LTC6240HVHS5#TRM [Linear]

IC OP-AMP, 450 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDSO5, PLASTIC, MO-193, TSOT-23, 5 PIN, Operational Amplifier;
LTC6240HVHS5#TRM
型号: LTC6240HVHS5#TRM
厂家: Linear    Linear
描述:

IC OP-AMP, 450 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDSO5, PLASTIC, MO-193, TSOT-23, 5 PIN, Operational Amplifier

运算放大器 放大器电路
文件: 总28页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6240/LTC6241/LTC6242  
Single/Dual/Quad 18MHz,  
Low Noise, Rail-to-Rail Output,  
CMOS Op Amps  
U
DESCRIPTIO  
FEATURES  
The LTC®6240/6241/LTC6242 are single, dual and quad  
low noise, low offset, rail-to-rail output, unity gain stable  
CMOSopampsthatfeature1pAofinputbiascurrent.Input  
bias current is guaranteed to be 1pA max on the single  
0.1Hz to 10Hz Noise: 550nV  
P-P  
Input Bias Current:  
0.2pA (Typ at 25°C)  
1pA Max (LT6240)  
Low Offset Voltage: 125µV Max  
LTC6240. The0.1Hzto10Hznoiseofonly550nV , along  
P-P  
Low Offset Drift: 2.5µV/°C Max  
with an offset of just 125µV are significant improvements  
over traditional CMOS op amps. Additionally, noise is  
guaranteed to be less than 10nV/√Hz at 1kHz. An 18MHz  
gain bandwidth, and 10V/µs slew rate, along with the wide  
supplyrangeandlowinputcapacitance,makethemperfect  
for use as fast signal processing amplifiers.  
Gain Bandwidth Product: 18MHz  
Output Swings Rail-to-Rail  
Supply Operation:  
2.8V to 6V LTC6240/LTC6241/LTC6242  
2.8V to 5.5V LTC6240HV/LTC6241HV/LTC6242HV  
Low Input Capacitance  
H Grade Temperature Range: –40°C to 125°C  
Single LTC6240 in 5-Pin SOT-23 Package and  
8-Pin SO for PCB Guard Ring  
Dual LTC6241 in 8-Pin SO and Tiny DFN Packages  
Quad LTC6242 in 16-Pin SSOP and 5mm × 3mm  
DFN Packages  
These op amps have an output stage that swings within  
30mV of either supply rail to maximize the signal dynamic  
rangeinlowsupplyapplications.Theinputcommonmode  
range extends to the negative supply. They are fully speci-  
fiedon3Vand5V, andanHVversionguaranteesoperation  
on supplies up to 5V.  
U
The LTC6240 is available in the 8-pin SO and the 5-pin  
SOT-23 packages. The LTC6241 is available in the 8-pin  
SO, and for compact designs it is packaged in a tiny dual  
fine pitch leadless (DFN) package. The LTC6242 is avail-  
able in the 16-Pin SSOP as well as the 5mm × 3mm DFN  
package.  
APPLICATIO S  
Photo Diode Amplifiers  
Charge Coupled Amplifiers  
Low Noise Signal Processing  
Medical Instrumentation  
High Impedance Transducer Amplifier  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Low Noise Single-Ended Input to Differential Output Amplifier  
Noise Voltage vs Frequency  
60  
C3  
10pF  
T
V
V
= 25°C  
A
S
=
2.5V  
= 0V  
50  
40  
30  
20  
10  
0
CM  
C4  
10pF  
R4  
4.99k  
C1  
10pF  
+2.5V  
1/2  
R1  
200k  
R3  
4.99k  
V
IN  
+
V
V
OUT  
OUT  
LTC6241  
+
–2.5V  
1/2  
LTC6241  
+
R2  
200k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
6241 TA01b  
C2  
10pF  
6241 TA01a  
624012fc  
1
LTC6240/LTC6241/LTC6242  
W W U W  
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V to V )  
+
Specified Temperature Range (Note 3)  
LTC6240/LTC6241/LTC6242 ...................................7V  
LTC6240HV/LTC6241HV/LTC6242HV ...................12V  
Input Voltage.......................... (V + 0.3V) to (V – 0.3V)  
Input Current........................................................ 10mA  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range  
LTC6240C/LTC6241C/LTC6242C.............. 0°C to 70°C  
LTC6240I/LTC6241I/LTC6242I............. –40°C to 85°C  
LTC6240H/LTC6241H/LTC6242H....... –40°C to 125°C  
Junction Temperature ........................................... 150°C  
DHC, DD Package ............................................. 125°C  
Storage Temperature Range....................–65ºC to 150°C  
DHC, DD Package ...............................–65ºC to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
+
LTC6240C/LTC6241C/LTC6242C.......... –40°C to 85°C  
LTC6240I/LTC6241I/LTC6242I............. –40°C to 85°C  
LTC6240H/LTC6241H/LTC6242H....... –40°C to 125°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER S5 PART MARKING*  
LTC6240CS5  
LTC6240HVCS5  
LTC6240IS5  
LTC6240HVIS5  
LTC6240HS5  
LTC6240HVHS5  
LTCRR  
LTCRS  
LTCRR  
LTCRS  
LTCRR  
LTCRS  
TOP VIEW  
TOP VIEW  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
+
+
OUT 1  
5 V  
+
V
V
2
OUT  
NC  
+IN 3  
4 –IN  
ORDER PART NUMBER S8 PART MARKING  
V
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
LTC6240CS8  
LTC6240HVCS8  
LTC6240IS8  
6240  
6240HV  
6240I  
T
= 150°C, θ = 250°C/W  
JMAX  
JA  
T
= 150°C, θ = 190°C/W  
JMAX  
JA  
LTC6240HVIS8  
LTC6240HS8  
LTC6240HVHS8  
240HVI  
6240H  
240HVH  
ORDER PART NUMBER DD PART MARKING*  
LTC6241CDD  
LTC6241HVCDD  
LTC6241IDD  
LBPD  
LBRR  
LBPD  
LBRR  
TOP VIEW  
TOP VIEW  
+
OUT A  
1
2
3
4
8
7
6
5
V
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
–IN A  
OUT B  
–IN B  
+IN B  
LTC6241HVIDD  
A
OUT B  
–IN B  
+IN B  
A
+IN A  
B
ORDER PART NUMBER S8 PART MARKING  
V
B
V
LTC6241CS8  
LTC6241HVCS8  
LTC6241IS8  
LTC6241HVIS8  
LTC6241HS8  
LTC6241HVHS8  
6241  
6241HV  
6241I  
241HVI  
6241H  
241HVH  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 150°C, θ = 190°C/W  
T
JMAX  
JA  
T
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
624012fc  
2
LTC6240/LTC6241/LTC6242  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER DHC PART MARKING*  
TOP VIEW  
TOP VIEW  
LTC6242CDHC  
LTC6242HVCDHC  
LTC6242IDHC  
6242  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
6242HV  
6242  
A
B
D
C
A
B
D
C
14 +IN D  
+
V
13 V  
LTC6242HVIDHC  
6242HV  
+
17  
V
V
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
ORDER PART NUMBER GN PART MARKING  
LTC6242CGN  
LTC6242HVCGN  
LTC6242IGN  
LTC6242HVIGN  
LTC6242HGN  
LTC6242HVHGN  
6242  
6242HV  
6242I  
242HVI  
6242H  
242HVH  
9
NC  
DHC16 PACKAGE  
16-LEAD (5mm × 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 150°C, θ = 135°C/W  
T
JMAX  
JA  
T
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
AVAILABLE OPTIO S  
PART NUMBER  
LTC6240CS5  
AMPS/PACKAGE  
SPECIFIED TEMP RANGE  
0°C to 70°C  
SPECIFIED SUPPLY VOLTAGE  
3V, 5V  
PACKAGE  
SOT-23  
SO-8  
SOT-23  
SO-8  
SOT-23  
SO-8  
SOT-23  
SO-8  
SOT-23  
SO-8  
SOT-23  
SO-8  
SO-8  
DD  
PART MARKING  
LTCRR  
6240  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
LTC6240CS8  
0°C to 70°C  
3V, 5V  
LTC6240HVCS5  
LTC6240HVCS8  
LTC6240IS5  
0°C to 70°C  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
LTCRS  
6240HV  
LTCRR  
6240I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
0°C to 70°C  
LTC6240IS8  
3V, 5V  
LTC6240HVIS5  
LTC6240HVIS8  
LTC6240HS5  
LTC6240HS8  
LTC6240HVHS5  
LTC6240HVHS8  
LTC6241CS8  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
LTCRS  
240HVI  
LTCRR  
6240H  
LTCRS  
240HVH  
6241  
3V, 5V  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
LTC6241CDD  
LTC6241HVCS8  
LTC6241HVCDD  
LTC6241IS8  
0°C to 70°C  
3V, 5V  
LBPD  
0°C to 70°C  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
SO-8  
DD  
6241HV  
LBRR  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
SO-8  
DD  
6241I  
LTC6241IDD  
3V, 5V  
LBPD  
LTC6241HVIS8  
LTC6241HVIDD  
LTC6241HS8  
LTC6241HVHS8  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
SO-8  
DD  
241HVI  
LBRR  
SO-8  
SO-8  
6241H  
241HVH  
3V, 5V, 5V  
624012fc  
3
LTC6240/LTC6241/LTC6242  
U
AVAILABLE OPTIO S  
PART NUMBER  
AMPS/PACKAGE  
SPECIFIED TEMP RANGE  
0°C to 70°C  
SPECIFIED SUPPLY VOLTAGE  
3V, 5V  
PACKAGE  
GN  
PART MARKING  
6242  
LTC6242CGN  
4
4
4
4
4
4
4
4
4
4
LTC6242CDHC  
LTC6242HVCGN  
LTC6242HVCDHC  
LTC6242IGN  
0°C to 70°C  
3V, 5V  
DHC  
GN  
6242  
0°C to 70°C  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
6242HV  
6242HV  
6242I  
0°C to 70°C  
DHC  
GN  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
LTC6242IDHC  
LTC6242HVIGN  
LTC6242HVIDHC  
LTC6242HGN  
3V, 5V  
DHC  
GN  
6242  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
242HVI  
6242HV  
6242H  
DHC  
GN  
LTC6242HVHGN  
3V, 5V, 5V  
GN  
242HVH  
ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,  
LTC6242HVC/I) The denotes the specifications which apply over the specified temperature range, otherwise specifications are at  
TA = 25°C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage (Note 4)  
LTC6241 S8  
0°C to 70°C  
–40°C to 85°C  
40  
125  
250  
300  
µV  
µV  
µV  
LTC6242 GN  
0°C to 70°C  
–40°C to 85°C  
50  
50  
150  
275  
300  
µV  
µV  
µV  
LTC6240  
0°C to 70°C  
–40°C to 85°C  
175  
300  
350  
µV  
µV  
µV  
LTC6241 DD, LTC6242 DHC  
0°C to 70°C  
100  
40  
550  
650  
725  
µV  
µV  
µV  
–40°C to 85°C  
V
Match Channel-to-Channel (Note 5) LTC6241 S8  
160  
300  
375  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
LTC6242 GN  
0°C to 70°C  
–40°C to 85°C  
50  
185  
325  
400  
µV  
µV  
µV  
LTC6241 DD, LTC6242 DHC  
0°C to 70°C  
–40°C to 85°C  
150  
650  
700  
750  
µV  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
0.2  
2.5  
µV/°C  
OS  
I
LTC6241, LTC6242  
LTC6240  
pA  
pA  
B
75  
0.2  
0.2  
0.2  
550  
1
75  
pA  
pA  
I
OS  
Input Offset Current (Notes 4, 7)  
Input Noise Voltage  
LTC6241, LTC6242  
LTC6240  
pA  
pA  
75  
1
75  
pA  
pA  
0.1Hz to 10Hz  
nV  
P-P  
624012fc  
4
LTC6240/LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,  
LTC6242HVC/I) The denotes the specifications which apply over the specified temperature range, otherwise specifications are at  
TA = 25°C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
7
MAX  
UNITS  
nV/√Hz  
fA/√Hz  
Ω
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 8)  
Input Resistance  
f = 1kHz  
10  
i
n
0.56  
12  
R
IN  
Common Mode  
f = 100kHz  
10  
C
IN  
Input Capacitance  
Differential Mode  
Common Mode  
3.5  
3
pF  
pF  
V
Input Voltage Range  
Guaranteed by CMRR  
0
3.5  
V
CM  
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 3.5V  
80  
105  
95  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
76  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 4V  
O
R = 10k to V /2  
425  
300  
200  
1600  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V = 1.5V to 3.5V  
O
R = 1k to V /2  
90  
60  
50  
215  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
SINK  
SINK  
7
30  
75  
mV  
mV  
mV  
OL  
I
I
= 1mA  
= 5mA  
40  
190  
325  
No Load  
SOURCE  
SOURCE  
11  
45  
190  
30  
75  
325  
mV  
mV  
mV  
OH  
I
I
= 1mA  
= 5mA  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
80  
104  
100  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
74  
2.8  
15  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
30  
mA  
SC  
S
Supply Current per Amplifier  
LTC6241, LTC6242  
0°C to 70°C  
–40°C to 85°C  
1.8  
2.2  
2.3  
2.4  
mA  
mA  
mA  
LTC6240  
0°C to 70°C  
–40°C to 85°C  
2
2.4  
2.5  
2.6  
mA  
mA  
mA  
GBW  
SR  
Gain Bandwidth Product  
Slew Rate (Note 11)  
Frequency = 20kHz, R = 1kΩ  
13  
5
18  
10  
MHz  
V/µs  
MHz  
ns  
L
A = –2, R = 1kΩ  
V
L
FPBW  
Full Power Bandwidth (Note 12)  
Settling Time  
V
OUT  
= 3V , R = 1kΩ  
0.53  
1.06  
1100  
P-P  
L
t
s
V = 2V, A = 1, R = 1kΩ, 0.1%  
STEP V L  
624012fc  
5
LTC6240/LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,  
LTC6242HVC/I) The denotes the specifications which apply over the specified temperature range, otherwise specifications are at  
TA = 25°C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage (Note 4)  
LTC6241 S8  
0°C to 70°C  
–40°C to 85°C  
40  
175  
275  
325  
µV  
µV  
µV  
LTC6242 GN  
0°C to 70°C  
–40°C to 85°C  
LTC6240  
0°C to 70°C  
–40°C to 85°C  
60  
50  
200  
275  
325  
200  
325  
375  
µV  
µV  
µV  
µV  
µV  
µV  
LTC6241 DD, LTC6242 DHC  
0°C to 70°C  
100  
40  
550  
650  
725  
200  
325  
400  
µV  
µV  
µV  
µV  
µV  
µV  
–40°C to 85°C  
V
OS  
Match Channel-to-Channel (Note 5) LTC6241 S8  
0°C to 70°C  
–40°C to 85°C  
LTC6242 GN  
0°C to 70°C  
–40°C to 85°C  
60  
225  
325  
400  
µV  
µV  
µV  
LTC6241 DD, LTC6242 DHC  
0°C to 70°C  
–40°C to 85°C  
150  
650  
700  
750  
µV  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
0.2  
2.5  
µV/°C  
OS  
I
B
LTC6241, LTC6242  
LTC6240  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
75  
1
75  
0.2  
0.2  
0.2  
I
OS  
Input Offset Current (Notes 4, 7)  
LTC6241, LTC6242  
LTC6240  
75  
1
75  
V
CM  
Input Voltage Range  
Common Mode Rejection  
CMRR Match  
Channel-to-Channel (Note 5)  
Guaranteed by CMRR  
0
78  
1.5  
V
dB  
CMRR  
0V ≤ V ≤ 1.5V  
100  
95  
CM  
76  
dB  
A
Large Signal Voltage Gain  
V = 1V to 2V  
O
VOL  
R = 10k to V /2  
140  
100  
75  
600  
V/mV  
V/mV  
V/mV  
mV  
mV  
mV  
mV  
dB  
L
S
0°C to 70°C  
–40°C to 85°C  
No Load  
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
PSRR Match  
Channel-to-Channel (Note 5)  
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
Supply Current per Amplifier  
3
65  
4
70  
104  
100  
30  
OL  
I
= 1mA  
110  
SINK  
No Load  
= 1mA  
30  
120  
OH  
I
SOURCE  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
80  
CM  
74  
2.8  
3
dB  
V
mA  
mA  
mA  
mA  
I
I
6
1.4  
SC  
LTC6241, LTC6242  
0°C to 70°C  
–40°C to 85°C  
1.7  
1.8  
1.9  
S
LTC6240  
1.5  
17  
1.9  
2
2.1  
mA  
mA  
mA  
0°C to 70°C  
–40°C to 85°C  
GBW  
Gain Bandwidth Product  
Frequency = 20kHz, R = 1kΩ  
12  
MHz  
L
624012fc  
6
LTC6240/LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6240HVC/I, LTC6241HVC/I, LTC6242HVC/I) The denotes the  
specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V, VCM = 0V  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage (Note 4)  
LTC6241 S8  
0°C to 70°C  
–40°C to 85°C  
50  
175  
275  
325  
µV  
µV  
µV  
LTC6242 GN  
0°C to 70°C  
–40°C to 85°C  
LTC6240  
0°C to 70°C  
–40°C to 85°C  
60  
60  
200  
275  
325  
250  
350  
400  
µV  
µV  
µV  
µV  
µV  
µV  
LTC6241 DD, LTC6242 DHC  
0°C to 70°C  
100  
50  
550  
650  
725  
200  
325  
400  
µV  
µV  
µV  
µV  
µV  
µV  
–40°C to 85°C  
V
Match Channel-to-Channel (Note 5) LTC6241 S8  
OS  
0°C to 70°C  
–40°C to 85°C  
LTC6242 GN  
0°C to 70°C  
–40°C to 85°C  
60  
225  
325  
400  
µV  
µV  
µV  
LTC6241 DD, LTC6242 DHC  
0°C to 70°C  
–40°C to 85°C  
150  
650  
700  
750  
µV  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
0.5  
2.5  
µV/°C  
OS  
I
LTC6241, LTC6242  
LTC6240  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
B
75  
1
75  
0.5  
0.2  
0.2  
I
OS  
Input Offset Current (Notes 4, 7)  
LTC6241, LTC6242  
LTC6240  
75  
1
75  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
550  
7
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 8)  
Input Resistance  
Input Capacitance  
Differential Mode  
Common Mode  
10  
nV/√Hz  
fA/√Hz  
Ω
i
0.56  
n
12  
R
Common Mode  
f = 100kHz  
10  
IN  
C
IN  
3.5  
3
pF  
pF  
V
Input Voltage Range  
Common Mode Rejection  
CMRR Match  
Channel-to-Channel (Note 5)  
Guaranteed by CMRR  
–5  
83  
3.5  
V
dB  
CM  
CMRR  
–5V ≤ V ≤ 3.5V  
105  
95  
CM  
76  
dB  
A
VOL  
Large Signal Voltage Gain  
V = –3.5V to 3.5V  
O
R = 10k  
775  
600  
500  
2700  
V/mV  
V/mV  
V/mV  
L
0°C to 70°C  
–40°C to 85°C  
R = 1k  
150  
90  
75  
360  
V/mV  
V/mV  
V/mV  
L
0°C to 70°C  
–40°C to 85°C  
V
OL  
Output Voltage Swing Low (Note 9)  
No Load  
15  
45  
360  
30  
75  
550  
mV  
mV  
mV  
I
I
= 1mA  
SINK  
= 10mA  
SINK  
624012fc  
7
LTC6240/LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6240HVC/I, LTC6241HVC/I, LTC6242HVC/I) The denotes the  
specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V, VCM = 0V  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OH  
Output Voltage Swing High (Note 9)  
No Load  
15  
45  
360  
30  
75  
550  
mV  
mV  
mV  
I
I
= 1mA  
SOURCE  
= 10mA  
SOURCE  
PSRR  
Power Supply Rejection  
PSRR Match  
Channel-to-Channel (Note 5)  
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
Supply Current per Amplifier  
V = 2.8V to 11V, V = 0.2V  
85  
110  
106  
dB  
S
CM  
82  
2.8  
15  
dB  
V
mA  
mA  
mA  
mA  
I
I
35  
2.5  
SC  
S
LTC6241, LTC6242  
0°C to 70°C  
–40°C to 85°C  
3.2  
3.3  
3.7  
LTC6240  
0°C to 70°C  
–40°C to 85°C  
2.7  
3.3  
3.4  
3.8  
mA  
mA  
mA  
GBW  
SR  
FPBW  
Gain Bandwidth Product  
Slew Rate (Note 11)  
Full Power Bandwidth (Note 12)  
Settling Time  
Frequency = 20kHz, R = 1kΩ  
13  
5.5  
0.58  
18  
10  
1.06  
900  
MHz  
V/µs  
MHz  
ns  
L
A = –2, R = 1kΩ  
V
L
V
= 3V , R = 1kΩ  
OUT  
P-P  
L
t
s
V = 2V, A = 1, R = 1kΩ, 0.1%  
STEP V L  
(LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH) The denotes the specifications which apply from –40°C  
to 125°C, otherwise specifications are at TA = 25°C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
LTC6241 S8  
40  
125  
400  
µV  
µV  
OS  
LTC6242 GN  
LTC6240  
50  
50  
40  
50  
150  
400  
µV  
µV  
175  
450  
µV  
µV  
V
OS  
Match Channel-to-Channel (Note 5) LTC6241 S8  
160  
400  
µV  
µV  
LTC6242 GN  
185  
400  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
0.2  
2.5  
µV/°C  
OS  
I
B
LTC6241, LTC6242  
LTC6240  
pA  
nA  
1.5  
0.2  
0.2  
0.2  
1
2.5  
pA  
nA  
I
Input Offset Current (Notes 4, 7)  
LTC6241, LTC6242  
LTC6240  
pA  
pA  
OS  
150  
1
750  
pA  
pA  
V
Input Voltage Range  
Guaranteed by CMRR  
0
3.5  
V
CM  
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 3.5V  
78  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
74  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 4V  
O
R = 10k to V /2  
425  
200  
1600  
215  
V/mV  
V/mV  
L
S
V = 1.5V to 3.5V  
O
R = 1k to V /2  
90  
40  
V/mV  
V/mV  
L
S
624012fc  
8
LTC6240/LTC6241/LTC6242  
(LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH)  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted.  
The denotes the specifications which apply from –40°C to 125°C, otherwise specifications are at TA = 25°C. VS = 5V, 0V, VCM = 2.5V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Output Voltage Swing Low (Note 9)  
No Load  
SINK  
SINK  
30  
85  
mV  
mV  
mV  
OL  
I
I
= 1mA  
= 5mA  
325  
Output Voltage Swing High (Note 9)  
No Load  
SOURCE  
SOURCE  
30  
85  
325  
mV  
mV  
mV  
OH  
I
I
= 1mA  
= 5mA  
PSRR  
Power Supply Rejection  
V = 2.8V to 6V, V = 0.2V  
78  
dB  
S
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
74  
2.8  
15  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
mA  
SC  
Supply Current per Amplifier  
LTC6241, LTC6242  
LTC6240  
1.8  
2
2.2  
2.4  
mA  
mA  
S
2.4  
2.8  
mA  
mA  
GBW  
SR  
Gain Bandwidth Product  
Slew Rate (Note 11)  
Frequency = 20kHz, R = 1kΩ  
12  
4.5  
MHz  
V/µs  
MHz  
L
A = –2, R = 1kΩ  
V
L
FPBW  
Full Power Bandwidth (Note 12)  
V
= 3V , R = 1kΩ  
0.48  
OUT  
P-P  
L
(LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH) The denotes the specifications which apply from –40°C  
to 125°C, otherwise specifications are at TA = 25°C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
LTC6241 S8  
40  
175  
400  
µV  
µV  
OS  
LTC6242 GN  
LTC6240  
60  
50  
40  
60  
200  
400  
µV  
µV  
200  
450  
µV  
µV  
V
Match Channel-to-Channel (Note 5) LTC6241 S8  
200  
400  
µV  
µV  
OS  
LTC6242 GN  
225  
400  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
0.2  
2.5  
µV/°C  
OS  
I
LTC6241, LTC6242  
LTC6240  
pA  
nA  
B
1.5  
0.2  
0.2  
0.2  
1
2.5  
pA  
nA  
I
OS  
Input Offset Current (Notes 4, 7)  
LTC6241, LTC6242  
LTC6240  
pA  
pA  
150  
1
750  
pA  
pA  
V
CM  
Input Voltage Range  
Guaranteed by CMRR  
0
1.5  
V
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 1.5V  
75  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
74  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 2V  
O
R = 10k to V /2  
140  
65  
600  
V/mV  
V/mV  
L
S
624012fc  
9
LTC6240/LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH)  
The denotes the specifications which apply from –40°C to 125°C, otherwise specifications are at TA = 25°C. VS = 3V, 0V, VCM = 1.5V  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage Swing Low (Note 9)  
No Load  
SINK  
30  
mV  
mV  
OL  
OH  
I
= 1mA  
130  
V
Output Voltage Swing High (Note 9)  
No Load  
= 1mA  
30  
130  
mV  
mV  
I
SOURCE  
PSRR  
Power Supply Rejection  
V = 2.8V to 6V, V = 0.2V  
78  
dB  
S
CM  
PSRR Match Channel-to-Channel  
(Note 5)  
74  
2.8  
2.5  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
mA  
SC  
S
Supply Current per Amplifier  
LTC6241, LTC6242  
LTC6240  
1.4  
1.5  
1.7  
1.9  
mA  
mA  
1.9  
2.1  
mA  
mA  
GBW  
Gain Bandwidth Product  
Frequency = 20kHz, R = 1kΩ  
10  
MHz  
L
(LTC6240HVH/LTC6241HVH/LTC6242HVH) The denotes the specifications which apply from –40°C to 125°C, otherwise specifications  
are at TA = 25°C. VS = 5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
LTC6241 S8  
50  
175  
400  
µV  
µV  
OS  
LTC6242 GN  
LTC6240  
60  
60  
50  
60  
200  
400  
µV  
µV  
250  
450  
µV  
µV  
V
Match Channel-to-Channel (Note 5) LTC6241 S8  
200  
400  
µV  
µV  
OS  
LTC6242 GN  
225  
400  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
0.5  
2.5  
µV/°C  
OS  
I
LTC6241, LTC6242  
LTC6240  
pA  
nA  
B
1.5  
0.5  
0.2  
0.2  
1
2.5  
pA  
nA  
I
Input Offset Current (Notes 4, 7)  
LTC6241, LTC6242  
LTC6240  
pA  
pA  
OS  
150  
1
750  
pA  
pA  
V
Input Voltage Range  
Guaranteed by CMRR  
–5  
80  
3.5  
V
CM  
CMRR  
Common Mode Rejection  
–5V ≤ V ≤ 3.5V  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
76  
dB  
A
VOL  
Large Signal Voltage Gain  
V = –3.5V to 3.5V  
O
L
R = 10k  
775  
350  
2700  
360  
V/mV  
V/mV  
R = 1k  
L
150  
60  
V/mV  
V/mV  
624012fc  
10  
LTC6240/LTC6241/LTC6242  
(LTC6240HVH/LTC6241HVH/LTC6242HVH) The denotes the specifications  
ELECTRICAL CHARACTERISTICS  
which apply from –40°C to 125°C, otherwise specifications are at TA = 25°C. VS = 5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Output Voltage Swing Low (Note 9)  
No Load  
30  
85  
mV  
mV  
mV  
OL  
I
I
= 1mA  
SINK  
SINK  
= 10mA  
600  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
30  
85  
600  
mV  
mV  
mV  
OH  
I
I
= 1mA  
SOURCE  
SOURCE  
= 10mA  
PSRR  
V = 2.8V to 11V, V = 0.2V  
S
83  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
82  
2.8  
15  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
mA  
SC  
Supply Current per Amplifier  
LTC6241, LTC6242  
LTC6240  
2.5  
2.7  
3.2  
3.7  
mA  
mA  
S
3.3  
3.8  
mA  
mA  
GBW  
SR  
Gain Bandwidth Product  
Slew Rate (Note 11)  
Frequency = 20kHz, R = 1kΩ  
12  
5
MHz  
V/µs  
MHz  
L
A = –2, R = 1kΩ  
V
L
FPBW  
Full Power Bandwidth (Note 12)  
V
= 3V , R = 1kΩ  
0.53  
OUT  
P-P  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
and PSRR are measured in µV/V on the matched amplifiers. The difference  
is calculated between the matching sides in µV/V. The result is converted  
to dB.  
Note 6: This parameter is not 100% tested.  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 7: Bias current at T = 25°C is 100% tested and guaranteed for the  
A
LTC6240 in the S8 package. The LTC6240S5, LTC6241 and LTC6242 are  
expected to achieve the same performance as the LTC6240S8. All parts are  
guaranteed to meet specifications over temperature.  
1/2  
Note 3: The LTC6240C/LTC6240HVC/LTC6241C/LTC6241HVC, LTC6242C/  
LTC6242HVC are guaranteed to meet specified performance from 0°C to  
70°C. They are designed, characterized and expected to meet specified  
performance from –40°C to 85°C, but are not tested or QA sampled at  
these temperatures. The LTC6240I/LTC6240HVI, LTC6241I/LTC6241HVI,  
LTC6242I/LTC6242HVI are guaranteed to meet specified performance  
from –40°C to 85°C. All versions of the LTC6240H/LTC6241H/LTC6242H  
are guaranteed to meet specified performance  
Note 8: Current noise is calculated from the formula: i = (2qI )  
n
B
–19  
where q = 1.6 × 10 coulomb. The noise of source resistors up to  
50GΩ dominates the contribution of current noise. See also Typical  
Characteristics curve Noise Current vs Frequency.  
Note 9: Output voltage swings are measured between the output and  
power supply rails.  
Note 10: Minimum supply voltage is guaranteed by the power supply  
rejection ratio test.  
from –40°C to 125°C.  
Note 4: ESD (Electrostatic Discharge) sensitive device. ESD protection  
devices are used extensively internal to the LTC6240/LTC6241/LTC6242;  
however, high electrostatic discharge can damage or degrade the device.  
Use proper ESD handling precautions.  
Note 5: Matching parameters are the difference between the two amplifiers  
A and D and between B and C of the LTC6242; between the two amplifiers  
of the LTC6241. CMRR and PSRR match are defined as follows: CMRR  
Note 11: Slew rate is measured in a gain of –2 with R = 1k and R =  
F
G
500Ω. On the LTC6240/LTC6241/LTC6242, V = 2.5V, V is 1V and  
S
IN  
V
slew rate is measured between –1V and +1V. On the LTC6240HV/  
OUT  
LTC6241HV/LTC6242HV, V is 2V and V  
slew rate is measured  
IN  
OUT  
between –2V and +2V.  
Note 12: Full-power bandwidth is calculated from the slew rate:  
FPBW = SR/πV  
.
P-P  
624012fc  
11  
LTC6240/LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
OS Temperature Coefficient  
VOS Distribution LTC6241  
VOS Distribution LTC6241  
Distribution LTC6241  
120  
100  
80  
60  
40  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
16  
14  
12  
10  
8
V
= 2.5V  
V
=
2.5V  
V = 2.5V  
S
S
S
DD PACKAGE  
SO-8 PACKAGE  
2 LOTS  
–55°C TO 125°C  
6
4
2
0
0
–350 –250 –150 –50 50 150 250 350  
–70 –50 –30 –10 10  
30  
50  
70  
–1.0 –0.6 –0.2 0.2 0.6 1.0 1.4 1.8  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
DISTRIBUTION (µV/°C)  
6241 G02  
6241 G01  
6241 G03  
VOS Temperature Coefficient  
Distribution LTC6240  
VOS Distribution LTC6240  
Supply Current vs Supply Voltage  
35  
30  
25  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
S
=
2.5V  
V
V
= 5V, 0  
= 2.5V  
S
CM  
2 LOTS  
T
= 25°C  
A
–40°C TO 125°C  
SO-8 AND SOT23  
PACKAGES  
T
= –55°C  
A
T
= 125°C  
A
6
4
2
0
0
8
12  
0
2
4
6
10  
–110 –90 –70 –50 –30 –10 10 30 50 70  
–0.6 –0.2 0.2  
0.6  
1.0  
1.4  
1.8  
TOTAL SUPPLY VOLTAGE (V)  
INPUT OFFSET VOLTAGE (µV)  
DISTRIBUTION (µV/°C)  
6241 G43  
6241 G44  
6241 G04  
Offset Voltage vs Input Common  
Mode Voltage  
Input Bias Current vs Common  
Mode Voltage  
Input Bias Current vs  
Common Mode Voltage  
700  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
600  
500  
400  
300  
200  
100  
0
T
= 125°C  
A
T
= 125°C  
= 25°C  
A
T
= 25°C  
A
T
T
= 125°C  
A
A
0
–50  
–100  
–150  
–200  
–250  
–300  
T
= –55°C  
T
= 85°C  
A
A
–100  
–200  
–300  
–400  
1
T
= 85°C  
A
T
= 25°C  
A
0.1  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
–0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6241 G07  
6241 G06  
6241 G05  
624012fc  
12  
LTC6240/LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Saturation Voltage vs  
Load Current (Output Low)  
Output Saturation Voltage vs  
Load Current (Output High)  
Input Bias Current vs Temperature  
10  
1
10  
1
1000  
100  
10  
V
= 5V, 0V  
V = 5V, 0V  
S
V
= V /2  
S
S
CM  
T
= 25°C  
A
T
= 25°C  
A
V
= 10V  
S
T
= 125°C  
A
T
= 125°C  
A
V
= 5V  
S
0.1  
T
= –55°C  
A
T
= –55°C  
A
0.1  
1
0.01  
0.001  
0.1  
0.01  
25 35 45 55 65 75 85 95 105 115 125  
0.1  
1
10  
100  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
6241 G08  
6241 G09  
6241 G10  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
Open Loop Gain vs Frequency  
70  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
T
= 25°C  
= 5pF  
= 1k  
C
= 5pF  
= 1k  
C
R
V
= 5pF  
L
A
L
L
L
L
PHASE  
C
V
=
5V  
= 1k  
100  
80  
R
S
L
60  
50  
40  
R
= V /2  
CM  
S
PHASE MARGIN  
60  
PHASE MARGIN  
V
= 5V  
S
V
=
1.5V  
GAIN  
40  
S
V
=
1.5V  
5V  
S
40  
30  
20  
10  
0
20  
30  
20  
10  
0
0
V
=
S
V
=
5V  
–20  
–40  
–60  
–80  
S
GAIN BANDWIDTH  
V =  
1.5V  
S
GAIN BANDWIDTH  
V
=
1.5V  
S
–10  
–20  
0
2
4
6
8
10  
12  
–55 –35 –15  
5
25 45 65 85 105 125  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6241 G14  
6241 G12  
6241 G13  
Common Mode Rejection Ratio vs  
Frequency  
Slew Rate vs Temperature  
Output Impedance vs Frequency  
20  
18  
16  
14  
12  
10  
8
10k  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
= 2.5V  
T
= 25°C  
= 2.5V  
A
= –2  
A
S
A
S
V
F
V
V
R
= 1k, R = 500Ω  
G
CONDITIONS: SEE NOTE 12  
1k  
100  
10  
V
=
S
5V FALLING  
5V RISING  
S
A
= 10  
V
A
= 2  
V
V
=
=
2.5V FALLING  
2.5V RISING  
S
V
=
1
A
= 1  
V
V
S
0.10  
0.01  
6
4
–10  
–55 –35 –15  
5
25 45 65 85 105 125  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G15  
6241 G17  
6241 G16  
624012fc  
13  
LTC6240/LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio vs  
Frequency  
Input Capacitance vs Frequency  
Channel Separation vs Frequency  
0
–10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
16  
14  
12  
10  
8
T
= 25°C  
T
V
A
= 25°C  
V
= 1.5V  
A
S
A
S
V
S
V
= 2.5V  
=
2.5V  
= 1  
–20  
–30  
C
CM  
–40  
–50  
POSITIVE SUPPLY  
–60  
–70  
6
–80  
–90  
4
NEGATIVE SUPPLY  
–100  
–110  
–120  
2
0
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G19  
6241 G18  
6241 G20  
Output Short Circuit Current vs  
Power Supply Voltage  
Minimum Supply Voltage  
Open Loop Gain  
50  
40  
100  
80  
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
= 3V, 0V  
V
= V /2  
S
A
S
CM  
V
T
= –55°C  
A
SINKING  
30  
60  
T
T
= 125°C  
A
A
20  
40  
T
A
= 25°C  
A
10  
20  
R
= 100k  
L
T
= 25°C  
0
0
A
–10  
–20  
–30  
–40  
–50  
–20  
–40  
–60  
–80  
–100  
R
= 10k  
L
T
= –55°C  
= 125°C  
T
= 125°C  
A
SOURCING  
T
= –55°C  
A
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
POWER SUPPLY VOLTAGE ( V)  
TOTAL SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6241 G22  
6241 G21  
6241 G23  
Open Loop Gain  
Open Loop Gain  
Offset Voltage vs Output Current  
120  
100  
80  
100  
80  
500  
400  
T
= 25°C  
= 5V, 0V  
T
= 25°C  
= 5V  
V = 5V  
S
A
S
A
S
V
V
300  
T
= 125°C  
A
60  
200  
40  
T
= 25°C  
100  
A
60  
R
= 10k  
= 1k  
L
R
= 10k  
= 1k  
L
20  
0
40  
T
= –55°C  
A
–100  
–200  
–300  
–400  
–500  
R
L
0
R
L
20  
–20  
–40  
–60  
0
–20  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
6241 G24  
6241 G25  
6241 G26  
624012fc  
14  
LTC6240/LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Warm-Up Drift vs Time  
Noise Voltage vs Frequency  
0.1Hz to 10Hz Voltage Noise  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
T
A
= 25°C  
2.5V  
= 0V  
V
= 5V, 0V  
A
S
V
V
=
S
CM  
V
S
=
5V  
S
V
=
2.5V  
V
=
1.5V  
0
S
–5  
1
10  
100  
1k  
10k  
100k  
0
5
10 15 20 25 30 35 40 45 50 55 60  
FREQUENCY (Hz)  
TIME AFTER POWER UP (s)  
TIME (1s/DIV)  
6241 G27  
6241 G28  
6241 G11  
Series Output Resistance and  
Overshoot vs Capacitive Load  
Minimum Output Series  
Resistance vs Capacitive Load  
Noise Current vs Frequency  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
1000  
100  
10  
75pF  
T
V
V
= 25°C  
V
=
2.5V  
A
S
S
=
2.5V  
= 0V  
<30% OVERSHOOT  
CM  
1k  
1k  
R
+
S
C
L
R
= 10Ω  
S
R
= 50Ω  
S
1
1
V
A
=
= –1  
2.5V  
S
V
0.1  
0.1  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
100  
1k  
10k  
100k  
10µF  
10pF 100pF 1000pF 0.01µF 0.1µF 1µF  
FREQUENCY (Hz)  
CAPACITIVE LOAD  
6241 G42  
6241 G29  
6241 G45  
Settling Time vs Output Step  
(Non-Inverting)  
Settling Time vs Output Step  
(Inverting)  
Series Output Resistance and  
Overshoot vs Capacitive Load  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
75pF  
T
V
A
= 25°C  
T
V
A
= 25°C  
A
A
S
V
=
5V  
=
5V  
S
V
1k  
= 1  
= –1  
1k  
V
+
+
500  
OUT  
V
IN  
1k  
R
+
S
V
V
OUT 1k  
IN  
1k  
C
L
1mV  
1mV  
1mV  
R
= 10Ω  
S
10mV  
R
= 50Ω  
S
1mV  
10mV  
–4 –3 –2 –1  
10mV  
10mV  
3
V
A
=
= –2  
2.5V  
S
V
10  
100  
CAPACITIVE LOAD (pF)  
1000  
0
1
2
4
–4 –3 –2 –1  
0
1
2
3
4
OUTPUT STEP (V)  
OUTPUT STEP (V)  
6241 G31  
6241 G32  
6241 G30  
624012fc  
15  
LTC6240/LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
10  
9
8
7
6
5
4
3
2
1
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
2.5V  
V
A
V
=
5V  
S
V
S
V
= 1  
= 1  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
A
= –1  
V
A
= +2  
V
R
= 1k, 2ND  
L
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
R
= 1k, 3RD  
L
T
= 25°C  
A
S
V
=
5V  
HD , HD < –40dBc  
2
3
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G33  
6241 G34  
6241 G35  
Distortion vs Frequency  
Distortion vs Frequency  
Small Signal Response  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
5V  
V
A
V
=
2.5V  
= 2V  
S
V
S
V
= 2  
= 2  
= 2V  
OUT  
P-P  
OUT  
P-P  
0V  
R
= 1k, 2ND  
L
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
R
= 1k, 3RD  
1M  
L
6241 G38  
V
A
=
2.5V  
S
V
= 1  
R
= ∞  
L
10k  
100k  
1M  
10M  
10k  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G37  
6241 G36  
Large Signal Response  
Large Signal Response  
Output Overdrive Recovery  
0V  
V
IN  
0V  
0V  
(1V/DIV)  
0V  
V
OUT  
(2V/DIV)  
6241 G39  
6241 G40  
6241 G41  
V
A
=
5V  
V
A
= 2.5V  
= –1  
= 1k  
V
A
=
2.5V  
500ns/DIV  
S
V
L
S
V
L
S
V
L
= 1  
= 3  
R
= ∞  
R
R
= ∞  
624012fc  
16  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
The amplifier input bias current is the leakage current of  
these ESD diodes. This leakage is a function of the tem-  
perature and common mode voltage of the amplifier, as  
shown in the Typical Performance Curves.  
Amplifier Characteristics  
Figure 1 is a simplified schematic of the amplifier, which  
has a pair of low noise input transistors M1 and M2. A  
simple folded cascode Q1, Q2 and R1, R2 allow the input  
stage to swing to the negative rail, while performing level  
shift to the Differential Drive Generator. Low offset voltage  
is accomplished by laser trimming the input stage.  
Noise  
The LTC6240/LTC6241/LTC6242 exhibit exceptionally  
low 1/f noise in the 0.1Hz to 10Hz region. This 550nV  
P-P  
Capacitor C1 reduces the unity cross frequency and im-  
proves the frequency stability without degrading the gain  
bandwidth of the amplifier. Capacitor Cm sets the overall  
amplifier gain bandwidth. The differential drive generator  
supplies signals to transistors M3 and M4 that swing the  
output from rail-to-rail.  
noise allows these op amps to be used in a wide variety  
of high impedance low frequency applications, where  
Zero-Drift amplifiers might be inappropriate due to their  
charge injection.  
Inthefrequencyregionabove1kHztheLTC6240/LTC6241/  
LTC6242 also show good noise voltage performance. In  
this frequency region, noise can easily be dominated by  
the total source resistance of the particular application.  
Specifically, these amplifiers exhibit the noise of a 3.1kΩ  
resistor, meaning it is desirable to keep the source and  
The photo of Figure 2 shows the output response to an  
input overdrive with the amplifier connected as a voltage  
follower. If the negative going input signal is less than  
a diode drop below V , no phase inversion occurs. For  
input signals greater than a diode drop below V , limit the  
feedbackresistanceatorbelowthisvalue,i.e.R +R ||R  
S
G
FB  
current to 3mA with a series resistor R to avoid phase  
S
≤ 3.1kΩ. Above this total source impedance, the noise  
inversion.  
voltage is not dominated by the amplifier.  
Noise current can be estimated from the expression i =  
ESD  
n
–19  
√2qI , where q = 1.6 • 10 coulombs. Equating √4kTRΔf  
B
TheLTC6240/LTC6241/LTC6242havereverse-biasedESD  
protection diodes on all input and outputs as shown in  
Figure 1. If these pins are forced beyond either supply,  
unlimited current will flow through these diodes. If the  
current is transient and limited to one hundred milliamps  
or less, no damage to the device will occur.  
andR√2qI Δfshowsthatforsourceresistorsbelow50GΩ  
B
the amplifier noise is dominated by the source resistance.  
See the Typical Characteristics curve Noise Current vs  
Frequency.  
V
=
DD  
+2.5V  
+
V
I
TAIL  
M3  
CM  
V
+
V
+
V
DESD1  
+
DESD2  
DESD4  
DESD5  
V
=
SS  
–2.5V  
DIFFERENTIAL  
DRIVE  
GENERATOR  
V
O
V
M1  
M2  
IN  
V
IN  
DESD6  
C1  
V
OUT  
AND V OF FOLLOWER WITH LARGE INPUT OVERDRIVE  
IN  
V
DESD3  
V
Q1  
Q2  
BIAS  
M4  
+2.5V  
V
+
V
R
S
+
V
OUT  
LTC6240  
V
IN  
R1  
R2  
V
6241 F01  
–2.5V  
6241 F02  
Figure 1. Simplified Schematic  
Figure 2. Unity Gain Follower Test Circuit  
624012fc  
17  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
Proprietary design techniques are used to obtain simulta-  
neous low 1/f noise and low input capacitance. Low input  
capacitance is important when the amplifier is used with  
high value source and feedback resistors. High frequency  
Half the Noise  
The circuit shown in Figure 3 can be used to achieve even  
lower noise voltage. By paralleling 4 amplifiers the noise  
voltage can be lowered by √4, or half as much noise. The  
√ comes about from an RMS summing of uncorrelated  
noise sources. This circuit maintains extremely high input  
resistance, and has a 250Ω output resistance. For lower  
output resistance, a buffer amplifier can be added without  
influencing the noise.  
noise from the amplifier tail current source, I  
in Fig-  
TAIL  
ure 1, couples through the input capacitance and appears  
across these large source and feedback resistors. As an  
example, the photodiode amplifier of Figure 15 on the last  
page of this data sheet shows the noise results from the  
LTC6241 and the results of a competitive CMOS amplifier.  
The LTC6241 output is the ideal noise of a 1MΩ resistor  
at room temperature, 130nV√Hz.  
Stability  
The good noise performance of these op amps can be at-  
tributedtolargeinputdevicesinthedifferentialpair.Above  
several hundred kilohertz, the input capacitance rises and  
can cause amplifier stability problems if left unchecked.  
+2.5  
+
1k  
1/4  
LTC6242  
When the feedback around the op amp is resistive (R ), a  
F
pole will be created with R , the source resistance, source  
F
–2.5  
capacitance (R , C ), and the amplifier input capacitance.  
S
S
1k  
In low gain configurations and with R and R in even  
10Ω  
F
S
the kilohm range (Figure 4), this pole can create excess  
phase shift and possibly oscillation. A small capacitor C  
F
+
in parallel with R eliminates this problem.  
1k  
F
1/4  
LTC6242  
Low Noise Single-Ended Input to Differential Output  
Amplifier  
V
V
O
IN  
1k  
The circuit on the first page of the data sheet is a low noise  
single-ended input to differential output amplifier, with a  
200k input impedance. The very low input bias current  
of the LTC6241 allows for these large input and feedback  
resistors. The 200k resistors, R1 and R2, along with C1  
and C2 set the –3dB bandwidth to 80kHz. Capacitor C3 is  
used to cancel effects of input capacitance, while C4 adds  
10Ω  
10Ω  
10Ω  
+
1k  
1/4  
LTC6242  
1k  
C
F
R
F
+
1k  
1/4  
LTC6242  
+
C
IN  
OUTPUT  
R
C
S
S
6241 F04  
1k  
Figure 4. Compensating Input Capacitance  
6241 F03  
Figure 3. Parallel Amplifier Lowers Noise by 2x  
624012fc  
18  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
source equal to the input voltage prevents such leakage  
problems. The guard ring should extend as far as neces-  
sary to shield the high impedance signal from any and  
all leakage paths. Figure 6 shows the use of a guard ring  
on the LTC6241 in a unity gain configuration. In this case  
the guard ring is connected to the output and is shielding  
phase lead to compensate the phase lag of the second  
amplifier. The op amp’s good input offset voltage match  
andlowinputbiascurrentmeansthatthetypicaldifferential  
output offset voltage is less than 40µV. A noise spectrum  
plot of the differential output is shown in Figure 5.  
140  
the high impedance non-inverting input from V . Figure 7  
V
T
=
2.5V  
S
A
= 25°C  
shows the inverting gain configuration.  
120  
100  
80  
60  
40  
20  
0
–3dB BW = 80kHz  
A Digitally Programmable AC Difference Amplifier  
The LTC6241 configured as a difference amplifier, can  
be combined with a programmable gain amplifier (PGA)  
to obtain a low noise high speed programmable differ-  
ence amplifier. Figure 8 shows the LTC6241 based as a  
single-supply AC amplifier. One LTC6241 op amp is used  
at the circuit’s input as a standard four resistor difference  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
6241 F05  
LTC6241 S8  
+
OUT  
Figure 5. Differential Output Noise  
NO SOLDER MASK  
NO LEAKAGE  
CURRENT  
OVER THE GUARD RING  
+
IN  
IN  
Achieving Low Input Bias Current  
R
The DD package is leadless and makes contact to the PCB  
beneath the package. Solder flux used during the attach-  
ment of the part to the PCB can create leakage current  
paths and can degrade the input bias current performance  
ofthepart. Allinputsaresusceptiblebecausethebackside  
LEAKAGE  
CURRENT  
GUARD  
RING  
V
LTC6241 F06  
paddle is connected to V internally. As the input voltage  
changes or if V changes, a leakage path can be formed  
Figure 6. Sample Layout. Unity Gain Configuration, Using Guard  
Ring to Shield High Impedance Input from Board Leakage  
and alter the observed input bias current. For lowest bias  
current,usetheLTC6240/LTC6241intheSO-8andprovide  
a guard ring around the inputs that are tied to a potential  
near the input voltage.  
LTC6241 S8  
+
OUT  
R
Layout Considerations and a PCB Guard Ring  
R
InhighsourceimpedanceapplicationssuchaspHprobes,  
photodiodes, strain gauges, et cetera, the low input bias  
current of these parts requires a clean board layout to  
minimize additional leakage current into a high imped-  
ance signal node. A mere 100GΩ of PC board resistance  
between a 5V supply trace and an input trace adds 50pA  
of leakage current, far greater then the input bias cur-  
rent of the operational amplifier. A guard ring around the  
high-impedance input traces driven by a low-impedance  
IN  
V
IN  
+
IN  
GND  
V
LTC6241 F07  
Figure 7. Sample Layout. Inverting Gain Configuration, Using  
Guard Ring to Shield High Impedance Input from Board Leakage  
624012fc  
19  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
+
R3  
contribute any significant error to the LT6650 reference  
voltage. The LT6650 V voltage has a maximum error  
V
G2 G1 G0  
0.1µF  
REF  
C1  
8
7
6
5
R1  
of 2% with 1% resistors. The upper –3dB frequency of  
the amplifier is set by resistor R3 and capacitor C1 and  
is limited by the bandwidth of the PGA when operated at  
a gain of 64. Capacitor C2 is equal to C1 and is added to  
maintain good common mode rejection at high frequency.  
The lower –3dB frequency is set by the integrator resistor  
R7, capacitor C3, and the gain setting of the LTC6910-2  
PGA. This lower –3dB zero frequency is multiplied by the  
PGA gain. The rail-to-rail output of the LTC6910-2 PGA  
allows for a maximum output peak-to-peak voltage equal  
V1  
LTC6910-2  
OUT AGND IN  
V
4
+
1
2
3
1/2  
LTC6241  
V
OUT  
100Ω  
R7  
R2  
C2  
R4  
C3  
V2  
+
V
R1 = R2 = R3 = R4  
0.1µF  
R5  
+
1/2  
LTC6241  
1000pF  
to twice the V voltage. At the maximum gain setting of  
REF  
R6  
20k  
64, the maximum peak-to-peak difference between inputs  
1
5
4
LT6650  
V1 and V2 is equal to twice V divided by 64.  
V
REF  
REF  
2
1µF  
1µF  
Example Design: Design a programmable gain AC differ-  
enceamplifier,withabandwidthofatleast10Hzto100kHz,  
an input impedance equal to or greater than 100kΩ, and  
an output DC reference equal to 1V.  
1k  
3
+
V
DIGITAL INPUTS GAIN  
G2 G1 GO  
V
V
= (V1 – V2) GAIN + V  
REF  
OUT  
a. Select input resistors R1, R2, R3 and R4 equal to  
100k.  
R5  
R6  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
= 0.4•  
+ 1  
REF  
–1  
–2  
R5 =10k • 5• V – 2 R6 = 20k  
(
)
REF  
–4  
b. If the upper –3dB frequency is 100kHz then C1 = 1/(2π  
• R2 • f3dB) = 1/(6.28 • 100kΩ • 100kHz) = 15pF (to  
the nearest 5% value) and C2 = C1 = 15pF.  
–3d BANDWIDTH =  
1
f
– f  
LOW  
(
)
HIGH  
–8  
–16  
–32  
–64  
GAIN  
f
=
f
=
HIGH  
LOW  
2• π R3C1  
2 • π R7 C3  
6241 F08  
c. Select R7 equal to one 1M and set the lower –3dB  
frequency to 10Hz at the highest PGA gain of 64, then  
C3 = Gain/(2π • R7 • f3dB) = 64/(6.28 • 100kΩ • 10Hz)  
= 1uF. Lower gains settings will give a lower f3dB.  
Figure 8. Wideband Difference Amplifier with High  
Input Impedance and Digitally Programmable Gain  
amplifier. The low bias current and current noise of the  
LTC6241allowtheuseofhighvaluedinputresistors, 100k  
or greater. Resistors R1, R2, R3 and R4 are equal and the  
gain of the difference amplifier is one. An LTC6910-2 PGA  
amplifies the difference amplifier output with inverting  
gains of –1, –2, –4, –8, –16, –32 and –64. The second  
LTC6241 op amp is used as an integrator to set the DC  
d. Calculate the value of R5 to set the LT6650 reference  
equal to 1V;  
V
= 0.4(R5/R6 + 1), so R5 = R6(2.5V  
– 1). For  
REF  
REF  
R6 = 20kΩ, R5 = 30kΩ  
With V = 1V the maximum input difference voltage  
REF  
output voltage equal to the LT6650 reference voltage V  
.
REF  
is equal to 2V/64 = 31.2mV.  
The integrator drives the PGA analog ground to provide  
a feedback loop, in addition to blocking any DC voltage  
through the PGA. The reference voltage of the LT6650  
40nVpp Noise, 0.05µV/°C Drift, Chopped FET  
Amplifier  
+
can be set to a voltage from 400mV to V – 350mV with  
Figure9scircuitcombinesthe 5Vrail-to-railperformance  
oftheLTC6241HVwithapairofextremelylownoiseJFETs  
configured in a chopper based carrier modulation scheme  
resistors R5 and R6. If R6 is 20k or less, the error due  
to the LT6650 op amp bias current is negligible. The low  
voltage offset and drift of the LTC6241 integrator will not  
624012fc  
20  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
to achieve an extraordinarily low noise and low DC drift.  
The performance of this circuit is suited for the demand-  
ing transducer signal conditioning situations such as high  
resolution scales and magnetic search coils.  
with the input chopper, proper amplitude and polarity  
information is presented to A2, the DC output amplifier.  
This stage integrates the square wave into a DC voltage,  
providing the output. The output is divided down (R2 and  
R1) and fed back to the input chopper where it serves as  
a zero signal reference. Gain, in this case 1000, is set by  
the R1-R2 ratio. Because A1 is AC coupled, its DC offset  
and drift do not affect the overall circuit offset, resulting  
in the extremely low offset and drift noted. The JFETs  
have an input RC damper that minimizes offset voltage  
contribution due to parasitic switch behavior, resulting in  
the 1µV offset specification.  
The LTC1799’s output is divided down to form a 2-phase  
925Hz square wave clock. This frequency, harmonically  
unrelatedto60Hz,providesexcellentimmunitytoharmonic  
beating or mixing effects which could cause instabilities.  
S1 and S2 receive complementary drive, causing A1 to  
see a chopped version of the input voltage. A1’s square  
wave output is synchronously demodulated by S3 and  
S4. Because these switches are synchronously driven  
5V  
–5V  
+
TO LTC201 V PIN  
TO LTC201 V PIN  
1µF  
1µF  
+
5V  
5V  
18.5kHz  
+
V
74C90 ÷ 10  
74C74 ÷ 2  
DIV  
OUT  
5V  
LTC1799  
R
SET  
Q
Q
925Hz  
54.2k*  
TO  
Ø1  
TO  
Ø2  
5V  
Ø1  
POINTS POINTS  
8
898**  
898**  
30.1Ω  
6
7
INPUT  
Ø2  
S1  
S2  
0.01µF  
1µF  
1
LSK389  
1µF  
11  
10  
A1  
3
2
9
LTC6241HV  
S3  
S4  
240k  
499**  
–5V  
Ø2  
+
10M  
10k  
A2  
OUTPUT  
LTC6241HV  
14  
15  
16  
Ø1  
+
R2  
10k  
1µF  
* = 0.1% METAL FILM RESISTOR  
** = 1% METAL FILM RESISTOR  
NOISE = 40nV 0.1Hz TO 10Hz  
P-P  
R1  
OFFSET = 1µV  
DRIFT = 0.05µV/°C  
R2  
10Ω  
= LTC201 QUAD  
=
+1  
GAIN  
10  
= LSK389  
= LINEAR INTEGRATED SYSTEMS  
FREMONT, CA  
9
OPEN-LOOP GAIN = 10  
= 500pA  
I
6241 F09  
BIAS  
Figure 9. Ultra Low Noise Chopper Amplifier  
624012fc  
21  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
Thenoisemeasuredovera50secondinterval,inFigure10,  
is 40nV in a 0.1Hz to 10Hz bandwidth.This low noise is at-  
tributed to the input JFET’s die size and current density.  
by the sensor is forced across the feedback capacitor  
by the op amp action. Because the feedback capacitor  
is 100 times smaller than the sensor, it will be forced to  
100 times what would have been the sensor’s open circuit  
voltage. So the circuit gain is 100. The benefit of this ap-  
proach is that the signal gain of the circuit is independent  
of any cable capacitance introduced between the sensor  
and the amplifier. Hence this circuit is favored for remote  
accelerometerswherethecablelengthmayvary.Difficulties  
with the circuit are inaccuracy of the gain setting with the  
small capacitor, and low frequency cutoff due to the bias  
resistor working into the small feedback capacitor.  
VERT = 20nV/DIV  
HORIZ = 5s/DIV  
6241 F10  
Figure 12 shows a non-inverting amplifier approach. This  
approach has many advantages. First of all, the gain is set  
accurately with resistors rather than with a small capaci-  
tor. Second, the low frequency cutoff is dictated by the  
bias resistor working into the large 770pF sensor, rather  
than into a small feedback capacitor, for lower frequency  
response. Third, the non-inverting topology can be paral-  
leled and summed (as shown) for scalable reductions in  
voltage noise. The only drawback to this circuit is that the  
parasiticcapacitanceattheinputreducesthegainslightly.  
This circuit is favored in cases where parasitic input  
capacitances such as traces and cables will be relatively  
small and invariant.  
Figure 10. Noise in a 0.1Hz to 10Hz Bandwidth  
Low Noise Shock Sensor Amplifiers  
Figures 11 and 12 show the amplifiers realizing two dif-  
ferent approaches to amplifying signals from a capacitive  
sensor. The sensor in both cases is a 770pF piezoelectric  
shocksensoraccelerometer,whichgenerateschargeunder  
physical acceleration.  
Figure11showstheclassicalchargeamplifierapproach.  
TheLTC6240isintheinvertingconfigurationsothesensor  
looks into a virtual ground. All of the charge generated  
+
V
S
+
1/2  
LTC6241HV  
SHOCK SENSOR  
MURATA-ERIE  
PKGS-00LD  
770pF  
+
1k  
1k  
LTC6240  
100Ω  
10k  
SHOCK SENSOR  
MURATA-ERIE  
PKGS-00LD  
770pF  
V
OUT  
C
V
= 110mV/g  
OUT  
f
1G  
7.7pF  
+
BIAS RESISTOR  
1/2  
VISHAY-TECHNO  
CRHV2512AF1007G  
(OR EQUIVALENT)  
LTC6241HV  
MAIN  
R
GAIN-SETTING  
ELEMENT IS A  
CAPACITOR  
f
V
V
= 110mV/g  
CABLE HAS  
UNKNOWN C  
1G  
OUT  
=
S
1.4V to 5.5V  
V
S
BW = 0.2Hz to 10kHz  
BIAS RESISTOR  
VISHAY-TECHNO  
CRHV2512AF1007G  
(OR EQUIVALENT)  
100Ω  
10k  
6241 F11  
6241 F12  
Figure 11. Classical Inverting Charge Amplifier  
Figure 12. Low Noise Non-Inverting Shock Sensor Amplifier  
624012fc  
22  
LTC6240/LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
1M Transimpedance Amplifier with 43nV/√Hz  
Output Noise  
By achieving an output swing of 50V before attenuation,  
the circuit provides an output swing to 5V after attenu-  
ation. The 10M resistor sets the gain of the TIA stage  
and has a noise density of 400nV/√Hz. After attenuation,  
the effective TIA gain drops to 1M while the noise floor  
drops to 40nV/√Hz, which clearly dominates the observed  
43nV/√Hz.Notetheadditionalbenefitthattheoffsetvoltage  
of the op amp is divided by 10. Worst case output offset  
for this circuit is 150µV over temperature.  
In a normal 1M transimpedance amplifier, like that shown  
onthebackpageofthisdatasheet,theoutputnoisedensity  
must be at least 130nV/√Hz at room temperature. This is  
trueevenshouldtheopampbeperfectlynoiseless,because  
the 1M resistor provides 130nV/√Hz of voltage noise at  
room temperature independently of the op amp.  
ThecircuitofFigure13providesanoveralltransimpedance  
gain of 1MΩ, but it has an output noise density of only  
43nV/√Hz,about1/3ofthenormaltransimpedanceampli-  
fier. It does this by taking a higher initial transimpedance  
gain of 10M and then attenuating by a factor of 10. The  
transistor section provides voltage gain and works on a  
54V supply voltage to guarantee adequate output swing.  
Reference Buffer  
Figure 14 shows the LTC6240 being utilized as a buffer  
in conjunction with the LT1019 reference. The passive  
R-C filter attenuates the reference noise and the LTC6240  
provides a low noise buffer, resulting in an output noise  
of 8nV/√Hz.  
54V  
33k  
0.3pF  
MPSA06  
10M  
1%  
5V  
10M GAIN  
(10V/µA)  
+
3pF  
PHOTODIODE  
MPSA06  
9.09k  
LTC6240HV  
10k  
1%  
1/4W  
–1.5V  
V
OUT  
1M GAIN  
10k  
2.4k 43k  
–5V  
(1V/µA)  
1k  
1%  
100pF  
1k  
–5V  
6241 F13  
Figure 13. 1M Transimpedance Amplifier with 43nV/√Hz Output Noise  
5V  
1M  
180nV/Hz  
LT1019-2.5  
+
0.2Ω  
8nV/Hz  
1µF  
LTC6240HV  
V
OUT  
10µF  
CERAMIC  
OR FILM  
–5V  
6241 F14  
Figure 14. Low Noise Reference Buffer  
624012fc  
23  
LTC6240/LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706)  
0.65 0.05  
3.50 0.05  
2.20 0.05 (2 SIDES)  
1.65 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
4.40 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
0.40 0.10  
5.00 0.10  
(2 SIDES)  
9
16  
R = 0.20  
TYP  
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
NOTCH  
(DHC16) DFN 1103  
8
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
4.40 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.045 .005  
.254 MIN  
.150 – .165  
.0165 .0015  
.0250 BSC  
.189 – .196*  
(4.801 – 4.978)  
RECOMMENDED SOLDER PAD LAYOUT  
.009  
(0.229)  
REF  
.015 .004  
(0.38 0.10)  
16 15 14 13 12 11 10 9  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.229 – .244  
(5.817 – 6.198)  
.150 – .157**  
(3.810 – 3.988)  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN16 (SSOP) 0204  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
1
2
3
4
5
6
7
8
3. DRAWING NOT TO SCALE  
624012fc  
24  
LTC6240/LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 0.10  
TYP  
5
8
0.675 0.05  
3.5 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
624012fc  
25  
LTC6240/LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
624012fc  
26  
LTC6240/LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
624012fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC6240/LTC6241/LTC6242  
U
TYPICAL APPLICATIO  
1MTIA  
150kHz 3RD ORDER BUTTERWORTH FILTER  
+1.5V  
R1  
R2  
1.69k  
R3  
2k  
C2  
+
866Ω  
1500pF  
1/2  
LTC6241  
+
1/2  
LTC6241  
C1  
1500pF  
C3  
180pF  
R
F
1M  
SFH213FA  
OR EQUIVALENT  
(4pF)  
–1.5V  
6241 TA02a  
C
F
–1.5V  
1pF  
Figure 15. Ultralow Noise 1MΩ 150kHz Photodiode Amplifier  
LTC6241 Output Noise Spectrum. 1MΩ Resistor Noise  
Competition Output Noise Spectrum. Op Amp Noise Dominates;  
Performance Compromised  
Dominates; Ideal Performance  
0V  
0V  
1kHz  
10kHz/DIV  
101kHz  
1kHz  
10kHz/DIV  
101kHz  
6241 TA02b  
6241 TA02c  
RELATED PARTS  
PART NUMBER  
LTC1151  
DESCRIPTION  
15V Zero-Drift Op Amp  
COMMENTS  
Dual High Voltage Operation 18V  
6nV/√Hz Noise, 15V Operation  
2.7 Volt Operation, SOT-23  
LT1792  
Low Noise Precision JFET Op Amp  
Zero-Drift Op Amp  
LTC2050  
LTC2051/LTC2052  
LTC2054/LTC2055  
LTC6244  
Dual/Quad Zero-Drift Op Amp  
Single/Dual Zero-Drift Op Amp  
Dual 50MHz Rail-to-Rail Op Amp  
Dual/Quad Version of LTC2050 in MS8/GN16 Packages  
Micropower Version of the LTC2050/LTC2051 in SOT-23 and DD Packages  
100µV V , 1pA I , 40V/µV, Slew Rate  
OS(MAX)  
BIAS  
624012fc  
LT 0107 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY