LTC6078AHMS8#TR [Linear]

LTC6078 - Micropower Precision, Dual CMOS Rail-to-Rail Input/Output Amplifiers; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C;
LTC6078AHMS8#TR
型号: LTC6078AHMS8#TR
厂家: Linear    Linear
描述:

LTC6078 - Micropower Precision, Dual CMOS Rail-to-Rail Input/Output Amplifiers; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C

放大器 功率放大器 光电二极管
文件: 总20页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6078/LTC6079  
Micropower Precision,  
Dual/Quad CMOS  
Rail-to-Rail Input/Output Amplifiers  
U
DESCRIPTIO  
FEATURES  
Maximum Offset Voltage of 25µV (25°C)  
The LTC®6078/LTC6079 are dual/quad, low offset, low  
noise operational amplifiers with low power consumption  
and rail-to-rail input/output swing.  
Maximum Offset Drift of 0.7µV/°C  
Maximum Input Bias:  
1pA (25°C)  
50pA (≤85°C)  
Input offset voltage is trimmed to less than 25µV and the  
CMOS inputs draw less than 50pA of bias current. The low  
offset drift, excellent CMRR, and high voltage gain make  
it a good choice for precision signal conditioning.  
Micropower: 54µA per Amp  
95dB CMRR (Min)  
100dB PSRR (Min)  
Input Noise Voltage Density: 16nV/√Hz  
Rail-to-Rail Inputs and Outputs  
2.7V to 5.5V Operation Voltage  
LTC6078 Available in 8-Lead MSOP and 10-Lead DFN  
Packages; LTC6079 Available in 16-Lead SSOP and  
DFN Packages  
Eachamplifierdrawsonly5Acurrentona3Vsupply.The  
micropower,rail-to-railoperationoftheLTC6078/LTC6079  
is well suited for portable instruments and single supply  
applications.  
The LTC6078/LTC6079 are specified on power supply  
voltages of 3V and 5V from –40 to 125°C. The dual am-  
plifier LTC6078 is available in 8-lead MSOP and 10-lead  
DFN packages. The quad amplifier LTC6079 is available  
in 16-lead SSOP and DFN packages.  
U
APPLICATIO S  
Photodiode Amplifier  
High Impedance Sensor Amplifier  
Microvolt Accuracy Threshold Detection  
Instrumentation Amplifiers  
Battery Powered Applications  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patent Pending.  
U
TYPICAL APPLICATIO  
Thermocouple Signal Conditioner  
V
Distribution  
OS  
14  
12  
10  
8
LTC6078MS8  
5V  
SMT  
1/4W  
150k  
V
V
= 3V  
S
CM  
NORMALLY  
FLOATING  
= 0.5V  
T
= 25°C  
A
+
1/2  
LTC6078  
0.1µF  
OUT = 10mV/°C  
0°C TO 500°C 0.5°C  
OMEGA  
5TC-TT-K-30-36  
THERMOCOUPLE  
SMT  
1/4W  
150k  
5V  
6
2.49M  
1k  
K
40.6µV/°C  
4
10k  
LT1025  
100pF  
2
5.6pF  
60789 TA01a  
0
AMPLIFIER PROTECTED TO 190V, ACCIDENTAL CONTACT  
–11 –9 –7 –5 –3 –1  
1
3
5
7
9
V
(µV)  
OS  
60789 TA01b  
60789fa  
1
LTC6078/LTC6079  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
+
Total Supply Voltage (V to V )...................................6V  
Specified Temperature Range (Note 4)  
+
Input Voltage...................................................... V to V  
LTC6078C, LTC6079C.............................. 0°C to 70°C  
LTC6078I, LTC6079I ............................ –40°C to 85°C  
LTC6078H, LTC6079H........................ –40°C to 125°C  
Junction Temperature  
DFN Packages................................................... 125°C  
All Other Packages............................................ 150°C  
Storage Temperature Range  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3)  
LTC6078C, LTC6079C.......................... –40°C to 85°C  
LTC6078I, LTC6079I ............................ –40°C to 85°C  
LTC6078H, LTC6079H........................ –40°C to 125°C  
(Not Available in DFN Package)  
DFN Packages.................................... –65°C to 125°C  
All Other Packages............................. –65°C to 150°C  
Lead Temperature (Soldering, 10 Sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
DD PART  
MARKING*  
TOP VIEW  
LTC6078CDD  
LTC6078IDD  
LBBB  
LBBB  
+
OUTA  
–INA  
+INA  
1
2
3
4
5
10  
9
V
TOP VIEW  
+
OUTB  
–INB  
+INB  
SHDN_B  
OUTA 1  
–INA 2  
8 V  
7 OUTB  
6
5
A
ORDER PART  
NUMBER  
MS8 PART  
MARKING*  
8
A
B
+INA 3  
–INB  
+INB  
B
V
7
V
4
SHDN_A  
6
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
LTC6078ACMS8  
LTC6078CMS8  
LTC6078AIMS8  
LTC6078IMS8  
LTC6078AHMS8  
LTC6078HMS8  
LTAJZ  
LTAJZ  
LTAJZ  
LTAJZ  
LTAJZ  
LTAJZ  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 200°C/W  
JMAX  
JA  
T
= 125°C, θ = 43°C/W  
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V  
TOP VIEW  
ORDER PART  
NUMBER  
DHC PART  
MARKING*  
TOP VIEW  
OUTA  
–INA  
+INA  
1
2
3
4
5
6
7
8
16 OUTD  
15 –IND  
OUTA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUTD  
A
B
D
C
–INA  
+INA  
–IND  
+IND  
A
B
D
C
LTC6079CDHC  
LTC6079IDHC  
6079  
6079  
14 +IND  
+
V
13 V  
+
V
V
+INB  
–INB  
OUTB  
NC  
12 +INC  
11 –INC  
10 OUTC  
ORDER PART  
NUMBER  
GN PART  
MARKING  
+INB  
–INB  
OUTB  
NC  
+INC  
–INC  
OUTC  
NC  
LTC6079CGN  
LTC6079IGN  
LTC6079HGN  
6079  
6079I  
6079H  
9
NC  
DHC PACKAGE  
16-LEAD (5mm × 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 150°C, θ = 110°C/W  
T
JMAX  
JA  
T
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grades and parametric grades are identified by a label on the shipping container.  
60789fa  
2
LTC6078/LTC6079  
The  
denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
+
temperature range, otherwise specifications are at T = 25°C. Test conditions are V = 3V, V = 0V, V = 0.5V unless otherwise noted.  
A
CM  
SYMBOL PARAMETER  
CONDITIONS  
C, I SUFFIXES  
H SUFFIX  
TYP  
UNITS  
MIN  
TYP  
MAX  
MIN  
MAX  
V
Offset Voltage (Note 5)  
LTC6078MS8, LTC6078AMS8, LTC6079GN  
OS  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0.5V, 2.5V  
= 0.5V, 2.5V  
= 0.5V  
7
25  
30  
7
25  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
LTC6078DD, LTC6079DHC  
LTC6078AMS8  
LTC6078MS8  
7
20  
25  
30  
30  
35  
70  
25  
30  
35  
95  
135  
165  
= 0.5V  
97  
LTC6079GN  
= 0.5V  
115  
120  
150  
LTC6078DD  
LTC6079DHC  
= 0.5V  
= 0.5V  
ΔV ⁄ΔT Input Offset Voltage Drift  
LTC6078AMS8  
LTC6078MS8  
LTC6078DD, LTC6079GN  
LTC6079DHC  
+
0.2  
0.7  
1.1  
1.4  
1.8  
0.2  
0.3  
0.7  
1.1  
1.4  
μV/°C  
μV/°C  
μV/°C  
μV/°C  
OS  
(Note 5)  
0.3  
0.3  
I
I
Input Bias Current  
(Note 6)  
V
V
= V /2  
0.2  
10  
1
50  
0.2  
150  
1
350  
pA  
pA  
B
CM  
CM  
+
= V /2  
+
Input Offset Current  
(Note 6)  
V
V
= V /2  
0.1  
0.5  
0.1  
10  
pA  
pA  
OS  
CM  
CM  
+
= V /2  
25  
100  
e
n
Input Noise Voltage  
0.1Hz to 10Hz  
1
1
µV  
P-P  
Input Noise Voltage Density  
f = 1kHz  
f = 10kHz  
18  
16  
18  
16  
nV/√Hz  
nV/√Hz  
i
Input Noise Current Density  
(Note 8)  
0.56  
0.56  
fA/√Hz  
n
+
+
Input Common Mode Range  
Differential Input Capacitance  
V
V
V
V
V
pF  
pF  
C
C
10  
18  
10  
18  
DIFF  
Common Mode Input  
Capacitance  
CM  
CMRR  
Common Mode Rejection  
Ratio  
All Packages  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V to 3V  
= 0V to 3V  
= 0V to 1.7V  
= 0V to 3V  
= 0V to 1.7V  
= 0V to 3V  
= 0V to 1.7V  
= 0V to 3V  
= 0V to 1.7V  
95  
87  
91  
85  
89  
84  
88  
83  
87  
110  
105  
103  
102  
102  
102  
102  
100  
102  
95  
87  
91  
85  
89  
84  
88  
110  
103  
103  
100  
102  
100  
102  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LTC6078AMS8  
LTC6078AMS8  
LTC6078MS8  
LTC6078MS8  
LTC6079GN  
LTC6079GN  
LTC6078DD, LTC6079DHC  
LTC6078DD, LTC6079DHC  
PSRR  
Power Supply Rejection Ratio V = 2.7V to 5.5V  
100  
97  
120  
100  
97  
120  
dB  
dB  
S
V
OUT  
Output Voltage, High  
No Load  
SOURCE  
SOURCE  
1
1
mV  
mV  
mV  
+
(Referred to V )  
I
I
= 0.2mA  
= 2mA  
35  
350  
15  
40  
400  
15  
150  
150  
Output Voltage, Low  
No Load  
1
1
mV  
mV  
mV  
(Referred to V )  
I
I
= 0.2mA  
10  
30  
300  
10  
35  
350  
SINK  
SINK  
= 2mA  
= 10k, 0.5V ≤ V ≤ 2.5V  
OUT  
100  
100  
A
VOL  
Large-Signal Voltage Gain  
R
LOAD  
115  
130  
110  
125  
dB  
I
Output Short-Circuit Current Source  
Sink  
5
7
10  
14  
4
6
10  
14  
mA  
mA  
SC  
SR  
Slew Rate  
A = 1  
0.05  
750  
0.05  
750  
V/μs  
V
GBW  
Gain-Bandwidth Product  
R = 100k  
L
420  
360  
420  
320  
kHz  
kHz  
(f  
TEST  
= 10kHz)  
Φ
Phase Margin  
R = 10k, C = 200pF  
66  
24  
66  
24  
Deg  
μs  
0
L
L
t
Settling Time 0.1%  
A = 1, 1V Step  
V
S
60789fa  
3
LTC6078/LTC6079  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
+
temperature range, otherwise specifications are at T = 25°C. Test conditions are V = 3V, V = 0V, V = 0.5V unless otherwise noted.  
A
CM  
SYMBOL PARAMETER  
CONDITIONS  
C, I SUFFIXES  
H SUFFIX  
TYP  
UNITS  
MIN  
TYP  
MAX  
MIN  
MAX  
I
Supply Current  
(per Amplifier)  
No Load  
54  
72  
78  
54  
72  
80  
μA  
μA  
S
Shutdown Current  
(per Amplifier)  
Shutdown, V  
≤ 0.8V, LTC6078DD  
0.3  
1
μA  
SHDN  
V
S
Supply Voltage Range  
Channel Separation  
Shutdown Logic  
Guaranteed by the PSRR Test  
f = 10kHz, R = 10k  
2.7  
2
5.5  
2.7  
2
5.5  
0.8  
V
–110  
–110  
dB  
s
L
SHDN High, LTC6078DD  
SHDN Low, LTC6078DD  
V
V
0.8  
t
t
Turn on Time  
V
SHDN  
V
SHDN  
V
SHDN  
= 0.8V to 2V, LTC6078DD  
= 2V to 0.8V, LTC6078DD  
= 0V, LTC6078DD  
50  
2
50  
2
µs  
µs  
μA  
ON  
Turn off Time  
OFF  
Leakage of SHDN Pin  
0.6  
The  
denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C. Test  
A
+
conditions are V = 5V, V = 0V, V = 0.5V unless otherwise noted.  
CM  
SYMBOL PARAMETER  
CONDITIONS  
C, I SUFFIXES  
H SUFFIX  
TYP  
UNITS  
MIN  
TYP  
MAX  
MIN  
MAX  
V
Offset Voltage  
LTC6078MS8, LTC6078AMS8, LTC6079GN  
OS  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0.5V  
= 0.5V  
= 0.5V  
= 0.5V  
= 0.5V  
= 0.5V  
= 0.5V  
10  
10  
20  
25  
30  
30  
35  
30  
35  
10  
30  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
LTC6078DD, LTC6079DHC  
LTC6078AMS8  
LTC6078MS8  
75  
25  
30  
35  
100  
140  
170  
102  
120  
125  
155  
LTC6079GN  
LTC6078DD  
LTC6079DHC  
ΔV ⁄ΔT Input Offset Voltage Drift  
LTC6078AMS8  
0.2  
0.7  
1.1  
1.4  
1.8  
0.2  
0.3  
0.7  
1.1  
1.4  
μV/°C  
μV/°C  
μV/°C  
μV/°C  
OS  
(Note 7)  
LTC6078MS8  
LTC6078DD, LTC6079GN  
LTC6079DHC  
0.3  
0.3  
+
I
I
Input Bias Current  
Input Offset Current  
V
V
= V /2  
0.2  
10  
1
0.2  
1
pA  
pA  
B
CM  
CM  
+
= V /2  
50  
150  
350  
+
V
CM  
V
CM  
= V /2  
0.1  
0.5  
0.1  
10  
pA  
pA  
OS  
+
= V /2  
25  
100  
e
n
Input Noise Voltage  
0.1Hz to 10Hz  
1
1
µV  
P-P  
Input Noise Voltage Density  
f = 1kHz  
f = 10kHz  
18  
16  
18  
16  
nV/√Hz  
nV/√Hz  
i
n
Input Noise Current Density  
(Note 8)  
0.56  
0.56  
fA/√Hz  
+
+
Input Common Mode Range  
Differential Input Capacitance  
V
V
V
V
V
pF  
pF  
C
C
10  
18  
10  
18  
DIFF  
Common Mode Input  
Capacitance  
CM  
60789fa  
4
LTC6078/LTC6079  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
+
temperature range, otherwise specifications are at T = 25°C. Test conditions are V = 5V, V = 0V, V = 0.5V unless otherwise noted.  
A
CM  
SYMBOL PARAMETER  
CONDITIONS  
C, I SUFFIXES  
H SUFFIX  
TYP  
UNITS  
MIN  
TYP  
MAX  
MIN  
MAX  
CMRR  
Common Mode Rejection  
Ratio  
All Packages  
LTC6078AMS8  
LTC6078AMS8  
LTC6078MS8  
LTC6078MS8  
LTC6079GN  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V to 5V  
= 0V to 5V  
= 0V to 3.7V  
= 0V to 5V  
= 0V to 3.7V  
= 0V to 5V  
= 0V to 3.7V  
= 0V to 5V  
= 0V to 3.7V  
91  
90  
94  
88  
90  
86  
90  
86  
90  
105  
105  
105  
100  
105  
100  
105  
100  
105  
91  
90  
94  
88  
90  
86  
90  
105  
105  
105  
100  
105  
100  
105  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LTC6079GN  
LTC6078DD, LTC6079DHC  
LTC6078DD, LTC6079DHC  
PSRR  
Power Supply Rejection Ratio V = 2.7V to 5.5V  
100  
97  
120  
120  
dB  
dB  
S
97  
V
Output Voltage, High  
No Load  
2
2
mV  
mV  
mV  
OUT  
+
(Referred to V )  
I
= 0.5mA  
= 5mA  
50  
500  
20  
55  
550  
20  
SOURCE  
I
200  
200  
SOURCE  
Output Voltage, Low  
No Load  
1
1
mV  
mV  
mV  
(Referred to V )  
I
I
= 0.5mA  
15  
40  
400  
15  
45  
450  
SINK  
SINK  
= 5mA  
= 10k, 0.5V ≤ V ≤ 4.5V  
OUT  
150  
150  
A
VOL  
Large-Signal Voltage Gain  
R
LOAD  
115  
130  
110  
125  
dB  
I
Output Short-Circuit Current Source  
Sink  
14  
14  
25  
25  
12  
12  
25  
25  
mA  
mA  
SC  
SR  
Slew Rate  
A = 1  
0.05  
750  
0.05  
750  
V/μs  
V
GBW  
Gain-Bandwidth Product  
R = 100k  
L
420  
360  
420  
320  
kHz  
kHz  
(f  
TEST  
= 10kHz)  
Φ
Phase Margin  
R = 10k, C = 200pF  
66  
24  
55  
66  
24  
55  
Deg  
μs  
0
L
L
t
I
Settling Time 0.1%  
A = 1, 1V Step  
V
S
Supply Current  
(per Amplifier)  
No Load  
74  
82  
74  
84  
μA  
μA  
S
Shutdown Current  
(per Amplifier)  
Shutdown, V  
≤ 1.2V, LTC6078DD  
1.5  
5
1.5  
5
μA  
SHDN  
V
S
Supply Voltage Range  
Channel Separation  
Shutdown Logic  
Guaranteed by the PSRR Test  
f = 10kHz, R = 10k  
2.7  
3.5  
5.5  
2.7  
3.5  
5.5  
V
–110  
–110  
dB  
s
L
SHDN High, LTC6078DD  
SHDN Low, LTC6078DD  
V
V
1.2  
1.2  
t
t
Turn on Time  
V
SHDN  
V
SHDN  
V
SHDN  
= 1.2V to 3.5V, LTC6078DD  
= 1.2V to 3.5V, LTC6078DD  
= 0V, LTC6078DD  
50  
2
50  
2
µs  
µs  
μA  
ON  
Turn off Time  
OFF  
Leakage of SHDN Pin  
0.6  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum. This depends on the power supply voltage  
and how many amplifiers are shorted.  
performance from 0°C to 70°C. The LTC6078C/LTC6079C are designed,  
characterized and expected to meet specified performance from –40°C  
to 85°C but are not tested or QA sampled at these temperatures. The  
LTC6078I/LTC6079I are guaranteed to meet specified performance from  
–40°C to 85°C. The LTC6078H/LTC6079H are guaranteed to meet specified  
performance from –40°C to 125°C.  
Note 5: V and V drift are 100% tested at 25°C and 125°C.  
OS  
OS  
Note 3: The LTC6078C/LTC6079C and LTC6078I/LTC6079I are guaranteed  
functional over the operating temperature range of –40°C to 85°C. The  
LTC6078H/LTC6079H are guaranteed functional over the operating  
temperature range of –40°C to 125°C.  
Note 6: I and I are guaranteed by the V = 5V test.  
B OS S  
Note 7: V drift is guaranteed by the V = 3V test.  
OS  
S
–19  
Note 8: Current noise is calculated from i = √2qI , where q = 1.6 • 10  
n
B
coulomb.  
Note 4: The LTC6078C/LTC6079C are guaranteed to meet specified  
60789fa  
5
LTC6078/LTC6079  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
vs V  
V
vs V  
CM  
V
Distribution  
OS  
CM  
OS  
OS  
14  
12  
10  
8
40  
30  
100  
80  
LTC6078MS8  
V
T
= 3V  
= 25°C  
V
T
= 5V  
= 25°C  
S
A
S
A
V
V
T
= 3V  
S
CM  
A
= 0.5V  
REPRESENTATIVE PARTS  
REPRESENTATIVE PARTS  
60  
= 25°C  
20  
40  
10  
20  
0
0
6
–20  
–40  
–60  
–80  
–100  
–10  
–20  
–30  
–40  
4
2
0
–11 –9 –7 –5 –3 –1  
1
(µV)  
3
5
7
9
0.5  
1.0  
2.0  
0.5 1.0  
2.0  
4.0  
4.5 5.0  
3.5  
0
2.5  
3.0  
0
2.5 3.0  
1.5  
(V)  
1.5  
V
OS  
V
V
(V)  
CM  
CM  
60789 G01  
60789 G02  
60789 G03  
V
Drift Distribution  
Input Bias vs Temperature  
Input Bias vs V  
CM  
OS  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
180  
160  
140  
120  
100  
80  
30  
24  
LTC6078MS8  
V
V
= 5V  
V
= 5V  
S
S
V
V
T
= 3V  
= 0.5V  
= –40°C TO 125°C  
= 2.5V  
CM  
S
CM  
A
18  
12  
6
T
= 70°C  
–0  
A
–6  
60  
–12  
–18  
–24  
–30  
T
= 85°C  
A
40  
20  
0
0
–0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
µV/°C  
TEMPERATURE (°C)  
V
(V)  
CM  
60789 G04  
60789 G06  
60789 G05  
0.1Hz to 10Hz Output Voltage  
Noise  
Input Bias vs V  
Voltage Noise Spectrum  
CM  
400  
300  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
= 125°C  
V
V
= 5V  
S
S
A
T
= 0.5V  
CM  
200  
100  
–0  
–100  
–200  
–300  
–400  
V
V
= 3V  
CM  
S
= 0.5V  
V
V
= 5V  
S
= 0.5V  
CM  
0
1
2
3
4
5
1
10  
100  
1k  
10k  
100k  
TIME (5s/DIV)  
FREQUENCY (Hz)  
60789 G09  
V
(V)  
CM  
60789 G07  
60789 G08  
60789fa  
6
LTC6078/LTC6079  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Swing vs  
Load Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
+V  
60  
50  
40  
30  
20  
10  
0
65  
S
PER AMPLIFIER  
V
= 0.5V  
CM  
+V –0.5  
S
SOURCE  
60  
55  
50  
45  
40  
+V –1.0  
V
V
= 5V  
= 3V  
S
S
S
+V –1.5  
S
+V –2.0  
S
V
V
= 5V  
CM  
S
= 0.7V  
–V +2.0  
S
–V +1.5  
S
T
T
T
= 125°C  
–V +1.0  
S
A
A
A
PER AMPLIFIER  
= 25°C  
SINK  
–V +0.5  
S
V
A
= 0.5V  
= –55°C  
CM  
T
= 25°C  
–V  
S
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
60789 G10  
60789 G11  
60789 G12  
Open Loop Gain vs Frequency  
CMRR vs Frequency  
PSRR vs Frequency  
100  
80  
100  
120  
100  
80  
140  
120  
100  
80  
R
R
= 10k  
= 100k  
V
V
A
R
= 5V  
V
V
= 5V  
CM  
T = 25°C  
A
L
L
S
S
= 0.5V  
= 0.5V  
CM  
80  
60  
40  
20  
0
T
= 25°C  
= 1k  
L
60  
PHASE  
GAIN  
40  
60  
20  
40  
60  
0
20  
40  
V
V
C
= 5V  
S
= 0.5V  
CM  
–20  
–40  
–20  
0
20  
= 200pF  
L
T
= 25°C  
A
–40  
10M  
–20  
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
100  
1k  
10k  
100k  
1M  
10M  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
60789 G13  
60789 G14  
60789 G15  
Output Impedance vs Frequency  
Small Signal Transient  
Large Signal Transient  
10000  
1000  
100  
10  
V
V
A
= 5V  
CM  
= 25°C  
S
= 0.5V  
T
A
= 100  
V
A
= 10  
V
20mV/DIV  
1V/DIV  
A
= 1  
V
1
60789 G17  
60789 G18  
0.1  
20µs/DIV  
200µs/DIV  
V
R
C
= 5V  
V
R
C
= 5V  
S
L
L
S
L
L
= 10k  
= 10k  
0.01  
= 100pF  
= 100pF  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
60789 G16  
60789fa  
7
LTC6078/LTC6079  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Disabled Output Impedence vs  
Frequency  
Overshoot vs C  
Channel Separation vs Frequency  
L
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
1000  
100  
10  
V
V
= 5V  
CM  
= 10k  
V
V
T
= 5V  
CM  
= 25°C  
V
V
T
= 5V  
S
S
S
= 0.5V  
= 0.5V  
= 0.5V  
CM  
R
L
= 25°C  
A
A
A
= 1  
V
A
= 1  
V
1
A
= 10  
V
0.1  
0.01  
0
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
60789 G19  
60789 G20  
60789 G21  
U
U
U
PI FU CTIO S  
OUT: Amplifier Output  
–IN: Inverting Input  
SHDN_A:ShutdownPinofAmplifierA,activelowandonly  
valid for LTC6078DD. An internal current source pulls the  
+
pin to V when floating.  
+IN: Noninverting Input  
V+: Positive Supply  
SHDN_B:ShutdownPinofAmplifierB,activelowandonly  
valid for LTC6078DD. An internal current source pulls the  
+
pin to V when floating.  
V–: Negative Supply  
NC: Not internally connected.  
Exposed Pad: Connected to V .  
60789fa  
8
LTC6078/LTC6079  
U
W U U  
APPLICATIO S I FOR ATIO  
Preserving Input Precision  
Capacitive Load  
Preserving input accuracy of the LTC6078/LTC6079 re-  
quires that the application circuit and PC board layout do  
not introduce errors comparable or greater than the 10µV  
typical offset of the amplifiers. Temperature differentials  
across the input connections can generate thermocouple  
voltages of 10’s of microvolts so the connections to the  
input leads should be short, close together and away from  
heatdissipatingcomponents. Aircurrentacrosstheboard  
can also generate temperature differentials.  
LTC6078/LTC6079 can drive capactive load up to 200pF in  
unity gain. The capacitive load driving capability increases  
as the amplifier is used in higher gain configurations. A  
small series resistance between the ouput and the load  
further increases the amount of capacitance the amplifier  
can drive.  
SHDN Pins  
Pins5and6areusedforpowershutdownontheLTC6078  
in the DD package. If they are floating, internal current  
sources pull Pins 5 and 6 to V+ and the amplifiers operate  
normally. Inshutdown, theamplifieroutputishighimped-  
ance, and each amplifier draws less than 2µA current.  
The extremely low input bias currents (0.2pA typical) al-  
low high accuracy to be maintained with high impedance  
sources and feedback resistors. Leakage currents on the  
PC board can be higher than the input bias current. For  
example, 10GΩ of leakage between a 5V supply lead and  
an input lead will generate 500pA! Surround the input  
leads with a guard ring driven to the same potential as the  
input common mode to avoid excessive leakage in high  
impedance applications.  
Whenthechipisturnedon,thesupplycurrentperamplifier  
is about 35µA larger than its normal values for 50µs.  
Rail-to-Rail Input  
TheinputstageofLTC6078/LTC6079combinesbothPMOS  
and NMOS differential pairs, extending its input common  
mode voltage range to both positive and negative supply  
voltages. At high input common mode range, the NMOS  
pair is on. At low common mode range, the PMOS pair is  
on. The transition happens when the common voltage is  
between 1.3V and 0.9V below the positive supply.  
Input Clamps  
Large differential voltages across the inputs over very  
long time periods can impact the precisely trimmed input  
offset voltage of the LTC6078/LTC6079. As an example,  
a 2V differential voltage between the inputs over a period  
of 100 hours can shift the input offset voltage by tens  
of microvolts. If the amplifier is to be subjected to large  
differential input voltages, adding back-to-back diodes  
between the two inputs will minimize this shift and retain  
the DC precision. If necessary, current-limiting series  
resistors can be added in front of the diodes, as shown  
in Figure 1. These diodes are not necessary for normal  
closed loop applications.  
Thermal Hysteresis  
Figure2showstheinputoffsethysteresisofLTC6078MS8  
for3thermalcyclesfrom45°Cto90°C. Thetypicaloffset  
shift after the 3 cycles is only 1µV.  
50  
V
V
= 3V  
CM  
S
= 0.5V  
45  
40  
35  
30  
25  
20  
15  
10  
5
1ST CYCLE  
2ND CYCLE  
3RD CYCLE  
500Ω  
+
500Ω  
60789 F01  
Figure 1. Op Amp with Input Voltage Clamp  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
V
CHANGE FROM INITIAL VALUE  
OS  
60789 F02  
Figure 2. V Thermal Hysteresis of LTC6078MS8  
OS  
60789fa  
9
LTC6078/LTC6079  
U
W U U  
APPLICATIO S I FOR ATIO  
PC Board Layout  
the fourth side. Figure 3 shows the layout of a LTC6078DD  
with slots at three sides.  
Mechanical stress on a PC board and soldering-induced  
stress can cause the V and V drift to shift. The DD  
OS  
OS  
and DHC packages are more sensitive to stress. A simple  
way to reduce the stress-related shifts is to mount the IC  
near the short edge of the PC board, or in a corner. The  
board edge acts as a stress boundary, or a region where  
the flexure of the board is minimum. The package should  
always be mounted so that the leads absorb the stress and  
not the package. The package is generally aligned with the  
leads paralled to the long side of the PC board.  
LONG DIMENSION  
SLOTS  
ThemosteffectivetechniquetorelievethePCboardstress  
is to cut slots in the board around the op amp. These slots  
can be cut on three sides of the IC and the leads can exit on  
60789 F03  
Figure 3. Vertical Orientation of LTC6078DD with Slots  
W
W
SI PLIFIED SCHE ATIC  
+
V
R1  
R2  
M10  
M11  
M8  
C1  
I1  
1µA  
+
I2  
V
A1  
+
V
V
BIAS  
M5  
V
D4  
+IN  
D7  
+
V
D3  
OUTPUT  
CONTROL  
M6 M7  
M1 M2  
OUT  
D6  
D8  
V
+
V
–IN  
V
D5  
D2  
A2  
BIAS  
GENERATION  
SHDN  
V
C2  
D1  
NOTE: SHDN IS ONLY AVAILABLE  
IN THE DFN10 PACKAGE  
M3  
M4  
M9  
V
R3  
R4  
60789 SS  
V
Simplified Schematic of the Amplifier  
60789fa  
10  
LTC6078/LTC6079  
U
TYPICAL APPLICATIO S  
2.7V High Side Current Sense  
V
DD  
V
DD  
R1  
+
R
S
1/2  
2N7002  
LTC6078  
V
OUT  
I
L
R2  
LOAD  
R2  
R1  
R2  
R1  
V
= I  
• R – V  
S
OS  
OUT  
L
0V V  
V – V  
DD  
60789 TA02  
OUT  
GS, MOSFET  
Low Average Power IR LED Driver  
V
DD  
V
DD  
ON/OFF  
HSDL-4220  
2N7002  
909k  
5V  
0V  
+
1/2  
LTC6078  
100k  
SHDN  
49.9Ω  
VARYING ON DUTY CYCLE REDUCES  
AVERAGE POWER CONSUMPTION  
60789 TA03  
Accelerometer Signal Conditioner  
2.5V  
COLUMBIA RESEARCH LABS  
3021 ACCELERATOR  
+
1/2  
LTC6078  
V
OUT  
1M  
–2.5V  
1000pF  
V
= 60mV/g  
OUT  
WHERE g = EARTH'S GRAVITATIONAL CONSTANT  
60789 TA04  
Photodiode Amplifier  
2.5V  
1M  
3.8pF  
1/2  
TEMD1000  
IR PHOTODIODE  
V
OUT  
LTC6078  
+
–2.5V  
AT 870nm (IR),  
OUT  
V
= 600mV/µW RECEIVED POWER  
60789 TA05  
60789fa  
11  
LTC6078/LTC6079  
U
TYPICAL APPLICATIO S  
6 Decade Current Log Amplifier  
C
+
100Ω  
+
B
100Ω  
33µF  
Q1  
Q2  
100k  
133k  
V
DD  
1000pF  
A
1.58k  
D
+
PRECISION  
+
RESISTOR PT146  
1k  
I
IN  
V
OUT  
LT6650  
V
CC  
+3500ppm/°C  
IN  
OUT  
GND  
60789 TA07  
10nA I 10mA  
IN  
1µF  
1µF  
Q1, Q2: DIODES INC. DMMT3906W  
A TO D: LTC6079  
V
150mV • log (I ) + 1.23V, I IN AMPS  
OUT  
IN IN  
Humidity Sensor Signal Conditioner  
V
V
DD  
5V  
SUP  
IN  
OUT  
5.2V TO 20V  
LT1761-5  
1µF  
0.01µF  
1µF  
SHDN BYP  
V
V
DD  
DD  
49.9k  
100k  
V
BIAS  
49.9k  
100k  
M1  
GAIN TRIM  
1k  
BAT54S  
75pF  
H
V
DD  
34.8k  
1000pF  
100k  
+
LTC6906  
OUT  
499k  
1k  
V
B
DD  
V
100k  
OUT  
0.1µF  
GRD GND  
0V TO 5V  
A
C
0% TO 100% RH  
0.1µF  
V
+
+
BIAS  
V
SET DIV  
DD  
V
DD  
10k 47.5k  
1M  
A TO C: LTC6079  
60789 TA08  
H: GE PARAMETRICS G-CAP 2 HUMIDITY SENSOR  
148pF TO 178pF, 0% TO 90% RH  
M1: VN2222L  
100k  
OFFSET TRIM  
60789fa  
12  
LTC6078/LTC6079  
U
TYPICAL APPLICATIO S  
LDO Load Balancing  
V
BALLAST RESISTANCE:  
IN  
IN  
OUT  
1.8V TO 20V  
IDENTICAL LENGTH  
THERMALLY MATED  
WIRE OR PCB TRACE  
+
LT1763  
0.01µF  
10µF  
10µF  
SHDN BYP  
FB  
R1  
2k  
R2  
2k  
1.22V1 +  
R1  
V
IN  
OUT  
LT1763  
OUT =  
R2  
0.01µF  
10µF  
SHDN BYP  
FB  
100Ω  
I
LOAD  
LOAD  
2k  
2k  
1k  
A
0.1µF  
+
10k  
IN  
OUT  
LT1763  
0.01µF  
10µF  
SHDN BYP  
FB  
100Ω  
2k  
2k  
0 I  
1.5A  
OUT  
1k  
LOAD  
0.1µF  
1.22V V  
V  
DD  
V
DD  
LDO LOADS MATCH TO WITHIN  
1mA WITH 10mOF BALLAST  
RESISTANCE (2 INCHES OF AWG  
28 GAUGE STRANDED WIRE)  
A, B: LTC6078  
+
B
10k  
60789 TA09  
pH Probe Amplifier  
PRECISION  
RESISTOR PT146  
1k  
+3500ppm/°C  
+
1k  
A
pH  
V
CC  
+
57.6k  
V
OUT  
B
LT1634  
1.25V  
1000pF  
SENSOR: SENSOREX S200C pH PROBE  
LTC6078 INPUT IMPEDANCE 1TOR GREATER  
= 1.25V + 59.2mV • (pH – 7)  
60789 TA10  
V
OUT  
A, B: LTC6078  
60789fa  
13  
LTC6078/LTC6079  
U
TYPICAL APPLICATIO S  
Thermistor Amplifier with Overtemperature Alarm  
V
DD  
+
1k  
T
D
OV  
LT1634  
1.25V  
29.4k  
71.5k  
0.01µF  
200k  
+
B
+
3200Ω  
V
C
OUT  
+
YSI #44201  
THERMOLINEAR  
NETWORK  
A
6250Ω  
100k  
100k  
100k  
60789 TA12  
143k  
20k  
178k  
50k  
H
B
OFFSET TRIM  
GAIN TRIM  
A TO D: LTC6079, V = 2.7V TO 5.5V, V = GND  
DD  
SS  
V
OV  
= 0 1V FOR 0°C TO 100°C, LINEAR  
OUT  
T
HIGH WHEN T 90°C  
Precision Sample-and-Hold  
LTC6943  
V
DD  
6
7
9
1
LTC6078  
A
LTC6078  
V
OUT  
B
5
4
V
+
+
IN  
0.1µF  
I
< 200µA  
SUPPLY  
14  
VOLTAGE DROOP = 130nV/ms TYP  
SLEW RATE = 0.05V/ms TYP  
ACQ TIME = 84µs TYP TO 0.1%  
60789 TA13  
S/H  
60789fa  
14  
LTC6078/LTC6079  
U
TYPICAL APPLICATIO S  
Precision Voltage-Controlled Current Source  
V
DD  
+
V
IN  
1/2  
LTC6078  
V
IN  
I
I
=
OUT  
R
SET  
< 0.1% AT I  
= 1µA  
ERROR  
OUT  
0.68µF  
1k  
6
7
9
R
SET  
1µF  
1µF  
1k  
10  
I
OUT  
11 12  
15  
LTC6943  
14  
0.001µF  
60789 TA14  
60Hz Notch  
R2  
2.5V  
R1  
1/2  
V
OUT  
LTC6078  
10M  
10M  
+
V
IN  
540pF  
270pF  
–2.5V  
270pF  
R2  
R1  
V
= 1 +  
• V  
IN  
OUT  
(
)
5M  
NOTCH DEPTH = –60dB AT 60Hz, RTI  
60789 TA15  
60789fa  
15  
LTC6078/LTC6079  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 0.05  
3.50 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 0.10  
10  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
60789fa  
16  
LTC6078/LTC6079  
U
PACKAGE DESCRIPTIO  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706)  
0.65 0.05  
3.50 0.05  
1.65 0.05  
2.20 0.05 (2 SIDES)  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
4.40 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.40 0.10  
5.00 0.10  
(2 SIDES)  
TYP  
16  
9
R = 0.20  
TYP  
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
NOTCH  
(DHC16) DFN 1103  
8
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
4.40 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
60789fa  
17  
LTC6078/LTC6079  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 0.076  
(.009 – .015)  
(.005 .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
60789fa  
18  
LTC6078/LTC6079  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
60789fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC6078/LTC6079  
U
TYPICAL APPLICATIO  
DC Accurate Composite Amplifier, Gain of 1000  
V
CC  
+
V
IN  
LT1226  
V
OUT  
1M  
V
DD  
0.1µF  
V
EE  
10k  
100Ω  
1/2  
LTC6078  
V
CC  
+
10Ω  
10k  
2.49k  
V
SS  
V
DD  
LT1634BCS8-5  
10Ω  
V
SS  
CIRCUIT BW 1.25MHz  
e
= 2.6nV/Hz (RTI) AT 1kHz  
n
2.49k  
CIRCUIT V = 25µV (MAX) RTI  
OS  
V
60789 TA06  
EE  
RELATED PARTS  
PART NUMBER  
LTC2051/LTC2052 Dual/Quad Zero-Drift Op Amps  
LT6011/LT6012 Dual/Quad Precision Op Amps  
DESCRIPTION  
COMMENTS  
3µV V , 30nV/°C V Drift  
OS  
OS  
60µV V , I = 300pA, I = 135µA  
OS  
B
S
60789fa  
LT 0506 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY