LTC5541IUH#TRPBF [Linear]

LTC5541 - 1.3GHz to 2.3GHz High Dynamic Range Downconverting Mixer; Package: QFN; Pins: 20; Temperature Range: -40°C to 85°C;
LTC5541IUH#TRPBF
型号: LTC5541IUH#TRPBF
厂家: Linear    Linear
描述:

LTC5541 - 1.3GHz to 2.3GHz High Dynamic Range Downconverting Mixer; Package: QFN; Pins: 20; Temperature Range: -40°C to 85°C

局域网 射频 微波
文件: 总16页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5541  
1.3GHz to 2.3GHz  
High Dynamic Range  
Downconverting Mixer  
FEATURES  
DESCRIPTION  
TheLTC®5541ispartofafamilyofhighdynamicrangepassive,  
high gain downconverting mixers covering the 600MHz to  
4GHzfrequencyrange.TheLTC5541isoptimizedfor1.3GHz  
to2.3GHzRFapplications.TheLOfrequencymustfallwithin  
the 1.4GHz to 2.0GHz range for optimum performance. A  
typicalapplicationisaLTEorW-CDMAreceiverwitha1.7GHz  
to 2.2GHz RF input and low-side LO.  
n
Conversion Gain: 7.8dB at 1950MHz  
n
IIP3: 26.4dBm at 1950MHz  
n
Noise Figure: 9.6dB at 1950MHz  
n
16dB NF Under +5dBm Blocking  
n
High Input P1dB  
n
3.3V Supply, 630mW Power Consumption  
n
Shutdown Pin  
n
50Ω Single-Ended RF and LO Inputs  
The LTC5541 is designed for 3.3V operation, however; the  
IF amplifier can be powered by 5V for the highest P1dB.  
An integrated SPDT LO switch with fast switching accepts  
two active LO signals, while providing high isolation.  
n
LO Inputs 50Ω Matched when Shutdown  
n
High Isolation LO Switch  
0dBm LO Drive Level  
High LO-RF and LO-IF Isolation  
Small Solution Size  
n
n
n
The LTC5541’s high conversion gain and high dynamic  
range enable the use of lossy IF filters in high-selectivity  
receiver designs, while minimizing the total solution cost,  
board space and system-level variation.  
n
20-Lead (5mm × 5mm) QFN package  
APPLICATIONS  
n
Wireless Infrastructure Receivers  
High Dynamic Range Downconverting Mixer Family  
(LTE, W-CDMA. TD-SCDMA, UMTS, GSM1800)  
PART#  
RF RANGE  
LO RANGE  
n
Point-To-Point Microwave Links  
LTC5540  
LTC5541  
LTC5542  
LTC5543  
600MHz –1.3GHz  
1.3GHz – 2.3GHz  
1.6GHz – 2.7GHz  
2.3GHz – 4GHz  
700MHz – 1.2GHz  
1.4GHz – 2.0GHz  
1.7GHz – 2.5GHz  
2.4GHz – 3.6GHz  
n
High Dynamic Range Downmixer Applications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Wideband Receiver  
Wideband Conversion Gain, IIP3  
and NF vs IF Output Frequency  
190MHz  
SAW  
190MHz  
BPF  
1nF  
V
IF  
CCIF  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
1nF  
150nH  
ADC  
AMP  
3.3V or 5V  
150nH  
22pF  
1μF  
IIP3  
RF = 1950 30MHz  
LO = 1760MHz  
+
IF  
IF  
P
= 0dBm  
LO  
22pF  
TEST CIRCUIT IN FIGURE 1  
LO2  
LO1  
LTC5541  
IMAGE  
BPF  
SYNTH 2  
IF  
2.2pF  
RF  
1920MHz  
TO  
RF  
ALTERNATE LO FOR  
FREQUENCY-HOPPING  
G
C
LNA  
LO  
1980MHz  
22pF  
SHDN  
(0V/3.3V)  
BIAS  
SYNTH 1  
SHDN  
NF  
220  
V
V
V
CC3  
LOSEL  
CC2  
CC1  
LO  
1760MHz  
160  
170  
180  
190  
200  
210  
V
CC  
3.3V  
LO SELECT  
(0V/3.3V)  
IF OUTPUT FREQUENCY (MHz)  
1μF  
22pF  
5541 TA01  
5541 TA02  
5541f  
1
LTC5541  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Mixer Supply Voltage (V , V )...........................3.8V  
CC1 CC2  
LO Switch Supply Voltage (V ).............................3.8V  
CC3  
+
IF Supply Voltage (IF , IF ) ......................................5.5V  
20 19 18 17 16  
Shutdown Voltage (SHDN)................–0.3V to V +0.3V  
CC  
CC  
LO2  
NC  
RF  
1
2
3
4
5
15  
14  
13  
12  
11  
LO Select Voltage (LOSEL)................–0.3V to V +0.3V  
V
CC3  
LO1, LO2 Input Power (1GHz to 3GHz)...................9dBm  
LO1, LO2 Input DC Voltage .................................... 0.5V  
RF Input Power (1GHz to 3GHz)...........................15dBm  
RF Input DC Voltage............................................... 0.1V  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
21  
GND  
GND  
GND  
LO1  
CT  
GND  
SHDN  
6
7
8
9 10  
Junction Temperature (T ) .................................... 150°C  
J
UH PACKAGE  
20-LEAD (5mm s 5mm) PLASTIC QFN  
= 150°C, θ = 34°C/W, θ = 3°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
20-Lead (5mm x 5mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC5541IUH#PBF  
LTC5541IUH#TRPBF  
5541  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
AC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm,  
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LO Input Frequency Range  
RF Input Frequency Range  
1400 to 2000  
MHz  
Low-Side LO  
High-Side LO  
1600 to 2300  
1300 to 1800  
MHz  
MHz  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Return Loss  
LO Input Power  
Requires External Matching  
5 to 500  
>12  
MHz  
dB  
Z = 50Ω, 1300MHz to 2300MHz  
O
Z = 50Ω, 1400MHz to 2000MHz  
O
>12  
dB  
Requires External Matching  
>12  
dB  
f
LO  
f
LO  
f
LO  
= 1400MHz to 2000MHz  
= 1400MHz to 2000MHz  
= 1400MHz to 2000MHz  
–4  
0
6
dBm  
dBm  
dBm  
LO to RF Leakage  
<–32  
<–31  
LO to IF Leakage  
LO Switch Isolation  
LO1 Selected, 1400MHz < f < 2000MHz  
52  
50  
dB  
dB  
LO  
LO2 Selected, 1400MHz < f < 2000MHz  
LO  
RF to LO Isolation  
RF to IF Isolation  
f
RF  
f
RF  
= 1300MHz to 2300MHz  
= 1300MHz to 2300MHz  
>52  
>33  
dB  
dB  
5541f  
2
LTC5541  
AC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm,  
PRF = –3dBm (Δf = 2MHz for two-tone IIP3 tests),unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
Low-Side LO Downmixer Application: RF = 1700 to 2200MHz, IF = 190MHz, f = f –f  
LO  
RF IF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 1750MHz  
RF = 1950MHz  
RF = 2150MHz  
8.6  
7.8  
7.6  
6.5  
dB  
Conversion Gain Flatness  
RF = 1950 30MHz, LO = 1760MHz, IF=190 30MHz  
0.1  
dB  
Conversion Gain vs Temperature  
T = –40ºC to +85ºC, RF = 1950MHz  
A
–0.006  
dB/°C  
rd  
Input 3 Order Intercept  
RF = 1750MHz  
RF = 1950MHz  
RF = 2150MHz  
25.5  
26.4  
25.5  
24.0  
dBm  
SSB Noise Figure  
RF = 1750MHz  
RF = 1950MHz  
RF = 2150MHz  
9.2  
9.6  
11.7  
dB  
dB  
10.6  
SSB Noise Figure Under Blocking  
2RF – 2LO Output Spurious Product  
f
f
= 1950MHz, f = 1760MHz,  
BLOCK  
16  
RF  
LO  
= 2050MHz, P  
= 5dBm  
BLOCK  
f
RF  
= 1855MHz at –10dBm, f = 1760MHz, f = 190MHz  
–67  
–73  
dBc  
dBc  
dBm  
LO  
IF  
(f = f + f /2)  
RF  
LO  
IF  
3RF – 3LO Output Spurious Product  
(f = f + f /3)  
f
RF  
= 1823.33MHz at –10dBm, f = 1760MHz, f = 190MHz  
LO IF  
RF  
LO  
IF  
Input 1dB Compression  
RF = 1950MHz, V  
RF = 1950MHz, V  
= 3.3V  
= 5V  
11.3  
14.6  
CCIF  
CCIF  
High-Side LO Downmixer Application: RF = 1300-1800MHz, IF = 190MHz, f = f +f  
LO  
RF IF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 1450MHz  
RF = 1600MHz  
RF = 1750MHz  
8.9  
8.4  
8.0  
dB  
Conversion Gain Flatness  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
RF = 1600MHz 30MHz, LO = 1790MHz, IF = 190 30MHz  
0.1  
dB  
dB/°C  
dBm  
T = –40°C to 85°C, RF = 1600MHz  
A
–0.006  
RF = 1450MHz  
RF = 1600MHz  
RF = 1750MHz  
24.5  
24.6  
24.3  
SSB Noise Figure  
RF = 1450MHz  
RF = 1600MHz  
RF = 1750MHz  
9.5  
9.9  
9.9  
dB  
SSB Noise Figure Under Blocking  
2LO – 2RF Output Spurious Product  
f
f
= 1600MHz, f = 1790MHz, f = 190MHz  
18  
dB  
dBc  
RF  
LO  
IF  
= 1500MHz, P  
= 5dBm  
BLOCK  
BLOCK  
f
RF  
f
IF  
= 1695MHz at –10dBm, f = 1790MHz  
LO  
(f = f – f )  
IF/2  
= 190MHz  
–69  
–74  
RF  
LO  
3LO – 3RF Output Spurious Product  
(f = f – f  
f
RF  
f
IF  
= 1726.67MHz at –10dBm, f = 1790MHz  
dBc  
LO  
)
IF/3  
= 190MHz  
RF  
LO  
Input 1dB Compression  
RF = 1750MHz, V  
RF = 1750MHz, V  
= 3.3V  
= 5V  
11.1  
14.4  
dBm  
CCIF  
CCIF  
5541f  
3
LTC5541  
DC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, unless otherwise  
noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
Power Supply Requirements (V , V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
CC CCIF  
V
V
Supply Voltage (Pins 6, 8 and 14)  
3.1  
3.1  
3.3  
3.3  
3.5  
5.3  
V
V
CC  
Supply Voltage (Pins 18 and 19)  
CCIF  
V
V
Supply Current (Pins 6 + 8 + 14)  
92  
100  
192  
108  
120  
228  
CC  
Supply Current (Pins 18 + 19)  
CCIF  
mA  
μA  
Total Supply Current (V + V  
)
CCIF  
CC  
Total Supply Current – Shutdown  
SHDN = High  
500  
Shutdown Logic Input (SHDN) Low = On, High = Off  
SHDN Input High Voltage (Off)  
3
V
V
SHDN Input Low Voltage (On)  
0.3  
30  
SHDN Input Current  
Turn On Time  
–0.3V to V + 0.3V  
–20  
μA  
μs  
μs  
CC  
1
Turn Off Time  
1.5  
LO Select Logic Input (LOSEL) Low = LO1 Selected, High = LO2 Selected  
LOSEL Input High Voltage  
3
V
V
LOSEL Input Low Voltage  
0.3  
30  
LOSEL Input Current  
LO Switching Time  
–0.3V to V + 0.3V  
–20  
μA  
ns  
CC  
50  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: SSB Noise Figure measurements performed with a small-signal  
noise source, bandpass filter and 6dB matching pad on RF input, bandpass  
filter and 6dB matching pad on the LO input, and no other RF signals  
applied.  
Note 2: The LTC5541 is guaranteed functional over the operating  
temperature range from –40°C to 85°C.  
Note 4: LO switch isolation is measured at the IF output port at the IF  
frequency with f  
and f  
offset by 2MHz.  
LO1  
LO2  
TYPICAL DC PERFORMANCE CHARACTERISTICS SHDN = Low, Test circuit shown in Figure 1.  
VCC Supply Current  
vs Supply Voltage  
VCCIF Supply Current  
vs Supply Voltage (IF Amplifier)  
Total Supply Current  
vs Temperature (VCC + VCCIF  
(Mixer and LO Switch)  
)
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
125  
115  
105  
95  
220  
210  
200  
V
CC  
= 3.3V, V  
= 5V  
CCIF  
85°C  
25°C  
–40°C  
(DUAL SUPPLY)  
85°C  
25°C  
190  
180  
V
CC  
= V  
= 3.3V  
CCIF  
(SINGLE SUPPLY)  
–40°C  
85  
170  
75  
160  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4  
SUPPLY VOLTAGE (V)  
–45 –25 –5  
15  
35  
55  
75  
95  
V
CC  
SUPPLY VOLTAGE (V)  
V
CCIF  
TEMPERATURE (°C)  
5541 G01  
5541 G02  
5541 G03  
5541f  
4
LTC5541  
TYPICAL AC PERFORMANCE CHARACTERISTICS Low-Side LO  
V
CC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, Δf = 2MHz),  
IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
LO Leakage vs LO Frequency  
RF Isolation vs RF Frequency  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–20  
–30  
–40  
–50  
–60  
65  
60  
55  
50  
45  
40  
35  
30  
25  
IIP3  
RF-LO  
LO-IF  
LO-RF  
RF-IF  
NF  
G
C
6
1.65 1.75 1.85 1.95 2.05  
RF FREQUENCY (GHz)  
2.15 2.25  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5541 G04  
5541 G05  
5541 G06  
1750MHz Conversion Gain, IIP3  
and NF vs LO Power  
1950MHz Conversion Gain, IIP3  
and NF vs LO Power  
2150MHz Conversion Gain, IIP3  
and NF vs LO Power  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
18  
16  
14  
12  
10  
8
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
21  
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
IIP3  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
NF  
NF  
NF  
6
6
7
4
4
5
G
C
G
C
G
C
2
2
3
7
0
7
0
6
1
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5541 G07  
5541 G08  
5541 G09  
Conversion Gain, IIP3 and NF  
Conversion Gain, IIP3 and NF  
1950MHz Conversion Gain, IIP3  
and RF Input P1dB vs Temperature  
vs Supply Voltage (Single Supply)  
vs IF Supply Voltage (Dual Supply)  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
18  
16  
14  
12  
10  
8
29  
22  
20  
18  
16  
14  
12  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
V
CCIF  
V
CCIF  
= 5.0V  
= 3.3V  
NF  
10  
8
NF  
P1dB  
6
6
RF = 1950MHz  
RF = 1950MHz  
4
V
CC  
= V  
V
CC  
= 3.3V  
4
CCIF  
G
G
C
C
2
2
G
C
7
0
7
0
6
3.0  
3.1  
V
3.2  
3.3  
3.4  
3.5  
3.6  
3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4  
SUPPLY VOLTAGE (V)  
–45 –25 –5  
15  
35  
55  
75  
95  
, V  
SUPPLY VOLTAGE (V)  
V
CCIF  
TEMPERATURE (°C)  
CC CCIF  
5541 G10  
5541 G11  
5541 G12  
5541f  
5
LTC5541  
TYPICAL AC PERFORMANCE CHARACTERISTICS Low-Side LO (continued)  
V
CC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, Δf = 2MHz),  
IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
2-Tone IF Output Power, IM3 and  
2 × 2 and 3 × 3 Spur Suppression  
Single-Tone IF Output Power, 2 × 2  
IM5 vs RF Input Power  
vs LO Power  
and 3 × 3 Spurs vs RF Input Power  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
20  
10  
20  
10  
RF = 1950MHz  
IF  
OUT  
P
= –10dBm  
(RF = 1950MHz)  
RF  
IF  
OUT  
LO = 1760MHz  
0
0
RF1 = 1949MHz  
RF2 = 1951MHz  
LO = 1760MHz  
LO = 1760MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2RF-2LO  
(RF = 1855MHz)  
3RF-3LO  
(RF = 1823.33MHz)  
2RF-2LO  
(RF = 1855MHz)  
3RF-3LO  
(RF = 1823.33MHz)  
IM3  
IM5  
–6  
–4  
–2  
0
2
4
6
–12  
–9  
–6  
–3  
0
3
6
–12 –9 –6 –3  
0
3
6
9
12 15  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm/TONE)  
RF INPUT POWER (dBm)  
5541 G15  
5541 G13  
5541 G14  
LO Switch Isolation  
vs LO FrequencyLO1 Selected  
SSB Noise Figure  
LO Switch Isolation  
vs LO FrequencyLO2 Selected  
vs RF Blocker Level  
17  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
RF = 1950MHz  
BLOCKER = 2050MHz  
P
= –3dBm  
LO2  
P
LO1  
= –3dBm  
16  
15  
14  
P
LO1  
= 0dBm  
P
= 0dBm  
LO2  
P
LO  
= –3dBm  
13  
12  
11  
P
LO  
= 0dBm  
P
= 3dBm  
LO2  
P
LO1  
= 3dBm  
10  
9
LOSEL = LOW  
= 0dBm  
LOSEL = HIGH  
= 0dBm  
P
= 3dBm  
0
LO  
P
P
LO2  
LO1  
–25  
–20  
–15  
–10  
–5  
5
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
RF BLOCKER POWER (dBm)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5541 G16  
5541 G17  
5541 G18  
Conversion Gain Distribution  
IIP3 Distribution  
SSB Noise Figure Distribution  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
85°C  
85°C  
85°C  
25°C  
–40°C  
RF = 1950MHz  
RF = 1950MHz  
RF = 1950MHz  
25°C  
25°C  
–40°C  
–40°C  
6
4
2
0
0
0
6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.3 8.5  
CONVERSION GAIN (dB)  
25.0 25.4 25.8 26.2 26.6 27.0 27.4  
IIP3 (dBm)  
8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0  
SSB NOISE FIGURE (dB)  
5541 G18a  
5541 G18b  
5541 G18c  
5541f  
6
LTC5541  
TYPICAL AC PERFORMANCE CHARACTERISTICS High-Side LO  
V
CC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, Δf = 2MHz),  
IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
1450MHz Conversion Gain, IIP3  
and RF Input P1dB vs Temperature  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
1750MHz Conversion Gain, IIP3  
and RF Input P1dB vs Temperature  
25  
23  
21  
19  
17  
15  
13  
11  
9
25  
23  
21  
19  
17  
15  
13  
11  
9
25  
23  
21  
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
IIP3  
V
V
= 5.0V  
= 3.3V  
V
V
= 5.0V  
= 3.3V  
CCIF  
CCIF  
CCIF  
CCIF  
P1dB  
C
P1dB  
SSB NF  
G
C
G
C
G
7
7
7
1250 1350 1450 1550 1650 1750 1850  
RF FREQUENCY (MHz)  
–45 –25 –5  
15  
35  
55  
75  
95  
–45 –25 –5  
15  
35  
55  
75  
95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
5541 G19  
5541 G21  
5541 G20  
1600MHz Conversion Gain, IIP3  
and NF vs LO Power  
1750MHz Conversion Gain, IIP3  
and NF vs LO Power  
1450MHz Conversion Gain, IIP3  
and NF vs LO Power  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
18  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
18  
16  
14  
12  
10  
8
25  
23  
21  
19  
17  
15  
13  
11  
9
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
IIP3  
16  
14  
12  
10  
NF  
NF  
8
NF  
85°C  
25°C  
–40°C  
6
4
2
0
6
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
6
4
4
G
C
G
G
C
C
2
2
7
0
7
0
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5541 G22  
5541 G22b  
5541 G23  
2-Tone IF Output Power, IM3 and  
IM5 vs RF Input Power  
Single-Tone IF Output Power, 2 × 2  
and 3 × 3 Spurs vs RF Input Power  
2 × 2 and 3 × 3 Spur Suppression  
vs LO Power  
20  
10  
0
20  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
IF  
OUT  
RF = 1600MHz  
10  
0
(RF = 1600MHz)  
P
= –10dBm  
RF  
IF  
OUT  
LO = 1790MHz  
LO = 1790MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
RF1 = 1599MHz  
RF2 = 1601MHz  
LO = 1790MHz  
3LO-3RF  
(RF = 1726.67MHz)  
2LO-2RF  
(RF = 1695MHz)  
2LO-2RF  
(RF = 1695MHz)  
IM3  
IM5  
3LO-3RF  
(RF = 1726.67MHz)  
–12  
–9  
–6  
–3  
0
3
6
–12 –9 –6 –3  
0
3
6
9
12 15  
–6  
–4  
–2  
0
2
4
6
RF INPUT POWER (dBm/TONE)  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5541 G24  
5541 G25  
5541 G26  
5541f  
7
LTC5541  
PIN FUNCTIONS  
NC (Pin 1): This pin is not connected internally. It can be  
left floating, connected to ground or to V .  
LOBIAS (Pin 7): This Pin Allows Adjustment of the LO  
Buffer Current. Typical DC voltage is 2.2V.  
CC  
RF (Pin 2): Single-Ended Input for the RF Signal. This pin  
is internally connected to the primary side of the RF input  
transformer, which has low DC resistance to ground. A  
series DC-blocking capacitor should be used to avoid  
damage to the integrated transformer. The RF input is  
impedance matched, as long as the selected LO input is  
driven with a 0dBm 6dB source between 1.4GHz and  
2GHz.  
LOSEL(Pin9):LO1/LO2SelectPin.Whentheinputvoltage  
is less than 0.3V, the LO1 port is selected. When the input  
voltage is greater than 3V, the LO2 port is selected. Typical  
input current is 11ꢀA for LOSEL = 3.3V. This pin must not  
be allowed to float.  
LO1 (Pin 11) and LO2 (Pin 15): Single-Ended Inputs for  
the Local Oscillators. These pins are internally biased  
at 0V and require external DC blocking capacitors. Both  
inputs are internally matched to 50Ω, even when the chip  
is disabled (SHDN = high).  
CT (Pin 3): RF Transformer Secondary Center-Tap. This  
pin may require a bypass capacitor to ground. See the  
ApplicationsInformationsection.Thispinhasaninternally  
generated bias voltage of 1.2V. It must be DC-isolated  
V
CC3  
(Pin 14): Power Supply Pin for the LO Switch. This  
pin must be connected to a regulated 3.3V supply and  
bypassed to ground with a capacitor near the pin. Typical  
DC current consumption is less than 100ꢀA.  
from ground and V .  
CC  
GND (Pins 4, 10, 12, 13, 17, Exposed Pad Pin 21):  
Ground. These pins must be soldered to the RF ground  
plane on the circuit board. The exposed pad metal of the  
package provides both electrical contact to ground and  
good thermal contact to the printed circuit board.  
IFGND (Pin 16): DC Ground Return for the IF Amplifier.  
This pin must be connected to ground to complete the  
IF amplifier’s DC current path. Typical DC current is  
100mA.  
SHDN (Pin 5): Shutdown Pin. When the input voltage is  
less than 0.3V, the internal circuits supplied through pins  
6, 8, 14, 18 and 19 are enabled. When the input voltage  
is greater than 3V, all circuits are disabled. Typical input  
current is less than 10ꢀA. This pin must not be allowed  
to float.  
+
IF (Pin 18) and IF (Pin 19): Open-Collector Differential  
OutputsfortheIFAmplifier.Thesepinsmustbeconnected  
to a DC supply through impedance matching inductors, or  
atransformercenter-tap.TypicalDCcurrentconsumption  
is 50mA into each pin.  
IFBIAS(Pin20):ThisPinAllowsAdjustmentoftheIFAmplifier  
Current. Typical DC voltage is 2.1V.  
V
(Pin 6) and V  
(Pin 8): Power Supply Pins for  
CC1  
CC2  
the LO Buffer and Bias Circuits. These pins are internally  
connectedandmustbeexternallyconnectedtoaregulated  
3.3V supply, with bypass capacitors located close to the  
pin. Typical current consumption is 92mA.  
5541f  
8
LTC5541  
BLOCK DIAGRAM  
20  
IFBIAS  
19 18  
16  
IFGND  
21  
+
LO2  
15  
IF  
IF  
EXPOSED  
PAD  
IF  
AMP  
V
CC3  
14  
RF  
2
LO  
AMP  
LOSEL  
LO1  
PASSIVE  
MIXER  
CT  
9
3
5
SHDN  
BIAS  
11  
V
CC2  
V
CC1  
LOBIAS  
6
8
7
GND PINS ARE  
NOT SHOWN  
5541 BD  
TEST CIRCUIT  
IF  
OUT  
4:1  
T1  
L1, L2 vs IF  
Frequencies  
190MHz  
50Ω  
C10  
L2  
IF (MHz)  
L1, L2 (nH)  
L1  
140  
190  
240  
300  
380  
270  
150  
100  
56  
V
CCIF  
3.1V TO 5.3V  
100mA  
C9  
C8  
20  
19  
+
18  
17  
16  
C4  
IFBIAS IF  
NC  
IF  
GND  
IFGND  
33  
LO2  
50Ω  
IN  
1
2
3
4
5
15  
LO2  
C1  
REF DES  
VALUE  
SIZE  
0402  
0402  
COMMENTS  
AVX  
RF  
50Ω  
IN  
RF  
14  
V
CC3  
C1  
2.2pF  
22pF  
C7  
C3, C4, C6,  
C7, C8  
AVX  
LTC5541  
CT  
13  
12  
11  
GND  
C5, C9  
C10  
1μF  
0603  
0402  
AVX  
AVX  
GND  
SHDN  
GND  
1000pF  
150nH  
C3  
L1, L2  
0603 Coilcraft 0603CS  
LO1  
50Ω  
SHDN  
(0V/3.3V)  
IN  
LO1  
GND  
10  
T1  
TC4-1W-7ALN+  
(WBC4-6TLB)  
Mini-Circuits  
(Coilcraft)  
V
V
LOBIAS  
7
LOSEL  
9
CC2  
6
CC1  
(Alternate)  
8
V
CC  
3.1V TO 3.5V  
92mA  
5541 TC  
C5  
C6  
LOSEL  
(0V/3.3V)  
RF  
0.015”  
0.062”  
0.015”  
GND DC1431A  
BOARD  
BIAS  
STACK-UP  
(NELCO N4000-13)  
GND  
Figure 1. Standard Downmixer Test Circuit Schematic (190MHz IF)  
5541f  
9
LTC5541  
APPLICATIONS INFORMATION  
Introduction  
applications. When used, C2 should be located within  
2mm of pin 3 for proper high-frequency decoupling. The  
nominal DC voltage on the CT pin is 1.2V.  
The LTC5541 consists of a high linearity passive double-  
balancedmixercore,IFbufferamplifier,highspeedsingle-  
pole double-throw (SPDT) LO switch, LO buffer amplifier  
andbias/shutdowncircuits.SeeBlockDiagramsectionfor  
a description of each pin function. The RF and LO inputs  
are single-ended. The IF output is differential. Low-side or  
high-side LO injection can be used. The evaluation circuit,  
showninFigure1,utilizesbandpassIFoutputmatchingand  
an IF transformer to realize a 50Ω single-ended IF output.  
The evaluation board layout is shown in Figure 2.  
For the RF input to be matched, the selected LO input  
must be driven. A broadband input match is realized with  
C1 = 2.2pF. The measured input return loss is shown in  
Figure4forLOfrequenciesof1.4GHz, 1.75GHzand2GHz.  
These LO frequencies correspond to the lower, middle  
and upper values of the LO range. As shown in Figure 4,  
the RF input impedance is somewhat dependent on LO  
frequency, although a single value of C1 is adequate to  
cover the 1.3GHz-2.3GHz RF band.  
TO MIXER  
RF  
IN  
C1  
RF  
CT  
2
3
C2  
LTC5541  
5541 F03  
5541 F02  
Figure 2. Evaluation Board Layout  
Figure 3. RF Input Schematic  
0
RF Input  
–5  
–10  
–15  
–20  
–25  
–30  
The mixer’s RF input, shown in Figure 3, is connected to  
the primary winding of an integrated transformer. A 50Ω  
matchisrealizedwhenaseriescapacitor, C1, isconnected  
to the RF input. C1 is also needed for DC blocking if the  
RF source has DC voltage present, since the primary side  
of the RF transformer is DC-grounded internally. The DC  
resistance of the primary is approximately 3.6Ω.  
LO = 2GHz  
LO = 1.4GHz  
LO = 1.75GHz  
The secondary winding of the RF transformer is internally  
connected to the passive mixer. The center-tap of the  
transformer secondary is connected to pin 3 (CT) to allow  
the connection of bypass capacitor, C2. The value of C2  
is LO frequency-dependent and is not required for most  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
5541 F04  
Figure 4. RF Input Return Loss  
5541f  
10  
LTC5541  
APPLICATIONS INFORMATION  
The RF input impedance and input reflection coefficient,  
versus RF frequency, is listed in Table 1. The reference  
plane for this data is pin 2 of the IC, with no external  
matching, and the LO is driven at 1.75GHz.  
The LO switch is designed for high isolation and fast  
(<50ns) switching. This allows the use of two active  
synthesizers in frequency-hopping applications. If only  
one synthesizer is used, then the unused LO input may  
be grounded. The LO switch is powered by V  
(Pin 14)  
CC3  
Table 1. RF Input Impedance and S11  
(at Pin 2, No External Matching, LO Input Driven at 1.75GHz)  
and controlled by the LOSEL logic input (Pin 9). The LO1  
and LO2 inputs are always 50Ω-matched when V is  
CC  
S11  
FREQUENCY  
(GHz)  
INPUT  
applied to the chip, even when the chip is shutdown. The  
DC resistance of the selected LO input is approximately  
23Ω and the unselected input is approximately 50Ω. A  
logic table for the LO switch is shown in Table 2. Measured  
LO input return loss is shown in Figure 6.  
IMPEDANCE  
MAG  
0.58  
0.53  
0.47  
0.41  
0.20  
0.34  
0.39  
0.43  
0.47  
0.48  
0.48  
ANGLE  
92.1  
79.8  
69.7  
56.9  
77.8  
82.9  
79.0  
72.4  
63.6  
55.0  
45.7  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
24.1 + j42.1  
33.1 + j47.2  
43.6 + j49.2  
58.0 + j47.1  
50.2 + j20.6  
43.0 + j32.4  
43.7 + j37.8  
44.1 + j44.4  
49.0 + j51.7  
56.8 + j57.6  
68.9 + j61.0  
Table 2. LO Switch Logic Table  
LOSEL  
Low  
ACTIVE LO INPUT  
LO1  
LO2  
High  
The LO amplifiers are powered by V  
and V  
(pin 8  
CC2  
CC1  
and pin 6). When the chip is enabled (SHDN = low), the  
internalbiascircuitprovidesaregulated4mAcurrenttothe  
amplifier’s bias input, which in turn causes the amplifiers  
to draw approximately 80mA of DC current. This 4mA  
reference current is also connected to LOBIAS (Pin 7)  
to allow modification of the amplifier’s DC bias current  
for special applications. The recommended application  
circuits require no LO amplifier bias modification, so this  
pin should be left open-circuited.  
LTC5541  
C4  
LO2  
LO2  
15  
IN  
LO BUFFER  
V
CC3  
14  
TO  
MIXER  
0
C3 = C4 = 22pF  
C3 LO1  
IN  
LO1  
11  
–5  
4mA  
BIAS  
–10  
SELECTED  
–15  
V
CC2  
V
CC1  
LOBIAS  
LOSEL  
9
7
6
8
5541 F05  
–20  
NOT SELECTED  
OR SHUTDOWN  
–25  
Figure 5. LO Input Schematic  
LO Inputs  
–30  
0.8  
1.1  
1.4  
1.7  
2.0  
2.3  
2.6  
The mixer’s LO input circuit, shown in Figure 5, consists  
of an integrated SPDT switch, a balun transformer, and  
a two-stage high-speed limiting differential amplifier to  
drive the mixer core. The LTC5541’s LO amplifiers are  
optimized for the 1.4GHz to 2.0GHz LO frequency range.  
LO frequencies above or below this frequency range may  
be used with degraded performance.  
FREQUENCY (GHz)  
5541 F06  
Figure 6. LO Input Return loss  
5541f  
11  
LTC5541  
APPLICATIONS INFORMATION  
T1  
The nominal LO input level is 0dBm although the limiting  
amplifiers will deliver excellent performance over a 6dB  
input power range. LO input power greater than 6dBm  
may cause conduction of the internal ESD diodes. Series  
capacitorsC3andC4optimizetheinputmatchandprovide  
DC blocking.  
IF  
OUT  
4:1  
C10  
L2  
R1  
L1  
(OPTION TO  
REDUCE  
DC POWER)  
V
CCIF  
100mA L3 (OR SHORT)  
C8  
20  
19  
18  
16  
+
IFBIAS  
IF  
IF  
IFGND  
The LO1 input impedance and input reflection coefficient,  
versus frequency, is shown in Table 3. The LO2 port  
is identical due to the symmetric device layout and  
packaging.  
V
CC  
IF  
AMP  
4mA  
Table 3. LO1 Input Impedance vs Frequency  
(at Pin 11, No External Matching, LOSEL = Low)  
LTC5541  
BIAS  
S11  
FREQUENCY  
(GHz)  
INPUT  
5541 F07  
IMPEDANCE  
MAG  
0.209  
0.225  
0.257  
0.267  
0.261  
0.255  
0.253  
0.251  
0.250  
0.254  
0.270  
ANGLE  
–65.2  
Figure 7. IF Amplifier Schematic with Bandpass Match  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
55.1 – j21.8  
34.5 – j11.4  
29.5 – j1.2  
29.6 + j6.3  
31.6 + j10.9  
33.5 + j13.7  
35.2 + j16.1  
36.9 + j17.8  
38.0 + j18.9  
38.3 + j19.5  
37.3 + j20.4  
–135.9  
–176.1  
+158.2  
+141.5  
+130.7  
+121.6  
+114.4  
+110.0  
+108.3  
+108.5  
transformer or discrete IF balun circuit. The evaluation  
board (see Figures 1 and 2) uses a 4:1 ratio IF transformer  
for impedance transformation and differential to single-  
ended transformation. It is also possible to eliminate the  
IF transformer and drive differential filters or amplifiers  
directly.  
The IF output impedance can be modeled as 300Ω in  
parallel with 2.3pF at IF frequencies. An equivalent small-  
signal model (including bondwire inductance) is shown in  
Figure 8. Frequency-dependent differential IF output  
impedance is listed in Table 4. This data is referenced  
to the package pins (with no external components) and  
includes the effects of IC and package parasitics.  
IF Output  
The IF amplifier, shown in Figure 7, has differential open-  
+
collector outputs (IF and IF ), a DC ground return pin  
(IFGND),andapinformodifyingtheinternalbias(IFBIAS).  
19  
18  
+
IF  
IF  
TheIFoutputsmustbebiasedatthesupplyvoltage(V ),  
CCIF  
which is applied through matching inductors L1 and L2.  
Alternatively, the IF outputs can be biased through the  
center tap of a transformer. Each IF output pin draws  
approximately 50mA of DC supply current (100mA total).  
IFGND (pin 16) must be grounded or the amplifier will not  
draw DC current. Grounding through inductor L3 may  
improve LO-IF and RF-IF leakage performance in some  
applications, but is otherwise not necessary. High DC  
resistanceinL3willreducetheIFamplifiersupplycurrent,  
which will degrade RF performance.  
0.9nH  
0.9nH  
R
C
IF  
IF  
LTC5541  
5541 F08  
Figure 8. IF Output Small-Signal Model  
For optimum single-ended performance, the differential  
IF outputs must be combined through an external IF  
5541f  
12  
LTC5541  
APPLICATIONS INFORMATION  
Bandpass IF Matching  
4:1  
IF  
50Ω  
OUT  
V
CCIF  
T1  
3.1-5.3V  
The IF output can be matched for IF frequencies as low  
as 90MHz or as high as 500MHz using the bandpass  
IF matching shown in Figure 1 and Figure 7. L1 and L2  
resonate with the internal IF output capacitance at the  
desired IF frequency. The value of L1, L2 is calculated  
as follows:  
C9  
C8  
L1  
L2  
IF  
19  
18  
+
IF  
LTC5541  
5541 F09  
2
L1, L2 = 1/[(2 π f ) • 2 • C ]  
IF  
IF  
Figure 9. IF Output with Lowpass Matching  
where C is the internal IF capacitance (listed in Table 4).  
IF  
Values of L1 and L2 are tabulated in Figure 1 for various IF  
frequencies.ForIFfrequenciesbelow90MHz,thevaluesof  
L1,L2becomeunreasonablyhighandthelowpasstopology  
shown in Figure 9 is preferred. Measured IF output return  
loss for bandpass IF matching is plotted in Figure 10.  
0
–5  
–10  
Table 4. IF Output Impedance vs Frequency  
DIFFERENTIAL OUTPUT  
L1, L2 = 100nH  
–15  
FREQUENCY (MHz)  
IMPEDANCE (R || X (C ))  
IF IF IF  
L1, L2 = 270nH  
L1, L2 = 150nH  
90  
329 || –j769 (2.3pF)  
314 || –j494 (2.3pF)  
305 || –j364 (2.3pF)  
310 || –j288 (2.3pF)  
303 || –j226 (2.35pF)  
289 || –j175 (2.4pF)  
273 || –j118 (2.7pF)  
–20  
140  
190  
240  
300  
380  
500  
50 100 150 200 250 300 350 400 450  
IF FREQUENCY (MHz)  
5541 F10  
Figure 10. IF Output Return Loss  
IF Amplifier Bias  
The IF amplifier delivers excellent performance with  
= 3.3V, which allows the V and V supplies  
Lowpass IF Matching  
V
CCIF  
CC  
CCIF  
AnalternativeIFmatchingnetworkshowninFigure9uses  
a lowpass topology, which provides excellent RF to IF  
to be common. With V  
increased to 5V, the RF input  
CCIF  
P1dB increases by approximately 3dB, at the expense of  
and LO to IF isolation. V  
is supplied through the  
CCIF  
higherpowerconsumption.Mixerperformanceat1950MHz  
center tap of the 4:1 transformer. Similar to the bandpass  
topology, L1 and L2 cancel out the reactive part of the  
internal capacitance and the impedance transformation is  
realized by the 4:1 transformer. This topology is preferred  
for low IF frequencies since L1 and L2 may be replaced  
with shorts. The LTC5541 demo board (see Figure 2) has  
been laid out to accommodate this matching topology  
with very few modifications.  
is shown in Table 5 with V  
= 3.3V and 5V. For the  
CCIF  
highestconversiongain,high-Qwire-woundchipinductors  
are recommended for L1 and L2, especially when using  
V
CCIF  
= 3.3V. Low-cost multilayer chip inductors may be  
substituted, with a slight reduction in conversion gain.  
Table 5. Performance Comparison with VCCIF = 3.3V and 5V  
(RF = 1950MHz, Low-Side LO, IF = 190MHz)  
I
G
C
P1dB  
(dBm)  
IIP3  
(dBm)  
NF  
(dB)  
CCIF  
V
(mA)  
(dB)  
CCIF  
3.3V  
5V  
100  
7.8  
11.3  
14.6  
26.4  
27.3  
9.6  
9.7  
102  
7.7  
5541f  
13  
LTC5541  
APPLICATIONS INFORMATION  
The IFBIAS pin (pin 20) is available for reducing the DC  
current consumption of the IF amplifier, at the expense of  
IIP3. This pin should be left open-circuited for optimum  
performance. The internal bias circuit produces a 4mA  
reference for the IF amplifier, which causes the amplifier  
to draw approximately 100mA. If resistor R1 is connected  
to pin 20 as shown in Figure 7, a portion of the reference  
current can be shunted to ground, resulting in reduced  
IF amplifier current. For example, R1 = 1kΩ will shunt  
away 1.5mA from pin 20 and the IF amplifier current will  
be reduced by 38% to approximately 62mA. The nominal,  
open-circuit DC voltage at pin 20 is 2.1V. Table 6 lists RF  
performance at 1950MHz versus IF amplifier current.  
The SHDN pin must be pulled high or low. If left floating,  
then the on/off state of the IC will be indeterminate. If a  
three-state condition can exist at the SHDN pin, then a  
pull-up or pull-down resistor must be used.  
LTC5541  
V
CC2  
6
5
SHDN  
500Ω  
Table 6. Mixer Performance with Reduced IF Amplifier Current  
(RF = 1950MHz, Low-Side LO, IF = 190MHz)  
VCCIF =3.3V  
R1  
I
G
IIP3  
P1dB  
NF  
CCIF  
C
(kΩ)  
(mA)  
100  
90  
(dB)  
7.8  
7.5  
7.4  
6.9  
(dBm)  
(dBm)  
(dB)  
OPEN  
4.7  
2.2  
1
26.4  
26.0  
25.3  
23.4  
11.4  
11.6  
11.7  
11.7  
9.6  
9.6  
9.5  
9.7  
81  
5541 F11  
62  
Figure 11. Shutdown Input Circuit  
V
= 5V  
CCIF  
R1  
I
G
IIP3  
P1dB  
NF  
CCIF  
C
Supply Voltage Ramping  
(kΩ)  
(mA)  
102  
92  
(dB)  
7.7  
7.5  
7.2  
6.7  
(dBm)  
(dBm)  
(dB)  
OPEN  
4.7  
2.2  
1
27.3  
27.2  
26.5  
24.7  
14.6  
14.7  
14.8  
14.0  
9.7  
9.6  
9.6  
9.7  
Fast ramping of the supply voltage can cause a current  
glitchintheinternalESDprotectioncircuits.Dependingon  
thesupplyinductance, thiscouldresultinasupplyvoltage  
transientthatexceedsthemaximumrating.Asupplyvoltage  
ramp time of greater than 1ms is recommended.  
83  
65  
Shutdown Interface  
Figure 11 shows a simplified schematic of the SHDN pin  
interface. To disable the chip, the SHDN voltage must be  
higher than 3.0V. If the shutdown function is not required,  
the SHDN pin should be connected directly to GND. The  
voltage at the SHDN pin should never exceed the power  
supply voltage (V ) by more than 0.3V. If this should  
CC  
occur, the supply current could be sourced through the  
ESD diode, potentially damaging the IC.  
5541f  
14  
LTC5541  
PACKAGE DESCRIPTION  
UH Package  
20-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1818 Rev Ø)  
0.70 p0.05  
5.50 p 0.05  
4.10 p 0.05  
2.70 p0.05  
2.60 REF  
2.70 p0.05  
PACKAGE  
OUTLINE  
0.25 p0.05  
0.65 BSC  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 s 45o  
CHAMFER  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.05  
TYP  
R = 0.125  
TYP  
0.75 p 0.05  
5.00 p 0.10  
19 20  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.70 p 0.10  
2.60 REF  
5.00 p 0.10  
2.70 p 0.10  
(UH20) QFN 0208 REV Ø  
0.200 REF  
0.25 p 0.05  
0.65 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
5541f  
15  
LTC5541  
TYPICAL APPLICATION  
Wideband Receiver  
Wideband Conversion Gain, IIP3  
and NF vs IF Output Frequency  
190MHz  
SAW  
190MHz  
BPF  
1nF  
V
IF  
CCIF  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
1nF  
150nH  
ADC  
AMP  
3.3V or 5V  
150nH  
22pF  
1μF  
IIP3  
RF = 1950 30MHz  
LO = 1760MHz  
+
IF  
IF  
P
= 0dBm  
LO  
22pF  
TEST CIRCUIT IN FIGURE 1  
LO2  
LO1  
LTC5541  
IMAGE  
BPF  
SYNTH 2  
IF  
2.2pF  
RF  
1920MHz  
TO  
RF  
ALTERNATE LO FOR  
FREQUENCY-HOPPING  
G
C
LNA  
LO  
1980MHz  
22pF  
SHDN  
(0V/3.3V)  
BIAS  
SYNTH 1  
SHDN  
NF  
220  
V
V
V
CC3  
LOSEL  
CC2  
CC1  
LO  
1760MHz  
160  
170  
180  
190  
200  
210  
V
CC  
3.3V  
LO SELECT  
(0V/3.3V)  
IF OUTPUT FREQUENCY (MHz)  
1μF  
22pF  
5541 TA03  
5541 TA04  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5527  
DESCRIPTION  
COMMENTS  
400MHz to 3.7GHz,  
5V Downconverting Mixer  
2.3dB Conversion Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz,  
5V/78mA Supply  
LTC6400-X  
LTC6401-X  
LTC6416  
LTC6412  
LT5554  
300MHz Low Distortion IF Amp/ADC Driver  
140MHz Low Distortion IF Amp/ADC Driver  
2GHz 16-Bit ADC Buffer  
31dB Linear Analog VGA  
Ultralow Distort IF Digital VGA  
Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O  
Fixed Gain of 8dB, 14dB, 20dB and 26dB; >40dBm OIP3 at 140MHz, Differential I/O  
40.25dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping  
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB  
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps  
LT5557  
400MHz to 3.8GHz 3.3V Downconverting Mixer 2.9dB Conversion Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz,  
3.3V/82mA Supply  
LT5575  
LT5578  
LT5579  
700MHz to 2.7GHz Direct Conversion I/Q  
Demodulator  
400MHz to 2.7GHz High Linearty Upconverting 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer  
Mixer  
1.5GHz to 3.8GHz High Linearity Upconverting 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports  
Mixer  
Integrated Baluns, 28dBm IIP3, 13dBm P1dB, 0.03dB I/Q Amplitude Match,  
0.4° Phase Match  
LTC5598  
5MHz to 1.6GHz I/Q Modulator  
27.7dBm OIP3 at 140MHz, 22.9dBm at 900MHz, –161.2dBm/Hz Noise Floor  
RF Power Detectors  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LT5537  
LT5570  
Wide Dynamic Range Log RF/IF Detector  
2.7GHz Mean-Squared Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
0.5dB Accuracy Over Temperature and >50dB Dynamic Range, Fast 500ns  
Rise Time  
LT5581  
6GHz Low Power RMS Detector  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply Current  
ADCs  
LTC2208  
LTC2262-14  
16-Bit, 130Msps ADC  
14-Bit, 150Msps ADC Ultralow Power at 1.8V  
Supply  
78dBFS Noise Floor, >83dB SFDR at 250MHz  
72.8dB SNR, 88dB SFDR, 149mW Power Consumption  
LTC2242-12  
12-Bit, 250Msps ADC  
65.4dB SNR, 78dB SFDR, 740mW Power Consumption  
5541f  
LT 1209 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY