mA  
kΩ  
mA  
ns  
O
No Load, Digital Pins = GND or V  
10  
CC  
R
Receiver Input Resistance  
7V V 12V, V = 0V  
12  
7
IN  
CM  
CC  
I
t
t
t
Receiver Short-Circuit Current  
Receiver Input to Output  
0V V V  
CC  
85  
55  
55  
OSR  
PLH  
PHL  
SKD  
O
C = 15pF (Figures 1, 3)  
L
12  
12  
28  
28  
4
Receiver Input to Output  
C = 15pF (Figures 1, 3)  
L
ns  
| t  
– t  
|
C = 15pF (Figures 1, 3)  
L
ns  
PLH  
PHL  
Differential Receiver Skew  
2
LTC488/LTC489  
V
CC = 5V ± 5% (Notes 2, 3), unless otherwise noted.  
DC ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
30  
MAX  
60  
UNITS  
ns  
t
t
t
t
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
C = 15pF (Figures 2, 4) S1 Closed  
ZL  
ZH  
LZ  
HZ  
L
C = 15pF (Figures 2, 4) S2 Closed  
30  
60  
ns  
L
C = 15pF (Figures 2, 4) S1 Closed  
30  
60  
ns  
L
C = 15pF (Figures 2, 4) S2 Closed  
30  
60  
ns  
L
The  
range.  
denotes specifications that apply over the operating temperature  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 1: Absolute Maximum Ratings are those beyond which the safety of  
the device may be impaired.  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC  
A
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Output High Voltage vs  
Temperature at I = 8mA  
Receiver Output Low Voltage vs  
Temperature at I = 8mA  
4.8  
4.6  
4.4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
488 G02  
488 G01  
Receiver Output Low Voltage vs  
Output Current at TA = 25°C  
Receiver Output High Voltage vs  
Output Current at TA = 25°C  
36  
32  
28  
24  
20  
–18  
–16  
–14  
–12  
–10  
16  
12  
8
–8  
–6  
–4  
–2  
4
0
0
0
0.5  
1.5  
OUTPUT VOLTAGE (V)  
1.0  
2.0  
5
4
3
2
OUTPUT VOLTAGE (V)  
488 G04  
488 G03  
3
LTC488/LTC489  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
TTL Input Threshold vs  
Temperature  
Receiver |tPLH – tPHL| vs  
Supply Current vs Temperature  
Temperature  
1.63  
1.61  
1.59  
1.57  
5
4
3
2
7.0  
6.6  
6.2  
5.8  
1.55  
1
5.4  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
488 G05  
488 G06  
488 G07  
U
U
U
PI FU CTIO S  
B 1 (Pin 1) Receiver 1 Input.  
A1 (Pin 2) Receiver 1 Input.  
B3 (Pin 9) Receiver 3 Input.  
A3 (Pin 10) Receiver 3 Input.  
RO3 (Pin 11) Receiver 3 Output. Refer to RO1.  
EN (Pin 12)(LTC488) Receiver Output Disabled. See  
Function Table for details.  
EN34 (Pin 12)(LTC489) Receiver 3, Receiver 4 output  
enabled. See Function Table for details.  
RO4 (Pin 13) Receiver 4 Output. Refer to RO1.  
A4 (Pin 14) Receiver 4 Input.  
B4 (Pin 15) Receiver 4 Input.  
RO1 (Pin 3) Receiver 1 Output. If the receiver output is  
enabled, then if A > B by 200mV, RO1 will be high. If  
A < B by 200mV, then RO1 will be low.  
EN (Pin 4) (LTC488) Receiver Output Enabled. See  
Function Table for details.  
EN12 (Pin 4) (LTC489) Receiver 1, Receiver 2 Output  
Enabled. See Function Table for details.  
RO2 (Pin 5) Receiver 2 Output. Refer to RO1.  
A2 (Pin 6) Receiver 2 Input.  
B2 (Pin 7) Receiver 2 Input.  
V
CC (Pin 16) Positive Supply; 4.75V VCC 5.25V.  
GND (Pin 8) Ground Connection.  
4
LTC488/LTC489  
U
U
FU CTIO TABLES  
LTC489  
LTC488  
DIFFERENTIAL  
ENABLES  
OUTPUT  
DIFFERENTIAL  
ENABLES  
OUTPUT  
A – B  
EN12 or EN34  
RO  
H
?
A – B  
EN  
EN  
RO  
V
ID  
0.2V  
H
H
H
L
V
0.2V  
H
X
X
L
H
H
ID  
–0.2V < V < 0.2V  
ID  
–0.2V < V < 0.2V  
H
X
X
L
?
?
ID  
V
X
0.2V  
L
ID  
Z
V
X
0.2V  
H
X
X
L
L
L
ID  
H: High Level  
L: Low Level  
X: Irrelevant  
?: Indeterminate  
Z: High Impedance (Off)  
L
H
Z
TEST CIRCUITS  
100pF  
A
D
RO  
DRIVER  
RECEIVER  
54Ω  
C
L
B
100pF  
488/9 F01  
Figure 1. Receiver Timing Test Circuit  
Note: The input pulse is supplied by a generator having the following characteristics:  
f = 1MHz, Duty Cycle = 50%, t < 10ns, t 10ns, Z = 50Ω  
r
f
OUT  
S1  
S2  
1k  
RECEIVER  
OUTPUT  
V
CC  
C
L
1k  
488/9 F02  
Figure 2. Receiver Enable and Disable Timing Test Circuit  
5
LTC488/LTC489  
U
W
W
SWITCHI G TI E WAVEFOR S  
INPUT  
f = 1MHz; t 10ns; t 10ns  
V
OD2  
r
f
INPUT  
A, B  
0V  
t
0V  
–V  
OD2  
t
PHL  
PLH  
V
OH  
RO  
1.5V  
1.5V  
V
OL  
488/9 F03  
Figure 3. Receiver Propagation Delays  
3V  
0V  
f = 1MHz; t 10ns; t 10ns  
r
f
EN OR  
EN12  
1.5V  
1.5V  
t
ZL  
t
LZ  
5V  
RO  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
V
OL  
t
ZH  
t
HZ  
V
OH  
0.5V  
RO  
1.5V  
0V  
488/9 F04  
Figure 4. Receiver Enable and Disable Times  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Cables and Data Rate  
Typical Application  
The transmission line of choice for RS485 applications is  
a twisted-pair. There are coaxial cables (twinaxial) made  
for this purpose that contain straight-pairs, but these are  
less flexible, more bulky, and more costly than twisted-  
pairs. Many cable manufacturers offer a broad range of  
120cables designed for RS485 applications.  
A typical connection of the LTC488/LTC489 is shown in  
Figure 5. Two twisted-pair wires connect up to 32 driver/  
receiver pairs for half-duplex data transmission. There are  
no restrictions on where the chips are connected to the  
wires, and it isn’t necessary to have the chips connected  
at the ends. However, the wires must be terminated only  
at the ends with a resistor equal to their characteristic  
impedance, typically 120. The input impedance of a  
receiver is typically 20k to GND, or 0.5 unit RS485 load, so  
in practice 50 to 60 transceivers can be connected to the  
same wires. The optional shields around the twisted-pair  
help reduce unwanted noise, and are connected to GND at  
one end.  
Losses in a transmission line are a complex combination  
of DC conductor loss, AC losses (skin effect), leakage, and  
AC losses in the dielectric. In good polyethylene cable  
such as the Belden 9841, the conductor losses and dielec-  
tric losses are of the same order of magnitude, leading to  
relatively low overall loss (Figure 6).  
6
LTC488/LTC489  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
EN  
4
SHIELD  
SHIELD  
2
3
RX  
DX  
1/4 LTC486  
1
3
1/4 LTC488 OR  
1/4 LTC489  
DX  
120Ω  
120Ω  
RX  
1
12  
1
2
EN  
1/4 LTC488 OR  
1/4 LTC489  
RX  
3
2
12  
DX  
1/4 LTC486  
4
488/9 F05  
EN  
EN  
3
1
DX  
RX  
Figure 5. Typical Connection  
10  
10k  
1k  
1
100  
10  
0.1  
0.1  
1
10  
100  
2.5M  
10k  
100k  
1M  
10M  
FREQUENCY (MHz)  
DATA RATE (bps)  
488/9 F06  
488/9 F07  
Figure 6. Attenuation vs Frequency for Belden 9841  
Figure 7. Cable Length vs Data Rate  
When using low loss cables, Figure 7 can be used as a  
guidelineforchoosingthemaximumlinelengthforagiven  
datarate. WithlowerqualityPVCcables, thedielectricloss  
factor can be 1000 times worse. PVC twisted-pairs have  
terrible losses at high data rates (> 100kbps), and greatly  
reduce the maximum cable length. At low data rates  
however, theyareacceptableandmuchmoreeconomical.  
Cable Termination  
Theproperterminationofthecableisveryimportant.Ifthe  
cable is not terminated with its characteristic impedance,  
distorted waveforms will result. In severe cases, distorted  
(false) data and nulls will occur. A quick look at the output  
of the driver will tell how well the cable is terminated. It is  
7
LTC488/LTC489  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
best to look at a driver connected to the end of the cable,  
since this eliminates the possibility of getting reflections  
from two directions. Simply look at the driver output while  
transmitting square wave data. If the cable is terminated  
properly, the waveform will look like a square wave  
(Figure 8).  
AC Cable Termination  
Cable termination resistors are necessary to prevent un-  
wanted reflections, but they consume power. The typical  
differential output voltage of the driver is 2V when the  
cable is terminated with two 120resistors, causing  
33mA of DC current to flow in the cable when no data is  
being sent. This DC current is about 60 times greater than  
the supply current of the LTC488/LTC489. One way to  
eliminate the unwanted current is by AC coupling the  
termination resistors as shown in Figure 9.  
If the cable is loaded excessively (47), the signal initially  
sees the surge impedance of the cable and jumps to an  
initial amplitude. The signal travels down the cable and is  
reflectedbackoutofphasebecauseofthemistermination.  
When the reflected signal returns to the driver, the ampli-  
tude will be lowered. The width of the pedestal is equal to  
twice the electrical length of the cable (about 1.5ns/foot).  
If the cable is lightly loaded (470), the signal reflects in  
phase and increases the amplitude at the drive output. An  
input frequency of 30kHz is adequate for tests out to 4000  
ft. of cable.  
The coupling capacitor must allow high frequency energy  
to flow to the termination, but block DC and low frequen-  
cies. The dividing line between high and low frequency  
depends on the length of the cable. The coupling capacitor  
must pass frequencies above the point where the line  
represents an electrical one-tenth wavelength. The value  
of the coupling capacitor should therefore be set at 16.3pF  
perfootofcablelengthfor120cables. Withthecoupling  
capacitors in place, power is consumed only on the signal  
edges, and not when the driver output is idling at a 1 or 0  
state. A 100nF capacitor is adequate for lines up to 4000  
feet in length. Be aware that the power savings start to  
decrease once the data rate surpasses 1/(120Ω )(C).  
PROBE HERE  
Rt  
DRIVER  
RECEIVER  
DX  
RX  
Rt = 120Ω  
120Ω  
Rt = 47Ω  
RECEIVER  
RX  
C
488/9 F09  
C = LINE LENGTH (FT)(16.3pF)  
Rt = 470Ω  
488/9 F08  
Figure 9. AC Coupled Termination  
Figure 8. Termination Effects  
8
LTC488/LTC489  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Receiver Open-Circuit Fail-Safe  
The termination resistors are used to generate a DC bias  
which forces the receiver output to a known state, in this  
case a logic 0. The first method consumes about 208mW  
and the second about 8mW. The lowest power solution is  
to use an AC termination with a pullup resistor. Simply  
swap the receiver inputs for data protocols ending in  
logic 1.  
Some data encoding schemes require that the output of  
the receiver maintains a known state (usually a logic 1)  
whenthedataisfinishedtransmittingandalldriversonthe  
line are forced in three-state. The receiver of the LTC488/  
LTC489 has a fail-safe feature which guarantees the out-  
put to be in a logic 1 state when the receiver inputs are left  
floating (open-circuit). When the input is terminated with  
120and the receiver output must be forced to a known  
state, the circuits of Figure 10 can be used.  
Fault Protection  
All of LTC’s RS485 products are protected against ESD  
transients up to 2kV using the human body model (100pF,  
1.5k). However, some applications need more protection.  
The best protection method is to connect a bidirectional  
TransZorb® from each line side pin to ground (Figure 11).  
5V  
110Ω  
130Ω  
130Ω  
110Ω  
RECEIVER  
RX  
A TransZorb is a silicon transient voltage suppressor that  
has exceptional surge handling capabilities, fast response  
time, and low series resistance. They are available from  
General instruments, GSI, and come in a variety of break-  
down voltages and prices. Be sure to pick a breakdown  
voltage higher than the common mode voltage required  
for your application (typically 12V). Also, don’t forget to  
check how much the added parasitic capacitance will load  
down the bus.  
5V  
1.5k  
120Ω  
RECEIVER  
RX  
1.5k  
Y
5V  
DRIVER  
120Ω  
100k  
Z
C
RECEIVER  
RX  
120Ω  
488/9 F11  
488/9 F10  
Figure 11. ESD Protection with TransZorbs®  
Figure 10. Forcing “0” When All Drivers Are Off  
TransZorb is a registered trademark of General Instruments, GSI  
9
LTC488/LTC489  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
12  
10  
9
8
15  
13  
11  
16  
0.255 ± 0.015*  
(6.477 ± 0.381)  
2
1
3
4
6
5
7
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
–0.015  
0.325  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100 ± 0.010  
(2.540 ± 0.254)  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N16 1197  
10  
LTC488/LTC489  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.398 – 0.413*  
(10.109 – 10.490)  
15 14 12  
10  
11  
9
16  
13  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
2
3
5
7
8
1
4
6
0.291 – 0.299**  
(7.391 – 7.595)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC488/LTC489  
U
TYPICAL APPLICATION  
RS232 Receiver  
RS232  
IN  
RECEIVER  
1/4 LTC488 OR  
1/4 LTC489  
RX  
5.6k  
LTC488/9 TA02  
RELATED PARTS  
PART NUMBER  
LTC485  
DESCRIPTION  
COMMENTS  
Low Power RS485 Transceiver  
Low Power, Half-Duplex  
Full-Duplex in SO-8  
LTC490  
Low Power RS485 Full-Duplex Transceiver  
3V, Ultralow Power RS485 Transceiver  
3V, Ultralow Power RS485 Transceiver  
Ultralow Power RS485 Low EMI Transceiver  
Fast RS485 Transceiver  
LTC1480  
LTC1481  
LTC1483  
LTC1485  
LTC1487  
LTC1685  
1µA Shutdown Mode  
Lowest Power on 5V Supply  
Low EMI/Low Power with Shutdown  
10Mbps Operation  
Ultralow Power RS485 with Low EMI and High Input Impedance  
High Speed RS485 Transceiver  
Up to 256 Nodes on a Bus  
52Mbps, Pin Compatible with LTC485  
52Mbps, Pin Compatible LTC490/LTC491  
LTC1686/LTC1687 High Speed RS485 Full-Duplex Transceiver  
4889fa LT/TP 0898 REV A 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

LTC489_15

Quad RS485 Line Receiver
Linear

LTC490

Differential Driver and Receiver Pair
Linear

LTC490C

Differential Driver and Receiver Pair
Linear

LTC490CN8

Differential Driver and Receiver Pair
Linear

LTC490CN8PBF

暂无描述
Linear

LTC490CS

IC LINE TRANSCEIVER, PDSO8, Line Driver or Receiver
Linear

LTC490CS8

Differential Driver and Receiver Pair
Linear

LTC490CS8#PBF

LTC490 - Differential Driver and Receiver Pair; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC490CS8#TR

LTC490 - Differential Driver and Receiver Pair; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC490CS8#TRPBF

LTC490 - Differential Driver and Receiver Pair; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC490CSW

IC LINE TRANSCEIVER, PDSO16, 0.300 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC490I

Differential Driver and Receiver Pair
Linear