LTC6400CUD-14 [Linear]

2.4GHz Low Noise, Low Distortion Differential ADC Driver for 300MHz IF; 2.4GHz的低噪声,低失真差分ADC驱动器为300MHz的IF
LTC6400CUD-14
型号: LTC6400CUD-14
厂家: Linear    Linear
描述:

2.4GHz Low Noise, Low Distortion Differential ADC Driver for 300MHz IF
2.4GHz的低噪声,低失真差分ADC驱动器为300MHz的IF

驱动器
文件: 总16页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6400-14  
2.4GHz Low Noise, Low  
Distortion Differential ADC  
Driver for 300MHz IF  
FEATURES  
DESCRIPTION  
The LTC®6400-14 is a high-speed differential amplifier  
targeted at processing signals from DC to 300MHz. The  
part has been specifically designed to drive 12-, 14- and  
16-bitADCswithlownoiseandlowdistortion,butcanalso  
be used as a general-purpose broadband gain block.  
n
2.4GHz –3dB Bandwidth  
n
Fixed Gain of 5V/V (14dB)  
n
–97dBc IMD3 at 70MHz (Equivalent OIP3 = 52.4dBm)  
n
–66dBc IMD3 at 300MHz (Equivalent OIP3 = 36.9dBm)  
n
1.1nV/√Hz Internal Op Amp Noise  
n
2.5nV/√Hz Total Input Noise  
The LTC6400-14 is easy to use, with minimal support  
circuitry required. The output common mode voltage is  
set using an external pin, independent of the inputs, which  
eliminates the need for transformers or AC-coupling ca-  
pacitors in many applications. The gain is internally fixed  
at 14dB (5V/V).  
n
7.5dB Noise Figure  
n
Differential Inputs and Outputs  
n
200Ω Input Impedance  
n
2.85V to 3.5V Supply Voltage  
n
85mA Supply Current (255mW)  
n
1V to 1.6V Output Common Mode Voltage,  
The LTC6400-14 saves space and power compared to  
alternativesolutionsusingIFgainblocksandtransformers.  
The LTC6400-14 is packaged in a compact 16-lead 3mm ×  
3mm QFN package and operates over the 40°C to 85°C  
temperature range.  
Adjustable  
DC- or AC-Coupled Operation  
Max Differential Output Swing 4.8V  
n
n
P-P  
n
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIONS  
n
Differential ADC Driver  
n
Differential Driver/Receiver  
n
Single Ended to Differential Conversion  
IF Sampling Receivers  
n
n
SAW Filter Interfacing  
TYPICAL APPLICATION  
Equivalent Output IP3 vs  
Single-Ended to Differential ADC Driver  
Frequency  
70  
(NOTE 7)  
3.3V  
3.3V  
60  
50  
40  
30  
20  
10  
0
C2  
C1  
C
F2  
0.1μF  
1000pF  
33pF  
+
V
C3  
R
R
S3  
S1  
0.1μF  
15Ω  
10Ω  
V
+
DD  
+OUT  
AIN  
V
+IN  
IN  
R1  
68.5Ω  
L1  
24nH  
C
C4  
0.1μF  
F1  
LTC6400-14  
–OUT  
LTC2208  
R
15Ω  
R
S4  
33pF  
S2  
10Ω  
–IN  
AIN  
V
V
CM  
OCM  
R2  
29Ω  
C
F3  
33pF  
COILCRAFT  
0603CS  
LTC2208  
130Msps  
V
0
50  
100  
150  
200  
250  
300  
1.25V  
16-Bit ADC  
FREQUENCY (MHz)  
64014 TA01a  
640020 TA01b  
C5  
0.1μF  
R3  
100Ω  
640014fb  
1
LTC6400-14  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Supply Voltage (V – V ) .........................................3.6V  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range  
16 15 14 13  
+
V
1
2
3
4
12 V  
(Note 3) ...............................................40°C to 85°C  
Specified Temperature Range  
(Note 4) ...............................................40°C to 85°C  
Storage Temperature Range...................65°C to 150°C  
Maximum Junction Temperature........................... 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
V
11 ENABLE  
OCM  
+
17  
+
V
V
V
10  
9
V
5
6
7
8
UD PACKAGE  
16-LEAD (3mm s 3mm) PLASTIC QFN  
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6400CUD-14#PBF  
LTC6400IUD-14#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6400CUD-14#TRPBF LCCR  
0°C to 70°C  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
LTC6400IUD-14#TRPBF  
LCCR  
40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
Please check each datasheet for complete details.  
LTC6400 AND LTC6401 SELECTOR GUIDE  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
(DIFFERENTIAL)  
(Ω)  
I
CC  
(mA)  
IN  
LTC6400-8  
LTC6400-14  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-14  
LTC6401-20  
LTC6401-26  
8
2.5  
5
400  
200  
200  
50  
85  
14  
20  
26  
8
85  
10  
20  
2.5  
5
90  
85  
400  
200  
200  
50  
45  
14  
20  
26  
45  
10  
20  
50  
45  
In addition to the LTC6400 family of amplifiers, a lower power LTC6401 family is available. The LTC6401 is pin compatible to the LTC6400, and has the  
same low noise performance. The lower power consumption of the LTC6401 comes at the expense of slightly higher non-linearity, especially at input  
frequencies above 140MHz. Please refer to the separate LTC6401 data sheets for complete details.  
640014fb  
2
LTC6400-14  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = IN = VOCM = 1.25V, ENABLE = 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
14.5  
160  
UNITS  
Input/Output Characteristic  
l
l
l
l
l
l
l
l
G
DIFF  
Gain  
V
V
=
=
200mV Differential  
200mV Differential  
13.5  
14  
0.9  
77  
dB  
mdB/°C  
mV  
IN  
TC  
GAIN  
Gain Temperature Drift  
IN  
V
V
V
Output Swing Low  
Each Output, V  
Each Output, V  
=
=
800mV Differential  
800mV Differential  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
IN  
IN  
Output Swing High  
2.35  
2.48  
4.8  
V
Maximum Differential Output Swing  
Output Current Drive  
1dB Compressed  
Each Output  
V
P-P  
I
20  
–3  
mA  
mV  
μV/°C  
V
V
Input Differential Offset Voltage  
Input Differential Offset Voltage Drift  
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, –IN)  
Input Capacitance (+IN, –IN)  
Output Resistance (+OUT, –OUT)  
Filtered Output Resistance (+OUTF, –OUTF)  
3
1
OSDIFF  
TCV  
T
MIN  
to T  
MAX  
0.7  
OSDIFF  
VRMIN  
VRMAX  
I
I
1.8  
V
l
R
Differential  
170  
200  
1
230  
Ω
INDIFF  
INDIFF  
C
Differential, Includes Parasitic  
Differential  
pF  
l
l
R
R
18  
85  
25  
32  
Ω
OUTDIFF  
OUTFDIFF  
OUTFDIFF  
Differential  
100  
2.7  
62  
115  
Ω
C
Filtered Output Capacitance (+OUTF, –OUTF) Differential, Includes Parasitic  
Common Mode Rejection Ratio Input Common Mode Voltage 1.1V~1.7V  
Output Common Mode Voltage Control  
pF  
l
CMRR  
40  
dB  
G
Common Mode Gain  
V
= 1V to 1.6V  
1
V/V  
CM  
OCM  
V
V
V
Output Common Mode Range, MIN  
1
V
V
OCMMIN  
l
1.1  
Output Common Mode Range, MAX  
1.6  
1.5  
V
V
OCMMAX  
l
l
l
l
Common Mode Offset Voltage  
V
= 1.1V to 1.5V  
–15  
15  
15  
mV  
μV/°C  
μA  
OSCM  
OCM  
MIN  
TCV  
Common Mode Offset Voltage Drift  
T
to T  
9
4
OSCM  
MAX  
IV  
V
Input Current  
OCM  
OCM  
ENABLE Pin  
l
l
l
l
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2.4  
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2.4V  
0.5  
3
μA  
μA  
1.3  
Power Supply  
l
l
l
l
V
Operating Supply Range  
Supply Current  
2.85  
70  
3
3.5  
96  
3
V
mA  
mA  
dB  
S
I
I
ENABLE = 0.8V  
85  
0.9  
76  
S
Shutdown Supply Current  
ENABLE = 2.4V, Input and Output Floating  
SHDN  
+
PSRR  
Power Supply Rejection Ratio (Differential  
Outputs)  
V = 2.85V to 3.5V  
55  
640014fb  
3
LTC6400-14  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
–3dBBW  
0.1dBBW  
0.5dBBW  
1/f  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.37  
200  
377  
15  
MAX  
UNITS  
GHz  
MHz  
MHz  
kHz  
V/μs  
ns  
–3dB Bandwidth  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1.2  
P-P, OUT  
P-P, OUT  
P-P, OUT  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
1/f Noise Corner  
SR  
Slew Rate  
Differential (Note 6)  
2V (Note 6)  
6000  
1.7  
t
t
t
1% Settling Time  
S1%  
OVDR  
ON  
P-P, OUT  
Overdrive Recovery Time  
Turn-On Time  
1.9V  
(Note 6)  
17  
ns  
P-P, OUT  
Differential Output Reaches 90% of Steady  
State Value  
10  
ns  
t
Turn-Off Time  
Differential Output Drops to 10% of  
Original Value  
12  
16  
ns  
OFF  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended  
OCM  
MHz  
VOCM  
OCM  
P-P  
at Output (Note 6)  
10MHz Input Signal  
HD2,10M/HD3,10M  
Second/Third Order Harmonic  
Distortion  
–107/–96  
–110/–108  
–99  
dBc  
dBc  
dBc  
dBc  
dBm  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
L
P-P, OUT  
, No R  
P-P, OUT  
L
IMD3,10M  
OIP3,10M  
Third-Order Intermodulation  
(f1 = 9.5MHz f2 = 10.5MHz)  
Composite, R = 200Ω  
P-P, OUT  
P-P, OUT  
P-P, OUT  
L
Composite, No R  
–110  
L
Third-Order Output Intercept Point  
(f1 = 9.5MHz f2 = 10.5MHz)  
Composite, No R (Note 7)  
59.1  
L
P1dB,10M  
NF10M  
1dB Compression Point  
Noise Figure  
17.8  
7.5  
2.5  
13  
dBm  
dB  
R = 375Ω (Notes 5, 7)  
L
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,10M  
ON,10M  
70MHz Input Signal  
HD2,70M/HD3,70M  
Second/Third Order Harmonic  
Distortion  
–86/–85  
–89/–94  
–91  
dBc  
dBc  
dBc  
dBc  
dBm  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
L
P-P, OUT  
, No R  
P-P, OUT  
L
IMD3,70M  
OIP3,70M  
Third-Order Intermodulation  
(f1 = 69.5MHz f2 = 70.5MHz)  
Composite, R = 200Ω  
P-P, OUT  
P-P, OUT  
P-P, OUT  
L
Composite, No R  
–97  
L
Third-Order Output Intercept Point  
(f1 = 69.5MHz f2 = 70.5MHz)  
Composite, No R (Note 7)  
52.4  
L
P1dB,70M  
NF70M  
1dB Compression Point  
Noise Figure  
18.5  
7.5  
dBm  
dB  
R = 375Ω (Notes 5, 7)  
L
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
2.5  
nV/√Hz  
nV/√Hz  
IN,70M  
12.5  
ON,70M  
640014fb  
4
LTC6400-14  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
140MHz Input Signal  
HD2,140M/HD3,140M Second/Third Order Harmonic  
Distortion  
–78/–74  
–81/–79  
–80  
dBc  
dBc  
dBc  
dBc  
dBm  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
L
P-P, OUT  
, No R  
P-P, OUT  
L
IMD3,140M  
Third-Order Intermodulation  
(f1 = 139.5MHz f2 = 140.5MHz)  
Composite, R = 200Ω  
P-P, OUT  
P-P, OUT  
P-P, OUT  
L
Composite, No R  
–85  
L
OIP3,140M  
Third-Order Output Intercept Point  
(f1 = 139.5MHz f2 = 140.5MHz)  
Composite, No R (Notes 7)  
46.5  
L
P1dB,140M  
NF140M  
1dB Compression Point  
Noise Figure  
18.8  
7.7  
dBm  
dB  
R = 375Ω (Notes 5, 7)  
L
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
2.5  
nV/√Hz  
nV/√Hz  
IN,140M  
ON,140M  
12.6  
240MHz Input Signal  
HD2,240M/HD3,240M Second/Third-Order Harmonic  
Distortion  
–63/–57  
–67/–63  
–68  
dBc  
dBc  
dBc  
dBc  
dBm  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
L
P-P, OUT  
, No R  
P-P, OUT  
L
IMD3, 240M  
Third-Order Intermodulation  
(f1 = 239.5MHz f2 = 240.5MHz)  
Composite, R = 200Ω  
P-P, OUT  
P-P, OUT  
P-P, OUT  
L
Composite, No R  
–71  
L
OIP3, 240M  
Third-Order Output Intercept Point  
(f1 = 239.5MHz f2 = 240.5MHz)  
Composite, No R (Note 7)  
39.6  
L
P1dB, 240M  
NF240M  
1dB Compression Point  
Noise Figure  
17.9  
8
dBm  
dB  
R = 375Ω (Notes 5, 7)  
L
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
2.5  
12.9  
nV/√Hz  
nV/√Hz  
N, 240M  
ON, 240M  
640014fb  
5
LTC6400-14  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
300MHz Input Signal  
HD2,300M/HD3,300M Second/Third-Order Harmonic  
Distortion  
61/–51  
61/–55  
62  
dBc  
dBc  
dBc  
dBc  
dBm  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
L
P-P, OUT  
, No R  
P-P, OUT  
L
IMD3,300M  
Third-Order Intermodulation  
(f1 = 299.5MHz f2 = 300.5MHz)  
Composite, R = 200Ω  
P-P, OUT  
P-P, OUT  
P-P, OUT  
L
Composite, No R  
66  
L
OIP3,300M  
Third-Order Output Intercept Point  
(f1 = 299.5MHz f2 = 300.5MHz)  
Composite, No R (Note 7)  
36.9  
L
P1dB,300M  
NF300M  
1dB Compression Point  
Noise Figure  
17.4  
8.2  
dBm  
dB  
R = 375Ω (Notes 5, 7)  
L
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
2.5  
nV/√Hz  
nV/√Hz  
dBc  
N, 300M  
13.9  
63  
ON, 300M  
IMD3,280M/320M  
Third-Order Intermodulation  
(f1 = 280MHz f2 = 320MHz)  
Measured at 360MHz  
55  
2V  
Composite, R = 375Ω  
L
P-P, OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 6: Measured using Test Circuit B.  
Note 7: Since the LTC6400-14 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6400-14 with amplifiers that require 50Ω output load, the LTC6400-14  
output voltage swing driving a given R is converted to OIP3 and P as  
L
1dB  
Note 3: The LTC6400C and LTC6400I are guaranteed functional over the  
operating temperature range of 40°C to 85°C.  
if it were driving a 50Ω load. Using this modified convention, 2V is by  
P-P  
definition equal to 10dBm, regardless of actual R .  
L
Note 4: The LTC6400C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from 40 to 85°C but is not tested or QA sampled at these  
temperatures. The LTC6400I is guaranteed to meet specified performance  
from 40°C to 85°C.  
640014fb  
6
LTC6400-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
S21 Phase and Group Delay vs  
Frequency  
Frequency Response  
Gain 0.1dB Flatness  
0
–50  
0.4  
0.2  
0.0  
20  
18  
16  
14  
12  
10  
8
1
0.9  
TEST CIRCUIT B  
TEST CIRCUIT B  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
–100  
150  
–200  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
–1  
6
4
PHASE  
GROUP DELAY  
2
TEST CIRCUIT B  
0
0
200  
400  
600  
800  
1000  
10  
100  
1000 3000  
10  
100  
1000 3000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640014 G03  
640014 G01  
640014 G02  
Input and Output Reflection and  
Reverse Isolation vs Frequency  
Input and Output Impedance vs  
Frequency  
PSRR and CMRR vs Frequency  
250  
225  
200  
175  
150  
125  
100  
75  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
60  
–70  
–80  
Z
IN  
60  
PSRR  
CMRR  
40  
Z
20  
OUT  
0
–20  
–40  
–60  
–80  
–100  
Z
IN  
PHASE  
IMPEDANCE MAGNITUDE  
50  
S11  
S22  
S11  
25  
Z
OUT  
0
10  
100  
1000  
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640014 G05  
640014 G06  
640014 G04  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small Signal Transient Response  
Large Signal Transient Response  
15  
14  
13  
12  
11  
10  
9
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.35  
2.50  
–OUT  
+OUT  
–OUT  
+OUT  
2.00  
1.50  
1.00  
0.50  
0.00  
1.30  
1.25  
1.20  
1.15  
EN  
NOISE FIGURE  
8
7
6
R
= 87.5Ω PER OUTPUT  
L
R
= 87.5Ω PER OUTPUT  
L
TEST CIRCUIT B  
TEST CIRCUIT B  
5
10  
100  
1000  
0
2
4
6
8
10  
0
2
4
6
8
10  
TIME (ns)  
TIME (ns)  
FREQUENCY (MHz)  
640014 G07  
640014 G08  
640014 G09  
640014fb  
7
LTC6400-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
1% Settling Time for 2V  
Output Step  
Overdrive Recovery Response  
Harmonic Distortion vs Frequency  
5
4
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
–40  
–50  
R
= 87.5Ω PER OUTPUT  
R
= 87.5Ω PER OUTPUT  
DIFFERENTIAL INPUT  
OUT P-P  
L
L
TEST CIRCUIT B  
TEST CIRCUIT B  
V
= 2V  
3
3
+IN  
–IN  
–60  
2
2
1
1
–70  
0
0
–80  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
+OUT  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
–100  
–110  
–OUT  
40  
HD3 NO R  
L
HD3 200Ω R  
L
0
20  
60  
80  
100  
0
1
2
3
4
5
0
50  
100  
150  
200  
250  
300  
TIME (ns)  
TIME (ns)  
FREQUENCY (MHz)  
640014 G10  
640014 G11  
640014 G12  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Harmonic Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
NO R  
L
200Ω R  
L
NO R  
L
200Ω R  
L
SINGLE-ENDED INPUT  
V
= 2V  
OUT  
P-P  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
–100  
–110  
–100  
–110  
–100  
–110  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
HD3 NO R  
L
V
= 2V COMPOSITE  
V
= 2V COMPOSITE  
HD3 200Ω R  
OUT  
P-P  
OUT  
P-P  
L
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640014 G13  
640014 G15  
640014 G14  
640014fb  
8
LTC6400-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
Equivalent Output 1dB  
Compression Point vs Frequency  
Equivalent Output Third Order  
Intercept vs Frequency  
IMD3 vs VICM and VOCM  
20  
19  
18  
17  
16  
15  
–85  
–88  
70  
60  
50  
40  
30  
20  
10  
0
NO R  
L
200Ω R  
L
SWEEP V  
OCM  
INPUT AC-COUPLED  
–91  
SWEEP V  
ICM  
= 1.25V  
V
–94  
OCM  
DIFFERENTIAL INPUT  
–97  
R
= 375Ω  
L
TEST CIRCUIT A  
(NOTE 7)  
V
= 2V COMPOSITE at 100MHz  
OUT P-P  
DIFFERENTIAL INPUT  
(NOTE 7)  
DIFFERENTIAL INPUT NO R  
L
–100  
0
50  
100  
150  
200  
250  
300  
1.0  
1.2  
1.4  
1.6  
1.8  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
COMMON MODE VOLTAGE (V)  
FREQUENCY (MHz)  
640014 G16  
640014 G17  
640014 G18  
Turn-On Time  
Turn-Off Time  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 87.5Ω PER OUTPUT  
L
ENABLE  
+OUT  
–OUT  
+OUT  
–OUT  
ENABLE  
R
= 87.5Ω PER OUTPUT  
L
–0.5  
–0.5  
–20  
0
20  
40  
60  
80  
–20  
0
20  
40  
60  
80  
TIME (ns)  
TIME (ns)  
640014 G19  
640014 G20  
640014fb  
9
LTC6400-14  
PIN FUNCTIONS  
V (Pins 1, 3, 10): Positive Power Supply (Normally tied  
to 3V or 3.3V). All three pins must be tied to the same  
voltage.Bypasseachpinwith1000pFand0.1μFcapacitors  
as close to the pins as possible.  
+
–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins  
have 50Ω series resistors and a 2.7pF shunt capacitor.  
ENABLE (Pin 11): This pin is a logic input referenced to  
V . If low, the part is enabled. If high, the part is disabled  
EE  
V
(Pin 2): This pin sets the output common mode  
and draws approximately 1mA supply current.  
OCM  
voltage. A 0.1μF external bypass capacitor is recom-  
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are  
internally shorted together.  
mended.  
V (Pins 4, 9, 12, 17): Negative Power Supply (GND). All  
–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are  
internally shorted together.  
four pins must be connected to same voltage/ground.  
–OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins  
Exposed Pad (Pin 17): V . The Exposed Pad must be  
have series resistors, R  
12.5Ω.  
OUT  
connected to same voltage/ground as pins 4, 9, 12.  
BLOCK DIAGRAM  
+
V
ENABLE  
V
V
12  
11  
10  
9
BIAS CONTROL  
R
F
R
R
OUT  
G
+IN  
13  
+OUT  
500Ω  
100Ω  
12.5Ω  
8
7
R
FILT  
+OUTF  
50Ω  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
C
FILT  
R
FILT  
2.7pF  
–OUTF  
–OUT  
50Ω  
6
5
OUT+  
R
R
G
100Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
2k  
COMMON  
MODE CONTROL  
5.3pF  
640014 BD  
1
2
V
3
4
+
+
V
V
V
OCM  
640014fb  
10  
LTC6400-14  
APPLICATIONS INFORMATION  
Circuit Operation  
value impedance, e.g. 50Ω, in order to provide an imped-  
ance match for the source. Several choices are available.  
One approach is to use a differential shunt resistor (Figure  
1).Anotherapproachistoemployawidebandtransformer  
(Figure 2). Both methods provide a wide band impedance  
match. The termination resistor or the transformer must  
be placed close to the input pins in order to minimize  
the reflection due to input mismatch. Alternatively, one  
could apply a narrowband impedance match at the inputs  
of the LTC6400-14 for frequency selection and/or noise  
reduction.  
The LTC6400-14 is a low noise and low distortion fully  
differential op amp/ADC driver with:  
• Operation from DC to 2.4GHz (–3dB bandwidth)  
• Fixed gain of 5V/V (14dB)  
• Differential input impedance 200Ω  
• Differential output impedance 25Ω  
• On-Chip 590MHz output filter  
The LTC6400 is composed of a fully differential amplifier  
with on chip feedback and output common mode voltage  
controlcircuitry. Differentialgainandinputimpedanceare  
set by 100Ω/1000Ω resistors in the feedback network.  
Smalloutputresistorsof12.5Ωimprovethecircuitstability  
over various load conditions. They also provide a possible  
external filtering option, which is often desirable when the  
load is an ADC.  
ReferringtoFigure3,LTC6400-14canbeeasilyconfigured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matchingnetworkwhiletheotherinputisconnectedtothe  
samematchingnetworkandasourceresistor.Becausethe  
return ratios of the two feedback paths are equal, the two  
outputs have the same gain and thus symmetrical swing.  
Filter resistors of 50Ω are available for additional filtering.  
Lowpass/bandpass filters are easily implemented with  
just a couple of external components. Moreover, they of-  
fer single-ended 50Ω matching in wideband applications  
and no external resistor is needed.  
LTC6400-14  
500Ω  
25Ω  
100Ω  
12.5Ω  
50Ω  
13 +IN  
14 +IN  
+OUT  
8
7
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
+
66.5Ω  
50Ω  
2.7pF  
The LTC6400-14 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both. Due to the internal connection between input and  
output, users are advised to keep input common mode  
voltage between 1V and 1.8V for proper operation. If the  
inputs are AC-coupled, the input common mode voltage  
15 –IN  
16 –IN  
–OUTF  
6
5
OUT+  
500Ω  
25Ω  
100Ω  
12.5Ω  
–OUT  
640014 F01  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
Using Shunt Resistor  
isautomaticallybiasedapproximately450mVaboveV  
OCM  
and thus no external circuitry is needed for bias. The  
LTC6400-14  
500Ω  
25Ω  
100Ω  
12.5Ω  
50Ω  
LTC6400-14 provides an output common mode voltage  
13 +IN  
+OUT  
8
7
set by V  
, which allows driving an ADC directly without  
OCM  
1:4  
• •  
externalcomponentssuchasatransformerorACcoupling  
capacitors. The input signal can be either single-ended  
or differential with only minor differences in distortion  
performance.  
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
14 +IN  
15 –IN  
+
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
25Ω  
100Ω  
12.5Ω  
Input Impedance and Matching  
16 –IN  
–OUT  
640014 F02  
MINI-CIRCUITS  
TCM4-19  
The differential input impedance of the LTC6400-14 is  
200Ω. If a 200Ω source impedance is unavailable, then  
thedifferentialinputsmayneedtobeterminatedtoalower  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using a 1:4 Balun  
640014fb  
11  
LTC6400-14  
APPLICATIONS INFORMATION  
R
S
LTC6400-14  
Output Match and Filter  
0.1μF  
1000Ω  
50Ω  
100Ω  
12.5Ω  
13 +IN  
+OUT  
8
7
V
The LTC6400-14 can drive an ADC directly without  
external output impedance matching. Alternatively, the  
differential output impedance of 25Ω can be matched to  
higher value impedance, e.g. 50Ω, by series resistors or  
an LC network.  
IN  
+
50Ω  
R
T
IN+  
IN–  
OUT–  
68.5Ω  
+OUTF  
14 +IN  
15 –IN  
0.1μF  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
1000Ω  
0.1μF  
100Ω  
12.5Ω  
16 –IN  
–OUT  
640014 F03  
R
T
The internal low pass filter outputs at +OUTF/–OUTF have  
a –3dB bandwidth of 590MHz. External capacitors can  
reduce the low pass filter bandwidth as shown in Figure 5.  
A bandpass filter is easily implemented with only a few  
componentsasshowninFigure6.Three39pFcapacitorsand  
a16nHinductorcreateabandpasslterwith165MHzcenter  
frequency, –3dB frequencies at 138MHz and 200MHz.  
29Ω  
Figure 3. Input Termination for Single-Ended 50Ω Input  
Impedance  
In general, the single-ended input impedance and  
terminationresistorR aredeterminedbythecombination  
T
of R , R and R . For example, when R is 50Ω, it is found  
S
G
F
S
Output Common Mode Adjustment  
that the single-ended input impedance is 202Ω and R is  
T
68.5Ω in order to match to a 50Ω source impedance.  
The output common mode voltage is set by the V  
pin,  
OCM  
whichisahighimpedanceinput.Theoutputcommonmode  
The LTC6400-14 is unconditionally stable under normal  
bias conditions. However, the overall differential gain is  
affected by both source impedance and load impedance  
as shown in Figure 4:  
voltage is capable of tracking V  
in a range from 1V to  
OCM  
1.6V. The bandwidth of V  
control is typically 16MHz,  
OCM  
LTC6400-14  
500Ω  
100Ω  
12.5Ω  
50Ω  
VOUT  
RL  
RS +200 25+RL  
1000  
13 +IN  
+OUT  
8
7
AV =  
=
8.2pF  
FILTERED OUTPUT  
V
IN  
IN+  
IN–  
OUT–  
+OUTF  
14 +IN  
15 –IN  
12pF  
(87.5MHz)  
50Ω  
The noise performance of the LTC6400-14 also depends  
uponthesourceimpedanceandtermination. Forexample,  
an input 1:4 balun transformer in Figure 2 improves SNR  
by adding 6dB of voltage gain at the inputs. A trade-off  
between gain and noise is obvious when constant noise  
figure circle and constant gain circle are plotted within  
the same input Smith Chart, based on which users can  
choose the optimal source impedance for a given gain  
and noise requirement.  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
8.2pF  
100Ω  
12.5Ω  
16 –IN  
–OUT  
640014 F05  
Figure 5. LTC6400-14 Internal Filter Topology Modified for Low  
Filter Bandwidth (Three External Capacitors)  
39pF  
LTC6400-14  
12.5Ω  
500Ω  
100Ω  
10Ω  
4.99Ω  
13 +IN  
+OUT  
8
7
LTC6400-14  
50Ω  
500Ω  
1/2 R  
100Ω  
12.5Ω  
50Ω  
1/2 R  
L
S
IN+  
IN–  
OUT–  
+OUTF  
13 +IN  
+OUT  
8
7
14 +IN  
15 –IN  
16nH  
LTC2208  
2.7pF  
39pF  
50Ω  
IN+  
IN–  
OUT–  
OUT+  
500Ω  
+OUTF  
–OUTF  
6
5
V
IN  
14 +IN  
15 –IN  
V
OUT  
+
50Ω  
100Ω  
12.5Ω  
10Ω  
39pF  
4.99Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
16 –IN  
–OUT  
640014 F06  
1/2 R  
100Ω  
12.5Ω  
1/2 R  
L
S
16 –IN  
–OUT  
Figure 6. LTC6400-14 Internal Filter Topology Modified  
for Bandpass Filtering (Three External Capacitors, One  
External Inductor)  
640014 F04  
Figure 4. Calculate Differential Gain  
640014fb  
12  
LTC6400-14  
APPLICATIONS INFORMATION  
–40  
–50  
which is dominated by a low pass filter connected to the  
SINGLE-ENDED INPUT  
= 122.8Msps  
f
S
V
pin and is aimed to reduce common mode noise  
OCM  
DRIVER V  
= 2V COMPOSITE  
OUT  
P-P  
generation at the outputs. The internal common mode  
feedback loop has a –3dB bandwidth around 400MHz,  
allowing fast common mode rejection at the outputs of  
–60  
–70  
the LTC6400-14. The V  
pin should be tied to a DC bias  
OCM  
–80  
voltage with a 0.1μF bypass capacitor. When interfacing  
–90  
withA/DconverterssuchastheLTC22xxfamilies,theV  
OCM  
–100  
–110  
pin can be connected to the V pin of the ADC.  
CM  
0
50  
100  
150  
200  
250  
300  
Driving A/D Converters  
FREQUENCY (MHz)  
640014 F08  
The LTC6400-14 has been specifically designed to inter-  
face directly with high speed A/D converters. In Figure 7,  
an example schematic shows the LTC6400-14 with a  
single-ended input driving the LTC2208, which is a 16-bit,  
130MspsADC.Twoexternal4.99Ωresistorshelpeliminate  
potential resonance associated with stray capacitance of  
PCB traces and bond wires of either the ADC input or the  
Figure 8. IMD3 for the Combination of LTC6400-14 and LTC2208  
specifications, two test circuits are used to generate the  
information in this datasheet. Test Circuit A is DC987B,  
a two-port demonstration circuit for the LTC6400 family.  
The schematic and silkscreen are shown below. This  
circuit includes input and output transformers (baluns)  
forsingle-ended-to-differentialconversionandimpedance  
transformation, allowing direct hook-up to a 2-port  
driveroutput.V  
oftheLTC6400-14isconnectedtoV  
OCM  
CM  
of the LTC2208 V pin at 1.25V. Alternatively, a single-  
CM  
ended input signal can be converted to a differential signal  
via a balun and fed to the input of the LTC6400-14.  
Top Silkscreen  
Figure 8 summarizes the IMD3 of the whole system in  
Figure 7. Note that Figure 7 shows a direct connection  
to the LTC2208, but in many applications an anti-alias  
filter would be desirable to limit the wideband noise of  
the amplifier. This is especially true in high performance  
16-bit designs.  
Test Circuits  
Due to the fully-differential design of the LTC6400 and  
its usefulness in applications with differing characteristic  
1.25V  
0.1μF  
0.1μF  
V
OCM  
4.99Ω  
4.99Ω  
+IN  
V
+
CM  
IF IN  
66.5Ω  
+OUT  
AIN  
AIN  
+OUTF  
LTC6400-14  
LTC2208  
0.1μF  
–OUTF  
–IN  
ENABLE  
–OUT  
29Ω  
LTC2208 130Msps  
16-Bit ADC  
14dB GAIN  
640014 F07  
Figure 7. Single-Ended Input to LTC6400-14 and LTC2208  
640014fb  
13  
LTC6400-14  
APPLICATIONS INFORMATION  
network analyzer. There are also series resistors at the  
output to present the LTC6400 with a 375Ω differential  
load, optimizing distortion performance. Due to the input  
and output transformers, the –3dB bandwidth is reduced  
from 2.4GHz to approximately 1.8GHz.  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
TYPICAL APPLICATIONS  
Demo Circuit 987B Schematic (Test Circuit A)  
V
CC  
ENABLE  
DIS  
1
3
V
CC  
2
JP1  
C17  
1000pF  
C18  
0.1μF  
R16  
0Ω  
12  
11  
10  
9
+
V
ENABLE  
V
V
R10  
R2  
(1)  
R14  
(1)  
86.6Ω  
13  
14  
15  
16  
8
7
6
5
+IN  
+IN  
–IN  
+OUT  
R6  
0Ω  
T2  
TCM 4-19  
R12  
0Ω  
R8  
(1)  
C2  
0.1μF  
C4  
R4  
(2)  
T1  
(2)  
5
4
1
2
3
3
2
1
4
J1  
+IN  
J4  
+OUT  
0.1μF  
C21  
0.1μF  
+OUTF  
–OUTF  
–OUT  
R24  
(1)  
SL1  
(2)  
SL2  
(2)  
R7  
(1)  
LTC6400-14  
R5  
(1)  
R11  
(1)  
SL3  
(2)  
J5  
–OUT  
0dB  
5
J2  
–IN  
R3  
(2)  
C1  
0.1μF  
C3  
0.1μF  
R9  
86.6Ω  
–IN  
V
R13  
0Ω  
C22  
R1  
0Ω  
+
+
V
V
V
0.1μF  
OCM  
1
2
3
4
V
CC  
V
CC  
C10  
0.1μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.1μF  
V
CC  
R19  
1.5k  
TP5  
V
OCM  
R20  
1k  
C7  
0.1μF  
T3  
TCM 4-19  
1:4  
T4  
TCM 4-19  
1:4  
R17  
R18  
0Ω  
0Ω  
5
4
1
2
3
3
2
1
4
J6  
TEST IN  
J7  
C23  
C5  
C19  
0.1μF  
C20  
0.1μF  
TEST OUT  
0.1μF  
0.1μF  
R21  
(1)  
R22  
(1)  
R25  
0Ω  
R26  
0Ω  
C24  
0.1μF  
C6  
0.1μF  
5
V
CC  
TP2  
V
CC  
NOTE: UNLESS OTHERWISE SPECIFIED.  
(1) DO NOT STUFF.  
C14  
4.7μF  
C15  
1μF  
2.85V TO 3.5V  
(2) VERSION  
IC  
R3  
R4  
T1  
SL1  
SL2  
SL3  
8dB  
TP3  
GND  
-B  
LTC6400CUD-14 OPEN OPEN MINI-CIRCUITS TCM4-19 (1:4) 6dB  
14dB  
SL = SIGNAL LEVEL  
SL LEVELS DO NOT INCLUDE TRANSFORMER LOSS IN T1 AND T2  
640014 TA03  
640014fb  
14  
LTC6400-14  
TYPICAL APPLICATIONS  
Test Circuit B, 4-Port Analysis  
+
V
1000pF  
0.1μF  
+
V
V
ENABLE  
V
12  
G
11  
10  
9
LTC6400-14  
BIAS CONTROL  
R
F
500Ω  
R
R
OUT  
+IN  
13  
+OUT  
37.4Ω  
100Ω  
12.5Ω  
PORT 1  
(50Ω)  
PORT 3  
(50Ω)  
8
7
R
FILT  
50Ω  
0.1μF  
0.1μF  
+OUTF  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
1/2  
AGILENT  
E5O71A  
1/2  
AGILENT  
E5O71A  
C
FILT  
2.7pF  
R
FILT  
50Ω  
200Ω  
–OUTF  
–OUT  
6
5
OUT+  
R
F
R
G
100Ω  
R
OUT  
12.5Ω  
–IN  
16  
500Ω  
37.4Ω  
PORT 2  
(50Ω)  
PORT 4  
(50Ω)  
0.1μF  
0.1μF  
COMMON  
MODE CONTROL  
640014 TA02  
1
2
3
4
+
+
V
V
V
V
OCM  
1000pF  
0.1μF  
0.1μF  
+
V
V
OCM  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
0.70 0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE  
OUTLINE  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
640014fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6400-14  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-8  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-14  
LTC6401-20  
LTC6401-26  
LT6402-6  
2.2GHz Low Noise, Low Distortion, Differential ADC Driver  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
1.9GHz Low Noise, Low Distortion, Differential ADC Driver  
2.2GHz Low Noise, Low Distortion, Differential ADC Driver  
2GHz Low Noise, Low Distortion, Differential ADC Driver  
1.3GHz Low Noise, Low Distortion, Differential ADC Driver  
1.6GHz Low Noise, Low Distortion, Differential ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 8dB, 85mA Supply Current, IMD3 = –61dBc at 300MHz  
V
A = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz  
V
A = 26dB, 85mA Supply Current, IMD3 = –71dBc at 300MHz  
V
A = 8dB, 45mA Supply Current, IMD3 = –80dBc at 140MHz  
V
A = 14dB, 45mA Supply Current, IMD3 = –81dBc at 140MHz  
V
A = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz  
V
A = 26dB, 45mA Supply Current, IMD3 = –72dBc at 140MHz  
V
A = 6dB, Distortion < –80dBc at 25MHz  
V
LT6402-12  
LT6402-20  
LTC6404-1  
LTC6406  
300MHz Differential Amplifier/ADC Driver  
A = 12dB, Distortion < –80dBc at 25MHz  
V
300MHz Differential Amplifier/ADC Driver  
A = 20dB, Distortion < –80dBc at 25MHz  
V
600MHz Low Noise Differential ADC Driver  
e = 1.5nV/√Hz, Rail-to-Rail Outputs  
n
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
LT6411  
Low Power Differential ADC Driver/Dual Selectable Gain Amplifier 16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
High-Speed Single-Ended Output Op Amps  
LT1812/LT1813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1814  
8nV/√Hz Noise, 750V/μs, 3mA Supply Current  
6nV/√Hz Noise, 1500V/μs, 6.5mA Supply Current  
LT1815/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1817  
LT1818/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps  
LT6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps  
LT6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad  
6nV/√Hz Noise, 2500V/μs, 9mA Supply Current  
0.95nV/√Hz Noise, 165MHz GBW, Distortion = –80dBc at 1MHz  
1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW  
LT6204  
Op Amps  
LT6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6232  
1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW  
1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW  
LT6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6235  
Integrated Filters  
LTC1562-2  
LT1568  
Very Low Noise, 8th Order Filter Building Block  
Very Low Noise, 4th Order Filter Building Block  
Linear Phase, Tunable 10th Order Lowpass Filter  
Very Low Noise Differential 2.5MHz Lowpass Filter  
Very Low Noise Differential 5MHz Lowpass Filter  
Very Low Noise Differential 10MHz Lowpass Filter  
Very Low Noise Differential 15MHz Lowpass Filter  
Very Low Noise Differential 20MHz Lowpass Filter  
Lowpass and Bandpass Filters up to 300kHz  
Lowpass and Bandpass Filters up to 10MHz  
Single-Resistor Programmable Cut-Off to 300kHz  
SNR = 86dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
LTC1569-7  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
640014fb  
LT 0908 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY