LTC6400CUD-8-TRPBF [Linear]

2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-300MHz; 2.2GHz的低噪声,低失真差分ADC驱动器为DC- 300MHz的
LTC6400CUD-8-TRPBF
型号: LTC6400CUD-8-TRPBF
厂家: Linear    Linear
描述:

2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-300MHz
2.2GHz的低噪声,低失真差分ADC驱动器为DC- 300MHz的

驱动器
文件: 总16页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6400-8  
2.2GHz Low Noise, Low  
Distortion Differential ADC  
Driver for DC-300MHz  
FEATURES  
DESCRIPTION  
The LTC®6400-8 is a high-speed differential amplifier tar-  
geted at processing signals from DC to 300MHz. The part  
has been specifically designed to drive 12-, 14- and 16-bit  
ADCs with low noise and low distortion, but can also be  
used as a general-purpose broadband gain block.  
n
2.2GHz –3dB Bandwidth  
n
Fixed Gain of 2.5V/V (8dB)  
n
–99dBc IMD3 at 70MHz (Equivalent OIP3 = 53.4dBm)  
n
–61dBc IMD3 at 300MHz (Equivalent OIP3 = 34.8dBm)  
n
1nV/√Hz Internal Op Amp Noise  
n
7.6dB Noise Figure  
The LTC6400-8 is easy to use, with minimal support cir-  
cuitry required. The output common mode voltage is set  
using an external pin, independent of the inputs, which  
eliminates the need for transformers or AC-coupling ca-  
pacitors in many applications. The gain is internally fixed  
at 8dB (2.5V/V).  
n
Differential Inputs and Outputs  
n
400Ω Input Impedance  
n
2.85V to 3.5V Supply Voltage  
n
85mA Supply Current (255mW)  
n
1V to 1.6V Output Common Mode, Adjustable  
n
DC- or AC-Coupled Operation  
Max Differential Output Swing 4.8V  
n
The LTC6400-8 saves space and power compared to al-  
ternative solutions using IF gain blocks and transformers.  
The LTC6400-8 is packaged in a compact 16-lead 3mm ×  
3mm QFN package and operates over the –40°C to 85°C  
temperature range.  
P-P  
n
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
APPLICATIONS  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Differential ADC Driver  
n
Differential Driver/Receiver  
n
Single Ended to Differential Conversion  
IF Sampling Receivers  
SAW Filter Interfacing  
n
n
TYPICAL APPLICATION  
3.3V  
3.3V  
Equivalent Output IP3 vs Frequency  
70  
(NOTE 7)  
C2  
0.1μF  
C1  
1000pF  
C
F2  
33pF  
60  
50  
+
V
C3  
0.1μF  
R
R
S3  
S1  
15Ω  
10Ω  
V
+
DD  
+OUT  
AIN  
V
+IN  
40  
30  
20  
10  
0
IN  
R1  
59.0Ω  
L1  
24nH  
C
C4  
0.1μF  
F1  
LTC6400-8  
–OUT  
LTC2208  
R
R
33pF  
S2  
S4  
15Ω  
10Ω  
–IN  
AIN  
V
V
CM  
OCM  
R2  
C
F3  
33pF  
COILCRAFT  
0603CS  
27.4Ω  
LTC2208  
130Msps  
V
1.25V  
16-Bit ADC  
64008 TA01a  
0
50  
100  
150  
200  
250  
300  
C5  
0.1μF  
R3  
100Ω  
FREQUENCY (MHz)  
64008 TA01b  
64008f  
1
LTC6400-8  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage (V – V )......................................3.6V  
CC  
EE  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range  
(Note 3) ............................................... –40°C to 85°C  
Specified Temperature Range  
(Note 4) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Maximum Junction Temperature........................... 150°C  
16 15 14 13  
+
V
1
2
3
4
12 V  
V
11 ENABLE  
OCM  
+
17  
+
V
V
V
10  
9
V
5
6
7
8
UD PACKAGE  
16-LEAD (3mm s 3mm) PLASTIC QFN  
= 150°C, θ = 68°C/W, θ = 7.5°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6400CUD-8#PBF  
LTC6400IUD-8#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6400CUD-8#TRPBF  
LTC6400IUD-8#TRPBF  
LCCQ  
LCCQ  
0°C to 70°C  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
LTC6400 AND LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
(DIFFERENTIAL)  
(Ω)  
I
CC  
(mA)  
IN  
LTC6401-8  
LTC6401-14  
LTC6401-20  
LTC6401-26  
LTC6400-8  
LTC6400-14  
LTC6400-20  
LTC6400-26  
8
2.5  
5
400  
200  
200  
50  
45  
14  
20  
26  
8
45  
10  
20  
2.5  
5
50  
45  
400  
200  
200  
50  
85  
14  
20  
26  
85  
10  
20  
90  
85  
In addition to the LTC6400 family of amplifiers, a lower power LTC6401 family is available. The LTC6401 is pin compatible to the LTC6400, and has the  
same low noise performance. The lower power consumption of the LTC6401 comes at the expense of slightly higher non-linearity, especially at input  
frequencies above 140MHz. Please refer to the separate LTC6401 data sheets for complete details.  
64008f  
2
LTC6400-8  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = –IN = VOCM = 1.25V, ENABLE = 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristic  
l
l
l
l
l
l
l
l
G
Gain  
V
V
=
=
400mV Differential  
400mV Differential  
7.5  
8
8.5  
dB  
mdB/°C  
mV  
DIFF  
IN  
TC  
Gain Temperature Drift  
–0.13  
74  
GAIN  
IN  
V
V
V
Output Swing Low  
Each Output, V  
Each Output, V  
=
=
1.6V Differential  
1.6V Differential  
170  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
IN  
IN  
Output Swing High  
2.3  
2.48  
4.8  
V
Maximum Differential Output Swing  
Output Current Drive  
1dB Compressed  
> 2V  
V
P-P  
I
V
OUT  
20  
–5  
mA  
mV  
μV/°C  
V
P-P,DIFF  
V
Input Offset Voltage  
Differential  
Differential  
5
1
OS  
TCV  
Input Offset Voltage Drift  
2
OS  
VRMIN  
VRMAX  
I
I
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, –IN)  
Input Capacitance (+IN, –IN)  
Output Resistance (+OUT, OUT)  
Filtered Output Resistance (+OUTF, OUTF)  
Filtered Output Capacitance (+OUTF, OUTF)  
Common Mode Rejection Ratio  
1.8  
V
l
R
Differential  
340  
400  
1
460  
Ω
INDIFF  
INDIFF  
C
Differential, Includes Parasitic  
Differential  
pF  
l
l
R
R
18  
85  
25  
32  
Ω
OUTDIFF  
OUTFDIFF  
OUTFDIFF  
Differential  
100  
2.7  
55  
115  
Ω
C
Differential, Includes Parasitic  
Input Common Mode Voltage 1.1V~1.7V  
pF  
l
CMRR  
Output Common Mode Voltage Control  
39  
dB  
G
Common Mode Gain  
V
= 1V to 1.6V  
1
V/V  
CM  
OCM  
OCM  
V
V
V
Output Common Mode Range, MIN  
1
V
V
OCMMIN  
l
1.1  
Output Common Mode Range, MAX  
1.6  
1.5  
V
V
OCMMAX  
l
l
l
l
Common Mode Offset Voltage  
V
= 1.1V to 1.5V  
–15  
15  
15  
mV  
μV/°C  
μA  
OSCM  
TCV  
Common Mode Offset Voltage Drift  
6
OSCM  
IV  
V
Input Current  
OCM  
4.5  
OCM  
ENABLE Pin  
l
l
l
l
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2.4  
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2.4V  
0.5  
4
μA  
μA  
1.3  
Power Supply  
l
l
l
l
V
Operating Supply Range  
Supply Current  
2.85  
70  
3
3.5  
95  
3
V
mA  
mA  
dB  
S
I
I
ENABLE = 0.8V, Input and Output Floating  
ENABLE = 2.4V, Input and Output Floating  
85  
0.9  
68  
S
Shutdown Supply Current  
SHDN  
+
PSRR  
Power Supply Rejection Ratio  
(Differential Outputs)  
V = 2.85V to 3.5V  
50  
64008f  
3
LTC6400-8  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
–3dBBW  
0.5dBBW  
0.1dBBW  
1/f  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.2  
MAX  
UNITS  
GHz  
GHz  
GHz  
kHz  
V/μs  
ns  
–3dB Bandwidth  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1.2  
P-P,OUT  
P-P,OUT  
P-P,OUT  
Bandwidth for 0.5dB Flatness  
Bandwidth for 0.1dB Flatness  
1/f Noise Corner  
0.43  
0.2  
16.5  
3810  
1.8  
SR  
Slew Rate  
V
OUT  
V
OUT  
V
OUT  
= 2V Step (Note 6)  
t
t
t
1% Settling Time  
= 2V (Note 6)  
P-P  
S1%  
OVDR  
ON  
Overdrive Recovery Time  
Turn-On Time  
= 1.9V (Note 6)  
18  
ns  
P-P  
Differential Output Reaches 90% of  
Steady State Value  
10  
ns  
t
Turn-Off Time  
Differential Output Drops to 10% of  
Original Value  
12  
14  
ns  
OFF  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended at  
OCM  
MHz  
VOCM  
OCM  
P-P  
Output (Note 6)  
10MHz Input Signal  
HD2,10M/HD3,10M Second/Third Order Harmonic Distortion  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2V , R = 200Ω  
–118/–98  
–120/–109  
–99  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,10M  
OIP3,10M  
Third-Order Intermodulation  
(f1 = 9.5MHz f2 = 10.5MHz)  
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–112  
P-P  
L
Equivalent Third-Order Output Intercept  
Point (f1 = 9.5MHz f2 = 10.5MHz)  
= 2V Composite, No R (Note 7)  
60  
P-P  
L
P1dB,10M  
NF10M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
18.2  
7.6  
3.7  
9.3  
dBm  
dB  
L
Noise Figure  
R = 400Ω, R = 375Ω  
S L  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,10M  
ON,10M  
70MHz Input Signal  
HD2,70M/HD3,70M Second/Third Order Harmonic Distortion  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2V , R = 200Ω  
–97/–85  
–100/–98  
–90  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,70M  
OIP3,70M  
Third-Order Intermodulation  
(f1 = 69.5MHz f2 = 70.5MHz)  
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–99  
P-P  
L
Equivalent Third-Order Output Intercept  
Point (f1 = 69.5MHz f2 = 70.5MHz)  
= 2V Composite, No R (Note 7)  
53.4  
P-P  
L
P1dB,70M  
NF70M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
19.2  
7.6  
3.7  
9.3  
dBm  
dB  
L
Noise Figure  
R = 400Ω, R = 375Ω  
S L  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,70M  
ON,70M  
140MHz Input Signal  
HD2,140M/  
HD3,140M  
Second/Third Order Harmonic Distortion 2V  
2V  
, R = 200Ω  
–86/–71  
–91/–81  
–79  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
L
, No R  
P-P,OUT  
L
IMD3,140M  
Third-Order Intermodulation  
2V  
2V  
2V  
Composite, R = 200Ω  
L
P-P,OUT  
P-P,OUT  
P-P,OUT  
(f1 = 139.5MHz f2 = 140.5MHz)  
Composite, No R  
–84  
L
OIP3,140M  
Third-Order Output Intercept Point  
(f1 = 139.5MHz f2 = 140.5MHz)  
Composite, No R (Notes 7)  
45.8  
L
64008f  
4
LTC6400-8  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
P1dB,140M  
NF140M  
PARAMETER  
CONDITIONS  
R = 375Ω (Notes 5, 7)  
MIN  
TYP  
19.2  
7.7  
MAX  
UNITS  
dBm  
1dB Compression Point  
Noise Figure  
L
R = 400Ω, R = 375Ω  
dB  
S
L
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
3.7  
nV/√Hz  
nV/√Hz  
IN,140M  
ON,140M  
9.3  
240MHz Input Signal  
HD2,240M/  
HD3,240M  
Second-Order Harmonic Distortion  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
–71/–53  
–73/–59  
–64  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
L
, No R  
P-P,OUT  
L
IMD3,240M  
Third-Order Intermodulation  
(f1 = 239.5MHz f2 = 240.5MHz)  
Composite, R = 200Ω  
L
P-P,OUT  
P-P,OUT  
P-P,OUT  
Composite, No R  
–68  
L
OIP3,240M  
Third-Order Output Intercept Point  
(f1 = 239.5MHz f2 = 240.5MHz)  
Composite, No R (Note 7)  
37.8  
L
P1dB,240M  
NF240M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
18.2  
8.1  
3.7  
9.6  
dBm  
dB  
L
Noise Figure  
R = 400Ω, R = 375Ω  
S L  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
N, 240M  
ON,240M  
300MHz Input Signal  
HD2,300M/  
HD3,300M  
Second-Order Harmonic Distortion  
2V  
2V  
2V  
2V  
2V  
, R = 200Ω  
–67/–46  
–69/–50  
–57  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
L
, No R  
P-P,OUT  
L
IMD3,300M  
Third-Order Intermodulation  
(f1 = 299.5MHz f2 = 300.5MHz)  
Composite, R = 200Ω  
L
P-P,OUT  
P-P,OUT  
P-P,OUT  
Composite, No R  
–61  
L
OIP3,300M  
Third-Order Output Intercept Point  
(f1 = 299.5MHz f2 = 300.5MHz)  
Composite, No R (Note 7)  
34.8  
L
P1dB,300M  
NF300M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.6  
8.5  
3.8  
10  
dBm  
dB  
L
Noise Figure  
R = 400Ω, R = 375Ω  
S L  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
dBc  
N,300M  
ON,300M  
IMD3,280M/320M Third-Order Intermodulation  
(f1 = 280MHz f2 = 320MHz) Measured  
at 360MHz  
2V  
Composite, R = 375Ω  
–59  
–53  
P-P,OUT  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LTC6400I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
Note 3: The LTC6400C and LTC6400I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 6: Measured using Test Circuit B. R = 87.5Ω per output.  
L
Note 7: Since the LTC6400-8 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6400-8 with amplifiers that require 50Ω output load, the LTC6400-8  
Note 4: The LTC6400C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
output voltage swing driving a given R is converted to OIP3 and P1dB as  
if it were driving a 50Ω load. Using this modified convention, 2V is by  
P-P  
L
definition equal to 10dBm, regardless of actual R .  
L
64008f  
5
LTC6400-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
S21 Phase and Group Delay vs  
Frequency  
Frequency Response  
Gain 0.1dB Flatness  
1.0  
0.8  
14  
12  
10  
8
0
–50  
0.8  
0.6  
0.4  
0.2  
0
TEST CIRCUIT B  
TEST CIRCUIT B  
TEST CIRCUIT B  
0.6  
0.4  
PHASE  
0.2  
6
0
–100  
–150  
–200  
4
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
2
0
GROUP DELAY  
–2  
–4  
10  
100  
1000  
3000  
10  
100  
1000  
3000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64008 G02  
64008 G01  
64008 G03  
Input and Output Reflection and  
Reverse Isolation vs Frequency  
Input and Output Impedance vs  
Frequency  
PSRR and CMRR vs Frequency  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
TEST CIRCUIT B  
PHASE  
IMPEDANCE MAGNITUDE  
PSRR  
80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
60  
S11  
Z
40  
IN  
CMRR  
20  
Z
OUT  
0
S22  
S12  
–20  
–40  
–60  
–80  
–100  
Z
IN  
Z
OUT  
0
10  
100  
1000  
3000  
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64008 G04  
64008 G05  
64008 G06  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small Signal Transient Response  
Large Signal Transient Response  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
5.0  
1.35  
1.30  
1.25  
1.20  
1.15  
2.5  
2.0  
1.5  
1.0  
0.5  
0
NF TEST: R = 400Ω  
S
R
= 87.5Ω PER OUTPUT  
R = 87.5Ω PER OUTPUT  
L
TEST CIRCUIT B  
L
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
TEST CIRCUIT B  
+OUT  
–OUT  
EN  
+OUT  
–OUT  
NOISE FIGURE  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
0
2
4
6
8
10  
FREQUENCY (MHz)  
TIME (ns)  
TIME (ns)  
64008 G07  
64008 G08  
64008 G09  
64008f  
6
LTC6400-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
1% Settling Time for 2V  
Output Step  
Overdrive Recovery Response  
Harmonic Distortion vs Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
–40  
–50  
5
4
R
= 87.5Ω PER OUTPUT  
DIFFERENTIAL INPUT  
OUT P-P  
R
= 87.5Ω PER OUTPUT  
L
L
TEST CIRCUIT B  
V
= 2V  
TEST CIRCUIT B  
3
3
–IN  
–60  
2
2
1
1
–70  
+IN  
0
0
–80  
+OUT  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
–100  
–110  
HD3 NO R  
L
–OUT  
HD3 200Ω R  
L
0
1
2
3
4
5
0
50  
100  
150  
200  
250  
300  
0
20 40 60 80 100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (MHz)  
TIME (ns)  
64008 G11  
64008 G12  
64008 G10  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Harmonic Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
SINGLE-ENDED INPUT  
V
= 2V COMPOSITE  
V
= 2V COMPOSITE  
OUT P-P  
V
= 2V  
OUT  
P-P  
OUT  
P-P  
–60  
–60  
–60  
200Ω R  
L
200Ω R  
L
–70  
–70  
–70  
NO R  
L
NO R  
L
–80  
–80  
–80  
–90  
–90  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
–100  
–110  
–100  
–110  
–100  
–110  
HD3 NO R  
L
HD3 200Ω R  
L
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64008 G13  
64008 G14  
64008 G15  
Equivalent Output 1dB  
Equivalent Output Third Order  
Intercept Point vs Frequency  
Compression Point vs Frequency  
IMD3 vs VICM and VOCM  
20  
19  
18  
17  
16  
15  
70  
60  
50  
40  
30  
20  
10  
0
–85  
–88  
SWEEP V  
,
OCM  
INPUT AC-COUPLE  
NO R  
L
–91  
200Ω R  
L
SWEEP V  
V
,
–94  
ICM  
= 1.25V  
OCM  
–97  
DIFFERENTIAL INPUT  
DIFFERENTIAL INPUT, NO RL  
= 100MHz, 2V COMPOSITE  
DIFFERENTIAL INPUT  
(NOTE 7)  
R
L
= 375Ω  
V
TEST CIRCUIT A (NOTE 7)  
50 100 150  
FREQUENCY (MHz)  
OUT  
P-P  
–100  
0
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
1.0  
1.2  
1.4  
1.6  
1.8  
FREQUENCY (MHz)  
COMMON MODE VOLTAGE (V)  
64008 G16  
64008 G17  
64008 G18  
64008f  
7
LTC6400-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
Turn-On Time  
Turn-Off Time  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
L
= 87.5Ω PER OUTPUT  
+OUT  
–OUT  
+OUT  
–OUT  
ENABLE  
ENABLE  
R
= 87.5Ω PER OUTPUT  
L
–0.5  
–0.5  
–20  
0
20  
40  
60  
80  
–20  
0
20  
40  
60  
80  
TIME (ns)  
TIME (ns)  
64008 G19  
64008 G20  
PIN FUNCTIONS  
+
V (Pins 1, 3, 10): Positive Power Supply (Normally tied  
to 3V or 3.3V). All three pins must be tied to the same  
voltage.Bypasseachpinwith1000pFand0.1μFcapacitors  
as close to the pins as possible.  
–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins  
have 50Ω series resistors and a 2.7pF shunt capacitor.  
ENABLE (Pin 11): This pin is a logic input referenced to  
V . If low, the part is enabled. If high, the part is disabled  
EE  
V
(Pin 2): This pin sets the output common mode  
and draws very low standby current while the internal op  
OCM  
voltage. A 0.1μF external bypass capacitor is recom-  
amp has high output impedance.  
mended.  
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are  
internally shorted together.  
V (Pins 4, 9, 12, 17): Negative Power Supply. All four  
pins must be connected to same voltage/ground.  
–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are  
internally shorted together.  
–OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins  
have series resistors, R  
12.5Ω.  
OUT  
Exposed Pad (Pin 17): V . The Exposed Pad must be  
connected to same voltage/ground as pins 4, 9, 12.  
64008f  
8
LTC6400-8  
BLOCK DIAGRAM  
+
V
V
ENABLE  
V
12  
11  
10  
9
BIAS CONTROL  
R
F
R
R
G
OUT  
12.5Ω  
+IN  
13  
+OUT  
500Ω  
200Ω  
8
7
R
FILT  
50Ω  
+OUTF  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
C
FILT  
2.7pF  
R
FILT  
50Ω  
–OUTF  
–OUT  
6
5
OUT+  
R
R
G
200Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
2k  
COMMON  
MODE CONTROL  
5.3pF  
64008 BD  
1
2
3
4
+
+
V
V
V
V
OCM  
APPLICATIONS INFORMATION  
Circuit Operation  
The LTC6400-8 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both. Due to the internal connection between input and  
output, users are advised to keep input common mode  
voltage between 1V and 1.8V for proper operation. If the  
inputs are AC-coupled, the input common mode voltage  
The LTC6400-8 is a low noise and low distortion fully  
differential op amp/ADC driver with:  
• Operation from DC to 2.2GHz –3dB bandwidth  
• Fixed gain of 2.5V/V (8dB)  
isautomaticallybiasedapproximately450mVaboveV  
OCM  
• Differential input impedance 400Ω  
• Differential output impedance 25Ω  
• Differential impedance of output filter 100Ω  
and thus no external circuitry is needed for bias. The  
LTC6400-8 provides an output common mode voltage  
set by V  
, which allows driving ADC directly without  
OCM  
external components such as transformer or AC coupling  
capacitors. The input signal can be either single-ended  
or differential with only minor difference in distortion  
performance.  
TheLTC6400-8iscomposedofafullydifferentialamplifier  
with on chip feedback and output common mode voltage  
control circuitry. Differential gain and input impedance  
are set by 200Ω/500Ω resistors in the feedback network.  
Smalloutputresistorsof12.5Ωimprovethecircuitstability  
over various load conditions. They also provide a possible  
external filtering option, which is often desirable when the  
load is an ADC.  
Input Impedance and Matching  
ThedifferentialinputimpedanceoftheLTC6400-8is400Ω.  
Usually the differential inputs need to be terminated to a  
lower value impedance, e.g. 50Ω, in order to provide an  
impedancematchforthesource.Severalchoicesareavail-  
able. One approach is to use a differential shunt resistor  
(Figure 1). Another approach is to employ a wideband  
transformer and shunt resistor (Figure 2). Both methods  
provide a wideband match. The termination resistor or  
the transformer must be placed close to the input pins in  
Filter resistors of 50Ω are available for additional filtering.  
Lowpass/bandpassltersareeasilyimplementedwithjust  
a couple of external components. Moreover, they offer  
single-ended 50Ω matching in wideband applications and  
no external resistor is needed.  
64008f  
9
LTC6400-8  
APPLICATIONS INFORMATION  
LTC6400-8  
R
LTC6400-8  
+OUT  
S
0.1μF  
500Ω  
500Ω  
25Ω  
200Ω  
12.5Ω  
50Ω  
200Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
13 +IN  
8
7
V
IN  
+
50Ω  
R
T
IN+  
IN–  
OUT–  
IN+  
IN–  
OUT–  
59.0Ω  
+OUTF  
+OUTF  
V
IN  
14 +IN  
14 +IN  
15 –IN  
+
57.6Ω  
0.1μF  
50Ω  
50Ω  
2.7pF  
2.7pF  
15 –IN  
–OUTF  
6
5
–OUTF  
6
5
OUT+  
500Ω  
OUT+  
500Ω  
0.1μF  
25Ω  
200Ω  
12.5Ω  
200Ω  
12.5Ω  
16 –IN  
–OUT  
64008 F01  
16 –IN  
–OUT  
64008 F03  
27.4Ω  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
Using Shunt Resistor  
Figure 3. Input Termination for Single-Ended 50Ω Input  
Impedance  
LTC6400-8  
The LTC6400-8 is unconditionally stable, i.e. differential  
stability factor Kf>1 and stability measure B1>0. However,  
the overall differential gain is affected by both source  
impedance and load impedance as shown in Figure 4:  
500Ω  
25Ω  
200Ω  
12.5Ω  
50Ω  
13 +IN  
14 +IN  
+OUT  
8
7
1:4  
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
+
402Ω  
50Ω  
2.7pF  
VOUT  
RL  
RS + 400 25+RL  
1000  
15 –IN  
–OUTF  
6
5
OUT+  
500Ω  
AV =  
=
V
25Ω  
200Ω  
12.5Ω  
IN  
16 –IN  
–OUT  
64008 F02  
MINI CIRCUITS  
TCM4-19  
ThenoiseperformanceoftheLTC6400-8alsodependsupon  
the source impedance and termination. For example, an  
input 1:4 transformer in Figure 2 improves SNR by adding  
6dB gain at the inputs. A trade-off between gain and noise  
is obvious when constant noise figure circle and constant  
gain circle are plotted within the input Smith Chart, based  
on which users can choose the optimal source impedance  
for a given gain and noise requirement.  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using a Balun  
order to minimize the reflection due to input mismatch.  
Alternatively, one could apply a narrowband impedance  
match at the inputs of the LTC6400-8 for frequency selec-  
tion and/or noise reduction.  
Referring to Figure 3, LTC6400-8 can be easily configured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matching network while the other input is connected to  
thesamematchingnetworkandasourceresistor.Because  
the return ratios of the two feedback paths are equal, the  
two outputs have the same gain and thus symmetrical  
swing. In general, the single-ended input impedance and  
LTC6400-8  
500Ω  
1/2 R  
S
200Ω  
12.5Ω  
50Ω  
1/2 R  
L
13 +IN  
+OUT  
8
7
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
14 +IN  
15 –IN  
V
+
OUT  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
1/2 R  
S
200Ω  
12.5Ω  
1/2 R  
L
16 –IN  
–OUT  
64008 F04  
terminationresistorR aredeterminedbythecombination  
T
of R , R and R . For example, when R is 50Ω, it is found  
S
G
F
S
Figure 4. Calculate Differential Gain  
that the single-ended input impedance is 322Ω and R is  
T
59Ω in order to match to a 50Ω source impedance.  
64008f  
10  
LTC6400-8  
APPLICATIONS INFORMATION  
Output Impedance Match and Filter  
Output Common Mode Adjustment  
The LTC6400-8’s output common mode voltage is set  
by the V pin, which is a high impedance input. The  
The LTC6400-8 can drive an ADC directly without external  
output impedance matching. Alternatively, the differential  
output impedance of 25Ω can be made larger, e.g. 50Ω,  
by series resistors or LC network.  
OCM  
output common mode voltage is capable of tracking V  
OCM  
in a range from 1V to 1.6V. Bandwidth of V  
control is  
OCM  
typically 14MHz, which is dominated by a low pass filter  
connected to the V pin and is aimed to reduce com-  
The internal low pass filter outputs at +OUTF/–OUTF  
have a –3dB bandwidth of 590MHz. External capacitors  
can reduce the lowpass filter bandwidth as shown in  
Figure 5. A bandpass filter is easily implemented with  
OCM  
mon mode noise generation at the outputs. The internal  
common mode feedback loop has a –3dB bandwidth  
around 400MHz, allowing fast rejection of any common  
mode output voltage disturbance. The V  
pin should  
OCM  
LTC6400-8  
500Ω  
200Ω  
12.5Ω  
50Ω  
be tied to a DC bias voltage with a 0.1μF bypass capaci-  
tor. When interfacing with 3V A/D converters such as the  
13 +IN  
+OUT  
8
7
8pF  
FILTERED OUTPUT  
IN+  
IN–  
OUT–  
LT22xx families, the V  
CM  
pin can be connected to the  
OCM  
+OUTF  
14 +IN  
15 –IN  
12pF  
V
pin of the ADC.  
(87.5MHz)  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
8pF  
Driving A/D Converters  
200Ω  
12.5Ω  
16 –IN  
–OUT  
The LTC6400-8 has been specifically designed to interface  
directlywithhighspeedA/Dconverters.Figure7showsthe  
LTC6400-8 with single-ended input driving the LTC2208,  
whichisa16-bit,130MspsADC.Twoexternal5Ωresistors  
help eliminate potential resonance associated with bond  
64008 F05  
Figure 5. LTC6400-8 Internal Filter Topology Modified for Low  
Filter Bandwidth (Three External Capacitors)  
only a few components as shown in Figure 6. Three  
39pF capacitors and a 16nH inductor create a bandpass  
filter with 165MHz center frequency, –3dB frequencies at  
138MHz and 200MHz.  
wires of either the ADC input or the driver output. V  
OCM  
of the LTC6400-8 is connected to V of the LTC2208 at  
CM  
1.25V. Alternatively, an input single-ended signal can be  
converted to differential signal via a balun and fed to the  
input of the LTC6400-8.  
39pF  
LTC6400-8  
12.5Ω  
500Ω  
200Ω  
10Ω  
4.99Ω  
1.25V  
0.1μF  
13 +IN  
+OUT  
8
7
50Ω  
IN+  
IN–  
OUT–  
+OUTF  
0.1μF  
14 +IN  
15 –IN  
V
OCM  
16nH  
4.99Ω  
4.99Ω  
LTC2208  
V
+
CM  
2.7pF  
IF IN  
59.0Ω  
+IN  
+OUT  
AIN  
39pF  
50Ω  
+OUTF  
–OUTF  
OUT+  
500Ω  
–OUTF  
6
5
LTC6400-8  
LTC2208  
0.1μF  
200Ω  
12.5Ω  
10Ω  
39pF  
4.99Ω  
–IN  
ENABLE  
–OUT  
AIN  
16 –IN  
–OUT  
27.4Ω  
LTC2208 130Msps  
16-Bit ADC  
64008 F06  
8dB GAIN  
64008 F07  
Figure 6. LTC6400-8 Modified 165MHz for Bandpass Filtering  
(Three External Capacitors, One External Inductor)  
Figure 7. Single-Ended Input to LTC6400-8 and LTC2208  
64008f  
11  
LTC6400-8  
APPLICATIONS INFORMATION  
Figure 8 summarizes the IMD3 performance of the whole  
system as shown in Figure 7.  
–40  
SINGLE-ENDED INPUT  
F
= 122.8Msps  
S
–50  
–60  
DRIVER V  
= 2V COMPOSITE  
OUT  
P-P  
–70  
–80  
–90  
–100  
–110  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
64008 F08  
Figure 8. IMD3 for the Combination of LTC6400-8 and LTC2208  
Test Circuits  
Due to the fully-differential design of the LTC6400 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this datasheet. Test Circuit A is DC987B,  
a two-port demonstration circuit for the LTC6400 family.  
The silkscreen is shown in Figure 9. This circuit includes  
input and output transformers (baluns) for single-ended-  
to-differential conversion and impedance transformation,  
allowing direct hook-up to a 2-port network analyzer.  
There are also series resistors at the output to present  
the LTC6400 with a 375Ω differential load, optimizing  
distortionperformance. Duetotheinputandoutputtrans-  
formers, the –3dB bandwidth is reduced from 2.2GHz to  
approximately 1.46GHz.  
Figure 9. Top Silkscreen for DC987B. Test Circuit A  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
64008f  
12  
LTC6400-8  
TYPICAL APPLICATIONS  
Demo Circuit 987B Schematic (Test Circuit A)  
V
CC  
ENABLE  
DIS  
1
3
V
CC  
2
JP1  
C17  
1000pF  
C18  
0.1μF  
R16  
0Ω  
12  
11  
10  
9
+
V
ENABLE  
V
V
R10  
R2  
(1)  
R14  
(1)  
86.6Ω  
13  
14  
15  
16  
8
7
6
5
+IN  
+IN  
–IN  
+OUT  
R6  
0Ω  
R12  
0Ω  
T2  
TCM 4:19  
1:4  
R8  
(1)  
C2  
0.1μF  
C4  
R4  
(2)  
T1  
(2)  
6
4
1
2
3
3
2
1
4
6
J1  
+IN  
J4  
+OUT  
0.1μF  
C21  
0.1μF  
+OUTF  
–OUTF  
–OUT  
R24  
(1)  
SL1  
(2)  
SL2  
(2)  
R7  
(1)  
LTC6400-8  
R5  
(1)  
R11  
(1)  
SL3  
(2)  
J5  
–OUT  
0dB  
J2  
–IN  
R3  
(2)  
C1  
0.1μF  
C3  
0.1μF  
R9  
86.6Ω  
–IN  
V
R13  
0Ω  
C22  
R1  
0Ω  
+
+
V
OCM  
V
V
0.1μF  
1
2
3
4
V
V
CC  
CC  
C10  
0.1μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.1μF  
V
CC  
R19  
1.5k  
TP5  
V
OCM  
R20  
1k  
C7  
0.1μF  
T3  
TCM 4:19  
1:4  
T4  
TCM 4:19  
1:4  
R17  
R18  
0Ω  
0Ω  
6
4
1
2
3
3
2
1
4
J6  
TEST IN  
J7  
C23  
C5  
C19  
0.1μF  
C20  
0.1μF  
TEST OUT  
0.1μF  
0.1μF  
R21  
(1)  
R22  
(1)  
R25  
0Ω  
R26  
0Ω  
C24  
0.1μF  
C6  
0.1μF  
6
V
CC  
TP2  
V
CC  
NOTE: UNLESS OTHERWISE SPECIFIED.  
(1) DO NOT STUFF.  
C14  
4.7μF  
C15  
1μF  
2.85V TO 3.5V  
(2) VERSION  
-A  
SL = SIGNAL LEVEL  
IC  
R3  
R4  
T1  
SL1  
SL2  
SL3  
2dB  
TP3  
GND  
LTC6400CUD-8  
200Ω MINI-CIRCUITS TCM4-19 (1:4) 6dB  
8dB  
64008 TA02  
64008f  
13  
LTC6400-8  
TYPICAL APPLICATIONS  
Test Circuit B, 4-Port Analysis  
+
V
1000pF  
0.1μF  
+
V
V
ENABLE  
V
12  
G
11  
10  
9
BIAS CONTROL  
R
F
500Ω  
R
R
OUT  
+IN  
13  
+OUT  
37.4Ω  
200Ω  
12.5Ω  
PORT 1  
(50Ω)  
PORT 3  
(50Ω)  
8
7
R
FILT  
50Ω  
0.1μF  
0.1μF  
+OUTF  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
1/2  
AGILENT  
E5O71A  
1/2  
AGILENT  
E5O71A  
C
FILT  
2.7pF  
R
FILT  
50Ω  
133Ω  
–OUTF  
–OUT  
6
5
OUT+  
R
F
R
G
200Ω  
R
OUT  
12.5Ω  
–IN  
16  
500Ω  
37.4Ω  
PORT 2  
(50Ω)  
PORT 4  
(50Ω)  
0.1μF  
0.1μF  
COMMON  
MODE CONTROL  
64008 TA03  
1
2
3
4
+
+
V
V
V
V
OCM  
1000pF  
0.1μF  
0.1μF  
+
V
V
OCM  
64008f  
14  
LTC6400-8  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 p0.05  
3.50 p 0.05  
2.10 p 0.05  
1.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.45 p 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
64008f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6400-8  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-14  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-14  
LTC6401-20  
LTC6401-26  
LT6402-6  
1.9GHz Low Noise, Low Distortion, Differential ADC Driver  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
1.9GHz Low Noise, Low Distortion, Differential ADC Driver  
2.2GHz Low Noise, Low Distortion, Differential ADC Driver  
2GHz Low Noise, Low Distortion, Differential ADC Driver  
1.3GHz Low Noise, Low Distortion, Differential ADC Driver  
1.6GHz Low Noise, Low Distortion, Differential ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 14dB, 85mA Supply Current, IMD3 = –66dBc at 300MHz  
V
A = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz  
V
A = 26dB, 85mA Supply Current, IMD3 = –71dBc at 300MHz  
V
A = 8dB, 45mA Supply Current, IMD3 = –80dBc at 140MHz  
V
A = 14dB, 45mA Supply Current, IMD3 = –81dBc at 140MHz  
V
A = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz  
V
A = 26dB, 45mA Supply Current, IMD3 = –72dBc at 140MHz  
V
A = 6dB, Distortion < –80dBc at 25MHz  
V
LT6402-12  
LT6402-20  
LTC6404-1  
LTC6406  
300MHz Differential Amplifier/ADC Driver  
A = 12dB, Distortion < –80dBc at 25MHz  
V
300MHz Differential Amplifier/ADC Driver  
A = 20dB, Distortion < –80dBc at 25MHz  
V
600MHz Low Noise Differential ADC Driver  
e = 1.5nV/√Hz, Rail-to-Rail Outputs  
n
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
LT6411  
Low Power Differential ADC Driver/Dual Selectable Gain Amplifier 16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
High-Speed Single-Ended Output Op Amps  
LT1812/LT1813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1814  
8nV/√Hz Noise, 750V/μs, 3mA Supply Current  
6nV/√Hz Noise, 1500V/μs, 6.5mA Supply Current  
LT1815/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1817  
LT1818/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps  
LT6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps  
LT6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad  
6nV/√Hz Noise, 2500V/μs, 9mA Supply Current  
0.95nV/√Hz Noise, 165MHz GBW, Distortion = –80dBc at 1MHz  
1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW  
LT6204  
Op Amps  
LT6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6232  
1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW  
1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW  
LT6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6235  
Integrated Filters  
LTC1562-2  
LT1568  
Very Low Noise, 8th Order Filter Building Block  
Very Low Noise, 4th Order Filter Building Block  
Linear Phase, Tunable 10th Order Lowpass Filter  
Very Low Noise Differential 2.5MHz Lowpass Filter  
Very Low Noise Differential 5MHz Lowpass Filter  
Very Low Noise Differential 10MHz Lowpass Filter  
Very Low Noise Differential 15MHz Lowpass Filter  
Very Low Noise Differential 20MHz Lowpass Filter  
Lowpass and Bandpass Filters up to 300kHz  
Lowpass and Bandpass Filters up to 10MHz  
Single-Resistor Programmable Cut-Off to 300kHz  
SNR = 86dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
LTC1569-7  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
64008f  
LT 0708 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 l FAX: (408) 434-0507 l www.linear.com  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY