LTC5507 [Linear]

40MHz to 900MHz Quadrature Demodulator; 40MHz至900MHz的正交解调器
LTC5507
型号: LTC5507
厂家: Linear    Linear
描述:

40MHz to 900MHz Quadrature Demodulator
40MHz至900MHz的正交解调器

文件: 总12页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5517  
40MHz to 900MHz  
Quadrature Demodulator  
U
FEATURES  
DESCRIPTIO  
The LT®5517 is a 40MHz to 900MHz quadrature demodu-  
lator optimized for high linearity receiver applications  
where high dynamic range is important. It is suitable for  
communications receivers where an RF or IF signal is  
directly converted into I and Q baseband signals with a  
bandwidth up to 130MHz. The LT5517 incorporates bal-  
ancedIandQmixers, LObufferamplifiersandaprecision,  
broadband quadrature generator derived from an on-chip  
divide-by-two circuit.  
RF Input Frequency Range: 40MHz to 900MHz  
High IIP3: 21dBm at 800MHz  
High IIP2: 58dBm at 800MHz  
I/Q Gain Mismatch: 0.3dB Max  
I/Q Phase Mismatch: 0.7°  
Noise Figure: 12.4dB at 800MHz  
Conversion Gain: 3.3dB at 800MHz  
Baseband Bandwidth: 130MHz  
Single Ended, 50Matched 2XLO Input  
Shutdown Mode  
The superior linearity and low noise performance of the  
LT5517 is achieved across its full frequency range. A well-  
balanceddivide-by-twocircuitgeneratesprecisionquadra-  
ture LO carriers to drive the I mixer and the Q mixer.  
Consequently, the outputs of the I-channel and the  
Q-channelarewellmatchedinamplitude,andtheirphases  
are 90° apart. The LT5517 also provides excellent 50Ω  
impedance matching at the 2XLO port across its entire  
frequency range.  
16-Lead QFN (4mm × 4mm) Package  
with Exposed Pad  
U
APPLICATIO S  
Wireless Infrastructure  
High Linearity Direct Conversion I/Q Receiver  
High Linearity I/Q Demodulator  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
I/Q Output Power, IM3, IM2  
vs RF Input Power  
5V  
BPF  
BPF  
20  
V
CC  
LT5517  
+
RF  
RF  
LNA  
+
LPF  
I
I
OUT  
OUT  
0
VGA  
VGA  
P
OUT  
–20  
–40  
0°  
T
= 25°C  
2XLO  
= 1602MHz  
= 799.9MHz  
= 800.1MHz  
A
P
f
= –10dBm  
2XLO  
RF1  
RF2  
DSP  
IM3  
f
f
–60  
–80  
+
LPF  
Q
Q
OUT  
IM2  
2xLO  
EN  
2xLO  
INPUT  
÷2  
OUT  
90°  
ENABLE  
5517 F01  
–100  
–18  
–14  
–10  
–6  
–2  
2
RF INPUT POWER (dBm)  
Figure 1. High Signal-Level I/Q Demodulator for 450MHz Infrastructure Receiver  
5517 F01b  
5517f  
1
LT5517  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
Power Supply Voltage ............................................ 5.5V  
Enable Voltage ....................................................0V, VCC  
2XLO Voltage (10dBm Equivalent) .......................... ±1V  
RF+ to RFDifferential Voltage  
(10dBm Equivalent) ................................................. ±2V  
Operating Ambient Temperature..............–40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Maximum Junction Temperature .......................... 125°C  
NUMBER  
16 15 14 13  
LT5517EUF  
GNDRF  
1
2
3
4
12  
V
CC  
+
RF  
11 GND  
17  
RF  
2XLO  
GND  
10  
9
GNDRF  
UF PART  
MARKING  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
EXPOSED PAD (PIN 17) IS GND,  
MUST BE SOLDERED TO PCB  
5517  
TJMAX = 125°C, θJA = 37°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
AC ELECTRICAL CHARACTERISTICS  
TA = 25°C. VCC = 5V, EN = VCC, fRF1 = 799.9MHz, fRF2 = 800.1MHz,  
f2XLO = 1602MHz, P2XLO = –10dBm, unless otherwise noted. (Notes 2, 3) (Test circuit shown in Figure 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
40 to 900  
80 to 1800  
–15 to 0  
20  
MAX  
UNITS  
MHz  
MHz  
dBm  
dB  
RF Frequency Range  
2XLO Frequency Range  
2XLO Power  
2XLO Port Return Loss  
Conversion Gain  
Internally Matched to a 50Source  
Voltage Gain, Load Impedance = 1kΩ  
–40°C to 85°C  
0
3.3  
dB  
Gain Variation vs Temperature  
Noise Figure  
0.01  
12.4  
21  
dB/°C  
dB  
Input 3rd Order Intercept  
Input 2nd Order Intercept  
Input 1dB Compression  
Baseband Bandwidth  
I/Q Gain Mismatch  
I/Q Phase Mismatch  
Output Impedance  
2XLO to RF Leakage  
LO to RF Leakage  
2-Tone, –10dBm/Tone, f = 200kHz  
2-Tone, –10dBm/Tone, f = 200kHz  
dBm  
dBm  
dBm  
MHz  
dB  
58  
10  
130  
(Note 4)  
–0.3  
–3.5  
0.03  
0.7  
0.3  
3.5  
(Note 4)  
deg  
Differential  
120  
–69  
dBm  
dBm  
dB  
–80  
RF to 2XLO Isolation  
63  
5517f  
2
LT5517  
DC ELECTRICAL CHARACTERISTICS  
TA = 25°C. VCC = 5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
4.5  
70  
TYP  
MAX  
5.25  
110  
20  
UNITS  
V
Supply Voltage  
Supply Current  
Shutdown Current  
Turn-On Time  
90  
0.1  
mA  
µA  
ns  
EN = LOW  
(Note 5)  
(Note 5)  
200  
300  
Turn-Off Time  
ns  
EN = HIGH (On)  
EN = LOW (Off)  
EN Input Current  
Output DC Offset Voltage  
1.6  
V
1.3  
30  
V
V
= 5V  
2
µA  
mV  
ENABLE  
f
= 1602MHz, P = –10dBm  
0.5  
LO  
LO  
+
+
( I  
– I  
, Q  
– Q  
OUT  
)
OUT  
OUT  
OUT  
Output DC Offset Variation vs Temperature  
40°C to 85°C  
7
µV/°C  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Measured at P  
= –10dBm and output frequency = 1MHz.  
2XLO  
of a device may be impaired.  
Note 5: Turn ON and Turn OFF times are based on rise and fall times of the  
Note 2: Tests are performed as shown in the configuration of Figure 2.  
output baseband voltage with RF input power of –10dBm.  
Note 3: Specifications over the 40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
control.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
fRF = 800MHz, P2XLO = –10dBm, unless otherwise noted. (Test circuit shown in Figure 2)  
Conv Gain, NF, IIP3  
vs RF Input Frequency  
Supply Current vs Supply Voltage  
IIP2 vs RF Input Frequency  
80  
70  
110  
100  
90  
25  
20  
P
V
A
= –10dBm  
2XLO  
CC  
IIP3  
= 5V  
T
= 25°C  
T
T
= 85°C  
= 25°C  
A
A
P
V
A
= –10dBm  
2XLO  
CC  
= 5V  
T
= 25°C  
60  
15  
NF  
T
= –40°C  
A
80  
50  
40  
30  
10  
5
CONV GAIN  
70  
0
60  
0
100 200 300 400 500 600 700 800 900  
RF INPUT FREQUENCY (MHz)  
4.75  
5
5.25  
0
100 200 300  
400  
500  
700 800 900  
600  
4.5  
5.5  
RF INPUT FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
5517 G03  
5517 G01  
5517 G02  
5517f  
3
LT5517  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
fRF = 800MHz, P2XLO = –10dBm, unless otherwise noted. (Test circuit shown in Figure 2)  
I/Q Phase Mismatch  
vs RF Input Frequency  
I/Q Output Power, IM3  
vs RF Input Power  
I/Q Gain Mismatch  
vs RF Input Frequency  
20  
0
6
4
0.80  
0.60  
0.40  
0.20  
0
f
= 1602MHz  
f
f
= 799.9MHz  
= 800.1MHz  
P
f
= –10dBm  
P
f
CC  
= –10dBm  
2XLO  
CC  
RF1  
RF2  
2XLO  
BB  
CC  
2XLO  
BB  
V
V
= 5V  
= 1MHz  
= 1MHz  
V
= 5V  
= 5V  
OUTPUT POWER  
IM3  
2
–20  
–40  
0
–0.20  
–0.40  
–0.60  
–0.80  
–60  
–80  
–2  
T
T
T
= 85°C  
= 25°C  
= –40°C  
T
T
T
= 85°C  
= 25°C  
= –40°C  
T
T
T
= 85°C  
= 25°C  
= –40°C  
A
A
A
A
A
A
–4  
–6  
A
A
A
–100  
–18  
–14  
–10  
–6  
–2  
2
400 500  
0
100 200 300  
600 700 800 900  
700  
800 900  
RF INPUT FREQUENCY (MHz)  
0
100 200 300 400 500 600  
RF INPUT POWER (dBm)  
RF INPUT FREQUENCY (MHz)  
5517 G04  
5517 G05  
5517 G06  
Conv Gain, IIP3  
vs 2XLO Input Power  
Conv Gain, IIP3 vs Supply Voltage  
NF vs 2XLO Input Power  
24  
20  
28  
24  
20  
14  
12  
10  
8
f
= 1602MHz f  
= 799.9MHz  
= 800.1MHz  
T
= 25°C  
CC  
2XLO  
CC  
RF1  
RF2  
A
V
= 5V  
f
V
= 5V  
f
= 800MHz  
RF  
IIP3  
f
= 1602MHz  
2XLO  
CC  
RF1  
RF2  
f
f
= 400MHz  
= 200MHz  
RF  
IIP3  
16  
12  
V
f
= 5V  
= 799.9MHz  
= 800.1MHz  
RF  
16  
12  
8
f
T
T
T
= 85°C  
= 25°C  
= –40°C  
A
A
A
T
T
T
= 85°C  
= 25°C  
= –40°C  
A
A
A
f
= 40MHz  
RF  
8
4
0
CONV GAIN  
6
CONV GAIN  
5
4
0
4
4.75  
5.5  
–15  
–12  
–9  
–6  
–3  
0
4.5  
5.25  
–15  
–12  
–9  
–6  
–3  
0
2XLO INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
2XLO INPUT POWER (dBm)  
5517 G09  
5517 G07  
5517 G08  
LO-RF Leakage  
vs 2XLO Input Power  
2XLO-RF Leakage  
vs 2XLO Input Power  
IIP2 vs 2XLO Input Power  
–60  
–70  
–60  
–70  
70  
65  
60  
55  
T
= 25°C  
CC  
T
V
= 25°C  
A
f
= 1602MHz  
A
2XLO  
CC  
f
= 1600MHz  
2XLO  
V
= 5V  
= 5V  
CC  
V
= 5V  
T
= 85°C  
A
f
= 1600MHz  
= 800MHz  
2XLO  
f
= 800MHz  
T
= 25°C  
2XLO  
A
–80  
–90  
–80  
–90  
T
= –40°C  
A
f
2XLO  
50  
45  
f
= 80MHz  
–100  
–110  
–120  
–100  
–110  
–120  
2XLO  
40  
35  
30  
f
= 80MHz  
–6  
2XLO  
–9  
–15  
–12  
–3  
0
–15  
–12  
–9  
–6  
–3  
0
–12  
–9  
–3  
–15  
0
–6  
2XLO INPUT POWER (dBm)  
2XLO INPUT POWER (dBm)  
2XLO INPUT POWER (dBm)  
5517 G11  
5517 G12  
5517 G10  
5517f  
4
LT5517  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
fRF = 800MHz, P2XLO = –10dBm, unless otherwise noted. (Test circuit shown in Figure 2)  
RF, 2XLO Port Return Loss  
vs Frequency  
RF-LO Isolation  
Conv Gain  
vs RF Input Power  
vs Baseband Frequency  
6
4
0
–5  
120  
110  
f
= 1602MHz  
2XLO  
= 5V  
V
CC  
T
= –40°C  
= 85°C  
A
f
RF  
= 40MHz  
100  
90  
80  
70  
60  
50  
2
–10  
–15  
–20  
–25  
T
= 25°C  
T
A
A
RF  
LO  
0
f
f
= 400MHz  
= 800MHz  
RF  
RF  
–2  
–4  
T
= 25°C  
CC  
A
V
= 5V  
0.1  
1
10  
100  
1000  
0
0.40  
0.80  
1.20  
1.60  
2
–10  
–5  
0
10  
–15  
5
BASEBAND FREQUENCY (MHz)  
FREQUENCY (GHz)  
RF INPUT POWER (dBm)  
5517 G14  
5517 G15  
5517 G13  
U
U
U
PI FU CTIO S  
GNDRF (Pins 1, 4): Ground Pins for RF Termination.  
These pins are not internally connected, and should be  
connected to the PCB ground plane for best RF isolation.  
RF+,RF(Pins2,3):DifferentialRFInputPins.Thesepins  
are internally biased to 2.30V. These two pins should be  
DC blocked when connected to ground or other matching  
components. The inputs can be terminated in a single-  
ended configuration, but differential input drive is pre-  
ferredforbestperformance.Anexternalmatchingnetwork  
is required for impedance transformation.  
2XLO (Pin 10): 2XLO Input Pin. This pin is internally  
biasedto1V. Theinputsignal’sfrequencyshouldbetwice  
that of the desired demodulator LO frequency. The pin  
should be AC coupled with an external DC blocking  
capacitor.  
QOUT, QOUT+ (Pins 13, 14): Differential Baseband Output  
Pins of the Q-Channel. The internal DC bias voltage is  
VCC – 0.78V for each pin.  
IOUT, IOUT+ (Pins 15, 16): Differential Baseband Output  
Pins of the I-Channel. The internal DC bias voltage is  
VCC – 0.78V for each pin.  
EN (Pin 5): Enable Pin. When the input voltage is higher  
than 1.6V, the circuit is completely turned on. When the  
input voltage is less than 1.3V, the circuit is turned off.  
Exposed Pad (Pin 17): Ground Return for the Entire IC.  
This pin must be soldered to the printed circuit board  
ground plane.  
VCC (Pins 6, 7, 8, 12): Power Supply Pins. These pins  
should be decoupled using 1000pF and 0.1µF capacitors.  
GND (Pins 9, 11): Ground Pins. These pins are internally  
tied together and to the Exposed Pad. They should be  
connected to the PCB ground plane.  
5517f  
5
LT5517  
W
BLOCK DIAGRA  
V
V
V
V
CC  
CC  
CC  
CC  
6
7
8
12  
I-MIXER  
+
LPF  
LPF  
16 I  
15 I  
OUT  
OUT  
0°  
RF AMP  
+
RF  
2
3
LO BUFFERS  
÷2  
RF  
+
90°  
14 Q  
13 Q  
OUT  
OUT  
Q-MIXER  
BIAS  
5517 BD  
5
9
11  
17  
10  
EN  
GND GND EXPOSED  
PAD  
2XLO  
5517f  
6
LT5517  
TEST CIRCUIT  
J3  
J4  
J5  
J6  
+
+
I
I
Q
Q
OUT  
OUT  
OUT  
OUT  
C15  
C14  
10pF  
10pF  
C16  
10pF  
C13  
10pF  
16 15 14 13  
C1  
1nF  
T1  
MABAES0054  
R2  
J1  
0Ω  
1
2
3
4
12  
11  
10  
9
RF  
GNDRF  
V
CC  
C12  
1nF  
C10  
3.3pF  
+
RF  
RF  
GND  
2XLO  
GND  
J2  
LT5517  
2XLO  
C11  
1nF  
GNDRF  
C2  
1nF  
17  
5
6
7
8
V
CC  
EN  
C5  
1nF  
C3  
0.1µF  
C4  
2.2µF  
R1  
100k  
REFERENCE  
DESIGNATION  
VALUE  
SIZE  
0603  
0603  
0603  
0603  
0805  
0603  
0603  
PART NUMBER  
AVX 06033A102JAT1A  
C1,C2,C5,C11,C12  
C3  
C4  
C10  
1nF  
0.1µF  
2.2µF  
3.3pF  
10pF  
100k  
0Ω  
TAIYO YUDEN EMK107B  
TAIYO YUDEN JMK107B  
AVX 06033A3R3KAT2A  
AVX 08055A100ZAT1A  
OPTIONAL  
C13 TO C16  
R1  
R2  
T1  
JUMPER, OPTIONAL  
M/A COM MABAES0054  
1:4  
5517 F02  
Figure 2. Evaluation Circuit Schematic  
Figure 3. Component Side Silkscreen of Evaluation Board  
Figure 4. Component Side Layout of Evaluation Board  
5517f  
7
LT5517  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT5517 is a direct I/Q demodulator targeting high  
linearity receiver applications. It consists of an RF ampli-  
fier, I/Qmixers, aquadratureLOcarriergeneratorandbias  
circuitry.  
of the receiver are similar to those of the transformer-  
coupled demo board, because the single-ended to differ-  
ential conversion has a 1:4 impedance transformation,  
similar to the transformer.  
Table 1. The Component Values of Matching Network LSH, CS1  
and CS2  
The RF signal is applied to the inputs of the RF amplifier,  
and is then demodulated into I-channel and Q-channel  
baseband signals using precision quadrature LO signals,  
which are internally generated using a divide-by-two cir-  
cuit. The demodulated I/Q signals are lowpass filtered  
internallywitha–3dBbandwidthof130MHz.Thedifferen-  
tialoutputsoftheI-channelandQ-channelarewellmatched  
in amplitude and their phases are 90° apart across the full  
frequency range from 40MHz to 900MHz.  
FREQUENCY (MHz)  
L
(nH)  
C , C (pF)  
S1 S2  
SH  
40  
437  
71.1  
28.6  
14.3  
9.6  
100  
200  
300  
400  
500  
600  
700  
800  
900  
169  
80.8  
51.5  
37  
7.2  
28.3  
22.6  
18.5  
15.6  
13.5  
5.8  
4.9  
RF Input Port  
4.2  
3.7  
Differential drive is recommended for the RF inputs as  
shown in Figure 2. A low loss 1:4 transformer is used on  
the demonstration board for a wide bandwidth input  
impedance match and to assure good noise figure and  
maximum demodulator gain. Single-ended to differential  
conversion can also be implemented using narrowband  
L-C circuits to produce the required balanced waveforms  
at the RF+ and RFinputs using three discrete elements as  
shown in Figure 5. Nominal values are listed in Table 1. (In  
practice, these values should be compensated according  
to the parasitics of the PCB.) The conversion gain and NF  
3.3  
The differential impedance of the RF inputs is listed in  
Table 2. The RF inputs may also be terminated in a single-  
ended configuration. In this case either the RF+ or the RF–  
input can be simply AC coupled to a 50source, while the  
otherRFinputisconnectedtogroundwitha1nFcapacitor.  
Note, however, that this will result in degraded conversion  
gain and noise figure in most cases.  
MATCHING NETWORK  
C
S1  
3.7pF  
RF  
INPUT  
+
TO RF  
L
C
SH  
S2  
15.6nH  
3.7pF  
TO RF  
5517 F05  
Figure 5. RF Input Matching Network at 800MHz  
5517f  
8
LT5517  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 2. RF Input Differential Impedance  
quadrature Local Oscillator (LO) signals for the demodu-  
lator. The on-chip divide-by-two circuit delivers well-  
matched, quadrature LO carriers to the I mixer and the Q  
mixer.  
DIFFERENTIAL S11  
MAG ANGLE(°)  
FREQUENCY DIFFERENTIAL INPUT  
(MHz)  
40  
IMPEDANCE ()  
240.1-j10.3  
245.5-j25.9  
236.8-j50.0  
223.6-j70.5  
207.9-j86.3  
190.6-j98.1  
173.2-j105.8  
156.2-j110.2  
141.2-j111.8  
129.5-j114.5  
0.665  
0.664  
0.664  
0.663  
0.662  
0.660  
0.657  
0.655  
0.651  
0.650  
–0.8  
–2.5  
100  
200  
300  
400  
500  
600  
700  
800  
900  
I-Channel and Q-Channel Outputs  
–5.1  
–7.6  
Each of the I-channel and Q-channel outputs is internally  
connected to VCC though a 60resistor. The output DC  
biasvoltageisVCC 0.78V.TheoutputscanbeDCcoupled  
or AC coupled to the external loads. The differential output  
impedance of the demodulator is 120in parallel with a  
10pF internal capacitor, forming a lowpass filter with a  
–3dB corner frequency at 130MHz. The load impedance,  
–10.2  
–12.7  
–15.3  
–17.9  
–20.4  
–22.9  
RLOAD, should be larger than 600to assure full gain. The  
gain is reduced by 20 • log(1 + 120/RLOAD) in dB when  
the differential output is terminated by RLOAD. For ex-  
ample,thegainisreducedby6.85dBwheneachoutputpin  
is connected to a 50load (or 100differential loads).  
The output should be taken differentially (or by using  
differential-to-single-ended conversion) for best RF per-  
formance, including NF and IM2. Proper filtering of the  
unwanted high frequency mixing product is also impor-  
tant to maintain the highest linearity. A convenient  
2XLO Input Port  
Toeasetheinterfaceofthereceiverwiththeexternal2XLO  
input, the 2XLO port is designed with on-chip 50imped-  
ance matching up to 2GHz. The input is internally biased  
at 1V. A 1nF DC blocking capacitor is required when  
connected to the external 2XLO source.  
The 2XLO frequency is required to be twice the desired  
operating frequency in order for the chip to generate the  
LT5517  
V
CC  
T1  
C1  
1nF  
MABAES0054  
J1  
+
5
1
2
3
RF  
RF  
RF  
2
3
C10  
250Ω  
3.3pF  
4
2.30V  
C2  
1nF  
5517 F06  
Figure 6. RF Input Equivalent Circuit with External Broadband Matching  
5517f  
9
LT5517  
W U U  
U
APPLICATIO S I FOR ATIO  
approach is to terminate each output with a shunt capaci-  
tor. The capacitor value can be optimized depending upon  
the operating frequency and the specific PCB layout.  
When AC output coupling is used, the resulting highpass  
filter’s –3dB roll-off frequency is defined by the R-C  
constant of the blocking capacitor and RLOAD, assuming  
RLOAD > 600.  
The phase relationship between the I-channel output sig-  
nal and the Q-channel output signal is fixed. When the LO  
inputfrequencyishigherthantheRFinputfrequency,then  
the Q-channel outputs (QOUT+, QOUT) lead the I-channel  
outputs (IOUT+, IOUT) by 90°.  
Care should be taken when the demodulator’s outputs are  
DC coupled to the external load to make sure that the I/Q  
mixers are biased properly. If the current drain from the  
outputs exceeds 6mA, there can be significant degrada-  
tion of the linearity performance. Each output can sink no  
more than 13mA when connected to an external load with  
a DC voltage higher than VCC – 0.78V.  
When the LO input frequency is lower than the RF input  
frequency, then the Q-channel outputs lag the I-channel  
outputs by 90°. Note that the phase relationship of the I-  
and Q-channel outputs relative to the LO can vary by 180°,  
depending on start-up conditions. This is the nature of a  
frequency divider-based quadrature phase generator.  
V
CC  
60  
60Ω  
60Ω  
60Ω  
+
I
I
OUT  
16  
15  
OUT  
+
10pF  
Q
Q
OUT  
14  
13  
OUT  
10pF  
5517 F07  
Figure 7. I/Q Output Equivalent Circuit  
5517f  
10  
LT5517  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
PIN 1  
TOP MARK  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF) QFN 0503  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5517f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5517  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5515  
LT5516  
LT5520  
LT5522  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level Downconverting Mixer  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
15.9dBm IIP3, Single Ended, 50Matched RF and LO Ports  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated,  
2.7V to 5.25V Supply  
LTC®5505  
LTC5507  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5508  
LTC5509  
300MHz to 3GHz RF Power Detector  
LTC5532  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
RF Building Blocks  
LT5500  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
LT5502  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V  
Supply, –7dB to 56dB Linear Power Gain  
RF Power Controllers  
LTC1757A  
LTC1758  
LTC1957  
LTC4400  
RF Power Controller  
Multiband GSM/DCS/GPRS Mobile Phones  
Multiband GSM/DCS/GPRS Mobile Phones  
Multiband GSM/DCS/GPRS Mobile Phones  
RF Power Controller  
RF Power Controller  
SOT-23 RF PA Controller  
Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range,  
450kHz Loop BW  
LTC4401  
LTC4403  
SOT-23 RF PA Controller  
Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range,  
250kHz Loop BW  
RF Power Controller for EDGE/TDMA  
Multiband GSM/GPRS/EDGE Mobile Phones  
5517f  
LT/TP 0104 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC5507ES6

100kHz to 1GHz RF Power Detector
Linear

LTC5507ES6#TR

LTC5507 - 100kHz to 1GHz RF Power Detector; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5507ES6#TRMPBF

LTC5507 - 100kHz to 1GHz RF Power Detector; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5507ES6#TRPBF

LTC5507 - 100kHz to 1GHz RF Power Detector; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5508

300MHz to 7GHz RF Power Detector with Buffered Output in SC70 Package
Linear

LTC5508ESC6

300MHz to 7GHz RF Power Detector with Buffered Output in SC70 Package
Linear

LTC5508ESC6#PBF

LTC5508 - 300MHz to 7GHz RF Power Detector with Buffered Output in SC70 Package; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5508ESC6#TR

LTC5508 - 300MHz to 7GHz RF Power Detector with Buffered Output in SC70 Package; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5508ESC6#TRM

LTC5508 - 300MHz to 7GHz RF Power Detector with Buffered Output in SC70 Package; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5508ESC6#TRMPBF

LTC5508 - 300MHz to 7GHz RF Power Detector with Buffered Output in SC70 Package; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC5508ESC6#TRPBF

暂无描述
Linear

LTC5508ESC6-#PBF

RF/Microwave Detector, 300 MHz - 7000 MHz RF/MICROWAVE LINEAR DETECTOR, 12 dBm INPUT POWER-MAX, PLASTIC, SC6, SC-70, 6 PIN
Linear