LTC6101CCS5 [Linear]

High Voltage, High-Side Current Sense Amplifier in SOT-23; 高电压,高边电流检测放大器采用SOT -23
LTC6101CCS5
型号: LTC6101CCS5
厂家: Linear    Linear
描述:

High Voltage, High-Side Current Sense Amplifier in SOT-23
高电压,高边电流检测放大器采用SOT -23

放大器
文件: 总20页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6101/LTC6101HV  
High Voltage,  
High-Side Current Sense  
Amplifier in SOT-23  
U
FEATURES  
DESCRIPTIO  
TheLTC®6101/LTC6101HVareversatile, highvoltage, high  
side current sense amplifiers. Design flexibility is provided  
by the excellent device characteristics; 300µV Max offset  
and only 375µA (typical at 60V) of current consumption.  
The LTC6101 operates on supplies from 4V to 60V and  
LTC6101HV operates on supplies from 5V to 100V.  
Supply Range:  
5V to 100V, 105V Absolute Maximum (LTC6101HV)  
4V to 60V, 70V Absolute Maximum (LTC6101)  
Low Offset Voltage: 300µV Max  
Fast Response: 1µs Response Time (0V to 2.5V on  
a 5V Output Step)  
Gain Configurable with 2 Resistors  
Low Input Bias Current: 170nA Max  
PSRR: 110dB Min  
The LTC6101 monitors current via the voltage across an  
external sense resistor (shunt resistor). Internal circuitry  
convertsinputvoltagetooutputcurrent,allowingforasmall  
sense signal on a high common mode voltage to be trans-  
lated into a ground referenced signal. Low DC offset allows  
the use of a small shunt resistor and large gain-setting  
resistors. As a result, power loss in the shunt is reduced.  
4V to 60V (LTC6101)  
5V to 100V (LTC6101HV)  
Output Current: 1mA Max  
Low Supply Current: 250µA, VS = 14V  
Low Profile (1mm) SOT-23 (ThinSOTTM) Package  
The wide operating supply range and high accuracy make  
the LTC6101 ideal for a large array of applications from  
automotive to industrial and power management. A maxi-  
mum input sense voltage of 500mV allows a wide range of  
currents to be monitored. The fast response makes the  
LTC6101 the perfect choice for load current warnings and  
shutoff protection control. With very low supply current,  
the LTC6101 is suitable for power sensitive applications.  
U
APPLICATIO S  
Current Shunt Measurement  
Battery Monitoring  
Remote Sensing  
Power Management  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
The LTC6101 is available in 5-lead SOT-23 and 8-lead  
MSOP packages.  
U
TYPICAL APPLICATIO  
16-Bit Resolution Unidirectional Output into LTC2433 ADC  
Step Response  
I
V
LOAD  
SENSE  
+
V
SENSE  
R
IN  
100  
5V TO 105V  
V  
SENSE  
= 100mV  
4
2
3
5
5.5V  
5V  
L
O
A
D
+
T
= 25°C  
1µF  
5V  
A
V
+ = 12V  
R
R
V
= 100  
= 5k  
SENSE  
IN  
OUT  
V
OUT  
+ = V+  
V
OUT  
1
LTC6101HV  
I
= 100µA  
OUT  
LTC2433-1  
TO µP  
R
OUT  
4.99k  
0.5V  
0V  
I
= 0  
OUT  
500ns/DIV  
6101 TA01  
6101 TA01b  
R
R
OUT  
V
OUT  
=
• V  
SENSE  
= 49.9V  
SENSE  
IN  
6101fa  
1
LTC6101/LTC6101HV  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V)  
LTC6101I/LTC6101HVI ...................... 40°C to 85°C  
LTC6101H/LTC6101HVH ................. 40°C to 125°C  
Specified Temperature Range (Note 2)  
LTC6101C/LTC6101HVC ......................... 0°C to 70°C  
LTC6101I/LTC6101HVI ...................... 40°C to 85°C  
LTC6101H/LTC6101HVH ................. 40°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LTC6101............................................................. 70V  
LTC6101HV ...................................................... 105V  
Minimum Input Voltage (–IN Pin) ................... (V+ – 4V)  
Maximum Output Voltage (Out Pin)........................... 9V  
Input Current ..................................................... ±10mA  
Output Short-Circuit Duration (to V) ............. Indefinite  
Operating Temperature Range  
LTC6101C/LTC6101HVC .................... 40°C to 85°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
+
TOP VIEW  
–IN  
NC  
NC  
1
2
3
4
8 +IN  
7 V  
OUT 1  
5 V  
+
V
2
6 NC  
–IN 3  
4 +IN  
5 V  
OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 300°C/ W  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
TJMAX = 150°C, θJA = 250°C/ W  
ORDER PART NUMBER  
MS8 PART MARKING*  
ORDER PART NUMBER  
S5 PART MARKING*  
LTC6101ACMS8  
LTC6101AIMS8  
LTC6101AHMS8  
LTC6101HVACMS8  
LTC6101HVAIMS8  
LTC6101HVAHMS8  
LTBSB  
LTBSB  
LTBSB  
LTBSX  
LTBSX  
LTBSX  
LTC6101BCS5  
LTC6101CCS5  
LTC6101BIS5  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBND  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTBSZ  
LTC6101CIS5  
LTC6101BHS5  
LTC6101CHS5  
LTC6101HVBCS5  
LTC6101HVCCS5  
LTC6101HVBIS5  
LTC6101HVCIS5  
LTC6101HVBHS5  
LTC6101HVCHS5  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marketing: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grades and parametric grades are identified by a label on the shipping container.  
6101fa  
2
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS  
(LTC6101) The  
denotes the specifications which apply over the full  
+
+
operating temperature range, otherwise specifications are at T = 25°C, R = 100, R  
= 10k, V  
= V (see Figure 1 for  
SENSE  
A
IN  
OUT  
details), 4V V 60V unless otherwise noted.  
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Supply Voltage Range  
Input Offset Voltage  
4
60  
V
S
V
V
V
= 5mV, Gain = 100, LTC6101A  
= 5mV, Gain = 100, LTC6101AC, LTC6101AI  
= 5mV, Gain = 100, LTC6101AH  
±85  
±300  
±450  
±535  
µV  
µV  
µV  
OS  
SENSE  
SENSE  
SENSE  
V
= 5mV, Gain = 100, LTC6101B  
= 5mV, Gain = 100, LTC6101C  
±150  
±400  
±450  
±810  
µV  
µV  
SENSE  
V
±1500  
±2500  
µV  
µV  
SENSE  
V /T  
Input Offset Voltage Drift  
Input Bias Current  
V
V
V
= 5mV, LTC6101A  
= 5mV, LTC6101B  
= 5mV, LTC6101C  
±1  
±3  
µV/°C  
µV/°C  
µV/°C  
OS  
SENSE  
SENSE  
SENSE  
±10  
I
I
R
= 1M  
100  
170  
245  
nA  
nA  
B
IN  
Input Offset Current  
R
= 1M  
±2  
±15  
nA  
OS  
IN  
V
Input Sense Voltage Full Scale  
Power Supply Rejection Ratio  
V
within Specification, R = 1k  
500  
mV  
SENSE(MAX)  
OS  
IN  
PSRR  
V = 6V to 60V, V  
= 5mV, Gain = 100  
= 5mV, Gain = 100  
= 88mV  
118  
115  
140  
133  
dB  
dB  
S
SENSE  
V = 4V to 60V, V  
110  
105  
dB  
dB  
S
SENSE  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
12V V 60V, V  
V = 6V, V  
V = 4V, V  
8
3
1
V
V
V
OUT  
S
SENSE  
= 330mV, R = 1k, R  
= 10k  
= 2k  
S
SENSE  
IN  
OUT  
OUT  
= 550mV, R = 1k, R  
S
SENSE  
IN  
V
V
V
= 0V, Gain = 100, LTC6101A  
= 0V, Gain = 100, LTC6101AC, LTC6101AI  
= 0V, Gain = 100, LTC6101AH  
0
30  
45  
53.5  
mV  
mV  
mV  
OUT (0)  
SENSE  
SENSE  
SENSE  
V
= 0V, Gain = 100, LTC6101B  
= 0V, Gain = 100, LTC6101C  
0
0
45  
81  
mV  
mV  
SENSE  
V
150  
250  
mV  
mV  
SENSE  
I
t
Maximum Output Current  
6V V 60V, R  
= 2k, V = 110mV, Gain = 20  
SENSE  
1
0.5  
mA  
mA  
OUT  
r
S
OUT  
V = 4V, V  
= 550mV, Gain = 2, R = 2k  
S
SENSE  
OUT  
Input Step Response  
(to 2.5V on a 5V Output Step)  
V  
S
= 100mV Transient, 6V V 60V, Gain = 50  
1
1.5  
µs  
µs  
SENSE  
V = 4V  
S
BW  
Signal Bandwidth  
Supply Current  
I
I
= 200µA, R = 100, R = 5k  
OUT  
140  
200  
kHz  
kHz  
OUT  
OUT  
IN  
= 1mA, R = 100, R  
= 5k  
IN  
OUT  
I
V = 4V, I  
= 0, R = 1M  
220  
240  
250  
375  
450  
475  
µA  
µA  
S
S
OUT  
IN  
V = 6V, I  
= 0, R = 1M  
475  
525  
µA  
µA  
S
OUT  
IN  
V = 12V, I  
= 0, R = 1M  
500  
590  
µA  
µA  
S
OUT  
IN  
V = 60V, I  
LTC6101I, LTC6101C  
LTC6101H  
= 0, R = 1M  
640  
690  
720  
µA  
µA  
µA  
S
OUT  
IN  
6101fa  
3
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS  
(LTC6101HV) The  
denotes the specifications which apply over the full  
+
+
operating temperature range, otherwise specifications are at T = 25°C, R = 100, R  
= 10k, V  
= V (see Figure 1 for  
SENSE  
A
IN  
OUT  
details), 5V V 100V unless otherwise noted.  
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Supply Voltage Range  
Input Offset Voltage  
5
100  
V
S
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, Gain = 100, LTC6101HVA  
= 5mV, Gain = 100, LTC6101HVAC, LTC6101HVAI  
= 5mV, Gain = 100, LTC6101HVAH  
±85  
±300  
±450  
±535  
µV  
µV  
µV  
OS  
V
= 5mV, Gain = 100, LTC6101HVB  
±150  
±400  
±450  
±810  
µV  
µV  
SENSE  
V
= 5mV, Gain = 100, LTC6101HVC  
±1500  
±2500  
µV  
µV  
SENSE  
V /T  
Input Offset Voltage Drift  
Input Bias Current  
V
V
V
= 5mV, LTC6101HVA  
= 5mV, LTC6101HVB  
= 5mV, LTC6101HVC  
±1  
±3  
µV/°C  
µV/°C  
µV/°C  
OS  
SENSE  
SENSE  
SENSE  
±10  
I
I
R
= 1M  
100  
170  
245  
nA  
nA  
B
IN  
Input Offset Current  
R
= 1M  
±2  
±15  
nA  
OS  
IN  
V
Input Sense Voltage Full Scale  
Power Supply Rejection Ratio  
V
within Specification, R = 1k  
500  
mV  
SENSE(MAX)  
OS  
IN  
PSRR  
V = 6V to 100V, V  
= 5mV, Gain = 100  
= 5mV, Gain = 100  
= 88mV  
118  
115  
140  
133  
dB  
dB  
S
SENSE  
V = 5V to 100V, V  
110  
105  
dB  
dB  
S
SENSE  
V
V
Maximum Output Voltage  
Minimum Output Voltage  
12V V 100V, V  
5V, V  
8
3
V
V
OUT  
S
SENSE  
= 330mV, R = 1k, R  
= 10k  
SENSE  
IN  
OUT  
V
V
V
= 0V, Gain = 100, LTC6101HVA  
= 0V, Gain = 100, LTC6101HVAC, LTC6101HVAI  
= 0V, Gain = 100, LTC6101HVAH  
0
30  
45  
53.5  
mV  
mV  
mV  
OUT (0)  
SENSE  
SENSE  
SENSE  
V
= 0V, Gain = 100, LTC6101HVB  
0
0
45  
81  
mV  
mV  
SENSE  
V
= 0V, Gain = 100, LTC6101HVC  
150  
250  
mV  
mV  
SENSE  
I
t
Maximum Output Current  
5V V 100V, R  
= 2k, V = 110mV, Gain = 20  
SENSE  
1
mA  
OUT  
r
S
OUT  
Input Step Response  
(to 2.5V on a 5V Output Step)  
V  
S
= 100mV Transient, 6V V 100V, Gain = 50  
1
1.5  
µs  
µs  
SENSE  
V = 5V  
S
BW  
Signal Bandwidth  
Supply Current  
I
I
= 200µA, R = 100, R = 5k  
OUT  
140  
200  
kHz  
kHz  
OUT  
OUT  
IN  
= 1mA, R = 100, R  
= 5k  
IN  
OUT  
I
V = 5V, I  
= 0, R = 1M  
200  
220  
230  
350  
450  
475  
µA  
µA  
S
S
OUT  
IN  
V = 6V, I  
= 0, R = 1M  
475  
525  
µA  
µA  
S
OUT  
IN  
V = 12V, I  
= 0, R = 1M  
500  
590  
µA  
µA  
S
OUT  
IN  
V = 60V, I  
LTC6101HVI, LTC6101HVC  
LTC6101HVH  
= 0, R = 1M  
640  
690  
720  
µA  
µA  
µA  
S
OUT  
IN  
V = 100V, I  
LTC6101HVI, LTC6101HVC  
LTC6101HVH  
= 0, R = 1M  
350  
640  
690  
720  
µA  
µA  
µA  
S
OUT  
IN  
6101fa  
4
LTC6101/LTC6101HV  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LTC6101C/LTC6101HVC are guaranteed to meet specified  
performance from 0°C to 70°C. The LTC6101C/LTC6101HVC are designed,  
characterized and expected to meet specified performance from 40°C to  
85°C but are not tested or QA sampled at these temperatures. LTC6101I/  
LTC6101HVI are guaranteed to meet specified performance from 40°C to  
85°C. The LTC6101H/LTC6101HVH are guaranteed to meet specified  
performance from 40°C to 125°C.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input V vs Temperature  
Input V vs Supply Voltage  
Input Sense Range  
OS  
OS  
40  
20  
800  
600  
2.5  
2
REPRESENTATIVE  
T
= 25°C  
T
= 0°C  
T
= –40°C  
A
A
A
UNITS  
T
A
= 0°C  
0
400  
T
T
= 70°C  
T
T
= –40°C  
= 45°C  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
A
A
A
200  
1.5  
1
0
A
= 125°C  
200  
400  
600  
800  
1000  
T
= 85°C  
A
T
T
= 85°C  
A
R
R
V
= 100  
= 5k  
IN  
OUT  
IN  
0.5  
0
R
R
V
= 100  
= 5k  
A GRADE  
B GRADE  
C GRADE  
IN  
OUT  
IN  
R
R
= 3k  
OUT  
= 5mV  
IN  
LTC6101  
LTC6101HV  
= 125°C  
A
= 3k  
= 5mV  
4
11 18 25 32 39 46 53 60  
(V)  
–40 –20  
0
20 40 60 80 100 120  
4 10 20 30 40 50 60 70 80 90 100  
V
V
(V)  
SUPPLY  
TEMPERATURE (°C)  
SUPPLY  
6101 G02  
6101 G05  
6101 G01  
LTC6101: V  
Maximum vs  
LTC6101HV: V  
Temperature  
Maximum vs  
LTC6101: I  
Maximum vs  
OUT  
OUT  
OUT  
Temperature  
Temperature  
12  
10  
8
12  
10  
8
7
6
5
4
3
2
1
0
V
S
= 60V  
V
S
= 100V  
S
S
V
= 12V  
S
V
= 12V  
V
= 12V  
V
= 60V  
S
V
V
V
= 6V  
= 5V  
= 4V  
S
S
S
6
6
V
V
= 6V  
= 4V  
S
V
V
= 6V  
= 4V  
S
S
4
4
S
2
2
0
0
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G06  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G20  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G07  
6101fa  
5
LTC6101/LTC6101HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC6101HV: I  
Temperature  
Maximum vs  
Output Error Due to Input Offset vs  
Input Voltage  
OUT  
Gain vs Frequency  
100  
10  
1
7
6
5
4
3
2
1
0
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
A
GAIN =10  
I
= 1mA  
OUT  
V
S
= 12V  
S
T
R
R
= 25°C  
A
= 100  
IN  
= 4.99k  
OUT  
V
= 100V  
V
V
= 6V  
= 5V  
I
= 200µA  
S
S
OUT  
C GRADE  
0.1  
B GRADE  
A GRADE  
0
V
= 4V  
S
–5  
–10  
0.01  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
6101 G21  
1k  
10k  
100k  
1M  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
6101 G09  
6101 G08  
Input Bias Current vs  
Temperature  
LTC6101: Supply Current vs  
Supply Voltage  
LTC6101HV: Supply Current vs  
Supply Voltage  
160  
140  
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
70°C  
85°C  
125°C  
70°C  
85°C  
V
= 6V TO 100V  
S
125°C  
V
= 4V  
S
25°C  
0°C  
25°C  
60  
–40°C  
0°C  
40  
–40°C  
V
= 0  
= 1M  
V
= 0  
IN  
IN  
IN  
IN  
20  
R
R
= 1M  
0
0
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
0
10 20 30 40 50 60 70 80 90 100  
0
4
8 12 16 20 24 28 32 36 40 44 48 52 56 60  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6101 G10  
6101 G22  
6101 G11  
Step Response 0mV to 10mV  
Step Response 10mV to 20mV  
V+-10mV  
SENSE  
V
V
SENSE  
V+  
V+-10mV  
V+-20mV  
0.5V  
1V  
T
= 25°C  
A
T
= 25°C  
V+ = 12V  
A
V+ = 12V  
R
R
V
= 100  
IN  
R
R
V
= 100  
IN  
= 5k  
OUT  
= 5k  
+ = V+  
OUT  
SENSE  
+ = V+  
SENSE  
0V  
0.5V  
V
OUT  
V
OUT  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
6101 G12  
6101 G13  
6101fa  
6
LTC6101/LTC6101HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Step Response Rising Edge  
Step Response 100mV  
Step Response 100mV  
V
V
SENSE  
SENSE  
V
SENSE  
V+  
V+  
V  
=100mV  
V+-100mV  
V+-100mV  
T
= 25°C  
SENSE  
A
V+ = 12V  
= 2200pF  
C
= 10pF  
LOAD  
C
5V  
5V  
LOAD  
5.5V  
5V  
T
= 25°C  
A
R
R
V
= 100  
V+ = 12V  
IN  
= 5k  
OUT  
R
R
V
= 100  
+ = V+  
IN  
T
= 25°C  
A
SENSE  
V+ = 12V  
= 5k  
OUT  
+ = V+  
C
= 1000pF  
LOAD  
SENSE  
R
R
V
= 100  
= 5k  
SENSE  
IN  
OUT  
V
OUT  
+ = V+  
I
= 100µA  
OUT  
0V  
0V  
0.5V  
0V  
I
= 0  
V
V
OUT  
OUT  
OUT  
TIME (10µs/DIV)  
TIME (100µs/DIV)  
TIME (500ns/DIV)  
6101 G14  
6101 G15  
6101 G16  
Step Response Falling Edge  
PSRR vs Frequency  
160  
LTC6101,  
+
V  
=100mV  
140  
120  
100  
80  
SENSE  
V
= 4V  
V
OUT  
5.5V  
5V  
T
= 25°C  
A
V+ = 12V  
LTC6101,  
LTC6101HV,  
R
R
V
= 100  
IN  
+
V
= 12V  
= 5k  
OUT  
+ = V+  
SENSE  
60  
R
R
= 100  
IN  
= 10k  
= 5pF  
OUT  
OUT  
40  
I
= 100µ  
OUT  
C
GAIN = 100  
LTC6101HV,  
+
20  
I
= 100µA  
= 50mVp  
V = 5V  
OUTDC  
INAC  
0.5V  
0V  
I
= 0  
OUT  
V
0
0.1  
1
10 100 1k  
10k 100k 1M  
TIME (500ns/DIV)  
FREQUENCY (Hz)  
6101 G19  
6101 G17  
6101fa  
7
LTC6101/LTC6101HV  
U
U
U
PI FU CTIO S  
OUT (Pin 1): Current Output. OUT (Pin 1) will source a  
current that is proportional to the sense voltage into an  
external resistor.  
V(Pin 2): Negative Supply (or Ground for Single-Supply  
Operation).  
IN(Pin 3): The internal sense amplifier will drive IN(Pin  
3) to the same potential as IN+ (Pin 4). A resistor (RIN) tied  
from V+ to INsets the output current IOUT = VSENSE/RIN.  
VSENSE isthevoltagedevelopedacrosstheexternalRSENSE  
(Figure 1).  
IN+ (Pin 4): Must be tied to the system load end of the  
sense resistor, either directly or through a resistor.  
V+ (Pin 5): Positive Supply Pin. Supply current is drawn  
through this pin. The circuit may be configured so that  
the LTC6101 supply current is or is not monitored along  
with the system load current. To monitor only system  
load current, connect V+ to the more positive side of the  
sense resistor. To monitor the total current, including the  
LTC6101 current, connect V+ to the more negative side of  
the sense resistor.  
W
BLOCK DIAGRA  
I
LOAD  
V
SENSE  
+
R
V
BATTERY  
SENSE  
R
IN  
5
+
10V  
V
L
O
A
D
+
5k  
5k  
+
IN  
IN  
3
4
I
10V  
OUT  
R
R
OUT  
OUT  
V
OUT  
= V x  
SENSE  
1
IN  
V
LTC6101/LTC6101HV  
R
OUT  
2
6101 BD  
Figure 1. LTC6101/LTC6101HV Block Diagram and Typical Connection  
W U U  
U
APPLICATIO S I FOR ATIO  
The LTC6101 high side current sense amplifier (Figure 1)  
provides accurate monitoring of current through a user-  
selected sense resistor. The sense voltage is amplified by  
a user-selected gain and level shifted from the positive  
power supply to a ground-referred output. The output  
signal is analog and may be used as is or processed with  
an output filter.  
RIN, between INand V+ forces a potential across RIN that  
is the same as the sense voltage across RSENSE. A corre-  
sponding current, VSENSE/RIN, will flow through RIN. The  
high impedance inputs of the sense amplifier will not  
conduct this input current, so it will flow through an  
internal MOSFET to the output pin.  
The output current can be transformed into a voltage by  
adding a resistor from OUT to V. The output voltage is  
Theory of Operation  
then VO = V+ IOUT • ROUT  
.
An internal sense amplifier loop forces INto have the  
same potential as IN+. Connecting an external resistor,  
6101fa  
8
LTC6101/LTC6101HV  
W U U  
APPLICATIO S I FOR ATIO  
U
Useful Gain Configurations  
Peak dissipation is 200mW. If a 5msense resistor is  
employed, then the effective current error is 30mA, while  
the peak sense voltage is reduced to 10mV at 2A, dissipat-  
ing only 20mW.  
Gain  
20  
R
R
V
at V  
= 5V  
I
at V  
= 5V  
IN  
OUT  
SENSE  
OUT  
OUT  
OUT  
499  
200  
100  
10k  
10k  
10k  
250mV  
100mV  
50mV  
500µA  
500µA  
500µA  
50  
The low offset and corresponding large dynamic range of  
the LTC6101 make it more flexible than other solutions in  
this respect. The 150µV typical offset gives 60dB of  
dynamicrangeforasensevoltagethatislimitedto150mV  
max, and over 70dB of dynamic range if the rated input  
maximum of 500mV is allowed.  
100  
Selection of External Current Sense Resistor  
The external sense resistor, RSENSE, has a significant  
effect on the function of a current sensing system and  
must be chosen with care.  
Sense Resistor Connection  
First, the power dissipation in the resistor should be  
considered. The system load current will cause both heat  
and voltage loss in RSENSE. As a result, the sense resistor  
should be as small as possible while still providing the  
input dynamic range required by the measurement. Note  
that input dynamic range is the difference between the  
maximuminputsignalandtheminimumaccuratelyrepro-  
duced signal, and is limited primarily by input DC offset of  
the internal amplifier of the LTC6101. In addition, RSENSE  
must be small enough that VSENSE does not exceed the  
maximum input voltage specified by the LTC6101, even  
under peak load conditions. As an example, an application  
may require that the maximum sense voltage be 100mV.  
If this application is expected to draw 2A at peak load,  
RSENSE should be no more than 50m.  
Kelvin connection of the INand IN+ inputs to the sense  
resistor should be used in all but the lowest power appli-  
cations. Solder connections and PC board interconnec-  
tions that carry high current can cause significant error in  
measurementduetotheirrelativelylargeresistances. One  
10mm x 10mm square trace of one-ounce copper is  
approximately 0.5m. A 1mV error can be caused by as  
little as 2A flowing through this small interconnect. This  
willcausea1%errorina100mVsignal.A10Aloadcurrent  
inthesameinterconnectwillcausea5%errorforthesame  
100mVsignal. Byisolatingthesensetracesfromthehigh-  
current paths, this error can be reduced by orders of  
magnitude. A sense resistor with integrated Kelvin sense  
terminals will give the best results. Figure 2 illustrates the  
recommended method.  
Once the maximum RSENSE value is determined, the mini-  
mum sense resistor value will be set by the resolution or  
dynamic range required. The minimum signal that can be  
accurately represented by this sense amp is limited by the  
input offset. As an example, the LTC6101B has a typical  
input offset of 150µV. If the minimum current is 20mA, a  
sense resistor of 7.5mwill set VSENSE to 150µV. This is  
the same value as the input offset. A larger sense resistor  
will reduce the error due to offset by increasing the sense  
voltage for a given load current.  
+
V
R
IN  
R
SENSE  
4
2
3
5
+
LOAD  
Choosing a 50mRSENSE will maximize the dynamic  
range and provide a system that has 100mV across the  
sense resistor at peak load (2A), while input offset causes  
an error equivalent to only 3mA of load current.  
1
V
OUT  
LTC6101  
R
OUT  
6101 F02  
Figure 2. Kelvin Input Connection Preserves  
Accuracy Despite Large Load Current  
6101fa  
9
LTC6101/LTC6101HV  
W U U  
U
APPLICATIO S I FOR ATIO  
Selection of External Input Resistor, RIN  
currentmeasurementaccuracybylimitingtheresult,while  
increasing the low current measurement resolution.  
The external input resistor, RIN, controls the transcon-  
ductance of the current sense circuit. Since IOUT = VSENSE  
/
+
V
RIN, transconductance gm = 1/RIN. For example, if RIN =  
100, then IOUT = VSENSE/100 or IOUT = 1mA for VSENSE  
100mV.  
=
R
D
SENSE  
SENSE  
6101 F03a  
RIN shouldbechosentoallowtherequiredresolutionwhile  
limitingtheoutputcurrent.Atlowsupplyvoltage,IOUT may  
be as much as 1mA. By setting RIN such that the largest  
expected sense voltage gives IOUT = 1mA, then the maxi-  
mum output dynamic range is available. Output dynamic  
range is limited by both the maximum allowed output  
current and the maximum allowed output voltage, as well  
as the minimum practical output signal. If less dynamic  
range is required, then RIN can be increased accordingly,  
reducing the max output current and power dissipation.  
If low sense currents must be resolved accurately in a  
systemthathasverywidedynamicrange,asmallerRINthan  
the max current spec allows may be used if the max  
current is limited in another way, such as with a Schottky  
diode across RSENSE (Figure 3a). This will reduce the high  
LOAD  
Figure 3a. Shunt Diode Limits Maximum Input Voltage to Allow  
Better Low Input Resolution Without Overranging  
This approach can be helpful in cases where occasional  
large burst currents may be ignored. It can also be used in  
a multirange configuration where a low current circuit is  
added to a high current circuit (Figure 3b). Note that a  
comparator (LTC1540) is used to select the range, and  
transistor M1 limits the voltage across RSENSE LO  
.
Care should be taken when designing the board layout for  
RIN, especially for small RIN values. All trace and intercon-  
nect impedances will increase the effective RIN value,  
causingagainerror. Inaddition, internaldeviceresistance  
will add approximately 0.2to RIN.  
V
LOGIC  
CMPZ4697  
10k  
(3.3V TO 5V)  
7
3
4
M1  
+
Si4465  
V
IN  
R
SENSE HI  
10m  
I
LOAD  
8
Q1  
CMPT5551  
5
6
V
OUT  
40.2k  
R
SENSE LO  
100m  
301  
301  
301  
301  
4.7k  
1.74M  
LTC1540  
4
2
3
5
4
3
5
2
1
HIGH  
RANGE  
INDICATOR  
(I > 1.2A)  
+
+
2
V
IN  
619k  
LOAD  
1
1
HIGH CURRENT RANGE OUT  
250mV/A  
LTC6101  
LTC6101  
7.5k  
V
LOGIC  
BAT54C  
LOW CURRENT RANGE OUT  
2.5V/A  
R
5
(
V
+5V  
)
V 60V  
LOGIC  
IN  
7.5k  
6101 F03b  
0 I  
10A  
LOAD  
Figure 3b. Dual LTC6101s Allow High-Low Current Ranging  
6101fa  
10  
LTC6101/LTC6101HV  
W U U  
APPLICATIO S I FOR ATIO  
U
Output Error, EOUT, Due to the Amplifier DC Offset  
Voltage, VOS  
Selection of External Output Resistor, ROUT  
The output resistor, ROUT, determines how the output  
currentisconvertedtovoltage. VOUT issimplyIOUT ROUT  
EOUT(VOS) = VOS • (ROUT/RIN)  
.
The DC offset voltage of the amplifier adds directly to the  
value of the sense voltage, VSENSE. This is the dominant  
error of the system and it limits the available dynamic  
range.TheparagraphSelectionofExternalCurrentSense  
Resistor” provides details.  
In choosing an output resistor, the max output voltage  
must first be considered. If the circuit that is driven by the  
output does not limit the output voltage, then ROUT must  
be chosen such that the max output voltage does not  
exceed the LTC6101 max output voltage rating. If the  
followingcircuitisabufferorADCwithlimitedinputrange,  
then ROUT must be chosen so that IOUT(MAX) • ROUT is less  
than the allowed maximum input range of this circuit.  
Output Error, EOUT, Due to the Bias Currents,  
IB(+) and IB(–)  
The bias current IB(+) flows into the positive input of the  
internal op amp. IB(–) flows into the negative input.  
In addition, the output impedance is determined by ROUT  
.
If the circuit to be driven has high enough input imped-  
ance, then almost any useful output impedance will be  
acceptable. However, ifthedrivencircuithasrelativelylow  
input impedance, or draws spikes of current, such as an  
ADC might do, then a lower ROUT value may be required in  
order to preserve the accuracy of the output. As an  
example, if the input impedance of the driven circuit is 100  
times ROUT, then the accuracy of VOUT will be reduced by  
1% since:  
EOUT(IBIAS) = ROUT((IB(+) • (RSENSE/RIN) – IB(–))  
Since IB(+) IB(–) = IBIAS, if RSENSE << RIN then,  
EOUT(IBIAS) –ROUT • IBIAS  
For instance if IBIAS is 100nA and ROUT is 1k, the output  
error is 0.1mV.  
Note that in applications where RSENSE RIN, IB(+) causes  
a voltage offset in RSENSE that cancels the error due to  
ROUT •R  
ROUT + R  
IN(DRIVEN)  
IB(–) and EOUT(IBIAS) 0. In applications where RSENSE  
<
VOUT = IOUT  
RIN, the bias current error can be similarly reduced if an  
external resistor RIN(+) = (RIN – RSENSE) is connected as  
shown in Figure 4 below. Under both conditions:  
IN(DRIVEN)  
100  
101  
= IOUT ROUT  
= 0.99IOUT ROUT  
EOUT(IBIAS) = ± ROUT • IOS; IOS = IB(+) – IB(–)  
Error Sources  
+
V
The current sense system uses an amplifier and resistors  
to apply gain and level shift the result. The output is then  
dependent on the characteristics of the amplifier, such as  
gain and input offset, as well as resistor matching.  
R
IN  
R
SENSE  
+
R
IN  
4
2
3
5
+
Ideally, the circuit output is:  
LOAD  
R
R
VOUT = VSENSE  
OUT ;VSENSE = RSENSE ISENSE  
IN  
In this case, the only error is due to resistor mismatch,  
which provides an error in gain only. However, offset  
voltage, bias current and finite gain in the amplifier cause  
additional errors:  
1
V
OUT  
LTC6101  
R
OUT  
6101 F04  
+
R
=
R
R  
IN  
IN SENSE  
Figure 4. Second Input R Minimizes  
Error Due to Input Bias Current  
6101fa  
11  
LTC6101/LTC6101HV  
W U U  
U
APPLICATIO S I FOR ATIO  
If the offset current, IOS, of the LTC6101 amplifier is 2nA,  
the 100 microvolt error above is reduced to 2 microvolts.  
AddingRIN+ asdescribedwillmaximizethedynamicrange  
of the circuit. For less sensitive designs, RIN is not  
necessary.  
PQ = IDD • V+  
The total power dissipated is the output dissipation plus  
the quiescent dissipation:  
+
PTOTAL = POUT + PQ  
At maximum supply and maximum output current, the  
total power dissipation can exceed 100mW. This will  
cause significant heating of the LTC6101 die. In order to  
prevent damage to the LTC6101, the maximum expected  
dissipation in each application should be calculated. This  
number can be multiplied by the θJA value listed in the  
package section on page 2 to find the maximum expected  
die temperature. This must not be allowed to exceed  
150°C, or performance may be degraded.  
Example:  
If an ISENSE range = (1A to 1mA) and (VOUT SENSE  
3V/1A  
/I  
) =  
Then, from the Electrical Characteristics of the LTC6101,  
RSENSE VSENSE (max) / ISENSE (max) = 500mV/1A =  
500mΩ  
Gain = ROUT/RIN = VOUT(max) / VSENSE (max) = 3V/500mV  
= 6  
Asanexample,ifanLTC6101intheS5packageistoberun  
at 55V ±5V supply with 1mA output current at 80°C:  
If the maximum output current, IOUT, is limited to 1mA,  
ROUT equals 3V/1mA3.01k(1%value)andRIN=3k/  
6 499(1% value).  
PQ(MAX) = IDD(MAX) • V+(MAX) = 41.4mW  
POUT(MAX) = IOUT • V+(MAX) = 60mW  
TRISE = θJA • PTOTAL(MAX)  
The output error due to DC offset is ±900µVolts (typ) and  
the error due to offset current, IOS is 3k x 2nA = ±6µVolts  
(typical), provided RIN+ = RIN  
.
TMAX = TAMBIENT + TRISE  
Themaximumoutputerrorcanthereforereach±906µVolts  
or 0.03% (–70dB) of the output full scale. Considering the  
system input 60dB dynamic range (ISENSE = 1mA to 1A),  
the70dBperformanceoftheLTC6101makesthisapplica-  
tion feasible.  
TMAX must be < 150°C  
PTOTAL(MAX) 96mW and the max die temp  
will be 104°C  
If this same circuit must run at 125°C, the max die  
temp will increase to 150°C. (Note that supply current,  
and therefore PQ, is proportional to temperature. Refer to  
Typical Performance Characteristics section.) In this con-  
dition, the maximum output current should be reduced to  
avoid device damage. Note that the MSOP package has a  
larger θJA than the S5, so additional care must be taken  
when operating the LTC6101A/LTC6101HVA at high tem-  
peratures and high output currents.  
Output Error, EOUT, Due to the Finite DC Open Loop  
Gain, AOL, of the LTC6101 Amplifier  
This errors is inconsequential as the AOL of the LTC6101  
is very large.  
Output Current Limitations Due to Power Dissipation  
The LTC6101 can deliver up to 1mA continuous current to  
the output pin. This current flows through RIN and enters  
the current sense amp via the IN(–) pin. The power  
dissipated in the LTC6101 due to the output signal is:  
The LTC6101HV can be used at voltages up to 105V. This  
additional voltage requires that more power be dissipated  
for a given level of current. This will further limit the  
allowed output current at high ambient temperatures.  
POUT = (V–IN – VOUT) • IOUT  
Since V–IN V+, POUT (V+ – VOUT) • IOUT  
ItisimportanttonotethattheLTC6101hasbeendesigned  
to provide at least 1mA to the output when required, and  
can deliver more depending on the conditions. Care must  
Thereisalsopowerdissipatedduetothequiescentsupply  
current:  
6101fa  
12  
LTC6101/LTC6101HV  
W U U  
APPLICATIO S I FOR ATIO  
U
allow a wide VSENSE range, it also allows the input refer-  
ence to be separate from the positive supply (Figure 5).  
Note that the difference between VBATT and V+ must be no  
more than the common mode range listed in the Electrical  
Characteristics table. If the maximum VSENSE is less than  
500mV,theLTC6101maymonitoritsownsupplycurrent,  
as well as that of the load (Figure 6).  
be taken to limit the maximum output current by proper  
choice of sense resistor and, if input fault conditions exist,  
external clamps.  
Output Filtering  
Theoutputvoltage,VOUT,issimplyIOUTZOUT.Thismakes  
filtering straightforward. Any circuit may be used which  
generates the required ZOUT to get the desired filter  
response. For example, a capacitor in parallel with ROUT  
will give a low pass response. This will reduce unwanted  
noise from the output, and may also be useful as a charge  
reservoir to keep the output steady while driving a switch-  
ing circuit such as a mux or ADC. This output capacitor in  
parallel with an output resistor will create a pole in the  
output response at:  
V
BATTERY  
R
IN  
R
SENSE  
4
2
3
5
+
+
V
LOAD  
1
f–3dB  
=
1
2 • π ROUT COUT  
V
OUT  
LTC6101  
R
OUT  
Useful Equations  
6101 F05  
+
Figure 5. V Powered Separately from  
Input Voltage: VSENSE = ISENSE RSENSE  
Load Supply (V  
)
BATT  
VOUT  
VSENSE  
ROUT  
RIN  
Voltage Gain:  
Current Gain:  
=
+
V
IOUT  
ISENSE  
RSENSE  
RIN  
R
IN  
=
R
SENSE  
4
2
3
5
+
IOUT  
VSENSE RIN  
1
Transconductance:  
=
LOAD  
VOUT  
ISENSE  
ROUT  
RIN  
Transimpedance:  
= RSENSE  
1
V
LTC6101  
OUT  
R
OUT  
Input Common Mode Range  
6101 F06  
The inputs of the LTC6101 can function from 1.5V below  
the positive supply to 0.5V above it. Not only does this  
Figure 6. LTC6101 Supply Current  
Monitored with Load  
6101fa  
13  
LTC6101/LTC6101HV  
W U U  
U
APPLICATIO S I FOR ATIO  
Reverse Supply Protection  
If the output current is very low and an input transient  
occurs, there may be an increased delay before the output  
voltage begins changing. This can be improved by in-  
creasingtheminimumoutputcurrent,eitherbyincreasing  
RSENSE or decreasing RIN. The effect of increased output  
current is illustrated in the step response curves in the  
Typical Performance Characteristics section of this  
datasheet. Note that the curves are labeled with respect to  
the initial output currents.  
Some applications may be tested with reverse-polarity  
supplies due to an expectation of this type of fault during  
operation. The LTC6101 is not protected internally from  
external reversal of supply polarity. To prevent damage  
that may occur during this condition, a Schottky diode  
should be added in series with V(Figure 7). This will limit  
the reverse current through the LTC6101. Note that this  
diodewilllimitthelowvoltageperformanceoftheLTC6101  
byeffectivelyreducingthesupplyvoltagetothepartbyVD.  
The speed is also affected by the external circuit. In this  
case, if the input changes very quickly, the internal ampli-  
fier will slew the gate of the internal output FET (Figure 1)  
in order to maintain the internal loop. This results in  
current flowing through RIN and the internal FET. This  
current slew rate will be determined by the amplifier and  
FETcharacteristicsaswellastheinputresistor, RIN. Using  
asmallerRIN willallowtheoutputcurrenttoincreasemore  
quickly, decreasing the response time at the output. This  
will also have the effect of increasing the maximum output  
current. Using a larger ROUT will decrease the response  
time, since VOUT = IOUT • ROUT. Reducing RIN and increas-  
ing ROUT will both have the effect of increasing the voltage  
gain of the circuit.  
Inaddition,iftheoutputoftheLTC6101iswiredtoadevice  
that will effectively short it to high voltage (such as  
throughanESDprotectionclamp)duringareversesupply  
condition, the LTC6101’s output should be connected  
through a resistor or Schottky diode (Figure 8).  
Response Time  
TheLTC6101isdesignedtoexhibitfastresponsetoinputs  
for the purpose of circuit protection or signal transmis-  
sion. This response time will be affected by the external  
circuit in two ways, delay and speed.  
R
SENSE  
R
SENSE  
R1  
100  
R1  
V
BATT  
4
2
3
5
100  
L
O
A
D
+
4
2
3
5
L
O
A
D
+
V
BATT  
1
R3  
1k  
LTC6101  
D1  
1
LTC6101  
D1  
ADC  
R2  
4.99k  
R2  
4.99k  
6101 F07  
6101 F08  
Figure 7. Schottky Prevents Damage During Supply Reversal  
Figure 8. Additional Resistor R3 Protects  
Output During Supply Reversal  
6101fa  
14  
LTC6101/LTC6101HV  
U
TYPICAL APPLICATIO S  
Bidirectional Current Sense Circuit with Separate Charge/Discharge Output  
I
I
CHARGE  
DISCHARGE  
R
SENSE  
CHARGER  
R
IN C  
R
IN D  
100  
100  
R
R
IN C  
100  
IN D  
100  
4
2
3
5
3
5
4
2
V
BATT  
+
+
L
O
A
D
1
1
LTC6101  
LTC6101  
+
OUT D  
+
R
R
OUT C  
4.99k  
OUT D  
4.99k  
V
V
OUT C  
6101 TA02  
R
R
OUT D  
DISCHARGING: V  
CHARGING: V  
= I  
R  
WHEN I  
0  
DISCHARGE  
OUT D DISCHARGE  
SENSE  
R
(
)
IN D  
OUT C  
= I  
R  
WHEN I  
0  
CHARGE  
OUT C CHARGE  
SENSE  
(
)
R
IN C  
LTC6101 Monitors Its Own Supply Current  
High-Side-Input Transimpedance Amplifier  
V
S
I
R
SENSE  
LOAD  
CMPZ4697*  
(10V)  
LASER MONITOR  
PHOTODIODE  
i
PD  
I
R1  
100  
SUPPLY  
4.75k  
4.75k  
10k  
4
2
3
5
L
O
A
D
4
3
5
+
+
2
V
BATT  
1
LTC6101  
+
R2  
4.99k  
1
V
OUT  
LTC6101  
V
O
6101 TA03  
R
L
V
= I R  
L
6101 TA04  
O
PD  
V
OUT  
= 49.9 R  
(
I
+ I  
)
SENSE LOAD SUPPLY  
*V SETS PHOTODIODE BIAS  
Z
V
+ 4 V V + 60  
S Z  
Z
6101fa  
15  
LTC6101/LTC6101HV  
U
TYPICAL APPLICATIO S  
16-Bit Resolution Unidirectional Output into LTC2433 ADC  
I
V
LOAD  
SENSE  
+
R
IN  
4V TO 60V  
100  
4
2
3
5
L
O
A
D
+
1µF  
5V  
2
1
+
V
REF  
OUT  
1
V
4
5
CC  
9
8
7
+
LTC6101  
IN  
SCK  
SDD  
LTC2433-1  
TO µP  
R
OUT  
4.99k  
IN  
C
C
F
REF GND  
O
3
6
10  
R
R
OUT  
6101 TA06  
V
=
• V  
= 49.9V  
SENSE  
ADC FULL-SCALE = 2.5V  
OUT  
SENSE  
IN  
Intelligent High-Side Switch with Current Monitor  
10µF  
63V  
V
LOGIC  
14V  
47k  
5
100  
3
1%  
FAULT  
8
6
3
4
1
4
2
R
S
LT1910  
1
LTC6101  
2
V
O
OFF ON  
100Ω  
4.99k  
1µF  
5
SUB85N06-5  
V
= 49.9 • R • I  
S L  
L
O
A
D
O
I
L
FOR R = 5m,  
S
V
O
= 2.5V AT I = 10A (FULL SCALE)  
L
6101 TA07  
6101fa  
16  
LTC6101/LTC6101HV  
U
TYPICAL APPLICATIO S  
48V Supply Current Monitor with Isolated Output with 105V Survivability  
I
V
SENSE  
SENSE  
+
V
LOAD  
S
R
SENSE  
R
IN  
3
5
4
2
+
V
LTC6101HV  
V
LOGIC  
R
OUT  
V
OUT  
ANY OPTOISOLATOR  
V
N = OPTOISOLATOR CURRENT GAIN  
R
SENSE  
V
= V  
I
• N • R  
OUT  
OUT  
LOGIC – SENSE  
6101 TA08  
R
IN  
Simple 500V Current Monitor  
DANGER! Lethal Potentials Present — Use Caution  
I
V
SENSE  
500V  
SENSE  
SENSE  
+
R
R
IN  
100Ω  
4
3
L
O
A
D
DANGER!!  
HIGH VOLTAGE!!  
+
2
5
1
62V  
CMZ59448  
LTC6101  
M1  
V
M2  
OUT  
R
OUT  
M1 AND M2 ARE FQD3P50 TM  
2M  
4.99k  
R
OUT  
V
=
• V  
= 49.9 V  
SENSE SENSE  
OUT  
R
IN  
6101 TA09  
6101fa  
17  
LTC6101/LTC6101HV  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 ± 0.076  
(.009 – .015)  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6101fa  
18  
LTC6101/LTC6101HV  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6101fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC6101/LTC6101HV  
U
TYPICAL APPLICATIO  
Bidirectional Current Sense Circuit with Combined Charge/Discharge Output  
I
I
CHARGE  
DISCHARGE  
R
SENSE  
CHARGER  
R
IN C  
R
IN D  
R
IN D  
R
IN C  
4
2
3
5
3
5
4
2
V
BATT  
+
+
L
O
A
D
1
1
LTC6101  
LTC6101  
+
OUT  
V
R
OUT  
6101 TA05  
R
R
OUT  
IN D  
DISCHARGING: V  
CHARGING: V  
= I  
R  
WHEN I  
0  
DISCHARGE  
OUT DISCHARGE  
SENSE  
(
)
R
R
OUT  
IN C  
= I  
R  
WHEN I  
0  
CHARGE  
OUT CHARGE  
SENSE  
(
)
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Extends 44V above V , 55µA Supply Current,  
LT1636  
Rail-to-Rail Input/Output, Micropower Op Amp  
V
CM  
EE  
Shutdown Function  
LT1637/LT1638/  
LT1639  
Single/Dual/Quad, Rail-to-Rail, Micropower Op Amp  
V
Extends 44V above V , 0.4V/µs Slew Rate, >1MHz  
CM EE  
Bandwidth, <250µA Supply Current per Amplifier  
LT1787/LT1787HV Precision, Bidirectional, High Side Current Sense Amplifier  
2.7V to 60V Operation, 75µV Offset, 60µA Current Draw  
±200V Transient Protection, Drives Three Optoisolators for Status  
±250V Common Mode, Micropower, Pin Selectable Gain = 1, 10  
2.7V to ±18V, Micropower, Pin Selectable Gain = –13 to 14  
3µV Offset, 30nV/°C Drift, Input Extends Down to V–  
LTC1921  
LT1990  
LT1991  
Dual –48V Supply and Fuse Monitor  
High Voltage, Gain Selectable Difference Amplifier  
Precision, Gain Selectable Difference Amplifier  
LTC2050/LTC2051/ Single/Dual/Quad Zero-Drift Op Amp  
LTC2052  
LTC4150  
Coulomb Counter/Battery Gas Gauge  
Indicates Charge Quantity and Polarity  
Over-The-Top is a trademark of Linear Technology Corporation.  
6101fa  
LT/TP 0805 500 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC6101CCS5#TR

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6101CCS5#TRPBF

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6101CHS5

High Voltage, High-Side Current Sense Amplifier in SOT-23
Linear

LTC6101CHS5#PBF

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6101CHS5#TR

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6101CHS5#TRM

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6101CHS5#TRMPBF

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6101CHS5#TRPBF

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6101CIS5

High Voltage, High-Side Current Sense Amplifier in SOT-23
Linear

LTC6101CIS5#PBF

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6101CIS5#TR

LTC6101 - High Voltage, High-Side Current Sense Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6101CIS5#TRPBF

暂无描述
Linear