LTC6400IUD-26#PBF [Linear]

LTC6400-26 - 1.9GHz Low Noise, Low Distortion Differential ADC Driver for DC-300MHz; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LTC6400IUD-26#PBF
型号: LTC6400IUD-26#PBF
厂家: Linear    Linear
描述:

LTC6400-26 - 1.9GHz Low Noise, Low Distortion Differential ADC Driver for DC-300MHz; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

放大器
文件: 总16页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6400-26  
1.9GHz Low Noise,  
Low Distortion Differential  
ADC Driver for DC-300MHz  
FEATURES  
DESCRIPTION  
The LTC®6400-26 is a high-speed differential amplifier  
targeted at processing signals from DC to 300MHz. The  
part has been specifically designed to drive 12-, 14- and  
16-bitADCswithlownoiseandlowdistortion,butcanalso  
be used as a general-purpose broadband gain block.  
1.9GHz –3dB Bandwidth  
Fixed Gain of 20V/V (26dB)  
–94dBc IMD3 at 70MHz (Equivalent OIP3 = 51dBm)  
–71dBc IMD3 at 300MHz (Equivalent OIP3 = 39.5dBm)  
1nV/√Hz Internal Op Amp Noise  
1.5nV/√Hz Total Input Referred Noise  
The LTC6400-26 is easy to use, with minimal support  
circuitry required. The output common mode voltage is  
set using an external pin, independent of the inputs, which  
eliminates the need of transformers or AC-coupling ca-  
pacitors in many applications. The gain is internally fixed  
at 26dB (20V/V).  
6.8dB Noise Figure  
Differential Inputs and Outputs  
50Ω Input Impedance  
2.85V to 3.5V Supply Voltage  
85mA Supply Current (255mW)  
1V to 1.6V Output Common Mode, Adjustable  
The LTC6400-26 saves space and power compared to  
alternative solutions using IF gain blocks and transform-  
ers. The LTC6400-26 is packaged in a compact 16-lead  
3mm × 3mm QFN package and operates over the –40°C  
to 85°C temperature range.  
DC- or AC-Coupled Operation  
Max Differential Output Swing 4.7V  
P-P  
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
APPLICATIONS  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Differential ADC Driver  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
IF Sampling Receivers  
SAW Filter Interfacing  
TYPICAL APPLICATION  
Single-Ended to Differential ADC Driver at 140MHz IF  
Equivalent OIP3 vs Frequency  
3.3V  
3.3V  
60  
50  
40  
30  
20  
10  
0
DIFFERENTIAL INPUT  
(NOTE 7)  
0.1μF  
1000pF  
33pF  
+
V
0.1μF  
0.1μF  
15Ω  
15Ω  
10Ω  
10Ω  
V
DD  
+
+OUT  
–OUT  
AIN  
V
+IN  
IN  
150W  
LTC6400-26  
LTC2208  
24nH  
33pF  
33pF  
–IN  
AIN  
V
V
OCM  
CM  
NO R  
L
L
37.4Ω  
COILCRAFT  
0603CS  
LTC2208  
V
R
= 200Ω  
130Msps  
0
100  
150  
200  
250  
300  
50  
16-BIT ADC  
1.25V  
0.1μF  
640026 TA01a  
FREQUENCY (MHz)  
100Ω  
640026 TA01b  
640026fa  
1
LTC6400-26  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Supply Voltage (V – V )..........................................3.6V  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range  
16 15 14 13  
+
V
1
2
3
4
12 V  
(Note 3) ............................................... –40°C to 85°C  
Specified Temperature Range  
(Note 4) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Maximum Junction Temperature........................... 150°C  
V
11 ENABLE  
+
OCM  
17  
+
V
V
V
10  
9
V
5
6
7
8
UD PACKAGE  
16-LEAD (3mm s 3mm) PLASTIC QFN  
T
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6400CUD-26#PBF  
LTC6400IUD-26#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6400CUD-26#TRPBF LCCX  
LTC6400IUD-26#TRPBF LCCX  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
LTC6400 AND LTC6401 SELECTOR GUIDE  
Please check each datasheet for complete details.  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
IN  
(DIFFERENTIAL)  
I
S
(mA)  
(Ω)  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-20  
LTC6401-26  
20  
26  
8
10  
20  
2.5  
10  
20  
200  
50  
90  
85  
400  
200  
50  
45  
20  
26  
50  
45  
In addition to the LTC6400 family of amplifiers, a lower power LTC6401 family is available. The LTC6401 is pin compatible to the LTC6400, and has the  
same low noise performance. The lower power consumption of the LTC6401 comes at the expense of slightly higher non-linearity, especially at input  
frequencies above 140MHz. Please refer to the separate LTC6401 data sheets for complete details. Other gain versions from 8dB to 14dB will follow.  
640026fa  
2
LTC6400-26  
DC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = –IN = VOCM = 1.25V, ENABLE= 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristic (+IN, –IN, +OUT, OUT, +OUTF, OUTF)  
G
Gain  
V
V
=
=
50mV Differential  
50mV Differential  
25  
26  
0.0038  
90  
27  
dB  
dB/°C  
mV  
DIFF  
IN  
TC  
Gain Temperature Drift  
Output Swing Low  
Output Swing High  
Maximum Differential Output Swing  
Output Current Drive  
GAIN  
IN  
V
V
V
Each Output, V  
Each Output, V  
=
=
200mV Differential  
200mV Differential  
160  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
IN  
IN  
2.35  
4.38  
20  
2.48  
4.7  
V
1dB Compressed  
Each Output, V  
V
P-P  
I
=
200mV,  
mA  
IN  
V
OUT  
> 2V  
P-P  
V
Input Offset Voltage  
Differential  
Differential  
–2  
2
1
mV  
μV/°C  
V
OS  
TCV  
Input Offset Voltage Drift  
1
OS  
VRMIN  
VRMAX  
I
I
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, –IN)  
1.6  
V
Ω
R
Differential  
42.5  
50  
1
57.5  
INDIFF  
INDIFF  
C
Input Capacitance  
Differential, Includes Parasitics  
Differential  
pF  
Ω
R
R
Output Resistance (+OUT, OUT)  
Filtered Output Resistance (+OUTF, OUTF)  
18  
85  
25  
100  
2.7  
75  
32  
OUTDIFF  
OUTFDIFF  
OUTFDIFF  
Ω
Differential  
115  
C
Filtered Output Capacitance (+OUTF, OUTF) Differential, Includes Parasitics  
pF  
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Voltage  
1.1V to 1.4V  
50  
dB  
Output Common Mode Control  
G
Common Mode Gain  
V
= 1V to 1.6V  
1
V/V  
CM  
OCM  
OCM  
V
V
V
Output Common Mode Range, MIN  
1
V
V
OCMMIN  
1.1  
Output Common Mode Range, MAX  
1.6  
1.5  
V
V
OCMMAX  
Common Mode Offset Voltage  
V
= 1.1V to 1.5V  
–15  
15  
15  
mV  
μV/°C  
μA  
OSCM  
TCV  
Common Mode Offset Voltage Drift  
3
5
OSCM  
IV  
V
Input Current  
OCM  
OCM  
ENABLE Pin  
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2.4  
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2.4V  
0.5  
3
μA  
μA  
1.4  
Power Supply  
V
Operating Supply Range  
Supply Current  
2.85  
70  
3
3.5  
102  
3
V
mA  
mA  
S
I
I
ENABLE = 0.8V  
85  
0.8  
S
Shutdown Supply Current  
ENABLE = 2.4V  
Both Inputs and Outputs Floating  
SHDN  
PSRR  
Power Supply Rejection Ratio  
(Differential Outputs)  
2.85V to 3.5V  
65  
96  
dB  
640026fa  
3
LTC6400-26  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
–3dBBW  
0.5dBBW  
0.1dBBW  
1/f  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.9  
MAX  
UNITS  
GHz  
GHz  
GHz  
kHz  
V/μs  
ns  
–3dB Bandwidth  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1.2  
P-P,OUT  
P-P,OUT  
P-P,OUT  
Bandwidth for 0.5dB Flatness  
Bandwidth for 0.1dB Flatness  
1/f Noise Corner  
0.53  
0.28  
13.9  
6670  
2
SR  
Slew Rate  
Differential V  
= 2V Step (Note 6)  
OUT  
t
t
t
t
1% Settling Time  
Overdrive Recovery Time  
Turn-On Time  
V
OUT  
V
OUT  
= 2V (Note 6)  
P-P  
S1%  
OVDR  
ON  
= 1.9V (Note 6)  
16  
ns  
P-P  
+OUT, OUT Within 10% of Final Values  
Falls to 10% of Nominal  
120  
166  
14.7  
ns  
Turn-Off Time  
I
CC  
ns  
OFF  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended  
OCM  
MHz  
VOCM  
OCM  
P-P  
at Output (Note 6)  
10MHz Input Signal  
HD2,10M/HD3,10M Second/Third Order Harmonic Distortion 2V  
2V  
, R = 200Ω  
–99/–90  
–98/–99  
–91  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
L
, No R  
L
IMD3,10M  
Third-Order Intermodulation  
(f1 = 9.5MHz f2 = 10.5MHz)  
2V  
2V  
2V  
Composite, R = 200Ω  
L
Composite, No R  
–93  
L
OIP3,10M  
Equivalent Third-Order Output Intercept  
Point  
Composite, No R (Note 7)  
50.5  
L
(f1 = 9.5MHz f2 = 10.5MHz)  
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.8  
6.8  
1.5  
30  
dBm  
dB  
1dB,10M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
10M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,10M  
ON,10M  
70MHz Input Signal  
HD2,70M/HD3,70M Second/Third Order Harmonic Distortion 2V  
2V  
, R = 200Ω  
–87/–81  
–87/–94  
–85  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
L
, No R  
L
IMD3,70M  
Third-Order Intermodulation  
(f1 = 69.5MHz f2 = 70.5MHz)  
2V  
2V  
2V  
Composite, R = 200Ω  
L
Composite, No R  
–94  
L
OIP3,70M  
Equivalent Third-Order Output Intercept  
Point  
Composite, No R (Note 7)  
51  
L
(f1 = 69.5MHz f2 = 70.5MHz)  
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
18.2  
6.7  
1.4  
28  
dBm  
dB  
1dB,70M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
70M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,70M  
ON,70M  
140MHz Input Signal  
HD2,140M/  
HD3,140M  
Second/Third Order Harmonic Distortion 2V  
2V  
, R = 200Ω  
–83/–72  
–81/–83  
–80  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
L
, No R  
L
IMD3,140M  
Third-Order Intermodulation  
2V  
2V  
2V  
Composite, R = 200Ω  
L
(f1 = 139.5MHz f2 = 140.5MHz)  
Composite, No R  
–88  
L
OIP3,140M  
Equivalent Third-Order Output Intercept  
Point  
Composite, No R (Note 7)  
48  
L
(f1 = 139.5MHz f2 = 140.5MHz)  
640026fa  
4
LTC6400-26  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
R = 375Ω (Notes 5, 7)  
MIN  
TYP  
18.7  
6.6  
MAX  
UNITS  
dBm  
P
1dB Compression Point  
Noise Figure  
1dB,140M  
L
NF  
R = 375Ω (Note 5)  
L
dB  
140M  
N,140M  
ON,140M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
1.4  
nV/√Hz  
nV/√Hz  
28  
240MHz Input Signal  
HD2,240M/  
HD3,240M  
Second/Third Order Harmonic Distortion 2V  
2V  
, R = 200Ω  
–70/–59  
–75/–71  
–70  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
L
, No R  
L
IMD3,240M  
Third Order Intermodulation  
2V  
2V  
2V  
Composite, R = 200Ω  
L
(f1 = 239.5MHz f2 = 240.5MHz)  
Composite, No R  
–76  
L
OIP3,240M  
Third Order Output Intercept Point  
(f1 = 239.5MHz f2 = 240.5MHz)  
Composite, No R (Note 7)  
42  
L
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
18.1  
6.9  
1.4  
28  
dBm  
dB  
1dB,240M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
240M  
N,240M  
ON,240M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
300MHz Input Signal  
HD2,300M/  
HD3,300M  
Second/Third Order Harmonic Distortion 2V  
2V  
, R = 200Ω  
–66/–54  
–76/–62  
–66  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
P-P,OUT  
L
, No R  
L
IMD3,300M  
Third Order Intermodulation  
2V  
2V  
2V  
Composite, R = 200Ω  
L
(f1 = 299.5MHz f2 = 300.5MHz)  
Composite, No R  
–71  
L
OIP3,300M  
Equivalent Third Order Output Intercept  
Point  
Composite, No R (Note 7)  
39.5  
L
(f1 = 299.5MHz f2 = 300.5MHz)  
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.7  
7.6  
1.5  
30  
dBm  
dB  
1dB,300M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
300M  
N,300M  
ON,300M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
dBc  
IMD3,280M/320M Third Order Intermodulation  
(f1 = 280MHz f2 = 320MHz) Measured at  
360MHz  
2V  
Composite, R = 375Ω  
–68  
–62  
P-P,OUT  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LTC6400I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
Note 3: The LTC6400C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 6: Measured using Test Circuit B. R = 87.5Ω per output.  
L
Note 7: Since the LTC6400-26 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6400-26 with amplifiers that require 50Ω output load, the LTC6400-26  
Note 4: The LTC6400C is guaranteed to meet specified performance from  
output voltage swing driving a given R is converted to OIP and P as  
L 3 1dB  
0°C to 70°C. It is designed, characterized and expected to meet specified  
if it were driving a 50Ω load. Using this modified convention, 2V is by  
P-P  
definition equal to 10dBm, regardless of actual R .  
L
640026fa  
5
LTC6400-26  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
Gain 0.1dB Flatness  
30  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
20  
15  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
10  
5
TEST CIRCUIT B  
0
10  
100  
FREQUENCY (MHz)  
1000  
3000  
10  
100  
1000 2000  
FREQUENCY (MHz)  
640026 G01  
640026 G02  
Input and Output Reflection and  
Reverse Isoloation vs Frequency  
S21 Phase and Group Delay  
vs Frequency  
0
0
–50  
0.8  
0.6  
0.4  
0.2  
0
TEST CIRCUIT B  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
GROUP DELAY  
S22  
–100  
–150  
–200  
S11  
S12  
PHASE  
10  
100  
1000  
3000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640026 G04  
640026 G03  
Input and Output Impedance  
vs Frequency  
PSRR and CMRR vs Frequency  
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Z
Z
Z
Z
MAG  
IN  
OUT  
MAG  
PHASE  
IN  
OUT  
PHASE  
PSRR  
CMRR  
0
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
640026 G05  
640026 G06  
640026fa  
6
LTC6400-26  
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small Signal Transient Response  
10  
9
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.35  
1.30  
1.25  
1.20  
1.15  
R
= 87.5W PER OUTPUT  
L
TEST CIRCUIT B  
–OUT  
EN  
8
7
+OUT  
NOISE FIGURE  
6
5
1000  
2
6
10  
100  
0
4
8
10  
FREQUENCY (MHz)  
TIME (ns)  
640026 G07  
640026 G08  
Large Signal Transient Response  
Overdriven Transient Response  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 87.5Ω PER OUTPUT  
R
= 87.5Ω PER OUTPUT  
L
L
TEST CIRCUIT B  
+OUT  
–OUT  
+OUT  
–OUT  
TEST CIRCUIT B  
50  
0
4
8
12  
16  
20  
0
100  
150  
200  
250  
TIME (ns)  
TIME (ns)  
640026 G09  
640026 G10  
1% Settling Time for  
2V Output Step  
Harmonic Distortion vs Frequency  
–40  
–50  
5
4
DIFFERENTIAL INPUT  
R
= 87.5Ω PER OUTPUT  
L
V
= 2V  
TEST CIRCUIT B  
OUT  
P-P  
3
–60  
2
1
–70  
0
–80  
–1  
–2  
–3  
–4  
–5  
–90  
HD2 NO R  
L
HD2 R = 200Ω  
L
–100  
–110  
HD3 NO R  
L
HD3 R = 200Ω  
L
200  
FREQUENCY (MHz)  
300  
0
50  
100  
150  
250  
0
1
2
3
4
5
TIME (ns)  
640026 G12  
640026 G11  
640026fa  
7
LTC6400-26  
TYPICAL PERFORMANCE CHARACTERISTICS  
Third Order Intermodulation  
Third Order Intermodulation  
Distortion vs Frequency  
Distortion vs Frequency  
Harmonic Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
SINGLE-ENDED INPUT  
V
= 2V COMPOSITE  
V
= 2V  
V
= 2V COMPOSITE  
OUT P-P  
OUT  
P-P  
OUT  
P-P  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
HD2 NO R  
L
HD2 R = 200Ω  
L
–100  
–110  
–100  
–110  
–100  
–110  
NO R  
L
NO R  
L
R = 200Ω  
L
L
HD3 NO R  
L
R
= 200Ω  
HD3 R = 200Ω  
L
200  
FREQUENCY (MHz)  
300  
200  
FREQUENCY (MHz)  
300  
200  
FREQUENCY (MHz)  
300  
0
50  
100  
150  
250  
0
50  
100  
150  
250  
0
50  
100  
150  
250  
640026 G13  
640026 G14  
640026 G15  
Output 1dB Compression Point  
vs Frequency  
Equivalent Output Third Order  
Intercept Point vs Frequency  
20  
19  
18  
17  
60  
50  
40  
30  
20  
10  
0
DIFFERENTIAL INPUT  
DIFFERENTIAL INPUT  
(NOTE 7)  
R
= 3757  
L
TEST CIRCUIT A  
(NOTE 7)  
16  
15  
NO R  
L
R
= 200Ω  
L
0
100  
150  
200  
250  
300  
0
100  
150  
200  
250  
300  
50  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640026 G16  
640026 G17  
Turn-On Time  
Turn-Off Time  
3.5  
3.0  
2.5  
2.0  
140  
120  
100  
80  
3.5  
3.0  
2.5  
2.0  
140  
120  
100  
80  
ENABLE  
I
CC  
–OUT  
+OUT  
–OUT  
+OUT  
1.5  
1.0  
60  
40  
1.5  
1.0  
60  
40  
0.5  
0
20  
0
0.5  
0
20  
0
ENABLE  
I
CC  
–0.5  
–20  
–0.5  
–20  
0
100  
300  
–100  
400  
500  
200  
0
100  
300  
–100  
400  
500  
200  
TIME (ns)  
TIME (ns)  
640026 G19  
640026 G18  
640026fa  
8
LTC6400-26  
PIN FUNCTIONS  
V (Pins 1, 3, 10): Positive Power Supply (Normally tied  
to 3V or 3.3V). All three pins must be tied to the same  
voltage. Bypass each pin with 1000pF and 0.1μF capaci-  
tors as close to the pins as possible.  
+
–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins  
have 50Ω series resistors and a 2.7pF shunt capacitor.  
ENABLE (Pin 11): This pin is a logic input referenced to  
V . If low, the part is enabled. If high, the part is disabled  
EE  
V
(Pin 2): This pin sets the output common mode  
and draws very low standby current while the internal op  
OCM  
voltage. An 0.1μF external bypass capacitor is recom-  
amp has high output impedance.  
mended.  
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are  
internally shorted together.  
V (Pins 4, 9, 12, 17): Negative Power Supply. All four  
pins must be connected to same voltage/ground.  
–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are  
internally shorted together.  
–OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins  
have series 12.5Ω resistors R  
.
OUT  
Exposed Pad (Pin 17): V . The Exposed Pad must be  
connected to same voltage/ground as pins 4, 9, 12.  
BLOCK DIAGRAM  
+
V
ENABLE  
V
V
12  
11  
10  
9
BIAS CONTROL  
R
F
R
R
OUT  
G
+IN  
13  
+OUT  
500Ω  
25Ω  
12.5Ω  
8
7
R
FILT  
+OUTF  
50Ω  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
C
FILT  
R
FILT  
2.7pF  
–OUTF  
–OUT  
50Ω  
6
5
OUT+  
R
R
G
25Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
2k  
COMMON  
MODE CONTROL  
5.3pF  
640026 BD  
1
2
3
4
+
+
V
V
V
V
OCM  
640026fa  
9
LTC6400-26  
APPLICATIONS INFORMATION  
Circuit Operation  
them if the source is differential (Figure 1). Another ap-  
proach is to employ a wideband transformer if the source  
is single ended (Figure 2). Both methods provide a wide-  
band match. The transformer must be placed close to the  
input pins in order to minimize the reflection due to input  
mismatch. Alternatively, one could apply a narrowband  
impedance match at the inputs of the LTC6400-26 for  
frequency selection and/or noise reduction.  
The LTC6400-26 is a low noise and low distortion fully  
differential op amp/ADC driver with:  
• Operation from DC to 1.9GHz –3dB bandwidth  
• Fixed gain of 20V/V (26dB)  
• Differential input impedance 50Ω  
• Differential output impedance 25Ω  
• Differential impedance of output filter 100Ω  
ReferringtoFigure3,LTC6400-26canbeeasilyconfigured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matchingnetworkwhiletheotherinputisconnectedtothe  
samematchingnetworkandasourceresistor.Becausethe  
return ratios of the two feedback paths are equal, the two  
outputshavethesamegainandthussymmetricalswing.In  
general,thesingle-endedinputimpedanceandtermination  
TheLTC6400-26iscomposedofafullydifferentialamplifier  
with on chip feedback and output common mode voltage  
control circuitry. Differential gain and input impedance  
are set by 25Ω/500Ω resistors in the feedback network.  
Smalloutputresistorsof12.5Ωimprovethecircuitstability  
over various load conditions. They also provide a possible  
external filtering option, which is often desirable when the  
load is an ADC.  
resistor R are determined by the combination of R , R  
T
S
G
and R . For example, when R is 50Ω, it is found that the  
F
S
single-ended input impedance is 75Ω and R is 150Ω in  
T
Filter resistors of 50Ω are available for additional filtering.  
Lowpass/bandpassltersareeasilyimplementedwithjust  
a couple of external components. Moreover, they offer  
single-ended 50Ω matching in wideband applications and  
no external resistor is needed.  
order to match to a 50Ω source impedance.  
LTC6400-26  
500Ω  
25Ω  
25Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
14 +IN  
15 –IN  
+
The LTC6400-26 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both. Due to the internal connection between input and  
output, users are advised to keep input common mode  
voltage between 1V and 1.6V for proper operation. If the  
inputs are AC-coupled, the input common mode voltage  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
25Ω  
25Ω  
12.5Ω  
16 –IN  
–OUT  
640026 F01  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
is automatically biased close to V  
and thus no external  
OCM  
LTC6400-26  
circuitry is needed for bias. The LTC6400-26 provides an  
output common mode voltage set by V , which allows  
500Ω  
50Ω  
25Ω  
12.5Ω  
50Ω  
OCM  
13 +IN  
+OUT  
8
7
driving ADC directly without external components such as  
transformer or AC coupling capacitors. The input signal  
can be either single-ended or differential with only minor  
difference in distortion performance.  
IN+  
IN–  
OUT–  
1:1  
+OUTF  
V
IN  
14 +IN  
15 –IN  
+
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
25Ω  
12.5Ω  
16 –IN  
–OUT  
640026 F02  
MACOM  
Input Impedance and Matching  
MABA-007159-000000  
ThedifferentialinputimpedanceoftheLTC6400-26is50Ω.  
The interface between the input of LTC6400-26 and 50Ω  
source is straightforward. One way is to directly connect  
Figure 2. Input Termination for Differential 50Ω  
Input Impedance Using a Balun  
640026fa  
10  
LTC6400-26  
APPLICATIONS INFORMATION  
The internal low pass filter outputs at +OUTF/–OUTF  
have a –3dB bandwidth of 590MHz. External capacitor  
can reduce the low pass filter bandwidth as shown in  
Figure 5. A bandpass filter is easily implemented with  
only a few components as shown in Figure 6. Three  
39pF capacitors and a 16nH inductor create a bandpass  
filter with 165MHz center frequency, –3dB frequencies at  
138MHz and 200MHz.  
R
LTC6400-26  
S
0.1μF  
500Ω  
50Ω  
25Ω  
12.5Ω  
13 +IN  
+OUT  
8
7
V
IN  
R
T
+
50Ω  
150Ω  
IN+  
IN–  
OUT–  
+OUTF  
14 +IN  
15 –IN  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
0.1μF  
25Ω  
12.5Ω  
16 –IN  
–OUT  
640026 F03  
37.4Ω  
Output Common Mode Adjustment  
Figure 3. Input Termination for Single-Ended  
The LTC6400-26’s output common mode voltage is set  
50Ω Input Impedance  
by the V  
pin, which is a high impedance input. The  
OCM  
The LTC6400-26 is unconditionally stable, i.e. differential  
stability factor Kf>1 and stability measure B1>0. However,  
the overall differential gain is affected by both source  
impedance and load impedance as shown in Figure 4:  
output common mode voltage is capable of tracking V  
OCM  
control is  
in a range from 1V to 1.6V. Bandwidth of V  
OCM  
typically 15MHz, which is dominated by a low pass filter  
connected to the V pin and is aimed to reduce com-  
OCM  
mon mode noise generation at the outputs. The internal  
common mode feedback loop has a –3dB bandwidth of  
400MHz, allowing fast rejection of any common mode  
VOUT  
RL  
RS +50 25+RL  
1000  
AV =  
=
V
IN  
output disturbance. The V  
pin should be tied to a DC  
OCM  
The noise performance of the LTC6400-26 also depends  
upon the source impedance and termination. A trade-off  
between gain and noise is obvious when constant noise  
figure circle and constant gain circle are plotted within  
the same input Smith Chart, based on which users can  
choose the optimal source impedance for a given gain  
and noise requirement.  
bias voltage with a 0.1μF bypass capacitor. When interfac-  
ing with A/D converters such as the LTC22xx families, the  
V
pin can be connected to the V pin of the ADC.  
CM  
OCM  
Driving A/D Converters  
TheLTC6400-26hasbeenspecificallydesignedtointerface  
directlywithhighspeedA/Dconverters.Figure7showsthe  
LTC6400-26withasingle-endedinputdrivingtheLTC2208,  
whichisa16-bit,130MspsADC.Twoexternal5Ωresistors  
help eliminate potential resonance associated with bond  
Output Impedance Match and Filter  
TheLTC6400-26candriveanADCdirectlywithoutexternal  
output impedance matching. Alternatively, the differential  
output impedance of 25Ω can be made larger, e.g. 50Ω,  
by series resistors or LC network.  
wires of either the ADC input or the driver output. V  
OCM  
of the LTC6400-26 is connected to V of the LTC2208  
CM  
at 1.25V. Alternatively, a single-ended input signal can be  
LTC6400-26  
LTC6400-26  
500Ω  
500Ω  
1/2 R  
25Ω  
12.5Ω  
50Ω  
1/2 R  
25Ω  
12.5Ω  
50Ω  
S
L
13 +IN  
+OUT  
8
7
13 +IN  
+OUT  
8
7
8.2pF  
12pF  
8.2pF  
IN+  
IN–  
OUT–  
IN+  
IN–  
OUT–  
+OUTP  
+OUTF  
V
IN  
FILTERED OUTPUT  
(87.5MHz)  
14 +IN  
15 –IN  
14 +IN  
15 –IN  
V
+
OUT  
50Ω  
50Ω  
2.7pF  
2.7pF  
–OUTF  
6
5
–OUTF  
6
5
OUT+  
500Ω  
OUT+  
500Ω  
1/2 R  
25Ω  
12.5Ω  
1/2 R  
25Ω  
12.5Ω  
S
L
16 –IN  
–OUT  
16 –IN  
–OUT  
640026 F04  
640026 F05  
Figure 4. Calculate Differential Gain  
Figure 5. LTC6400-26 Internal Filter Topology Modified  
for Low Filter Bandwidth (Three External Capacitors)  
640026fa  
11  
LTC6400-26  
APPLICATIONS INFORMATION  
–40  
–50  
SINGLE-ENDED INPUT  
= 122.8Msps  
F
S
39pF  
LTC6400-26  
12.5Ω  
DRIVER V  
= 2V COMPOSITE  
OUT  
P-P  
500Ω  
25Ω  
10Ω  
4.99Ω  
–60  
13 +IN  
+OUT  
8
7
50Ω  
–70  
IN+  
IN–  
OUT–  
+OUTF  
–80  
14 +IN  
15 –IN  
LTC2208  
16nH  
10Ω  
39pF  
1.7pF  
50Ω  
–90  
OUT+  
500Ω  
–OUTF  
6
5
–100  
–110  
25Ω  
12.5Ω  
4.99Ω  
16 –IN  
–OUT  
640026 F06  
0
50  
100  
150  
200  
250  
300  
39pF  
FREQUENCY (MHz)  
640026 F08  
Figure 6. LTC6400-26 with 165MHz Output Bandpass Filter  
Figure 8. IMD3 for the Combination of LTC6400-26 and LTC2208  
converted to a differential signal via a balun and fed to the  
input of the LTC6400-26. Figure 8 summarizes the IMD3  
performance of the whole system in Figure 7.  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
Test Circuits  
Due to the fully-differential design of the LTC6400 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this datasheet. Test Circuit A is DC987B,  
a two-port demonstration circuit for the LTC6400 family.  
The silkscreen is shown in Figure 9. This circuit includes  
input and output transformers (baluns) for single-ended-  
to-differential conversion and impedance transformation,  
allowing direct hook-up to a 2-port network analyzer.  
There are also series resistors at the output to present the  
LTC6400witha375Ωdifferentialload,optimizingdistortion  
performance.Duetotheinputandoutputtransformers,the  
–3dB bandwidth is reduced from 1.9GHz to 1.67GHz.  
1.25V  
0.1μF  
0.1μF  
V
OCM  
+OUT  
4.99Ω  
4.99Ω  
V
+
CM  
IF IN  
150Ω  
+IN  
AIN  
AIN  
+OUTF  
LTC6400-26  
LTC2208  
0.1μF  
–OUTF  
–OUT  
–IN  
ENABLE  
37.4Ω  
LTC2208 130Msps  
16-Bit ADC  
26dB GAIN  
640026 F07  
Figure 7. Single-Ended Input to LTC6400-26 and LTC2208  
Figure 9. Top Silkscreen of DC987B, Test Circuit A  
640026fa  
12  
LTC6400-26  
TYPICAL APPLICATION  
Demo Circuit 987B Schematic (Test Circuit A)  
V
CC  
ENABLE  
DIS  
1
3
V
CC  
2
JP1  
C17  
1000pF  
C18  
0.1μF  
R16  
0W  
12  
11  
10  
9
+
V
ENABLE  
V
V
R10  
R2  
(1)  
R14  
(1)  
86.6Ω  
13  
14  
15  
16  
8
7
6
5
+IN  
+IN  
–IN  
+OUT  
T2  
TCM 4:19  
1:4  
R6  
0Ω  
R12  
0Ω  
R8  
(1)  
C2  
0.1μF  
C4  
R4  
(2)  
T1  
(2)  
5
4
1
2
3
3
2
1
4
6
J1  
+IN  
J4  
+OUT  
0.1μF  
C21  
0.1μF  
+OUTF  
–OUTF  
–OUT  
R24  
(1)  
SL1  
(2)  
SL2  
(2)  
R7  
(1)  
LTC6400-26  
R5  
(1)  
R11  
(1)  
SL3  
(2)  
J5  
–OUT  
0dB  
J2  
–IN  
R3  
(2)  
C1  
0.1μF  
C3  
0.1μF  
R9  
86.6Ω  
–IN  
V
R13  
0Ω  
C22  
R1  
0Ω  
+
+
V
V
V
0.1μF  
OCM  
1
2
3
4
V
V
CC  
CC  
C10  
0.1μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.1μF  
V
CC  
R19  
1.5k  
TP5  
V
OCM  
R20  
1k  
C7  
0.1μF  
T3  
TCM 4:19  
1:4  
T4  
TCM 4:19  
1:4  
R17  
R18  
0Ω  
0Ω  
6
4
1
2
3
3
2
1
4
J6  
TEST IN  
J7  
C23  
C5  
C19  
0.1μF  
C20  
0.1μF  
TEST OUT  
0.1μF  
0.1μF  
R21  
(1)  
R22  
(1)  
R25  
0Ω  
R26  
0Ω  
C24  
0.1μF  
C6  
0.1μF  
6
V
CC  
TP2  
V
CC  
NOTE: UNLESS OTHERWISE SPECIFIED.  
(1) DO NOT STUFF.  
C14  
4.7μF  
C15  
1μF  
2.85V TO 3.5V  
(2) VERSION  
-D  
SL = SIGNAL LEVEL  
IC  
R3  
R4  
T1  
SL1  
SL2  
SL3  
TP3  
GND  
LTC6400CUD-26 OPEN OPEN MACOM MABA-007159-000000 0dB  
20dB 14dB  
640026 TA02  
640026fa  
13  
LTC6400-26  
TYPICAL APPLICATIONS  
Test Circuit B, 4-Port Analysis  
+
V
0.1μF  
1000pF  
+
V
ENABLE  
V
V
12  
G
11  
10  
9
BIAS CONTROL  
R
F
500Ω  
R
R
OUT  
+IN  
13  
+OUT  
37.4Ω  
24.9Ω  
25Ω  
12.5Ω  
PORT 1  
(50Ω)  
PORT 3  
(50Ω)  
8
7
R
50Ω  
FILT  
0.1μF  
+IN  
0.1μF  
+OUTF  
IN+  
IN–  
OUT–  
14  
1/2  
1/2  
AGILENT  
E5O71A  
C
FILT  
R
50Ω  
FILT  
AGILENT  
2.7pF  
–IN  
15  
–OUTF  
–OUT  
E5O71A  
6
5
OUT+  
R
R
G
25Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
24.9Ω  
37.4Ω  
PORT 2  
(50Ω)  
PORT 4  
(50Ω)  
0.1μF  
0.1μF  
COMMON  
MODE CONTROL  
640026 TA03  
1
2
3
4
+
+
V
V
V
V
OCM  
1000pF  
0.1μF  
0.1μF  
+
V
V
OCM  
Optical Photodiode Receiver  
3V  
3V  
249Ω  
100pF  
0.1μF  
0.1μF  
0.1μF  
LTC6400-26  
249Ω  
640026 TA04  
PD:JDSU ETX 100RFC2  
–3dB BW: 1.1GHz  
RISE TIME: 200ps  
640026fa  
14  
LTC6400-26  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 p 0.05  
3.50 p 0.05  
2.10 p 0.05  
1.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.45 p 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
640026fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6400-26  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 2V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-20  
LTC6401-8  
LTC6401-20  
LTC6401-26  
LT6402-6  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
2.2GHz Low Noise, Low Distortion, Differential ADC Driver  
1.3GHz Low Noise, Low Distortion, Differential ADC Driver  
1.6GHz Low Noise, Low Distortion, Differential ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz  
V
A = 8dB, 45mA Supply Current, IMD3 = –80dBc at 140MHz  
V
A = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz  
V
A = 26dB, 45mA Supply Current, IMD3 = –72dBc at 140MHz  
V
A = 6dB, Distortion < –80dBc at 25MHz  
V
LT6402-12  
LT6402-20  
LTC6406  
300MHz Differential Amplifier/ADC Driver  
A = 12dB, Distortion < –80dBc at 25MHz  
V
300MHz Differential Amplifier/ADC Driver  
A = 20dB, Distortion < –80dBc at 25MHz  
V
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
LT6411  
Low Power Differential ADC Driver/Dual Selectable Gain  
Amplifier  
16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
High-Speed Single-Ended Output Op Amps  
LT1812/LT1813/  
LT1814  
High Slew Rate Low Cost Single/Dual/Quad Op Amps  
8nV/√Hz Noise, 750V/μs, 3mA Supply Current  
6nV/√Hz Noise, 1500V/μs, 6.5mA Supply Current  
LT1815/LT1816/  
LT1817  
Very High Slew Rate Low Cost Single/Dual/Quad Op Amps  
Ultra High Slew Rate Low Cost Single/Dual Op Amps  
LT1818/LT1819  
LT6200/LT6201  
6nV/√Hz Noise, 2500V/μs, 9mA Supply Current  
Rail-to-Rail Input and Output Low Noise Single/Dual  
Op Amps  
0.95nV/√Hz Noise, 165MHz GBW, Distortion = –80dBc at 1MHz  
LT6202/LT6203/  
LT6204  
Rail-to-Rail Input and Output Low Noise Single/Dual/Quad  
Op Amps  
1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW  
1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW  
1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW  
LT6230/LT6231/  
LT6232  
Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6233/LT6234/  
LT6235  
Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
Integrated Filters  
LTC1562-2  
LT1568  
Very Low Noise, 8th Order Filter Building Block  
Very Low Noise, 4th Order Filter Building Block  
Linear Phase, Tunable 10th Order Lowpass Filter  
Very Low Noise Differential 2.5MHz Lowpass Filter  
Very Low Noise Differential 5MHz Lowpass Filter  
Very Low Noise Differential 10MHz Lowpass Filter  
Very Low Noise Differential 15MHz Lowpass Filter  
Very Low Noise Differential 20MHz Lowpass Filter  
Lowpass and Bandpass Filters up to 300kHz  
Lowpass and Bandpass Filters up to 10MHz  
Single-Resistor Programmable Cut-Off to 300kHz  
SNR = 86dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
LTC1569-7  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
640026fa  
LT 1108 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY