LTC6101CCS5#TRPBF [Linear]

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LTC6101CCS5#TRPBF
型号: LTC6101CCS5#TRPBF
厂家: Linear    Linear
描述:

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

光电二极管
文件: 总22页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6101/LTC6101HV  
High Voltage,  
High-Side Current Sense  
Amplifier in SOT-23  
FEATURES  
DESCRIPTION  
TheLTC®6101/LTC6101HVareversatile,highvoltage,high  
sidecurrentsenseamplifiers.Designexibilityisprovided  
by the excellent device characteristics; 300μV Max offset  
and only 375μA (typical at 60V) of current consumption.  
The LTC6101 operates on supplies from 4V to 60V and  
LTC6101HV operates on supplies from 5V to 100V.  
n
Supply Range:  
5V to 100V, 105V Absolute Maximum (LTC6101HV)  
4V to 60V, 70V Absolute Maximum (LTC6101)  
Low Offset Voltage: 300μV Max  
Fast Response: 1μs Response Time (0V to 2.5V on  
a 5V Output Step)  
n
n
n
n
n
n
n
n
n
n
n
Gain Configurable with 2 Resistors  
Low Input Bias Current: 170nA Max  
PSRR: 118dB Min  
The LTC6101 monitors current via the voltage across an  
external sense resistor (shunt resistor). Internal circuitry  
converts input voltage to output current, allowing for a  
small sense signal on a high common mode voltage to  
be translated into a ground referenced signal. Low DC  
offset allows the use of a small shunt resistor and large  
gain-setting resistors. As a result, power loss in the shunt  
is reduced.  
Output Current: 1mA Max  
Low Supply Current: 250μA, V = 12V  
S
Specified Temperature Range: –40°C to 125°C  
Operating Temperature Range: –55°C to 125°C  
Package Option for High Voltage Spacing  
Low Profile (1mm) SOT-23 (ThinSOT™) Package  
The wide operating supply range and high accuracy make  
the LTC6101 ideal for a large array of applications from  
automotive to industrial and power management. A maxi-  
mum input sense voltage of 500mV allows a wide range  
of currents to be monitored. The fast response makes the  
LTC6101 the perfect choice for load current warnings and  
shutoff protection control. With very low supply current,  
the LTC6101 is suitable for power sensitive applications.  
APPLICATIONS  
n
Current Shunt Measurement  
n
Battery Monitoring  
n
Remote Sensing  
n
Power Management  
All registered trademarks and trademarks are the property of their respective owners.  
The LTC6101 is available in 5-lead SOT-23 and 8-lead  
MSOP packages.  
TYPICAL APPLICATION  
16-Bit Resolution Unidirectional Output into LTC2433 ADC  
Step Response  
I
V
LOAD  
SENSE  
+
ꢖꢗꢒꢖꢗ  
R
IN  
100Ω  
5V TO 105V  
Δꢂ  
ꢖꢗꢒꢖꢗ  
ꢍ ꢉꢃꢃꢙꢂ  
+IN  
–IN  
ꢀꢁꢀꢂ  
ꢀꢂ  
L
O
A
D
+
+
V
V
ꢍ ꢎꢀꢏꢐ  
ꢍ ꢉꢎꢂ  
1µF  
5V  
R
R
ꢍ ꢉꢃꢃ  
ꢍ ꢀꢕ  
Iꢒ  
ꢓꢔꢊ  
ꢓꢔꢊ  
ꢍ ꢂꢑ  
V
OUT  
ꢖꢗꢒꢖꢗ  
OUT  
LTC6101HV  
I
ꢍ ꢉꢃꢃꢚꢋ  
ꢍ ꢃ  
ꢓꢔꢊ  
LTC2433-1  
TO µP  
ꢃꢁꢀꢂ  
ꢃꢂ  
R
I
ꢓꢔꢊ  
OUT  
4.99k  
ꢀꢃꢃꢄꢅꢆꢇIꢂ  
6101 TA01  
ꢈꢉꢃꢉ ꢊꢋꢃꢉꢌ  
R
R
OUT  
V
=
• V  
= 49.9V  
SENSE SENSE  
OUT  
IN  
Rev I  
1
Document Feedback  
For more information www.analog.com  
LTC6101/LTC6101HV  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V )  
LTC6101I/LTC6101HVI......................... –40°C to 85°C  
LTC6101H/LTC6101HVH ................... –55°C to 125°C  
Specified Temperature Range (Note 2)  
LTC6101C/LTC6101HVC........................... 0°C to 70°C  
LTC6101I/LTC6101HVI......................... –40°C to 85°C  
LTC6101H/LTC6101HVH ................... –40°C to 125°C  
Storage Temperature Range.................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
LTC6101............................................................... 70V  
LTC6101HV........................................................ 105V  
+
Minimum Input Voltage (–IN Pin).................... (V – 4V)  
Maximum Output Voltage (Out Pin)............................9V  
Input Current....................................................... 10mA  
Output Short-Circuit Duration (to V ).............. Indefinite  
Operating Temperature Range  
LTC6101C/LTC6101HVC.......................40°C to 85°C  
PIN CONFIGURATION  
VHV PINOUT  
ꢅꢆꢇ ꢈIꢉꢊ  
ꢂꢀꢇ ꢄIꢈꢉ  
ꢉꢇꢐ ꢏIꢑꢒ  
ꢀIꢁ ꢂ  
ꢌ ꢆꢝꢅ  
ꢄIꢅ  
ꢅꢆ  
ꢅꢆ  
ꢊ ꢎIꢅ  
ꢋ ꢏ  
ꢀꢁꢂ ꢃ  
ꢋ ꢄ  
ꢃIꢁ ꢄ  
ꢌ ꢅꢆ  
ꢞ ꢈ  
ꢅIꢔ ꢓ  
ꢖ ꢕIꢔ  
ꢍ ꢏ  
ꢇꢈꢉ  
ꢋꢌ ꢇꢍꢎꢏꢍꢐꢉ  
ꢓꢔꢊ ꢐꢕꢆꢖꢕꢗꢑ  
ꢊꢋ ꢇꢌꢍꢎꢌꢏꢈ  
ꢌꢑꢒꢉꢍꢓ ꢇꢒꢍꢋꢅIꢎ ꢅꢋꢆꢅꢑꢄꢔ  
ꢕꢖꢍꢗ  
ꢊꢘꢙꢑꢕꢚ ꢐꢙꢕꢔꢉIꢆ ꢓꢔꢇꢐ  
JMAX  
ꢋꢐꢑꢈꢌꢒ ꢇꢑꢌꢊꢂIꢍ ꢂꢊꢀꢂꢐꢆꢓ  
JMAX  
T
= 150°C, θ = 300°C/ W  
ꢘ ꢂꢌꢙꢚꢎꢛ ꢘ ꢄꢌꢙꢚꢎꢜꢊ  
JA  
ꢕꢍ  
T
= 150°C, θ = 250°C/ W  
JA  
ORDER INFORMATION http://www.linear.com/product/LTC6101#orderinfo  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTBSB  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6101ACMS8#PBF  
LTC6101AIMS8#PBF  
LTC6101AHMS8#PBF  
LTC6101HVACMS8#PBF  
LTC6101HVAIMS8#PBF  
LTC6101ACMS8#TRPBF  
LTC6101AIMS8#TRPBF  
LTC6101AHMS8#TRPBF  
LTBSB  
–40°C to 85°C  
LTBSB  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVACMS8#TRPBF LTBSX  
LTC6101HVAIMS8#TRPBF LTBSX  
–40°C to 85°C  
LTC6101HVAHMS8#PBF LTC6101HVAHMS8#TRPBF LTBSX  
–40°C to 125°C  
Rev I  
2
For more information www.analog.com  
LTC6101/LTC6101HV  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC6101ACS5#TRMPBF  
LTC6101AIS5#TRMPBF  
LTC6101AHS5#TRMPBF  
LTC6101BCS5#TRMPBF  
LTC6101BIS5#TRMPBF  
LTC6101BHS5#TRMPBF  
LTC6101CCS5#TRMPBF  
LTC6101CIS5#TRMPBF  
LTC6101CHS5#TRMPBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6101ACS5#TRPBF  
LTC6101AIS5#TRPBF  
LTC6101AHS5#TRPBF  
LTC6101BCS5#TRPBF  
LTC6101BIS5#TRPBF  
LTC6101BHS5#TRPBF  
LTC6101CCS5#TRPBF  
LTC6101CIS5#TRPBF  
LTC6101CHS5#TRPBF  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVACS5#TRMPBF LTC6101HVACS5#TRPBF  
LTC6101HVAIS5#TRMPBF LTC6101HVAIS5#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVAHS5#TRMPBF LTC6101HVAHS5#TRPBF  
LTC6101HVBCS5#TRMPBF LTC6101HVBCS5#TRPBF  
LTC6101HVBIS5#TRMPBF  
LTC6101HVBIS5#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6101HVBHS5#TRMPBF LTC6101HVBHS5#TRPBF  
LTC6101HVCCS5#TRMPBF LTC6101HVCCS5#TRPBF  
LTC6101HVCIS5#TRMPBF  
LTC6101HVCHS5#TRMPBF LTC6101HVCHS5#TRPBF  
LTC6101VHVACS5#TRMPBF LTC6101VHVACS5#TRPBF LTHHD  
LTC6101VHVAIS5#TRMPBF LTC6101VHVAIS5#TRPBF LTHHD  
LTC6101HVCIS5#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
5-Lead Plastic TSOT-23 HV Pinout 0°C to 70°C  
5-Lead Plastic TSOT-23 HV Pinout –40°C to 85°C  
5-Lead Plastic TSOT-23 HV Pinout –40°C to 125°C  
5-Lead Plastic TSOT-23 HV Pinout 0°C to 70°C  
5-Lead Plastic TSOT-23 HV Pinout –40°C to 85°C  
5-Lead Plastic TSOT-23 HV Pinout –40°C to 125°C  
5-Lead Plastic TSOT-23 HV Pinout 0°C to 70°C  
5-Lead Plastic TSOT-23 HV Pinout –40°C to 85°C  
5-Lead Plastic TSOT-23 HV Pinout –40°C to 125°C  
LTC6101VHVAHS5#TRMPBF LTC6101VHVAHS5#TRPBF LTHHD  
LTC6101VHVBCS5#TRMPBF LTC6101VHVBCS5#TRPBF LTHHD  
LTC6101VHVBIS5#TRMPBF LTC6101VHVBIS5#TRPBF  
LTHHD  
LTC6101VHVBHS5#TRMPBF LTC6101VHVBHS5#TRPBF LTHHD  
LTC6101VHVCCS5#TRMPBF LTC6101VHVCCS5#TRPBF LTHHD  
LTC6101VHVCIS5#TRMPBF LTC6101VHVCIS5#TRPBF  
LTHHD  
LTC6101VHVCHS5#TRMPBF LTC6101VHVCHS5#TRPBF LTHHD  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult ADI Marketing for parts specified with wider operating temperature ranges.  
Consult ADI Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
Rev I  
3
For more information www.analog.com  
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS (LTC6101) The denotes the specifications which apply over the full  
specified temperature range, otherwise specifications are at TA = 25°C, RIN = 100Ω, ROUT = 10k, VSENSE+ = V+ (see Figure 1 for  
details), 4V ≤ VS ≤ 60V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
Input Offset Voltage  
4
60  
V
S
V
OS  
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101A  
= 5mV, Gain = 100, LTC6101AC, LTC6101AI  
= 5mV, Gain = 100, LTC6101AH  
85  
300  
450  
535  
µV  
µV  
µV  
V
= 5mV, Gain = 100, LTC6101B  
150  
400  
450  
810  
µV  
µV  
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101C  
800  
1200  
µV  
µV  
∆V /∆T  
Input Offset Voltage Drift  
Input Bias Current  
V
V
V
= 5mV, LTC6101A  
= 5mV, LTC6101B  
= 5mV, LTC6101C  
1
3
5
µV/°C  
µV/°C  
µV/°C  
OS  
SENSE  
SENSE  
SENSE  
I
I
R
= 1M  
100  
170  
245  
nA  
nA  
B
IN  
Input Offset Current  
R
= 1M  
2
15  
nA  
OS  
IN  
V
Input Sense Voltage Full Scale  
Power Supply Rejection Ratio  
V
OS  
within Specification, R = 1k (Note 3)  
500  
mV  
SENSE(MAX)  
IN  
PSRR  
V = 6V to 60V, V  
S
= 5mV, Gain = 100  
= 5mV, Gain = 100  
= 88mV  
118  
115  
140  
133  
dB  
dB  
SENSE  
V = 4V to 60V, V  
S
110  
105  
dB  
dB  
SENSE  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
12V ≤ V ≤ 60V, V  
8
3
1
V
V
V
OUT  
S
SENSE  
V = 6V, V  
= 330mV, R = 1k, R  
= 550mV, R = 1k, R  
= 10k  
= 2k  
S
SENSE  
SENSE  
IN  
OUT  
OUT  
V = 4V, V  
S
IN  
V
SENSE  
V
SENSE  
V
SENSE  
= 0V, Gain = 100, LTC6101A  
= 0V, Gain = 100, LTC6101AC, LTC6101AI  
= 0V, Gain = 100, LTC6101AH  
0
30  
45  
53.5  
mV  
mV  
mV  
OUT (0)  
V
= 0V, Gain = 100, LTC6101B  
0
0
45  
81  
mV  
mV  
SENSE  
V
SENSE  
= 0V, Gain = 100, LTC6101C  
150  
250  
mV  
mV  
I
t
Maximum Output Current  
6V ≤ V ≤ 60V, R  
= 2k, V = 110mV, Gain = 20  
SENSE  
1
0.5  
mA  
mA  
OUT  
S
OUT  
V = 4V, V  
S
= 550mV, Gain = 2, R = 2k  
SENSE  
OUT  
Input Step Response  
(to 2.5V on a 5V Output Step)  
∆V  
SENSE  
= 100mV Transient, 6V ≤ V ≤ 60V, Gain = 50  
1
1.5  
µs  
µs  
r
S
V = 4V  
S
BW  
Signal Bandwidth  
I
I
= 200μA, R = 100, R = 5k  
OUT  
140  
200  
kHz  
kHz  
OUT  
OUT  
IN  
= 1mA, R = 100, R  
= 5k  
IN  
OUT  
I
Supply Current  
V = 4V, I  
= 0, R = 1M  
220  
240  
250  
375  
450  
475  
µA  
µA  
S
S
OUT  
OUT  
IN  
V = 6V, I  
S
= 0, R = 1M  
475  
525  
µA  
µA  
IN  
V = 12V, I  
S
= 0, R = 1M  
500  
590  
µA  
µA  
OUT  
IN  
V = 60V, I  
S
= 0, R = 1M  
640  
µA  
OUT  
IN  
LTC6101AI, LTC6101AC, LTC6101BI, LTC6101BC,  
LTC6101CI, LTC6101CC  
LTC6101AH, LTC6101BH, LTC6101CH  
690  
720  
µA  
µA  
Rev I  
4
For more information www.analog.com  
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS (LTC6101HV) The denotes the specifications which apply over the full  
specified temperature range, otherwise specifications are at TA = 25°C, RIN = 100Ω, ROUT = 10k, VSENSE+ = V+ (see Figure 1 for  
details), 5V ≤ VS ≤ 100V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
Input Offset Voltage  
5
100  
V
S
V
OS  
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101HVA  
= 5mV, Gain = 100, LTC6101HVAC, LTC6101HVAI  
= 5mV, Gain = 100, LTC6101HVAH  
85  
300  
450  
535  
µV  
µV  
µV  
V
= 5mV, Gain = 100, LTC6101HVB  
150  
400  
450  
810  
µV  
µV  
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101HVC  
800  
1200  
µV  
µV  
∆V /∆T  
Input Offset Voltage Drift  
Input Bias Current  
V
V
V
= 5mV, LTC6101HVA  
= 5mV, LTC6101HVB  
= 5mV, LTC6101HVC  
1
3
5
µV/°C  
µV/°C  
µV/°C  
OS  
SENSE  
SENSE  
SENSE  
I
I
R
= 1M  
100  
170  
245  
nA  
nA  
B
IN  
Input Offset Current  
R
= 1M  
2
15  
nA  
OS  
IN  
V
Input Sense Voltage Full Scale  
Power Supply Rejection Ratio  
V
OS  
within Specification, R = 1k (Note 3)  
500  
mV  
SENSE(MAX)  
IN  
PSRR  
V = 6V to 100V, V  
S
= 5mV, Gain = 100  
= 5mV, Gain = 100  
= 88mV  
118  
115  
140  
133  
dB  
dB  
SENSE  
V = 5V to 100V, V  
S
110  
105  
dB  
dB  
SENSE  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
12V ≤ V ≤ 100V, V  
V = 5V, V  
S
8
3
V
V
OUT  
S
SENSE  
= 330mV, R = 1k, R  
= 10k  
SENSE  
IN  
OUT  
V
SENSE  
V
SENSE  
V
SENSE  
= 0V, Gain = 100, LTC6101HVA  
= 0V, Gain = 100, LTC6101HVAC, LTC6101HVAI  
= 0V, Gain = 100, LTC6101HVAH  
0
30  
45  
53.5  
mV  
mV  
mV  
OUT (0)  
V
= 0V, Gain = 100, LTC6101HVB  
0
0
45  
81  
mV  
mV  
SENSE  
V
SENSE  
= 0V, Gain = 100, LTC6101HVC  
150  
250  
mV  
mV  
I
t
Maximum Output Current  
5V ≤ V ≤ 100V, R  
= 2k, V = 110mV, Gain = 20  
SENSE  
1
mA  
OUT  
S
OUT  
Input Step Response  
(to 2.5V on a 5V Output Step)  
∆V  
V = 5V  
S
= 100mV Transient, 6V ≤ V ≤ 100V, Gain = 50  
1
1.5  
µs  
µs  
r
SENSE  
S
BW  
Signal Bandwidth  
I
I
= 200μA, R = 100, R = 5k  
OUT  
140  
200  
kHz  
kHz  
OUT  
OUT  
IN  
= 1mA, R = 100, R  
= 5k  
IN  
OUT  
I
Supply Current  
V = 5V, I  
= 0, R = 1M  
200  
220  
230  
350  
450  
475  
µA  
µA  
S
S
OUT  
OUT  
IN  
V = 6V, I  
S
= 0, R = 1M  
475  
525  
µA  
µA  
IN  
V = 12V, I  
S
= 0, R = 1M  
500  
590  
µA  
µA  
OUT  
IN  
V = 60V, I  
= 0, R = 1M  
640  
690  
720  
µA  
µA  
µA  
S
OUT  
IN  
LTC6101HVI, LTC6101HVC  
LTC6101HVH  
V = 100V, I  
S
= 0, R = 1M  
350  
640  
µA  
OUT  
IN  
LTC6101HVAI, LTC6101HVAC, LTC6101HVBI,  
LTC6101HVBC, LTC6101HVCI, LTC6101HVCC  
LTC6101HVAH, LTC6101HVBH, LTC6101HVCH  
690  
720  
µA  
µA  
Rev I  
5
For more information www.analog.com  
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
characterized and expected to meet specified performance from –40°C to  
85°C but are not tested or QA sampled at these temperatures. LTC6101I/  
LTC6101HVI are guaranteed to meet specified performance from –40°C  
to 85°C. The LTC6101H/LTC6101HVH are guaranteed to meet specified  
performance from –40°C to 125°C.  
Note 2: The LTC6101C/LTC6101HVC are guaranteed to meet specified  
performance from 0°C to 70°C. The LTC6101C/LTC6101HVC are designed,  
Note 3: R  
= 10k for 6V ≤ V ≤ 100V, R  
= 2k for V = 4V.  
OUT S  
OUT  
S
TYPICAL PERFORMANCE CHARACTERISTICS  
Input VOS vs Temperature  
Input VOS vs Supply Voltage  
Input Sense Range  
ꢃꢗꢅ  
ꢌꢍꢍ  
ꢎꢍꢍ  
ꢈꢉ  
ꢊꢉ  
RꢇꢁRꢇꢆꢇꢀꢃꢕꢃIꢊꢇ  
ꢚ ꢃꢅꢛꢜ  
ꢚ ꢁꢛꢜ  
ꢚ ꢝꢀꢁꢛꢜ  
ꢂꢀIꢃꢆ  
ꢙ ꢉꢝꢞ  
ꢏꢍꢍ  
ꢚ ꢇꢁꢛꢜ  
ꢙ ꢋꢈꢉꢝꢞ  
ꢙ ꢊꢑꢝꢞ  
ꢋꢊꢉ  
ꢋꢈꢉ  
ꢋꢌꢉ  
ꢋꢍꢉ  
ꢋꢎꢉꢉ  
ꢋꢎꢊꢉ  
ꢋꢎꢈꢉ  
ꢐꢍꢍ  
ꢂꢗꢅ  
ꢚ ꢂꢃꢅꢛꢜ  
ꢑꢐꢍꢍ  
ꢑꢏꢍꢍ  
ꢑꢎꢍꢍ  
ꢑꢌꢍꢍ  
ꢑꢒꢍꢍꢍ  
ꢚ ꢈꢅꢛꢜ  
ꢙ ꢍꢑꢝꢞ  
R
R
ꢙ ꢎꢉꢉ  
ꢙ ꢑꢚ  
Iꢓ  
ꢕꢂꢔ  
Iꢓ  
ꢁꢗꢅ  
R
R
Iꢀ  
ꢚ ꢒꢍꢍ  
ꢚ ꢛꢜ  
ꢕ ꢓRꢕꢘꢇ  
ꢙ ꢓRꢕꢘꢇ  
ꢗ ꢓRꢕꢘꢇ  
Iꢀ  
ꢄꢂꢃ  
R
R
ꢚ ꢄꢞ  
Iꢖ  
ꢚ ꢄꢞ  
ꢟꢌꢙ  
ꢙ ꢑꢛꢀ  
ꢎꢙꢜꢆꢂꢁꢂ  
ꢎꢙꢜꢆꢂꢁꢂꢠꢊ  
ꢙ ꢎꢊꢑꢝꢞ  
ꢚ ꢛꢝꢊ  
ꢎꢎ ꢎꢍ ꢊꢑ ꢐꢊ ꢐꢒ ꢈꢌ ꢑꢐ ꢌꢉ  
ꢆꢀꢇ  
ꢑꢏꢍ ꢑꢐꢍ  
ꢐꢍ ꢏꢍ ꢎꢍ ꢌꢍ ꢒꢍꢍ ꢒꢐꢍ  
ꢃꢇꢔꢁꢇRꢕꢃꢂRꢇ ꢈꢖꢗꢋ  
ꢀ ꢂꢁ ꢃꢁ ꢄꢁ ꢀꢁ ꢅꢁ ꢆꢁ ꢇꢁ ꢈꢁ ꢉꢁ ꢂꢁꢁ  
ꢐꢊꢑ  
ꢁꢂꢃꢃꢄꢅ  
ꢋꢌꢍꢍꢎꢏ  
ꢌꢎꢉꢎ ꢏꢉꢊ  
ꢆꢂꢁꢂ ꢘꢁꢅ  
ꢎꢒꢍꢒ ꢓꢍꢒ  
LTC6101: VOUT Maximum  
vs Temperature  
LTC6101HV: VOUT Maximum  
vs Temperature  
LTC6101: IOUT Maximum  
vs Temperature  
ꢊꢋ  
ꢊꢌ  
ꢊꢋ  
ꢊꢌ  
ꢖ ꢎꢌꢔ  
ꢖ ꢊꢌꢌꢔ  
ꢚ ꢐꢏꢘ  
ꢖ ꢊꢋꢔ  
ꢖ ꢊꢋꢔ  
ꢚ ꢋꢑꢘ  
ꢖ ꢎꢔ  
ꢖ ꢗꢔ  
ꢖ ꢏꢔ  
ꢖ ꢎꢔ  
ꢖ ꢏꢔ  
ꢚ ꢋꢘ  
ꢚ ꢍꢘ  
ꢐꢏꢌ ꢐꢋꢌ  
ꢋꢌ ꢏꢌ ꢎꢌ ꢍꢌ ꢊꢌꢌ ꢊꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢎꢊꢌꢊ ꢑꢌꢎ  
ꢐꢏꢌ ꢐꢋꢌ  
ꢋꢌ ꢏꢌ ꢎꢌ ꢍꢌ ꢊꢌꢌ ꢊꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢎꢊꢌꢊ ꢑꢋꢌ  
ꢒꢍꢑ ꢒꢏꢑ  
ꢏꢑ ꢍꢑ ꢋꢑ ꢓꢑ ꢐꢑꢑ ꢐꢏꢑ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢋꢐꢑꢐ ꢔꢑꢊ  
Rev I  
6
For more information www.analog.com  
LTC6101/LTC6101HV  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC6101HV: IOUT Maximum  
vs Temperature  
Output Error Due to Input Offset  
vs Input Voltage  
Gain vs Frequency  
ꢎꢌꢌ  
ꢎꢌ  
ꢑꢒ  
ꢓꢔ  
ꢙ ꢐꢓꢚꢖ  
ꢈꢇIꢀ ꢙꢎꢌ  
I
ꢛ ꢏꢠꢁ  
ꢝꢊꢚ  
ꢚ ꢐꢏꢘ  
R
R
ꢛ ꢕꢔꢜꢋ  
ꢛ ꢏꢒꢒ  
ꢝꢊꢚ  
Iꢂ  
ꢓꢒ  
ꢕꢔ  
ꢕꢒ  
ꢏꢔ  
ꢏꢒ  
ꢛ ꢑꢞꢙꢙꢐ  
ꢚ ꢐꢑꢑꢘ  
ꢚ ꢋꢘ  
ꢚ ꢌꢘ  
I
ꢛ ꢕꢒꢒꢟꢁ  
ꢝꢊꢚ  
ꢖ ꢈRꢇꢗꢉ  
ꢌꢍꢎ  
ꢘ ꢈRꢇꢗꢉ  
ꢇ ꢈRꢇꢗꢉ  
ꢚ ꢍꢘ  
ꢖꢔ  
ꢖꢏꢒ  
ꢌꢍꢌꢎ  
ꢒꢍꢑ ꢒꢏꢑ  
ꢏꢑ ꢍꢑ ꢋꢑ ꢓꢑ ꢐꢑꢑ ꢐꢏꢑ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢋꢐꢑꢐ ꢔꢏꢐ  
ꢏꢐ  
ꢏꢒꢐ  
ꢏꢒꢒꢐ  
ꢏꢗ  
ꢌꢍꢌꢓ ꢌꢍꢎ ꢌꢍꢎꢓ ꢌꢍꢐ ꢌꢍꢐꢓ ꢌꢍꢑ ꢌꢍꢑꢓ ꢌꢍꢒ ꢌꢍꢒꢓ ꢌꢍꢓ  
ꢇRꢈꢉꢊꢈꢂꢋꢌ ꢃꢍꢎꢆ  
Iꢀꢁꢂꢃ ꢄꢅꢆꢃꢇꢈꢉ ꢊꢄꢋ  
ꢘꢏꢒꢏ ꢀꢒꢙ  
ꢔꢎꢌꢎ ꢈꢌꢕ  
Input Bias Current  
vs Temperature  
LTC6101: Supply Current  
vs Supply Voltage  
LTC6101HV: Supply Current  
vs Supply Voltage  
ꢑꢒꢍ  
ꢑꢍꢍ  
ꢓꢒꢍ  
ꢓꢍꢍ  
ꢔꢒꢍ  
ꢔꢍꢍ  
ꢕꢒꢍ  
ꢕꢍꢍ  
ꢒꢍ  
ꢑꢍꢍ  
ꢒꢍꢍ  
ꢓꢍꢍ  
ꢔꢍꢍ  
ꢕꢍꢍ  
ꢖꢍꢍ  
ꢊꢋꢌ  
ꢊꢍꢌ  
ꢊꢎꢌ  
ꢊꢌꢌ  
ꢏꢌ  
ꢚꢍꢙꢎ  
ꢗꢒꢙꢎ  
ꢕꢔꢒꢙꢎ  
ꢙꢍꢛꢎ  
ꢗꢒꢛꢎ  
ꢖ ꢋꢔ ꢀꢗ ꢊꢌꢌꢔ  
ꢖꢕꢒꢛꢎ  
ꢖ ꢍꢔ  
ꢔꢒꢙꢎ  
ꢍꢙꢎ  
ꢕꢒꢛꢎ  
ꢋꢌ  
ꢚꢓꢍꢛꢎ  
ꢍꢛꢎ  
ꢘꢑꢍꢙꢎ  
ꢍꢌ  
ꢛ ꢍ  
R
ꢜ ꢍ  
Iꢏ  
Iꢏ  
Iꢏ  
Iꢏ  
ꢎꢌ  
R
ꢛ ꢕꢜ  
ꢜ ꢖꢝ  
ꢐꢍꢌ ꢐꢎꢌ  
ꢎꢌ ꢍꢌ ꢋꢌ ꢏꢌ ꢊꢌꢌ ꢊꢎꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢗ ꢕꢔ ꢕꢖ ꢔꢍ ꢔꢑ ꢔꢗ ꢓꢔ ꢓꢖ ꢑꢍ ꢑꢑ ꢑꢗ ꢒꢔ ꢒꢖ ꢖꢍ  
ꢖꢍ ꢕꢍ ꢔꢍ ꢓꢍ ꢒꢍ ꢑꢍ ꢙꢍ ꢗꢍ ꢘꢍ ꢖꢍꢍ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
ꢋꢊꢌꢊ ꢑꢊꢌ  
ꢖꢕꢍꢕ ꢉꢕꢕ  
ꢑꢖꢍꢖ ꢉꢕꢕ  
Step Response 0mV to 10mV  
Step Response 10mV to 20mV  
ꢂꢃꢄꢅꢀ  
ꢂꢆꢄꢅꢀ  
ꢜꢊꢘꢜꢊ  
ꢗꢋꢘꢗꢋ  
ꢁ  
ꢂꢃꢄꢅꢀ  
ꢄꢆꢇꢀ  
ꢃꢀ  
ꢛ ꢆꢈꢜꢝ  
ꢕ ꢓꢇꢖꢗ  
ꢛ ꢃꢆꢀ  
ꢕ ꢃꢓꢀ  
R
R
ꢛ ꢃꢄꢄ  
Iꢘ  
R
R
ꢕ ꢃꢄꢄ  
Iꢘ  
ꢛ ꢈꢞ  
ꢕꢖꢉ  
ꢕ ꢇꢛ  
ꢛ ꢀꢁ  
ꢙꢚꢈ  
ꢕ ꢀꢁ  
ꢗꢋꢘꢗꢋ  
ꢜꢊꢘꢜꢊ  
ꢄꢀ  
ꢄꢇꢈꢀ  
ꢙꢚꢈ  
ꢕꢖꢉ  
ꢈIꢉꢊ ꢋꢃꢄꢌꢍꢎꢏIꢀꢐ  
ꢉIꢊꢋ ꢌꢃꢄꢍꢎꢏꢐIꢀꢑ  
ꢑꢃꢄꢃ ꢒꢃꢓ  
ꢒꢃꢄꢃ ꢓꢃꢔ  
Rev I  
7
For more information www.analog.com  
LTC6101/LTC6101HV  
TYPICAL PERFORMANCE CHARACTERISTICS  
Step Response Rising Edge  
Step Response 100mV  
Step Response 100mV  
V
ꢔꢉꢕꢔꢉ  
SENSE  
ꢛꢉꢜꢛꢉ  
ꢁ  
ꢁ  
ΔV  
SENSE  
=100mV  
ꢂꢃꢄꢄꢅꢀ  
ꢇ ꢘ ꢙꢆꢚꢛ  
ꢂꢃꢄꢄꢅꢀ  
ꢘ ꢃꢙꢀ  
ꢘ ꢙꢙꢄꢄꢝꢞ  
ꢘ ꢃꢄꢙꢚ  
ꢖꢓꢗꢎ  
ꢆꢀ  
5.5V  
5V  
ꢆꢀ  
ꢜꢒꢗꢎ  
ꢘ ꢞꢆꢟꢕ  
R
R
ꢘ ꢃꢄꢄ  
Iꢕ  
ꢘ ꢃꢞꢀ  
ꢘ ꢆꢟ  
ꢒꢓꢇ  
ꢔꢉꢕꢔꢉ  
R
R
ꢘ ꢃꢄꢄ  
ꢘ ꢆꢠ  
ꢘ ꢀꢁ  
T
= 25C  
Iꢜ  
ꢓꢔꢇ  
A
V+ = 12V  
ꢘ ꢀꢁ  
ꢘ ꢃꢄꢄꢄꢙꢚ  
R
R
V
= 100  
= 5k  
SENSE  
ꢖꢓꢗꢎ  
ꢛꢉꢜꢛꢉ  
IN  
OUT  
V
OUT  
+ = V+  
I
= 100A  
OUT  
ꢄꢀ  
0.5V  
0V  
I
= 0  
ꢄꢀ  
OUT  
ꢓꢔꢇ  
ꢒꢓꢇ  
ꢇIꢈꢉ ꢊꢃꢄꢄꢋꢌꢍꢎIꢀꢏ  
ꢇIꢈꢉ ꢊꢃꢄꢋꢌꢍꢎIꢀꢏ  
TIME (500ns/DIV)  
ꢐꢃꢄꢃ ꢑꢃꢆ  
ꢐꢃꢄꢃ ꢑꢃꢒ  
ꢀꢁꢂꢁ ꢃꢁꢀ  
Step Response Falling Edge  
PSRR vs Frequency  
ꢑꢔꢏ  
ꢅꢔꢑꢏꢑꢥ  
Δꢂ  
ꢖꢎꢃꢃꢗꢂ  
ꢑꢗꢏ  
ꢑꢘꢏ  
ꢑꢏꢏ  
ꢙꢏ  
ꢓꢆꢔꢓꢆ  
ꢚ ꢗꢢ  
ꢑꢒꢄ  
ꢀꢁꢀꢂ  
ꢀꢂ  
ꢖ ꢚꢀꢛꢜ  
ꢅꢔꢑꢏꢑꢥ  
ꢖ ꢎꢚꢂ  
ꢅꢔꢑꢏꢑꢈ ꢥ  
R
R
ꢖ ꢎꢃꢃ  
Iꢔ  
ꢚ ꢑꢘꢢ  
ꢖ ꢀꢞ  
ꢑꢒꢄ  
ꢖ ꢂꢝ  
ꢓꢆꢔꢓꢆ  
ꢔꢏ  
R
R
ꢚ ꢑꢏꢏ  
Iꢄ  
ꢚ ꢑꢏꢒ  
ꢚ ꢝꢞꢀ  
ꢛꢃꢜ  
ꢛꢃꢜ  
ꢕꢟIꢄ ꢚ ꢑꢏꢏ  
ꢗꢏ  
I
ꢖ ꢎꢃꢃꢘ  
ꢑꢒꢄ  
ꢅꢔꢑꢏꢑꢈ ꢥ  
ꢘꢏ  
I
ꢚ ꢑꢏꢏꢡꢟ  
ꢚ ꢝꢏꢣꢢꢞ  
ꢢ ꢚ ꢝꢢ  
ꢛꢃꢜꢠꢅ  
ꢃꢁꢀꢂ  
ꢃꢂ  
I
ꢖ ꢃ  
ꢑꢒꢄ  
Iꢄꢟꢅ  
ꢏꢐꢑ  
ꢑꢏ ꢑꢏꢏ ꢑꢒ  
ꢑꢏꢒ ꢑꢏꢏꢒ ꢑꢓ  
ꢄIꢅꢆ ꢇꢀꢃꢃꢈꢉꢊꢋIꢂꢌ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢔꢑꢏꢑ ꢕꢑꢖ  
ꢍꢎꢃꢎ ꢏꢎꢐ  
Rev I  
8
For more information www.analog.com  
 
LTC6101/LTC6101HV  
PIN FUNCTIONS  
OUT: Current Output. OUT will source a current that is  
proportional to the sense voltage into an external resistor.  
+
V : Positive Supply Pin. Supply current is drawn through  
this pin. The circuit may be configured so that the  
LTC6101 supply current is or is not monitored along  
with the system load current. To monitor only system  
V : Negative Supply (or Ground for Single-Supply  
Operation).  
+
load current, connect V to the more positive side of the  
+
–IN:TheinternalsenseamplifierwilldriveIN tothesame  
sense resistor. To monitor the total current, including the  
+
+
potential as IN . A resistor (R ) tied from V to IN sets  
LTC6101 current, connect V to the more negative side  
IN  
theoutputcurrentI =V  
/R . V  
SENSE IN SENSE  
isthevoltage  
(Figure 1).  
of the sense resistor.  
OUT  
developed across the external R  
SENSE  
+IN: Must be tied to the system load end of the sense  
resistor, either directly or through a resistor.  
BLOCK DIAGRAM  
I
ꢋꢅꢏꢊ  
ꢒꢐꢓꢒꢐ  
ꢒꢐꢓꢒꢐ  
ꢉꢏꢇꢇꢐRꢑ  
R
R
Iꢓ  
ꢃꢄꢂ  
ꢀIꢓ  
ꢁIꢓ  
ꢖꢗ  
ꢖꢗ  
I
ꢃꢄꢂ  
ꢅꢆꢇ  
R
R
ꢅꢆꢇ  
ꢅꢆꢇ  
ꢔ ꢂ  
ꢒꢐꢓꢒꢐ  
ꢅꢆꢇ  
Iꢓ  
ꢋꢇꢌꢈꢃꢄꢃꢍꢋꢇꢌꢈꢃꢄꢃꢎꢂ  
R
ꢅꢆꢇ  
ꢈꢃꢄꢃ ꢉꢊ  
Figure 1. LTC6101/LTC6101HV Block Diagram and Typical Connection  
APPLICATIONS INFORMATION  
+
The LTC6101 high side current sense amplifier (Figure 1)  
provides accurate monitoring of current through a user-  
selected sense resistor. The sense voltage is amplified by  
a user-selected gain and level shifted from the positive  
power supply to a ground-referred output. The output  
signal is analog and may be used as is or processed with  
an output filter.  
tor, R , between IN and V forces a potential across  
IN  
R
R
that is the same as the sense voltage across  
. A corresponding current, V  
flow through R . The high impedance inputs of the  
sense amplifier will not conduct this input current,  
soitwillowthroughaninternalMOSFETtotheoutputpin.  
IN  
/R , will  
SENSE IN  
SENSE  
IN  
The output current can be transformed into a voltage by  
adding a resistor from OUT to V . The output voltage is  
Theory of Operation  
then V = V + I  
• R  
.
O
OUT  
OUT  
An internal sense amplifier loop forces IN to have the  
+
same potential as IN . Connecting an external resis-  
Rev I  
9
For more information www.analog.com  
 
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Useful Gain Configurations  
Peak dissipation is 200mW. If a 5mΩ sense resistor is  
employed, then the effective current error is 30mA, while  
the peak sense voltage is reduced to 10mV at 2A, dis-  
sipating only 20mW.  
Gain  
20  
R
R
V
at V  
= 5V  
I
at V  
= 5V  
IN  
OUT  
SENSE  
OUT  
OUT  
OUT  
499  
200  
100  
10k  
10k  
10k  
250mV  
100mV  
50mV  
500µA  
500µA  
500µA  
50  
The low offset and corresponding large dynamic range of  
the LTC6101 make it more flexible than other solutions in  
this respect. The 150µV typical offset gives 60dB of dy-  
namic range for a sense voltage that is limited to 150mV  
max, and over 70dB of dynamic range if the rated input  
maximum of 500mV is allowed.  
100  
Selection of External Current Sense Resistor  
Theexternalsenseresistor,R ,hasasignificanteffect  
SENSE  
on the function of a current sensing system and must be  
chosen with care.  
Sense Resistor Connection  
First, the power dissipation in the resistor should be  
considered. The system load current will cause both heat  
+
Kelvin connection of the IN and IN inputs to the sense  
resistor should be used in all but the lowest power ap-  
plications. Solder connections and PC board interconnec-  
tions that carry high current can cause significant error  
in measurement due to their relatively large resistances.  
One 10mm x 10mm square trace of one-ounce copper  
is approximately 0.5mΩ. A 1mV error can be caused by  
as little as 2A flowing through this small interconnect.  
This will cause a 1% error in a 100mV signal. A 10A load  
current in the same interconnect will cause a 5% error  
for the same 100mV signal. By isolating the sense traces  
from the high-current paths, this error can be reduced  
by orders of magnitude. A sense resistor with integrated  
Kelvin sense terminals will give the best results. Figure 2  
illustrates the recommended method.  
and voltage loss in R . As a result, the sense resis-  
SENSE  
tor should be as small as possible while still providing  
the input dynamic range required by the measurement.  
Note that input dynamic range is the difference between  
the maximum input signal and the minimum accurately  
reproduced signal, and is limited primarily by input DC  
offset of the internal amplifier of the LTC6101. In addition,  
R
mustbesmallenoughthatV  
doesnotexceed  
SENSE  
SENSE  
themaximuminputvoltagespecifiedbytheLTC6101,even  
under peak load conditions. As an example, an application  
may require that the maximum sense voltage be 100mV.  
If this application is expected to draw 2A at peak load,  
R
should be no more than 50mΩ.  
SENSE  
Once the maximum R  
value is determined, the mini-  
SENSE  
mum sense resistor value will be set by the resolution or  
dynamic range required. The minimum signal that can be  
accurately represented by this sense amp is limited by the  
input offset. As an example, the LTC6101B has a typical  
input offset of 150µV. If the minimum current is 20mA, a  
R
Iꢋ  
R
ꢏꢐꢋꢏꢐ  
ꢌIꢋ  
ꢑIꢋ  
sense resistor of 7.5mΩ will set V  
to 150µV. This is  
SENSE  
ꢀꢆꢍꢎ  
the same value as the input offset. A larger sense resistor  
will reduce the error due to offset by increasing the sense  
voltage for a given load current.  
Choosinga50mΩR  
willmaximizethedynamicrange  
SENSE  
ꢆꢇꢁ  
ꢂꢃꢄꢅꢄ  
ꢆꢇꢁ  
and provide a system that has 100mV across the sense  
resistor at peak load (2A), while input offset causes an  
error equivalent to only 3mA of load current.  
R
ꢆꢇꢁ  
ꢃꢄꢅꢄ ꢉꢅꢊ  
Figure 2. Kelvin Input Connection Preserves  
Accuracy Despite Large Load Current  
Rev I  
10  
For more information www.analog.com  
 
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Selection of External Input Resistor, R  
IN  
The external input resistor, R , controls the transconduc-  
IN  
tanceofthecurrentsensecircuit. SinceI =V  
/R ,  
R
ꢆꢇꢈꢆꢇ  
ꢆꢇꢈꢆꢇ  
OUT  
SENSE IN  
IN  
transconductance g = 1/R . For example, if R = 100,  
ꢉꢊꢋꢊ ꢌꢋꢍꢎ  
m
IN  
then I = V  
/100 or I = 1mA for V = 100mV.  
OUT  
SENSE  
OUT  
SENSE  
ꢂꢃꢄꢅ  
R
should be chosen to allow the required resolution  
IN  
Figure 3a. Shunt Diode Limits Maximum Input Voltage to Allow  
Better Low Input Resolution Without Overranging  
while limiting the output current. At low supply voltage,  
may be as much as 1mA. By setting R such that  
I
OUT  
IN  
the largest expected sense voltage gives I  
= 1mA, then  
This approach can be helpful in cases where occasional  
large burst currents may be ignored. It can also be used  
in a multirange configuration where a low current circuit  
is added to a high current circuit (Figure 3b). Note that  
a comparator (LTC1540) is used to select the range, and  
OUT  
the maximum output dynamic range is available. Output  
dynamic range is limited by both the maximum allowed  
outputcurrentandthemaximumallowedoutputvoltage,as  
wellastheminimumpracticaloutputsignal.Iflessdynamic  
range is required, then R can be increased accordingly,  
transistor M1 limits the voltage across R  
.
IN  
SENSE LO  
reducing the max output current and power dissipation.  
Care should be taken when designing the board layout  
If low sense currents must be resolved accurately in a  
for R especially for small R values. All trace and inter-  
IN,  
IN  
system that has very wide dynamic range, a smaller R  
IN  
connect impedances will increase the effective R value,  
IN  
than the max current spec allows may be used if the max  
causing a gain error. In addition, internal device resistance  
current is limited in another way, such as with a Schottky  
will add approximately 0.2Ω to R .  
IN  
diode across R  
(Figure 3a). This will reduce the high  
SENSE  
currentmeasurementaccuracybylimitingtheresult,while  
increasing the low current measurement resolution.  
V
LOGIC  
CMPZ4697  
10k  
(3.3V TO 5V)  
7
3
4
M1  
+
Si4465  
V
IN  
R
SENSE HI  
10m  
I
LOAD  
8
Q1  
CMPT5551  
5
6
V
OUT  
40.2k  
R
SENSE LO  
100m  
301  
+IN  
301  
–IN  
301  
+IN  
301  
–IN  
4.7k  
1.74M  
LTC1540  
2
1
HIGH  
+
+
+
+
V
V
V
V
RANGE  
V
IN  
619k  
INDICATOR  
(I  
> 1.2A)  
LOAD  
OUT  
OUT  
HIGH CURRENT RANGE OUT  
250mV/A  
LTC6101  
LTC6101  
7.5k  
V
LOGIC  
BAT54C  
LOW CURRENT RANGE OUT  
2.5V/A  
R
5
(
V
+5V  
)
≤ V ≤ 60V  
LOGIC  
IN  
7.5k  
6101 F03b  
0 ≤ I  
≤ 10A  
LOAD  
Figure 3b. Dual LTC6101s Allow High-Low Current Ranging  
Rev I  
11  
For more information www.analog.com  
 
 
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Selection of External Output Resistor, R  
Output Error, E , Due to the Amplifier DC Offset  
OUT  
OUT  
Voltage, V  
OS  
The output resistor, R , determines how the output cur-  
OUT  
E
= V • (R /R )  
OS OUT IN  
rent is converted to voltage. V  
is simply I  
• R  
.
OUT(VOS)  
OUT  
OUT  
OUT  
The DC offset voltage of the amplifier adds directly to the  
value of the sense voltage, V . This is the dominant  
error of the system and it limits the available dynamic  
range.TheparagraphSelectionofExternalCurrentSense  
Resistor” provides details.  
In choosing an output resistor, the max output voltage  
must first be considered. If the circuit that is driven by  
SENSE  
the output does not limit the output voltage, then R  
OUT  
must be chosen such that the max output voltage does  
not exceed the LTC6101 max output voltage rating. If the  
followingcircuitisabufferorADCwithlimitedinputrange,  
Output Error, E , Due to the Bias Currents,  
OUT  
then R  
must be chosen so that I  
• R  
is less  
OUT  
OUT(MAX)  
OUT  
I (+) and I (–)  
B
B
than the allowed maximum input range of this circuit.  
The bias current I (+) flows into the positive input of the  
B
Inaddition,theoutputimpedanceisdeterminedbyR .If  
OUT  
internal op amp. I (–) flows into the negative input.  
B
the circuit to be driven has high enough input impedance,  
then almost any useful output impedance will be accept-  
able. However, if the driven circuit has relatively low input  
impedance, or draws spikes of current, such as an ADC  
E
= R ((I (+) • (R  
/R ) – I (–))  
SENSE IN B  
OUT(IBIAS)  
OUT  
B
Since I (+) ≈ I (–) = I  
, if R << R then,  
SENSE IN  
B
B
BIAS  
E
≈ –R  
• I  
mightdo,thenalowerR  
valuemayberequiredinorder  
OUT(IBIAS)  
OUT BIAS  
OUT  
to preserve the accuracy of the output. As an example, if  
For instance if I  
error is 0.1mV.  
is 100nA and R  
is 1kΩ, the output  
OUT  
BIAS  
theinputimpedanceofthedrivencircuitis100timesR  
,
OUT  
then the accuracy of V  
will be reduced by 1% since:  
OUT  
Note that in applications where R  
≈ R , I (+) causes  
IN B  
SENSE  
a voltage offset in R  
I (–) and E  
IN  
that cancels the error due to  
R
•R  
SENSE  
IN(DRIVEN)  
IN(DRIVEN)  
OUT  
V
=I  
≈ 0. In applications where R <  
OUT OUT  
B
OUT(IBIAS)  
SENSE  
R
+R  
OUT  
R , the bias current error can be similarly reduced if an  
100  
external resistor R (+) = (R – R ) is connected as  
IN  
IN  
SENSE  
=I  
•R  
= 0.99 •I  
•R  
OUT  
OUT  
OUT OUT  
shown in Figure 4 below. Under both conditions:  
101  
E
=
R
• I ; I = I (+) – I (–)  
OUT(IBIAS)  
OUT OS OS B B  
Error Sources  
The current sense system uses an amplifier and resistors  
to apply gain and level shift the result. The output is then  
dependent on the characteristics of the amplifier, such as  
gain and input offset, as well as resistor matching.  
R
R
Iꢋ  
R
ꢐꢑꢋꢐꢑ  
Iꢋ  
ꢍIꢋ  
ꢌIꢋ  
Ideally, the circuit output is:  
ꢀꢆꢎꢏ  
R
OUT  
V
= V  
;V  
=R •I  
SENSE SENSE  
OUT  
SENSE  
SENSE  
R
IN  
In this case, the only error is due to resistor mismatch,  
which provides an error in gain only. However, offset  
voltage, bias current and finite gain in the amplifier cause  
additional errors:  
ꢆꢇꢁ  
ꢂꢃꢄꢅꢄ  
ꢆꢇꢁ  
R
ꢆꢇꢁ  
ꢃꢄꢅꢄ ꢉꢅꢊ  
R
R
R  
Iꢋ ꢐꢑꢋꢐꢑ  
Iꢋ  
Figure 4. Second Input R Minimizes  
Error Due to Input Bias Current  
Rev I  
12  
For more information www.analog.com  
 
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
If the offset current, I , of the LTC6101 amplifier is 2nA,  
The total power dissipated is the output dissipation plus  
the quiescent dissipation:  
OS  
the 100 microvolt error above is reduced to 2 microvolts.  
+
Adding R  
as described will maximize the dynamic  
IN  
P
TOTAL  
= P + P  
OUT Q  
+
range of the circuit. For less sensitive designs, R is  
not necessary.  
IN  
At maximum supply and maximum output current, the  
total power dissipation can exceed 100mW. This will  
cause significant heating of the LTC6101 die. In order to  
prevent damage to the LTC6101, the maximum expected  
dissipation in each application should be calculated. This  
Example:  
If an I  
3V/1A  
range = (1A to 1mA) and (V /I  
) =  
SENSE  
OUT SENSE  
number can be multiplied by the θ value listed in the  
JA  
Then, from the Electrical Characteristics of the LTC6101,  
≈ V (max) / I (max) = 500mV/1A =  
package section on page 2 to find the maximum expected  
dietemperature.Thismustnotbeallowedtoexceed150°C,  
or performance may be degraded.  
R
SENSE  
500mΩ  
SENSE  
SENSE  
Gain = R /R = V  
(max) / V  
(max) =  
SENSE  
OUT IN  
3V/500mV = 6  
OUT  
As an example, if an LTC6101 in the S5 package is to be  
run at 55V 5V supply with 1mA output current at 80°C:  
If the maximum output current, I , is limited to 1mA,  
OUT  
+
P
P
= I  
• V  
= 41.4mW  
(MAX)  
Q(MAX)  
DD(MAX)  
R
equals 3V/1mA ≈ 3.01 kΩ (1% value) and R =  
OUT  
IN  
+
3kΩ/6 ≈ 499Ω (1% value).  
= I  
• V  
= 60mW  
(MAX)  
OUT(MAX)  
OUT  
The output error due to DC offset is 900µVolts (typ) and  
T
T
T
= θ • P  
JA TOTAL(MAX)  
RISE  
MAX  
MAX  
the error due to offset current, I is 3k x 2nA = 6µVolts  
OS  
= T  
+ T  
RISE  
AMBIENT  
+
(typical), provided R = R  
.
IN  
IN  
must be < 150°C  
≈ 96mW and the max die temp  
Themaximumoutputerrorcanthereforereach 906µVolts  
or 0.03% (–70dB) of the output full scale. Considering  
P
TOTAL(MAX)  
will be 104°C  
the system input 60dB dynamic range (I  
= 1mA to  
SENSE  
1A), the 70dB performance of the LTC6101 makes this  
application feasible.  
If this same circuit must run at 125°C, the max die  
temp will increase to 150°C. (Note that supply current,  
and therefore P , is proportional to temperature. Refer  
Q
Output Error, E , Due to the Finite DC Open Loop  
OUT  
to Typical Performance Characteristics section.) In this  
condition,themaximumoutputcurrentshouldbereduced  
to avoid device damage. Note that the MSOP package  
Gain, A , of the LTC6101 Amplifier  
OL  
This error is inconsequential as the A of the LTC6101  
OL  
is very large.  
has a larger θ than the S5, so additional care must be  
JA  
taken when operating the LTC6101A/LTC6101HVA at high  
Output Current Limitations Due to Power Dissipation  
temperatures and high output currents.  
The LTC6101 can deliver up to 1mA continuous current to  
The LTC6101HV can be used at voltages up to 105V. This  
additional voltage requires that more power be dissipated  
foragivenlevelofcurrent.Thiswillfurtherlimittheallowed  
output current at high ambient temperatures.  
theoutputpin.ThiscurrentowsthroughR andentersthe  
IN  
current sense amp via the IN(–) pin. The power dissipated  
in the LTC6101 due to the output signal is:  
P
= (V – V ) • I  
–IN OUT OUT  
OUT  
It is important to note that the LTC6101 has been designed  
to provide at least 1mA to the output when required, and  
can deliver more depending on the conditions. Care must  
be taken to limit the maximum output current by proper  
choice of sense resistor and, if input fault conditions exist,  
+
+
Since V ≈ V , P  
≈ (V – V ) • I  
OUT OUT  
–IN  
OUT  
There is also power dissipated due to the quiescent sup-  
ply current:  
+
external clamps.  
P = I • V  
Q
DD  
Rev I  
13  
For more information www.analog.com  
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Output Filtering  
Input Common Mode Range  
The output voltage, V , is simply I  
• Z . This  
The inputs of the LTC6101 can function from 1.5V below  
the positive supply to 0.5V above it. Not only does this  
OUT  
OUT  
OUT  
makes filtering straightforward. Any circuit may be used  
which generates the required Z to get the desired filter  
allow a wide V  
range, it also allows the input refer-  
OUT  
SENSE  
response. For example, a capacitor in parallel with R  
ence to be separate from the positive supply (Figure 5).  
OUT  
+
will give a low pass response. This will reduce unwanted  
noise from the output, and may also be useful as a charge  
reservoir to keep the output steady while driving a switch-  
ing circuit such as a mux or ADC. This output capacitor  
in parallel with an output resistor will create a pole in the  
output response at:  
Note that the difference between V  
and V must be no  
BATT  
more than the common mode range listed in the Electrical  
Characteristics table. If the maximum V is less than  
SENSE  
500mV, the LTC6101 may monitor its own supply current,  
as well as that of the load (Figure 6).  
ꢑꢌꢁꢁꢐRꢒ  
1
f
=
–3dB  
R
2 • π R  
•C  
OUT  
Iꢋ  
OUT  
R
ꢏꢐꢋꢏꢐ  
ꢎIꢋ  
ꢓIꢋ  
Useful Equations  
Input Voltage: V  
ꢀꢆꢌꢍ  
=I  
•R  
SENSE  
SENSE SENSE  
V
R
OUT  
R
IN  
OUT  
Voltage Gain:  
Current Gain:  
=
V
SENSE  
ꢆꢇꢁ  
ꢂꢃꢄꢅꢄ  
ꢆꢇꢁ  
I
R
SENSE  
R
OUT  
ꢆꢇꢁ  
=
I
R
ꢃꢄꢅꢄ ꢉꢅꢊ  
IN  
SENSE  
I
1
OUT  
Figure 5. V+ Powered Separately from  
Load Supply (VBATT  
Transconductance:  
=
V
R
IN  
SENSE  
)
V
R
OUT  
OUT  
Transimpedance:  
I
=R  
SENSE  
R
IN  
SENSE  
R
Iꢊ  
R
ꢎꢏꢊꢎꢏ  
ꢍIꢊ  
ꢐIꢊ  
ꢀꢆꢋꢌ  
ꢆꢇꢁ  
ꢆꢇꢁ  
ꢂꢃꢄꢅꢄ  
R
ꢆꢇꢁ  
ꢃꢄꢅꢄ ꢉꢅꢃ  
Figure 6. LTC6101 Supply Current  
Monitored with Load  
Rev I  
14  
For more information www.analog.com  
 
 
LTC6101/LTC6101HV  
APPLICATIONS INFORMATION  
Reverse Supply Protection  
sheet. Note that the curves are labeled with respect to the  
initial output currents.  
Some applications may be tested with reverse-polarity  
supplies due to an expectation of this type of fault during  
operation. The LTC6101 is not protected internally from  
externalreversalofsupplypolarity.Topreventdamagethat  
may occur during this condition, a Schottky diode should  
The speed is also affected by the external circuit. In this  
case, if the input changes very quickly, the internal ampli-  
fier will slew the gate of the internal output FET (Figure 1)  
in order to maintain the internal loop. This results in cur-  
rent flowing through R and the internal FET. This current  
be added in series with V (Figure 7). This will limit the  
IN  
slew rate will be determined by the amplifier and FET  
reverse current through the LTC6101. Note that this diode  
will limit the low voltage performance of the LTC6101 by  
effectively reducing the supply voltage to the part by V .  
characteristics as well as the input resistor, R . Using a  
IN  
smaller R will allow the output current to increase more  
IN  
D
quickly, decreasing the response time at the output. This  
Inaddition, iftheoutputoftheLTC6101iswiredtoadevice  
thatwilleffectivelyshortittohighvoltage(suchasthrough  
an ESD protection clamp) during a reverse supply condi-  
tion, the LTC6101’s output should be connected through  
a resistor or Schottky diode (Figure 8).  
will also have the effect of increasing the maximum output  
current. Using a larger R  
will decrease the response  
OUT  
time, since V  
= I  
• R . Reducing R and increas-  
OUT OUT OUT IN  
ing R  
will both have the effect of increasing the voltage  
OUT  
gain of the circuit.  
Response Time  
High Voltage Spacing  
The LTC6101 isdesignedto exhibitfastresponseto inputs  
forthepurposeofcircuitprotectionorsignaltransmission.  
This response time will be affected by the external circuit  
in two ways, delay and speed.  
For applications with higher voltage, the TSOT-23 HV  
pinout of the LTC6101HV eases the printed circuit board  
(PCB) layout burden. In the typical high side current  
sense configuration, the sense voltages will be at or very  
near the supply; normally the sense difference voltage is  
If the output current is very low and an input transient  
occurs, there may be an increased delay before the output  
voltagebeginschanging.Thiscanbeimprovedbyincreas-  
ing the minimum output current, either by increasing  
+
small. Therefore V , +IN and –IN will be roughly the same  
voltage. The TSOT-23 HV pinout provides connection for  
these three pins on the left side (Top View). Because volt-  
age differences between these high side pins and the OUT  
R
or decreasing R . The effect of increased output  
SENSE  
IN  
and V pin may be high, the OUT and V pin lie separately,  
on the right side of the package.  
current is illustrated in the step response curves in the  
Typical Performance Characteristics section of this data  
R
R
ꢒꢓꢔꢒꢓ  
ꢑꢒꢓꢑꢒ  
Rꢁ  
ꢁꢂꢂ  
Rꢁ  
ꢁꢂꢂ  
ꢐꢅꢉꢉ  
ꢖIꢓ  
ꢕIꢓ  
ꢗIꢔ  
ꢖIꢔ  
ꢏꢐꢆꢆ  
Rꢑ  
ꢁꢎ  
ꢕꢘꢉ  
ꢔꢗꢆ  
ꢇꢀꢁꢂꢁ  
ꢆꢁ  
ꢅꢆꢇ  
ꢇꢀꢁꢂꢁ  
Rꢊ  
ꢋꢌꢍꢍꢎ  
ꢍꢁ  
Rꢈ  
ꢉꢊꢋꢋꢌ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
Figure 8. Additional Resistor R3 Protects Output During  
Supply Reversal  
Figure 7. Schottky Prevents Damage During Supply Reversal  
Rev I  
15  
For more information www.analog.com  
 
 
LTC6101/LTC6101HV  
TYPICAL APPLICATIONS  
Bidirectional Current Sense Circuit with Separate Charge/Discharge Output  
I
I
CHARGE  
DISCHARGE  
R
SENSE  
CHARGER  
R
IN C  
R
IN D  
100  
100  
R
R
IN C  
100  
IN D  
100  
+IN  
–IN  
–IN  
+IN  
V
BATT  
+
+
+
+
V
V
V
V
L
O
A
D
OUT  
OUT  
LTC6101  
LTC6101  
+
OUT D  
+
R
R
OUT C  
4.99k  
OUT D  
4.99k  
V
V
OUT C  
6101 TA02  
R
R
OUT D  
DISCHARGING: V  
CHARGING: V  
= I  
• R  
WHEN I  
≥ 0  
OUT D DISCHARGE  
SENSE  
DISCHARGE  
(
)
IN D  
R
OUT C  
= I  
• R  
WHEN I  
≥ 0  
OUT C CHARGE  
SENSE  
CHARGE  
(
)
R
IN C  
LTC6101 Monitors Its Own Supply Current  
High-Side-Input Transimpedance Amplifier  
V
S
I
ꢀꢁꢂꢃ  
R
ꢓꢔꢕꢓꢔ  
CMPZ4697*  
(10V)  
LASER MONITOR  
PHOTODIODE  
i
PD  
I
Rꢇ  
ꢇꢈꢈ  
ꢓꢑꢚꢚꢛ  
ꢅIꢕ  
ꢄIꢕ  
4.75k  
4.75k  
10k  
+IN  
–IN  
+
+
V
V
ꢒꢂꢉꢉ  
ꢁꢑꢉ  
ꢖꢆꢇꢈꢇ  
OUT  
Rꢋ  
ꢌꢍꢎꢎꢏ  
LTC6101  
ꢁꢑꢉ  
V
O
R
L
ꢆꢇꢈꢇ ꢉꢂꢈꢊ  
V
= I • R  
L
6101 TA04  
O
PD  
ꢁꢑꢉ  
ꢗ ꢌꢎꢍꢎ ꢘ R  
I
ꢅ I  
*V SETS PHOTODIODE BIAS  
ꢓꢔꢕꢓꢔ ꢀꢁꢂꢃ ꢓꢑꢚꢚꢛ  
Z
V
+ 4 ≤ V ≤ V + 60  
S Z  
Z
Rev I  
16  
For more information www.analog.com  
LTC6101/LTC6101HV  
TYPICAL APPLICATIONS  
16-Bit Resolution Unidirectional Output into LTC2433 ADC  
I
V
LOAD  
SENSE  
+
R
IN  
4V TO 60V  
100Ω  
+IN  
–IN  
L
O
A
D
+
+
V
V
1µF  
5V  
2
1
+
V
REF  
OUT  
V
CC  
OUT  
4
5
9
8
7
+
LTC6101  
IN  
SCK  
SDD  
LTC2433-1  
TO µP  
R
OUT  
IN  
C
C
4.99k  
F
REF GND  
O
3
6
10  
R
R
OUT  
6101 TA06  
V
=
• V  
SENSE  
= 49.9V  
SENSE  
ADC FULL-SCALE = 2.5V  
OUT  
IN  
Intelligent High-Side Switch with Current Monitor  
10µF  
63V  
V
LOGIC  
14V  
47k  
+
V
100Ω  
1%  
3
FAULT  
8
6
–IN  
+IN  
OUT  
4
2
R
S
LT1910  
1
LTC6101  
V
O
OFF ON  
1µF  
100Ω  
4.99k  
V
5
SUB85N06-5  
V
= 49.9 • R • I  
S L  
O
L
O
A
D
I
L
FOR R = 5mΩ,  
V
S
= 2.5V AT I = 10A (FULL SCALE)  
L
O
6101 TA07  
Rev I  
17  
For more information www.analog.com  
LTC6101/LTC6101HV  
TYPICAL APPLICATIONS  
48V Supply Current Monitor with Isolated Output with 105V Survivability  
I
ꢌꢍꢊꢌꢍ  
ꢌꢍꢊꢌꢍ  
ꢆꢎꢄꢏ  
R
ꢌꢍꢊꢌꢍ  
R
Iꢊ  
ꢋIꢊ  
ꢐIꢊ  
ꢇꢀꢁꢂꢁꢈꢉ  
ꢆꢎꢓIꢇ  
ꢎꢑꢃ  
R
ꢎꢑꢃ  
ꢎꢑꢃ  
ꢄꢊꢖ ꢎꢕꢃꢎIꢌꢎꢆꢄꢃꢎR  
ꢊ ꢒ ꢎꢕꢃꢎIꢌꢎꢆꢄꢃꢎR ꢇꢑRRꢍꢊꢃ ꢓꢄIꢊ  
R
ꢌꢍꢊꢌꢍ  
ꢎꢑꢃ  
ꢒ ꢉ  
I
ꢔ ꢊ ꢔ R  
ꢎꢑꢃ  
ꢆꢎꢓIꢇ ꢋ ꢌꢍꢊꢌꢍ  
ꢀꢁꢂꢁ ꢃꢄꢂꢅ  
R
Iꢊ  
Simple 500V Current Monitor  
DANGER! Lethal Potentials Present — Use Caution  
I
V
SENSE  
500V  
SENSE  
+
R
SENSE  
R
IN  
100Ω  
+IN  
–IN  
L
O
A
D
+
DANGER!!  
HIGH VOLTAGE!!  
+
V
V
OUT  
62V  
CMZ5944B  
LTC6101  
M1  
V
OUT  
M2  
R
OUT  
M1 AND M2 ARE FQD3P50 TM  
2M  
4.99k  
R
OUT  
V
=
• V  
= 49.9 V  
SENSE SENSE  
OUT  
R
IN  
6101 TA09  
Rev I  
18  
For more information www.analog.com  
LTC6101/LTC6101HV  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC6101#packaging for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
ꢄReꢪeꢫeꢬꢭe ꢔꢒꢘ ꢖꢚꢍ ꢮ ꢇꢏꢯꢇꢅꢯꢉꢐꢐꢇ Rev ꢍꢆ  
ꢇꢎꢅꢅꢦ ꢇꢎꢉꢈꢤ  
ꢄꢎꢇꢊꢏ ꢎꢇꢇꢏꢆ  
ꢏꢎꢉꢇ  
ꢊꢎꢈꢇ ꢥ ꢊꢎꢢꢏ  
ꢄꢎꢈꢇꢉꢆ  
ꢄꢎꢉꢈꢐ ꢥ ꢎꢉꢊꢐꢆ  
ꢀIꢓ  
ꢊꢎꢇꢇ ꢇꢎꢉꢇꢈ  
ꢄꢎꢉꢉꢅ ꢎꢇꢇꢢꢆ  
ꢄꢓꢂꢒꢋ ꢊꢆ  
ꢇꢎꢏꢈ  
ꢄꢎꢇꢈꢇꢏꢆ  
Rꢋꢜ  
ꢇꢎꢐꢏ  
ꢄꢎꢇꢈꢏꢐꢆ  
ꢞꢁꢘ  
ꢇꢎꢢꢈ ꢇꢎꢇꢊꢅ  
ꢄꢎꢇꢉꢐꢏ ꢎꢇꢇꢉꢏꢆ  
ꢒꢣꢃ  
ꢤ ꢐ ꢏ  
Rꢋꢘꢂꢀꢀꢋꢓꢖꢋꢖ ꢁꢂꢔꢖꢋR ꢃꢑꢖ ꢔꢑꢣꢂꢛꢒ  
ꢊꢎꢇꢇ ꢇꢎꢉꢇꢈ  
ꢄꢎꢉꢉꢅ ꢎꢇꢇꢢꢆ  
ꢄꢓꢂꢒꢋ ꢢꢆ  
ꢢꢎꢦꢇ ꢇꢎꢉꢏꢈ  
ꢄꢎꢉꢦꢊ ꢎꢇꢇꢐꢆ  
ꢖꢋꢒꢑIꢔ ꢨꢑꢩ  
ꢇꢎꢈꢏꢢ  
ꢄꢎꢇꢉꢇꢆ  
ꢇꢧ ꢥ ꢐꢧ ꢒꢣꢃ  
ꢍꢑꢛꢍꢋ ꢃꢔꢑꢓꢋ  
ꢇꢎꢏꢊ ꢇꢎꢉꢏꢈ  
ꢄꢎꢇꢈꢉ ꢎꢇꢇꢐꢆ  
ꢉꢎꢉꢇ  
ꢄꢎꢇꢢꢊꢆ  
ꢀꢑꢟ  
ꢇꢎꢅꢐ  
ꢄꢎꢇꢊꢢꢆ  
Rꢋꢜ  
ꢖꢋꢒꢑIꢔ ꢨꢑꢩ  
ꢇꢎꢉꢅ  
ꢄꢎꢇꢇꢤꢆ  
ꢁꢋꢑꢒIꢓꢍ  
ꢃꢔꢑꢓꢋ  
ꢇꢎꢈꢈ ꢥ ꢇꢎꢊꢅ  
ꢇꢎꢉꢇꢉꢐ ꢇꢎꢇꢏꢇꢅ  
ꢄꢎꢇꢇꢦ ꢥ ꢎꢇꢉꢏꢆ  
ꢄꢎꢇꢇꢢ ꢎꢇꢇꢈꢆ  
ꢇꢎꢐꢏ  
ꢄꢎꢇꢈꢏꢐꢆ  
ꢞꢁꢘ  
ꢒꢣꢃ  
ꢀꢁꢂꢃ ꢄꢀꢁꢅꢆ ꢇꢈꢉꢊ Rꢋꢌ ꢍ  
ꢓꢂꢒꢋꢕ  
ꢉꢎ ꢖIꢀꢋꢓꢁIꢂꢓꢁ Iꢓ ꢀIꢔꢔIꢀꢋꢒꢋRꢗꢄIꢓꢘꢙꢆ  
ꢈꢎ ꢖRꢑꢚIꢓꢍ ꢓꢂꢒ ꢒꢂ ꢁꢘꢑꢔꢋ  
ꢊꢎ ꢖIꢀꢋꢓꢁIꢂꢓ ꢖꢂꢋꢁ ꢓꢂꢒ Iꢓꢘꢔꢛꢖꢋ ꢀꢂꢔꢖ ꢜꢔꢑꢁꢙꢝ ꢃRꢂꢒRꢛꢁIꢂꢓꢁ ꢂR ꢍꢑꢒꢋ ꢞꢛRRꢁꢎ  
ꢀꢂꢔꢖ ꢜꢔꢑꢁꢙꢝ ꢃRꢂꢒRꢛꢁIꢂꢓꢁ ꢂR ꢍꢑꢒꢋ ꢞꢛRRꢁ ꢁꢙꢑꢔꢔ ꢓꢂꢒ ꢋꢟꢘꢋꢋꢖ ꢇꢎꢉꢏꢈꢠꢠ ꢄꢎꢇꢇꢐꢡꢆ ꢃꢋR ꢁIꢖꢋ  
ꢢꢎ ꢖIꢀꢋꢓꢁIꢂꢓ ꢖꢂꢋꢁ ꢓꢂꢒ Iꢓꢘꢔꢛꢖꢋ IꢓꢒꢋRꢔꢋꢑꢖ ꢜꢔꢑꢁꢙ ꢂR ꢃRꢂꢒRꢛꢁIꢂꢓꢁꢎ  
IꢓꢒꢋRꢔꢋꢑꢖ ꢜꢔꢑꢁꢙ ꢂR ꢃRꢂꢒRꢛꢁIꢂꢓꢁ ꢁꢙꢑꢔꢔ ꢓꢂꢒ ꢋꢟꢘꢋꢋꢖ ꢇꢎꢉꢏꢈꢠꢠ ꢄꢎꢇꢇꢐꢡꢆ ꢃꢋR ꢁIꢖꢋ  
ꢏꢎ ꢔꢋꢑꢖ ꢘꢂꢃꢔꢑꢓꢑRIꢒꢣ ꢄꢞꢂꢒꢒꢂꢀ ꢂꢜ ꢔꢋꢑꢖꢁ ꢑꢜꢒꢋR ꢜꢂRꢀIꢓꢍꢆ ꢁꢙꢑꢔꢔ ꢞꢋ ꢇꢎꢉꢇꢈꢠꢠ ꢄꢎꢇꢇꢢꢡꢆ ꢀꢑꢟ  
Rev I  
19  
For more information www.analog.com  
LTC6101/LTC6101HV  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC6101#packaging for the most recent package drawings.  
S5 Package  
5-Lead Plastic TSOT-23  
ꢆReꢩeꢪeꢫꢬe ꢕꢉꢑ ꢖꢢꢣ ꢭ ꢃꢂꢝꢃꢎꢝꢀꢦꢒꢂ Rev ꢏꢌ  
ꢃꢁꢦꢍ  
ꢙꢗꢟ  
ꢃꢁꢜꢂ  
Rꢊꢠ  
ꢍꢁꢜꢃ ꢏꢐꢑ  
ꢆꢇꢈꢉꢊ ꢋꢌ  
ꢀꢁꢍꢍ Rꢊꢠ  
ꢀꢁꢋ ꢙIꢇ  
ꢀꢁꢂꢃ ꢄ ꢀꢁꢅꢂ  
ꢆꢇꢈꢉꢊ ꢋꢌ  
ꢍꢁꢎꢃ ꢏꢐꢑ  
ꢒꢁꢎꢂ ꢙꢗꢟ ꢍꢁꢦꢍ Rꢊꢠ  
ꢔIꢇ ꢈꢇꢊ  
Rꢊꢑꢈꢙꢙꢊꢇꢖꢊꢖ ꢐꢈꢕꢖꢊR ꢔꢗꢖ ꢕꢗꢓꢈꢘꢉ  
ꢔꢊR Iꢔꢑ ꢑꢗꢕꢑꢘꢕꢗꢉꢈR  
ꢃꢁꢒꢃ ꢄ ꢃꢁꢋꢂ ꢉꢓꢔ  
ꢂ ꢔꢕꢑꢐ ꢆꢇꢈꢉꢊ ꢒꢌ  
ꢃꢁꢜꢂ ꢏꢐꢑ  
ꢃꢁꢎꢃ ꢄ ꢃꢁꢜꢃ  
ꢃꢁꢍꢃ ꢏꢐꢑ  
ꢖꢗꢉꢘꢙ ꢚꢗꢛ  
ꢃꢁꢃꢀ ꢄ ꢃꢁꢀꢃ  
ꢀꢁꢃꢃ ꢙꢗꢟ  
ꢃꢁꢒꢃ ꢄ ꢃꢁꢂꢃ Rꢊꢠ  
ꢀꢁꢜꢃ ꢏꢐꢑ  
ꢃꢁꢃꢜ ꢄ ꢃꢁꢍꢃ  
ꢆꢇꢈꢉꢊ ꢒꢌ  
ꢇꢈꢉꢊꢡ  
ꢐꢂ ꢉꢐꢈꢉꢝꢍꢒ ꢃꢒꢃꢍ Rꢊꢞ ꢏ  
ꢀꢁ ꢖIꢙꢊꢇꢐIꢈꢇꢐ ꢗRꢊ Iꢇ ꢙIꢕꢕIꢙꢊꢉꢊRꢐ  
ꢍꢁ ꢖRꢗꢢIꢇꢣ ꢇꢈꢉ ꢉꢈ ꢐꢑꢗꢕꢊ  
ꢒꢁ ꢖIꢙꢊꢇꢐIꢈꢇꢐ ꢗRꢊ IꢇꢑꢕꢘꢐIꢞꢊ ꢈꢠ ꢔꢕꢗꢉIꢇꢣ  
ꢋꢁ ꢖIꢙꢊꢇꢐIꢈꢇꢐ ꢗRꢊ ꢊꢟꢑꢕꢘꢐIꢞꢊ ꢈꢠ ꢙꢈꢕꢖ ꢠꢕꢗꢐꢤ ꢗꢇꢖ ꢙꢊꢉꢗꢕ ꢏꢘRR  
ꢂꢁ ꢙꢈꢕꢖ ꢠꢕꢗꢐꢤ ꢐꢤꢗꢕꢕ ꢇꢈꢉ ꢊꢟꢑꢊꢊꢖ ꢃꢁꢍꢂꢋꢥꢥ  
ꢦꢁ ꢧꢊꢖꢊꢑ ꢔꢗꢑꢨꢗꢣꢊ RꢊꢠꢊRꢊꢇꢑꢊ Iꢐ ꢙꢈꢝꢀꢜꢒ  
Rev I  
20  
For more information www.analog.com  
LTC6101/LTC6101HV  
REVISION HISTORY (Revision history begins at Rev H)  
REV  
DATE  
03/12 Updated Features  
Updated Absolute Maximum Ratings and changed Order Information  
Changed operating temperature range to specified temperature range in Electrical Characteristics header  
DESCRIPTION  
PAGE NUMBER  
H
1
2
4, 5  
6
Changed T value in curve G02 from 45°C to 25°C  
A
I
05/18 Adding new TSOT package option  
1 to 3, 5 to 9,  
13, 15, 18, 21  
Rev I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license i rant licat r oth seany patent or patent rights of Analog Devices.  
21  
s g ed by imp ion o erwi under  
LTC6101/LTC6101HV  
TYPICAL APPLICATION  
Bidirectional Current Sense Circuit with Combined Charge/Discharge Output  
I
I
CHARGE  
DISCHARGE  
R
SENSE  
CHARGER  
R
IN C  
R
IN D  
R
R
IN C  
IN D  
+IN  
–IN  
–IN  
+IN  
V
BATT  
+
+
+
+
V
V
V
V
L
O
A
D
OUT  
OUT  
LTC6101  
LTC6101  
+
OUT  
V
R
OUT  
6101 TA05  
R
R
OUT  
IN D  
DISCHARGING: V  
CHARGING: V  
= I  
• R  
WHEN I  
≥ 0  
OUT DISCHARGE  
SENSE  
DISCHARGE  
(
)
R
OUT  
IN C  
= I  
• R  
WHEN I  
≥ 0  
OUT CHARGE  
SENSE  
CHARGE  
(
)
R
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V Extends 44V above V , 55µA Supply Current,  
CM  
LT1636  
Rail-to-Rail Input/Output, Micropower Op Amp  
EE  
Shutdown Function  
V Extends 44V above V , 0.4V/µs Slew Rate, >1MHz  
CM  
Bandwidth, <250µA Supply Current per Amplifier  
LT1637/LT1638/  
LT1639  
Single/Dual/Quad, Rail-to-Rail, Micropower Op Amp  
EE  
LT1787/LT1787HV Precision, Bidirectional, High Side Current Sense Amplifier 2.7V to 60V Operation, 75µV Offset, 60µA Current Draw  
LTC1921  
LT1990  
LT1991  
Dual –48V Supply and Fuse Monitor  
200V Transient Protection, Drives Three Optoisolators for Status  
250V Common Mode, Micropower, Pin Selectable Gain = 1, 10  
2.7V to 18V, Micropower, Pin Selectable Gain = –13 to 14  
3µV Offset, 30nV/°C Drift, Input Extends Down to V–  
High Voltage, Gain Selectable Difference Amplifier  
Precision, Gain Selectable Difference Amplifier  
LTC2050/LTC2051/ Single/Dual/Quad Zero-Drift Op Amp  
LTC2052  
LTC4150  
LT6100  
Coulomb Counter/Battery Gas Gauge  
Indicates Charge Quantity and Polarity  
Gain-Selectable High-Side Current Sense Amplifier  
4.1V to 48V Operation, Pin-Selectable Gain: 10, 12.5, 20, 25, 40, 50V/V  
Rev I  
D16879-0-5/18(I)  
www.analog.com  
22  
ANALOG DEVICES, INC. 2005-2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY