LTC6101AHMS8#TRPBF [Linear]

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C;
LTC6101AHMS8#TRPBF
型号: LTC6101AHMS8#TRPBF
厂家: Linear    Linear
描述:

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C

模拟IC 信号电路 光电二极管
文件: 总22页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6101/LTC6101HV  
High Voltage,  
High-Side Current Sense  
Amplifier in SOT-23  
FEATURES  
DESCRIPTION  
TheLTC®6101/LTC6101HVareversatile,highvoltage,high  
sidecurrentsenseamplifiers.Designexibilityisprovided  
by the excellent device characteristics; 300ꢀV Max offset  
and only 375ꢀA (typical at 60V) of current consumption.  
The LTC6101 operates on supplies from 4V to 60V and  
LTC6101HV operates on supplies from 5V to 100V.  
n
Supply Range:  
5V to 100V, 105V Absolute Maximum (LTC6101HV)  
4V to 60V, 70V Absolute Maximum (LTC6101)  
Low Offset Voltage: 300μV Max  
Fast Response: 1μs Response Time (0V to 2.5V on  
a 5V Output Step)  
Gain Configurable with 2 Resistors  
Low Input Bias Current: 170nA Max  
PSRR: 118dB Min  
Output Current: 1mA Max  
Low Supply Current: 250ꢀA, V = 12V  
Specified Temperature Range: –40°C to 125°C  
Operating Temperature Range: –55°C to 125°C  
Low Profile (1mm) SOT-23 (ThinSOT™) Package  
n
n
n
n
n
n
n
n
n
n
The LTC6101 monitors current via the voltage across an  
external sense resistor (shunt resistor). Internal circuitry  
converts input voltage to output current, allowing for a  
small sense signal on a high common mode voltage to  
be translated into a ground referenced signal. Low DC  
offset allows the use of a small shunt resistor and large  
gain-setting resistors. As a result, power loss in the shunt  
is reduced.  
S
The wide operating supply range and high accuracy make  
the LTC6101 ideal for a large array of applications from  
automotive to industrial and power management. A maxi-  
mum input sense voltage of 500mV allows a wide range  
of currents to be monitored. The fast response makes the  
LTC6101 the perfect choice for load current warnings and  
shutoff protection control. With very low supply current,  
the LTC6101 is suitable for power sensitive applications.  
APPLICATIONS  
n
Current Shunt Measurement  
n
Battery Monitoring  
n
Remote Sensing  
n
Power Management  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
The LTC6101 is available in 5-lead SOT-23 and 8-lead  
MSOP packages.  
TYPICAL APPLICATION  
16-Bit Resolution Unidirectional Output into LTC2433 ADC  
Step Response  
I
V
LOAD  
SENSE  
+
V
SENSE  
R
IN  
100Ω  
5V TO 105V  
ΔV  
SENSE  
= 100mV  
+IN  
–IN  
5.5V  
5V  
L
O
A
D
+
+
V
V
T
= 25°C  
+ = 12V  
A
V
1μF  
5V  
R
R
V
= 100  
= 5k  
IN  
OUT  
V
OUT  
+ = V+  
V
OUT  
SENSE  
OUT  
LTC6101HV  
I
= 100μA  
= 0  
OUT  
LTC2433-1  
TO μP  
0.5V  
0V  
R
OUT  
I
OUT  
4.99k  
500ns/DIV  
6101 TA01  
6101 TA01b  
R
R
OUT  
V
OUT  
=
• V  
= 49.9V  
SENSE SENSE  
IN  
6101fh  
1
LTC6101/LTC6101HV  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V )  
LTC6101I/LTC6101HVI......................... –40°C to 85°C  
LTC6101H/LTC6101HVH ................... –55°C to 125°C  
Specified Temperature Range (Note 2)  
LTC6101C/LTC6101HVC........................... 0°C to 70°C  
LTC6101I/LTC6101HVI......................... –40°C to 85°C  
LTC6101H/LTC6101HVH ................... –40°C to 125°C  
Storage Temperature Range.................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
LTC6101............................................................... 70V  
LTC6101HV........................................................ 105V  
+
Minimum Input Voltage (–IN Pin).................... (V – 4V)  
Maximum Output Voltage (Out Pin)............................9V  
Input Current....................................................... 10mA  
Output Short-Circuit Duration (to V ).............. Indefinite  
Operating Temperature Range  
LTC6101C/LTC6101HVC.......................40°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
+
TOP VIEW  
–IN  
NC  
NC  
1
2
3
4
8 +IN  
7 V  
OUT 1  
5 V  
+
V
2
6 NC  
–IN 3  
4 +IN  
5 V  
OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 300°C/ W  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
= 150°C, θ = 250°C/ W  
T
JMAX  
JA  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTBSB  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
SPECIFIED TEMPERATURE RANGE  
LTC6101ACMS8#PBF  
LTC6101AIMS8#PBF  
LTC6101AHMS8#PBF  
LTC6101HVACMS8#PBF  
LTC6101HVAIMS8#PBF  
LTC6101ACMS8#TRPBF  
LTC6101AIMS8#TRPBF  
LTC6101AHMS8#TRPBF  
0°C to 70°C  
LTBSB  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTBSB  
LTC6101HVACMS8#TRPBF LTBSX  
LTC6101HVAIMS8#TRPBF LTBSX  
–40°C to 85°C  
–40°C to 125°C  
LTC6101HVAHMS8#PBF LTC6101HVAHMS8#TRPBF LTBSX  
6101fh  
2
LTC6101/LTC6101HV  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC6101ACS5#TRMPBF  
LTC6101AIS5#TRMPBF  
LTC6101AHS5#TRMPBF  
LTC6101BCS5#TRMPBF  
LTC6101BIS5#TRMPBF  
LTC6101BHS5#TRMPBF  
LTC6101CCS5#TRMPBF  
LTC6101CIS5#TRMPBF  
LTC6101CHS5#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBSZ  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6101ACS5#TRPBF  
LTC6101AIS5#TRPBF  
LTC6101AHS5#TRPBF  
LTC6101BCS5#TRPBF  
LTC6101BIS5#TRPBF  
LTC6101BHS5#TRPBF  
LTC6101CCS5#TRPBF  
LTC6101CIS5#TRPBF  
LTC6101CHS5#TRPBF  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVACS5#TRMPBF LTC6101HVACS5#TRPBF  
LTC6101HVAIS5#TRMPBF LTC6101HVAIS5#TRPBF  
LTBSZ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVAHS5#TRMPBF LTC6101HVAHS5#TRPBF  
LTC6101HVBCS5#TRMPBF LTC6101HVBCS5#TRPBF  
LTBSZ  
LTBSZ  
LTC6101HVBIS5#TRMPBF  
LTC6101HVBIS5#TRPBF  
LTBSZ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVBHS5#TRMPBF LTC6101HVBHS5#TRPBF  
LTC6101HVCCS5#TRMPBF LTC6101HVCCS5#TRPBF  
LTBSZ  
LTBSZ  
LTC6101HVCIS5#TRMPBF  
LTC6101HVCIS5#TRPBF  
LTBSZ  
–40°C to 85°C  
–40°C to 125°C  
LTC6101HVCHS5#TRMPBF LTC6101HVCHS5#TRPBF  
LTBSZ  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6101fh  
3
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS (LTC6101) The denotes the specifications which apply over the full  
specified temperature range, otherwise specifications are at TA = 25°C, RIN = 100Ω, ROUT = 10k, VSENSE+ = V+ (see Figure 1 for  
details), 4V ≤ VS ≤ 60V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
Input Offset Voltage  
4
60  
V
S
V
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101A  
= 5mV, Gain = 100, LTC6101AC, LTC6101AI  
= 5mV, Gain = 100, LTC6101AH  
85  
300  
450  
535  
μV  
μV  
μV  
OS  
V
= 5mV, Gain = 100, LTC6101B  
150  
400  
450  
810  
μV  
μV  
SENSE  
V
= 5mV, Gain = 100, LTC6101C  
800  
1200  
μV  
μV  
SENSE  
ΔV /ΔT  
Input Offset Voltage Drift  
Input Bias Current  
V
V
V
= 5mV, LTC6101A  
= 5mV, LTC6101B  
= 5mV, LTC6101C  
1
3
5
μV/°C  
μV/°C  
μV/°C  
OS  
SENSE  
SENSE  
SENSE  
I
I
R
= 1M  
100  
170  
245  
nA  
nA  
B
IN  
Input Offset Current  
R
= 1M  
2
15  
nA  
OS  
IN  
V
Input Sense Voltage Full Scale  
Power Supply Rejection Ratio  
V
OS  
within Specification, R = 1k (Note 3)  
500  
mV  
SENSE(MAX)  
IN  
PSRR  
V = 6V to 60V, V  
S
= 5mV, Gain = 100  
= 5mV, Gain = 100  
= 88mV  
118  
115  
140  
133  
dB  
dB  
SENSE  
V = 4V to 60V, V  
S
110  
105  
dB  
dB  
SENSE  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
12V ≤ V ≤ 60V, V  
8
3
1
V
V
V
OUT  
S
SENSE  
V = 6V, V  
= 330mV, R = 1k, R  
= 550mV, R = 1k, R  
= 10k  
= 2k  
S
SENSE  
SENSE  
IN  
OUT  
OUT  
V = 4V, V  
S
IN  
V
SENSE  
V
SENSE  
V
SENSE  
= 0V, Gain = 100, LTC6101A  
= 0V, Gain = 100, LTC6101AC, LTC6101AI  
= 0V, Gain = 100, LTC6101AH  
0
30  
45  
53.5  
mV  
mV  
mV  
OUT (0)  
V
= 0V, Gain = 100, LTC6101B  
0
0
45  
81  
mV  
mV  
SENSE  
V
= 0V, Gain = 100, LTC6101C  
150  
250  
mV  
mV  
SENSE  
I
t
Maximum Output Current  
6V ≤ V ≤ 60V, R  
= 2k, V = 110mV, Gain = 20  
SENSE  
1
0.5  
mA  
mA  
OUT  
S
OUT  
V = 4V, V  
= 550mV, Gain = 2, R = 2k  
S
SENSE  
OUT  
Input Step Response  
(to 2.5V on a 5V Output Step)  
ΔV  
= 100mV Transient, 6V ≤ V ≤ 60V, Gain = 50  
1
1.5  
μs  
μs  
r
SENSE  
S
V = 4V  
S
BW  
Signal Bandwidth  
I
I
= 200ꢀA, R = 100, R = 5k  
OUT  
140  
200  
kHz  
kHz  
OUT  
OUT  
IN  
= 1mA, R = 100, R  
= 5k  
IN  
OUT  
I
Supply Current  
V = 4V, I  
= 0, R = 1M  
220  
240  
250  
375  
450  
475  
μA  
μA  
S
S
OUT  
IN  
V = 6V, I  
= 0, R = 1M  
475  
525  
μA  
μA  
S
OUT  
IN  
V = 12V, I  
S
= 0, R = 1M  
500  
590  
μA  
μA  
OUT  
IN  
V = 60V, I  
S
= 0, R = 1M  
640  
μA  
OUT  
IN  
LTC6101AI, LTC6101AC, LTC6101BI, LTC6101BC,  
LTC6101CI, LTC6101CC  
LTC6101AH, LTC6101BH, LTC6101CH  
690  
720  
μA  
μA  
6101fh  
4
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS (LTC6101HV) The denotes the specifications which apply over the full  
specified temperature range, otherwise specifications are at TA = 25°C, RIN = 100Ω, ROUT = 10k, VSENSE+ = V+ (see Figure 1 for  
details), 5V ≤ VS ≤ 100V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
Input Offset Voltage  
5
100  
V
S
V
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101HVA  
= 5mV, Gain = 100, LTC6101HVAC, LTC6101HVAI  
= 5mV, Gain = 100, LTC6101HVAH  
85  
300  
450  
535  
μV  
μV  
μV  
OS  
V
= 5mV, Gain = 100, LTC6101HVB  
150  
400  
450  
810  
μV  
μV  
SENSE  
V
= 5mV, Gain = 100, LTC6101HVC  
800  
1200  
μV  
μV  
SENSE  
ΔV /ΔT  
Input Offset Voltage Drift  
Input Bias Current  
V
V
V
= 5mV, LTC6101HVA  
= 5mV, LTC6101HVB  
= 5mV, LTC6101HVC  
1
3
5
μV/°C  
μV/°C  
μV/°C  
OS  
SENSE  
SENSE  
SENSE  
I
I
R
= 1M  
100  
170  
245  
nA  
nA  
B
IN  
Input Offset Current  
R
= 1M  
2
15  
nA  
OS  
IN  
V
Input Sense Voltage Full Scale  
Power Supply Rejection Ratio  
V
OS  
within Specification, R = 1k (Note 3)  
500  
mV  
SENSE(MAX)  
IN  
PSRR  
V = 6V to 100V, V  
S
= 5mV, Gain = 100  
= 5mV, Gain = 100  
= 88mV  
118  
115  
140  
133  
dB  
dB  
SENSE  
V = 5V to 100V, V  
S
110  
105  
dB  
dB  
SENSE  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
12V ≤ V ≤ 100V, V  
V = 5V, V  
S
8
3
V
V
OUT  
S
SENSE  
= 330mV, R = 1k, R  
= 10k  
SENSE  
IN  
OUT  
V
SENSE  
V
SENSE  
V
SENSE  
= 0V, Gain = 100, LTC6101HVA  
= 0V, Gain = 100, LTC6101HVAC, LTC6101HVAI  
= 0V, Gain = 100, LTC6101HVAH  
0
30  
45  
53.5  
mV  
mV  
mV  
OUT (0)  
V
= 0V, Gain = 100, LTC6101HVB  
0
0
45  
81  
mV  
mV  
SENSE  
V
= 0V, Gain = 100, LTC6101HVC  
150  
250  
mV  
mV  
SENSE  
I
t
Maximum Output Current  
5V ≤ V ≤ 100V, R  
= 2k, V = 110mV, Gain = 20  
SENSE  
1
mA  
OUT  
S
OUT  
Input Step Response  
(to 2.5V on a 5V Output Step)  
ΔV  
V = 5V  
S
= 100mV Transient, 6V ≤ V ≤ 100V, Gain = 50  
1
1.5  
μs  
μs  
r
SENSE  
S
BW  
Signal Bandwidth  
I
I
= 200ꢀA, R = 100, R = 5k  
OUT  
140  
200  
kHz  
kHz  
OUT  
OUT  
IN  
= 1mA, R = 100, R  
= 5k  
IN  
OUT  
I
Supply Current  
V = 5V, I  
= 0, R = 1M  
200  
220  
230  
350  
450  
475  
μA  
μA  
S
S
OUT  
IN  
V = 6V, I  
= 0, R = 1M  
475  
525  
μA  
μA  
S
OUT  
IN  
V = 12V, I  
S
= 0, R = 1M  
500  
590  
μA  
μA  
OUT  
IN  
V = 60V, I  
= 0, R = 1M  
640  
690  
720  
μA  
μA  
μA  
S
OUT  
IN  
LTC6101HVI, LTC6101HVC  
LTC6101HVH  
V = 100V, I  
= 0, R = 1M  
350  
640  
μA  
S
OUT  
IN  
LTC6101HVAI, LTC6101HVAC, LTC6101HVBI,  
LTC6101HVBC, LTC6101HVCI, LTC6101HVCC  
LTC6101HVAH, LTC6101HVBH, LTC6101HVCH  
690  
720  
μA  
μA  
6101fh  
5
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
characterized and expected to meet specified performance from –40°C to  
85°C but are not tested or QA sampled at these temperatures. LTC6101I/  
LTC6101HVI are guaranteed to meet specified performance from –40°C  
to 85°C. The LTC6101H/LTC6101HVH are guaranteed to meet specified  
performance from –40°C to 125°C.  
Note 2: The LTC6101C/LTC6101HVC are guaranteed to meet specified  
performance from 0°C to 70°C. The LTC6101C/LTC6101HVC are designed,  
Note 3: R  
= 10k for 6V ≤ V ≤ 100V, R  
= 2k for V = 4V.  
OUT S  
OUT  
S
TYPICAL PERFORMANCE CHARACTERISTICS  
Input VOS vs Temperature  
Input VOS vs Supply Voltage  
Input Sense Range  
2.5  
2
800  
600  
40  
20  
REPRESENTATIVE  
T
A
= 25°C  
T
= 0°C  
T
A
= –40°C  
A
UNITS  
T
= 0°C  
A
0
400  
T
T
= 70°C  
A
T
T
= –40°C  
= 25°C  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
200  
A
A
1.5  
1
0
= 125°C  
A
–200  
–400  
–600  
–800  
–1000  
T
= 85°C  
A
T
T
= 85°C  
A
A
R
R
V
= 100  
= 5k  
IN  
OUT  
IN  
0.5  
0
R
R
IN  
= 100  
= 5k  
A GRADE  
B GRADE  
C GRADE  
IN  
OUT  
R
R
= 3k  
IN  
= 3k  
OUT  
= 5mV  
LTC6101  
LTC6101HV  
= 125°C  
V
= 5mV  
4
11 18 25 32 39 46 53 60  
(V)  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
4 10 20 30 40 50 60 70 80 90 100  
(V)  
V
V
SUPPLY  
SUPPLY  
6101 G02  
6101 G05  
6101 G01  
LTC6101: VOUT Maximum  
vs Temperature  
LTC6101HV: VOUT Maximum  
vs Temperature  
LTC6101: IOUT Maximum  
vs Temperature  
12  
10  
8
12  
10  
8
7
V
S
= 60V  
V
S
= 100V  
S
V
= 12V  
S
6
5
4
3
2
1
0
V
S
= 12V  
V
= 12V  
V
= 60V  
S
V
V
V
= 6V  
= 5V  
= 4V  
S
S
S
6
6
V
V
= 6V  
= 4V  
S
V
V
= 6V  
= 4V  
S
S
4
4
S
2
2
0
0
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G06  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G20  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G07  
6101fh  
6
LTC6101/LTC6101HV  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC6101HV: IOUT Maximum  
vs Temperature  
Output Error Due to Input Offset  
vs Input Voltage  
Gain vs Frequency  
100  
10  
1
40  
35  
7
6
5
4
3
2
1
0
T
= 25°C  
A
GAIN =10  
I
= 1mA  
OUT  
V
S
= 12V  
T
R
R
= 25°C  
= 100  
OUT  
A
IN  
30  
25  
20  
15  
10  
5
= 4.99k  
V
S
= 100V  
V
V
= 6V  
= 5V  
I
= 200μA  
S
OUT  
S
C GRADE  
0.1  
B GRADE  
A GRADE  
0
V
S
= 4V  
–5  
–10  
0.01  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G21  
1k  
10k  
100k  
1M  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
6101 G09  
6101 G08  
Input Bias Current  
vs Temperature  
LTC6101: Supply Current  
vs Supply Voltage  
LTC6101HV: Supply Current  
vs Supply Voltage  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
160  
140  
120  
100  
80  
70°C  
85°C  
125°C  
70°C  
85°C  
V
S
= 6V TO 100V  
125°C  
V
S
= 4V  
25°C  
0°C  
25°C  
60  
–40°C  
0°C  
–40°C  
40  
V
= 0  
V
= 0  
IN  
IN  
IN  
IN  
20  
R
= 1M  
R
= 1M  
0
0
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
0
4
8 12 16 20 24 28 32 36 40 44 48 52 56 60  
0
10 20 30 40 50 60 70 80 90 100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6101 G10  
6101 G11  
6101 G22  
Step Response 0mV to 10mV  
Step Response 10mV to 20mV  
V
V+-10mV  
V+-20mV  
SENSE  
V
SENSE  
V+  
V+-10mV  
0.5V  
1V  
T
= 25°C  
A
T
= 25°C  
V+ = 12V  
A
V+ = 12V  
R
R
V
= 100  
IN  
R
R
V
= 100  
IN  
= 5k  
OUT  
= 5k  
+ = V+  
OUT  
+ = V+  
SENSE  
SENSE  
0V  
0.5V  
V
OUT  
V
OUT  
TIME (10μs/DIV)  
TIME (10μs/DIV)  
6101 G12  
6101 G13  
6101fh  
7
LTC6101/LTC6101HV  
TYPICAL PERFORMANCE CHARACTERISTICS  
Step Response Rising Edge  
Step Response 100mV  
Step Response 100mV  
V
V
V
SENSE  
SENSE  
SENSE  
V+  
V+  
ΔV  
=100mV  
SENSE  
V+-100mV  
T = 25°C  
A
V+-100mV  
V+ = 12V  
= 2200pF  
C
= 10pF  
LOAD  
C
5V  
5.5V  
5V  
5V  
LOAD  
T
= 25°C  
A
R
R
V
= 100  
IN  
V+ = 12V  
= 5k  
OUT  
SENSE  
R
R
V
= 100  
= 5k  
+ = V+  
T
= 25°C  
IN  
OUT  
A
V+ = 12V  
+ = V+  
C
= 1000pF  
R
R
V
= 100  
= 5k  
SENSE  
LOAD  
SENSE  
IN  
OUT  
V
OUT  
+ = V+  
I
= 100μA  
OUT  
0V  
0.5V  
0V  
I
= 0  
0V  
V
OUT  
V
OUT  
OUT  
TIME (100μs/DIV)  
TIME (10μs/DIV)  
TIME (500ns/DIV)  
6101 G15  
6101 G14  
6101 G16  
Step Response Falling Edge  
PSRR vs Frequency  
160  
LTC6101,  
+
ΔV  
=100mV  
140  
120  
100  
80  
SENSE  
V
= 4V  
V
OUT  
5.5V  
5V  
T
= 25°C  
A
LTC6101,  
V+ = 12V  
LTC6101HV,  
R
R
V
= 100  
+
IN  
V
= 12V  
= 5k  
OUT  
+ = V+  
SENSE  
60  
R
R
C
= 100  
IN  
= 10k  
= 5pF  
OUT  
OUT  
GAIN = 100  
40  
I
= 100μ  
OUT  
LTC6101HV,  
+
20  
I
= 100μA  
= 50mVp  
V = 5V  
OUTDC  
0.5V  
0V  
I
= 0  
OUT  
V
INAC  
0
0.1  
1
10 100 1k 10k 100k 1M  
FREQUENCY (Hz)  
TIME (500ns/DIV)  
6101 G19  
6101 G17  
6101fh  
8
LTC6101/LTC6101HV  
PIN FUNCTIONS  
OUT: Current Output. OUT will source a current that is  
proportional to the sense voltage into an external resistor.  
+
V : Positive Supply Pin. Supply current is drawn through  
this pin. The circuit may be configured so that the  
LTC6101 supply current is or is not monitored along  
with the system load current. To monitor only system  
V : Negative Supply (or Ground for Single-Supply  
Operation).  
+
load current, connect V to the more positive side of the  
+
–IN:TheinternalsenseamplifierwilldriveIN tothesame  
sense resistor. To monitor the total current, including the  
+
+
potential as IN . A resistor (R ) tied from V to IN sets  
LTC6101 current, connect V to the more negative side  
IN  
theoutputcurrentI =V  
/R . V  
SENSE IN SENSE  
isthevoltage  
(Figure 1).  
of the sense resistor.  
OUT  
developed across the external R  
SENSE  
+IN: Must be tied to the system load end of the sense  
resistor, either directly or through a resistor.  
BLOCK DIAGRAM  
I
LOAD  
V
SENSE  
+
V
BATTERY  
+
V
R
SENSE  
R
IN  
10V  
L
O
A
D
–IN  
+IN  
5k  
5k  
+
I
10V  
OUT  
R
R
OUT  
OUT  
V
OUT  
= V  
SENSE  
x
IN  
V
LTC6101/LTC6101HV  
R
OUT  
6101 BD  
Figure 1. LTC6101/LTC6101HV Block Diagram and Typical Connection  
APPLICATIONS INFORMATION  
+
The LTC6101 high side current sense amplifier (Figure 1)  
provides accurate monitoring of current through a user-  
selected sense resistor. The sense voltage is amplified by  
a user-selected gain and level shifted from the positive  
power supply to a ground-referred output. The output  
signal is analog and may be used as is or processed with  
an output filter.  
tor, R , between IN and V forces a potential across  
IN  
R
R
that is the same as the sense voltage across  
. A corresponding current, V  
flow through R . The high impedance inputs of the  
sense amplifier will not conduct this input current,  
soitwillowthroughaninternalMOSFETtotheoutputpin.  
IN  
/R , will  
SENSE IN  
SENSE  
IN  
The output current can be transformed into a voltage by  
adding a resistor from OUT to V . The output voltage is  
Theory of Operation  
then V = V + I  
• R  
.
O
OUT  
OUT  
An internal sense amplifier loop forces IN to have the  
+
same potential as IN . Connecting an external resis-  
6101fh  
9
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Useful Gain Configurations  
Peak dissipation is 200mW. If a 5mΩ sense resistor is  
employed, then the effective current error is 30mA, while  
the peak sense voltage is reduced to 10mV at 2A, dis-  
sipating only 20mW.  
Gain  
20  
R
R
V
at V  
= 5V  
I
at V  
= 5V  
IN  
OUT  
SENSE  
OUT  
OUT  
OUT  
499  
200  
100  
10k  
10k  
10k  
250mV  
100mV  
50mV  
500μA  
500μA  
500μA  
50  
The low offset and corresponding large dynamic range of  
the LTC6101 make it more flexible than other solutions in  
this respect. The 150μV typical offset gives 60dB of dy-  
namic range for a sense voltage that is limited to 150mV  
max, and over 70dB of dynamic range if the rated input  
maximum of 500mV is allowed.  
100  
Selection of External Current Sense Resistor  
Theexternalsenseresistor,R ,hasasignificanteffect  
SENSE  
on the function of a current sensing system and must be  
chosen with care.  
Sense Resistor Connection  
First, the power dissipation in the resistor should be  
considered. The system load current will cause both heat  
+
Kelvin connection of the IN and IN inputs to the sense  
resistor should be used in all but the lowest power ap-  
plications. Solder connections and PC board interconnec-  
tions that carry high current can cause significant error  
in measurement due to their relatively large resistances.  
One 10mm x 10mm square trace of one-ounce copper  
is approximately 0.5mΩ. A 1mV error can be caused by  
as little as 2A flowing through this small interconnect.  
This will cause a 1% error in a 100mV signal. A 10A load  
current in the same interconnect will cause a 5% error  
for the same 100mV signal. By isolating the sense traces  
from the high-current paths, this error can be reduced  
by orders of magnitude. A sense resistor with integrated  
Kelvin sense terminals will give the best results. Figure 2  
illustrates the recommended method.  
and voltage loss in R  
. As a result, the sense resis-  
SENSE  
tor should be as small as possible while still providing  
the input dynamic range required by the measurement.  
Note that input dynamic range is the difference between  
the maximum input signal and the minimum accurately  
reproduced signal, and is limited primarily by input DC  
offset of the internal amplifier of the LTC6101. In addition,  
R
mustbesmallenoughthatV  
doesnotexceed  
SENSE  
SENSE  
themaximuminputvoltagespecifiedbytheLTC6101,even  
under peak load conditions. As an example, an application  
may require that the maximum sense voltage be 100mV.  
If this application is expected to draw 2A at peak load,  
R
should be no more than 50mΩ.  
SENSE  
Once the maximum R  
value is determined, the mini-  
SENSE  
+
mum sense resistor value will be set by the resolution or  
dynamic range required. The minimum signal that can be  
accurately represented by this sense amp is limited by the  
input offset. As an example, the LTC6101B has a typical  
input offset of 150μV. If the minimum current is 20mA, a  
V
R
IN  
R
SENSE  
+IN  
–IN  
+
sense resistor of 7.5mΩ will set V  
to 150μV. This is  
SENSE  
LOAD  
the same value as the input offset. A larger sense resistor  
will reduce the error due to offset by increasing the sense  
voltage for a given load current.  
+
V
V
Choosinga50mΩR  
willmaximizethedynamicrange  
SENSE  
OUT  
V
LTC6101  
OUT  
and provide a system that has 100mV across the sense  
resistor at peak load (2A), while input offset causes an  
error equivalent to only 3mA of load current.  
R
OUT  
6101 F02  
Figure 2. Kelvin Input Connection Preserves  
Accuracy Despite Large Load Current  
6101fh  
10  
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
+
Selection of External Input Resistor, R  
V
IN  
The external input resistor, R , controls the transconduc-  
IN  
tanceofthecurrentsensecircuit. SinceI =V  
/R ,  
R
SENSE  
D
SENSE  
OUT  
SENSE IN  
IN  
transconductance g = 1/R . For example, if R = 100,  
6101 F03a  
m
IN  
then I = V  
/100 or I = 1mA for V = 100mV.  
OUT  
SENSE  
OUT  
SENSE  
LOAD  
R
should be chosen to allow the required resolution  
IN  
Figure 3a. Shunt Diode Limits Maximum Input Voltage to Allow  
Better Low Input Resolution Without Overranging  
while limiting the output current. At low supply voltage,  
may be as much as 1mA. By setting R such that  
I
OUT  
IN  
the largest expected sense voltage gives I  
= 1mA, then  
This approach can be helpful in cases where occasional  
large burst currents may be ignored. It can also be used  
in a multirange configuration where a low current circuit  
is added to a high current circuit (Figure 3b). Note that  
a comparator (LTC1540) is used to select the range, and  
OUT  
the maximum output dynamic range is available. Output  
dynamic range is limited by both the maximum allowed  
outputcurrentandthemaximumallowedoutputvoltage,as  
wellastheminimumpracticaloutputsignal.Iflessdynamic  
range is required, then R can be increased accordingly,  
transistor M1 limits the voltage across R  
.
IN  
SENSE LO  
reducing the max output current and power dissipation.  
Care should be taken when designing the board layout  
If low sense currents must be resolved accurately in a  
for R especially for small R values. All trace and inter-  
IN,  
IN  
system that has very wide dynamic range, a smaller R  
IN  
connect impedances will increase the effective R value,  
IN  
than the max current spec allows may be used if the max  
causing a gain error. In addition, internal device resistance  
current is limited in another way, such as with a Schottky  
will add approximately 0.2Ω to R .  
IN  
diode across R  
(Figure 3a). This will reduce the high  
SENSE  
currentmeasurementaccuracybylimitingtheresult,while  
increasing the low current measurement resolution.  
V
LOGIC  
CMPZ4697  
10k  
(3.3V TO 5V)  
7
3
4
M1  
+
Si4465  
V
IN  
R
SENSE HI  
10m  
I
LOAD  
8
Q1  
CMPT5551  
5
6
V
OUT  
40.2k  
R
SENSE LO  
100m  
301  
+IN  
301  
–IN  
301  
+IN  
301  
–IN  
4.7k  
1.74M  
LTC1540  
2
1
HIGH  
+
+
+
+
V
V
V
V
RANGE  
V
IN  
619k  
INDICATOR  
(I  
> 1.2A)  
LOAD  
OUT  
OUT  
HIGH CURRENT RANGE OUT  
250mV/A  
LTC6101  
LTC6101  
7.5k  
V
LOGIC  
BAT54C  
LOW CURRENT RANGE OUT  
2.5V/A  
R
5
(
V
+5V  
)
≤ V ≤ 60V  
LOGIC  
IN  
7.5k  
6101 F03b  
0 ≤ I  
≤ 10A  
LOAD  
Figure 3b. Dual LTC6101s Allow High-Low Current Ranging  
6101fh  
11  
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Selection of External Output Resistor, R  
Output Error, E , Due to the Amplifier DC Offset  
OUT  
OUT  
Voltage, V  
OS  
The output resistor, R , determines how the output cur-  
OUT  
E
= V • (R /R )  
OS OUT IN  
rent is converted to voltage. V  
is simply I  
• R  
.
OUT(VOS)  
OUT  
OUT  
OUT  
The DC offset voltage of the amplifier adds directly to the  
value of the sense voltage, V . This is the dominant  
error of the system and it limits the available dynamic  
range.TheparagraphSelectionofExternalCurrentSense  
Resistor” provides details.  
In choosing an output resistor, the max output voltage  
must first be considered. If the circuit that is driven by  
SENSE  
the output does not limit the output voltage, then R  
OUT  
must be chosen such that the max output voltage does  
not exceed the LTC6101 max output voltage rating. If the  
followingcircuitisabufferorADCwithlimitedinputrange,  
Output Error, E , Due to the Bias Currents,  
OUT  
then R  
must be chosen so that I  
• R  
is less  
OUT  
OUT(MAX)  
OUT  
I (+) and I (–)  
B
B
than the allowed maximum input range of this circuit.  
The bias current I (+) flows into the positive input of the  
B
Inaddition,theoutputimpedanceisdeterminedbyR .If  
OUT  
internal op amp. I (–) flows into the negative input.  
B
the circuit to be driven has high enough input impedance,  
then almost any useful output impedance will be accept-  
able. However, if the driven circuit has relatively low input  
impedance, or draws spikes of current, such as an ADC  
E
= R ((I (+) • (R  
/R ) – I (–))  
SENSE IN B  
OUT(IBIAS)  
OUT  
B
Since I (+) ≈ I (–) = I  
, if R << R then,  
BIAS SENSE IN  
B
B
E
≈ –R  
• I  
mightdo,thenalowerR  
valuemayberequiredinorder  
OUT(IBIAS)  
OUT BIAS  
OUT  
to preserve the accuracy of the output. As an example, if  
theinputimpedanceofthedrivencircuitis100timesR  
For instance if I  
error is 0.1mV.  
is 100nA and R  
is 1kΩ, the output  
OUT  
BIAS  
,
OUT  
then the accuracy of V  
will be reduced by 1% since:  
OUT  
Note that in applications where R  
≈ R , I (+) causes  
IN B  
SENSE  
ROUT RIN(DRIVEN)  
a voltage offset in R  
that cancels the error due to  
VOUT =IOUT •  
SENSE  
R
OUT +RIN(DRIVEN)  
I (–) and E  
B
≈ 0. In applications where R  
<
OUT(IBIAS)  
SENSE  
R , the bias current error can be similarly reduced if an  
IN  
100  
101  
=IOUT ROUT  
=0.99 •IOUT ROUT  
external resistor R (+) = (R – R ) is connected as  
IN  
IN  
SENSE  
shown in Figure 4 below. Under both conditions:  
Error Sources  
E
=
R • I ; I = I (+) – I (–)  
OUT OS OS B B  
OUT(IBIAS)  
The current sense system uses an amplifier and resistors  
to apply gain and level shift the result. The output is then  
dependent on the characteristics of the amplifier, such as  
gain and input offset, as well as resistor matching.  
+
V
R
R
IN  
R
SENSE  
+
IN  
Ideally, the circuit output is:  
+IN  
–IN  
+
R
RIN  
VOUT = VSENSE  
OUT ;VSENSE =RSENSE ISENSE  
LOAD  
+
V
V
In this case, the only error is due to resistor mismatch,  
which provides an error in gain only. However, offset  
voltage, bias current and finite gain in the amplifier cause  
additional errors:  
OUT  
V
LTC6101  
OUT  
R
OUT  
6101 F04  
+
R
=
R
R  
IN SENSE  
IN  
Figure 4. Second Input R Minimizes  
Error Due to Input Bias Current  
6101fh  
12  
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
If the offset current, I , of the LTC6101 amplifier is 2nA,  
The total power dissipated is the output dissipation plus  
the quiescent dissipation:  
OS  
the 100 microvolt error above is reduced to 2 microvolts.  
+
Adding R  
as described will maximize the dynamic  
IN  
P
TOTAL  
= P + P  
OUT Q  
+
range of the circuit. For less sensitive designs, R is  
not necessary.  
IN  
At maximum supply and maximum output current, the  
total power dissipation can exceed 100mW. This will  
cause significant heating of the LTC6101 die. In order to  
prevent damage to the LTC6101, the maximum expected  
dissipation in each application should be calculated. This  
Example:  
If an I  
3V/1A  
range = (1A to 1mA) and (V /I  
) =  
SENSE  
OUT SENSE  
number can be multiplied by the θ value listed in the  
JA  
Then, from the Electrical Characteristics of the LTC6101,  
≈ V (max) / I (max) = 500mV/1A =  
package section on page 2 to find the maximum expected  
dietemperature.Thismustnotbeallowedtoexceed150°C,  
or performance may be degraded.  
R
SENSE  
500mΩ  
SENSE  
SENSE  
Gain = R /R = V  
(max) / V  
(max) =  
SENSE  
OUT IN  
3V/500mV = 6  
OUT  
As an example, if an LTC6101 in the S5 package is to be  
run at 55V 5V supply with 1mA output current at 80°C:  
If the maximum output current, I , is limited to 1mA,  
OUT  
+
P
P
= I  
• V  
= 41.4mW  
(MAX)  
Q(MAX)  
DD(MAX)  
R
equals 3V/1mA ≈ 3.01 kΩ (1% value) and R =  
OUT  
IN  
+
3kΩ/6 ≈ 499Ω (1% value).  
= I  
• V  
= 60mW  
(MAX)  
OUT(MAX)  
OUT  
The output error due to DC offset is 900μVolts (typ) and  
T
T
T
= θ • P  
JA TOTAL(MAX)  
RISE  
MAX  
MAX  
the error due to offset current, I is 3k x 2nA = 6μVolts  
OS  
= T  
+ T  
RISE  
AMBIENT  
+
(typical), provided R = R  
.
IN  
IN  
must be < 150°C  
≈ 96mW and the max die temp  
Themaximumoutputerrorcanthereforereach 906μVolts  
or 0.03% (–70dB) of the output full scale. Considering  
P
TOTAL(MAX)  
will be 104°C  
the system input 60dB dynamic range (I  
= 1mA to  
SENSE  
1A), the 70dB performance of the LTC6101 makes this  
application feasible.  
If this same circuit must run at 125°C, the max die  
temp will increase to 150°C. (Note that supply current,  
and therefore P , is proportional to temperature. Refer  
Q
Output Error, E , Due to the Finite DC Open Loop  
OUT  
to Typical Performance Characteristics section.) In this  
condition,themaximumoutputcurrentshouldbereduced  
to avoid device damage. Note that the MSOP package  
Gain, A , of the LTC6101 Amplifier  
OL  
This error is inconsequential as the A of the LTC6101  
OL  
is very large.  
has a larger θ than the S5, so additional care must be  
JA  
taken when operating the LTC6101A/LTC6101HVA at high  
Output Current Limitations Due to Power Dissipation  
temperatures and high output currents.  
The LTC6101 can deliver up to 1mA continuous current to  
The LTC6101HV can be used at voltages up to 105V. This  
additional voltage requires that more power be dissipated  
foragivenlevelofcurrent.Thiswillfurtherlimittheallowed  
output current at high ambient temperatures.  
theoutputpin.ThiscurrentowsthroughR andentersthe  
IN  
current sense amp via the IN(–) pin. The power dissipated  
in the LTC6101 due to the output signal is:  
P
= (V – V ) • I  
–IN OUT OUT  
OUT  
It is important to note that the LTC6101 has been designed  
to provide at least 1mA to the output when required, and  
can deliver more depending on the conditions. Care must  
be taken to limit the maximum output current by proper  
choice of sense resistor and, if input fault conditions exist,  
+
+
Since V ≈ V , P  
≈ (V – V ) • I  
OUT OUT  
–IN  
OUT  
There is also power dissipated due to the quiescent sup-  
ply current:  
+
external clamps.  
P = I • V  
Q
DD  
6101fh  
13  
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Output Filtering  
Input Common Mode Range  
The output voltage, V , is simply I  
• Z . This  
The inputs of the LTC6101 can function from 1.5V below  
the positive supply to 0.5V above it. Not only does this  
OUT  
OUT  
OUT  
makes filtering straightforward. Any circuit may be used  
which generates the required Z to get the desired filter  
allow a wide V  
range, it also allows the input refer-  
OUT  
SENSE  
response. For example, a capacitor in parallel with R  
ence to be separate from the positive supply (Figure 5).  
OUT  
+
will give a low pass response. This will reduce unwanted  
noise from the output, and may also be useful as a charge  
reservoir to keep the output steady while driving a switch-  
ing circuit such as a mux or ADC. This output capacitor  
in parallel with an output resistor will create a pole in the  
output response at:  
Note that the difference between V  
and V must be no  
BATT  
more than the common mode range listed in the Electrical  
Characteristics table. If the maximum V is less than  
SENSE  
500mV, the LTC6101 may monitor its own supply current,  
as well as that of the load (Figure 6).  
V
BATTERY  
1
f3dB  
=
R
2• π ROUT COUT  
IN  
R
SENSE  
+IN  
–IN  
+
+
Useful Equations  
V
LOAD  
+
V
V
Input Voltage: V  
=I  
•R  
SENSE SENSE SENSE  
V
R
OUT  
OUT  
Voltage Gain:  
=
V
R
IN  
OUT  
SENSE  
V
LTC6101  
OUT  
I
R
SENSE  
R
OUT  
OUT  
Current Gain:  
I
=
R
6101 F05  
SENSE  
IN  
I
1
OUT  
Figure 5. V+ Powered Separately from  
Load Supply (VBATT  
Transconductance:  
=
V
R
IN  
SENSE  
)
V
R
OUT  
OUT  
Transimpedance:  
=R  
SENSE  
I
R
IN  
SENSE  
+
V
R
IN  
R
SENSE  
+IN  
–IN  
+
+
LOAD  
V
V
OUT  
V
LTC6101  
OUT  
R
OUT  
6101 F06  
Figure 6. LTC6101 Supply Current  
Monitored with Load  
6101fh  
14  
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Reverse Supply Protection  
If the output current is very low and an input transient  
occurs, there may be an increased delay before the output  
voltagebeginschanging.Thiscanbeimprovedbyincreas-  
ing the minimum output current, either by increasing  
Some applications may be tested with reverse-polarity  
supplies due to an expectation of this type of fault during  
operation. The LTC6101 is not protected internally from  
externalreversalofsupplypolarity.Topreventdamagethat  
may occur during this condition, a Schottky diode should  
R
or decreasing R . The effect of increased output  
SENSE  
IN  
current is illustrated in the step response curves in the  
Typical Performance Characteristics section of this data  
sheet. Note that the curves are labeled with respect to the  
initial output currents.  
be added in series with V (Figure 7). This will limit the  
reverse current through the LTC6101. Note that this diode  
will limit the low voltage performance of the LTC6101 by  
The speed is also affected by the external circuit. In this  
case, if the input changes very quickly, the internal ampli-  
fier will slew the gate of the internal output FET (Figure  
1) in order to maintain the internal loop. This results in  
effectively reducing the supply voltage to the part by V .  
D
Inaddition, iftheoutputoftheLTC6101iswiredtoadevice  
thatwilleffectivelyshortittohighvoltage(suchasthrough  
an ESD protection clamp) during a reverse supply condi-  
tion, the LTC6101’s output should be connected through  
a resistor or Schottky diode (Figure 8).  
current flowing through R and the internal FET. This  
IN  
current slew rate will be determined by the amplifier and  
FET characteristics as well as the input resistor, R . Us-  
IN  
ing a smaller R will allow the output current to increase  
IN  
Response Time  
more quickly, decreasing the response time at the output.  
The LTC6101 is designed to exhibit fast response to inputs  
forthepurposeofcircuitprotectionorsignaltransmission.  
This response time will be affected by the external circuit  
in two ways, delay and speed.  
This will also have the effect of increasing the maximum  
output current. Using a larger R  
will decrease the re-  
OUT  
sponse time, since V  
= I  
• R . Reducing R and  
OUT OUT OUT IN  
increasing R  
will both have the effect of increasing the  
OUT  
voltage gain of the circuit.  
R
SENSE  
R
SENSE  
R1  
100  
R1  
100  
V
BATT  
+IN  
–IN  
+IN  
–IN  
+
+
+
L
O
A
D
+
L
V
V
V
V
O
A
D
V
BATT  
R3  
1k  
OUT  
OUT  
LTC6101  
D1  
ADC  
LTC6101  
R2  
4.99k  
D1  
R2  
4.99k  
6101 F08  
6101 F07  
Figure 8. Additional Resistor R3 Protects  
Output During Supply Reversal  
Figure 7. Schottky Prevents Damage During Supply Reversal  
6101fh  
15  
LTC6101/LTC6101HV  
TYPICAL APPLICATIONS  
Bidirectional Current Sense Circuit with Separate Charge/Discharge Output  
I
I
CHARGE  
DISCHARGE  
R
SENSE  
CHARGER  
R
IN C  
R
IN D  
100  
100  
R
R
IN C  
100  
IN D  
100  
+IN  
–IN  
–IN  
+IN  
V
BATT  
+
+
+
+
V
V
V
V
L
O
A
D
OUT  
OUT  
LTC6101  
LTC6101  
+
OUT D  
+
R
R
OUT C  
4.99k  
OUT D  
4.99k  
V
V
OUT C  
6101 TA02  
R
R
OUT D  
DISCHARGING: V  
CHARGING: V  
= I  
• R  
WHEN I  
≥ 0  
OUT D DISCHARGE  
SENSE  
R
DISCHARGE  
(
)
IN D  
OUT C  
= I  
• R  
WHEN I  
≥ 0  
OUT C CHARGE  
SENSE  
CHARGE  
(
)
R
IN C  
LTC6101 Monitors Its Own Supply Current  
High-Side-Input Transimpedance Amplifier  
V
S
I
LOAD  
R
SENSE  
CMPZ4697*  
(10V)  
LASER MONITOR  
PHOTODIODE  
i
PD  
I
R1  
100  
SUPPLY  
+IN  
–IN  
4.75k  
4.75k  
10k  
+IN  
–IN  
L
O
A
D
+
+
V
V
+
+
V
V
V
BATT  
OUT  
LTC6101  
+
OUT  
R2  
4.99k  
V
LTC6101  
OUT  
V
O
R
L
6101 TA03  
V
= I • R  
L
6101 TA04  
O
PD  
V
= 49.9 • R  
(
I
+ I  
)
*V SETS PHOTODIODE BIAS  
OUT  
SENSE LOAD SUPPLY  
Z
V
+ 4 ≤ V ≤ V + 60  
S Z  
Z
6101fh  
16  
LTC6101/LTC6101HV  
TYPICAL APPLICATIONS  
16-Bit Resolution Unidirectional Output into LTC2433 ADC  
I
V
LOAD  
SENSE  
+
R
IN  
4V TO 60V  
100Ω  
+IN  
–IN  
L
O
A
D
+
+
V
V
1μF  
5V  
2
1
+
V
OUT  
REF  
V
OUT  
4
5
CC  
9
8
7
+
LTC6101  
IN  
SCK  
SDD  
LTC2433-1  
TO μP  
R
OUT  
IN  
C
C
4.99k  
F
REF GND  
O
3
6
10  
R
R
OUT  
6101 TA06  
V
=
• V  
= 49.9V  
SENSE  
ADC FULL-SCALE = 2.5V  
OUT  
SENSE  
IN  
Intelligent High-Side Switch with Current Monitor  
10μF  
63V  
V
LOGIC  
14V  
47k  
+
V
100Ω  
1%  
3
FAULT  
8
6
–IN  
+IN  
OUT  
4
2
R
S
LT1910  
1
LTC6101  
V
O
OFF ON  
1μF  
100Ω  
4.99k  
V
5
SUB85N06-5  
V
= 49.9 • R • I  
S L  
O
L
O
A
D
I
L
FOR R = 5mΩ,  
V
S
= 2.5V AT I = 10A (FULL SCALE)  
L
O
6101 TA07  
6101fh  
17  
LTC6101/LTC6101HV  
TYPICAL APPLICATIONS  
48V Supply Current Monitor with Isolated Output with 105V Survivability  
I
V
R
SENSE  
SENSE  
+
V
S
LOAD  
SENSE  
R
IN  
–IN  
+IN  
+
+
V
V
V
LTC6101HV  
LOGIC  
OUT  
V
R
OUT  
V
OUT  
ANY OPTOISOLATOR  
V
N = OPTOISOLATOR CURRENT GAIN  
R
SENSE  
V
= V  
I
• N • R  
OUT  
OUT  
LOGIC – SENSE  
6101 TA08  
R
IN  
Simple 500V Current Monitor  
DANGER! Lethal Potentials Present — Use Caution  
I
V
SENSE  
500V  
SENSE  
SENSE  
+
R
R
IN  
100Ω  
+IN  
–IN  
L
O
A
D
+
DANGER!!  
HIGH VOLTAGE!!  
+
V
V
OUT  
62V  
CMZ5944B  
LTC6101  
M1  
V
OUT  
M2  
R
OUT  
M1 AND M2 ARE FQD3P50 TM  
2M  
4.99k  
R
OUT  
V
=
• V  
= 49.9 V  
SENSE SENSE  
OUT  
R
IN  
6101 TA09  
6101fh  
18  
LTC6101/LTC6101HV  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 0.127  
(.035 .005)  
5.23  
3.20 – 3.45  
(.206)  
(.126 – .136)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 0.0508  
(.009 – .015)  
(.004 .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6101fh  
19  
LTC6101/LTC6101HV  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6101fh  
20  
LTC6101/LTC6101HV  
REVISION HISTORY (Revision history begins at Rev H)  
REV  
DATE  
03/12 Updated Features  
Updated Absolute Maximum Ratings and changed Order Information  
Changed operating temperature range to specified temperature range in Electrical Characteristics header  
Changed T value in curve G02 from 45°C to 25°C  
DESCRIPTION  
PAGE NUMBER  
H
1
2
4, 5  
6
A
6101fh  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTC6101/LTC6101HV  
TYPICAL APPLICATION  
Bidirectional Current Sense Circuit with Combined Charge/Discharge Output  
I
I
CHARGE  
DISCHARGE  
R
SENSE  
CHARGER  
R
IN C  
R
IN D  
R
R
IN D  
IN C  
+IN  
–IN  
–IN  
+IN  
V
BATT  
+
+
+
+
V
V
V
V
L
O
A
D
OUT  
OUT  
LTC6101  
LTC6101  
+
OUT  
V
R
OUT  
6101 TA05  
R
R
OUT  
IN D  
DISCHARGING: V  
CHARGING: V  
= I  
• R  
WHEN I  
≥ 0  
OUT DISCHARGE  
SENSE  
DISCHARGE  
(
)
R
OUT  
IN C  
= I  
• R  
WHEN I  
≥ 0  
OUT CHARGE  
SENSE  
CHARGE  
(
)
R
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V Extends 44V above V , 55μA Supply Current,  
CM  
LT1636  
Rail-to-Rail Input/Output, Micropower Op Amp  
EE  
Shutdown Function  
LT1637/LT1638/  
LT1639  
Single/Dual/Quad, Rail-to-Rail, Micropower Op Amp  
V
CM  
Extends 44V above V , 0.4V/μs Slew Rate, >1MHz  
EE  
Bandwidth, <250μA Supply Current per Amplifier  
LT1787/LT1787HV Precision, Bidirectional, High Side Current Sense Amplifier 2.7V to 60V Operation, 75μV Offset, 60μA Current Draw  
LTC1921  
LT1990  
LT1991  
Dual –48V Supply and Fuse Monitor  
200V Transient Protection, Drives Three Optoisolators for Status  
250V Common Mode, Micropower, Pin Selectable Gain = 1, 10  
2.7V to 18V, Micropower, Pin Selectable Gain = –13 to 14  
3μV Offset, 30nV/°C Drift, Input Extends Down to V–  
High Voltage, Gain Selectable Difference Amplifier  
Precision, Gain Selectable Difference Amplifier  
LTC2050/LTC2051/ Single/Dual/Quad Zero-Drift Op Amp  
LTC2052  
LTC4150  
LT6100  
Coulomb Counter/Battery Gas Gauge  
Indicates Charge Quantity and Polarity  
Gain-Selectable High-Side Current Sense Amplifier  
4.1V to 48V Operation, Pin-Selectable Gain: 10, 12.5, 20, 25, 40, 50V/V  
6101fh  
LT 0312 REV H • PRINTED IN USA  
LinearTechnology Corporation  
22 1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY