LTC6401-20 [Linear]

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF; 1.3GHz的低噪声,低失真差分ADC驱动器为140MHz的IF
LTC6401-20
型号: LTC6401-20
厂家: Linear    Linear
描述:

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
1.3GHz的低噪声,低失真差分ADC驱动器为140MHz的IF

驱动器
文件: 总16页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6401-20  
1.3GHz Low Noise, Low  
Distortion Differential ADC  
Driver for 140MHz IF  
FEATURES  
DESCRIPTION  
The LTC®6401-20 is a high-speed differential amplifier  
targeted at processing signals from DC to 140MHz. The  
part has been specifically designed to drive 12-, 14- and  
16-bitADCswithlownoiseandlowdistortion,butcanalso  
be used as a general-purpose broadband gain block.  
1.3GHz –3dB Bandwidth  
Fixed Gain of 10V/V (20dB)  
–93dBc IMD at 70MHz (Equivalent OIP = 50.5dBm)  
3
3
–74dBc IMD at 140MHz (Equivalent OIP = 41dBm)  
3
3
1nV/√Hz Internal Op Amp Noise  
2.1nV/√Hz Total Input Noise  
6.2dB Noise Figure  
Differential Inputs and Outputs  
200Ω Input Impedance  
2.85V to 3.5V Supply Voltage  
50mA Supply Current (150mW)  
1V to 1.6V Output Common Mode Voltage,  
Adjustable  
DC- or AC-Coupled Operation  
The LTC6401-20 is easy to use, with minimal support  
circuitry required. The output common mode voltage is  
set using an external pin, independent of the inputs, which  
eliminates the need for transformers or AC-coupling ca-  
pacitors in many applications. The gain is internally fixed  
at 20dB (10V/V).  
The LTC6401-20 saves space and power compared to  
alternative solutions using IF gain blocks and transform-  
ers. The LTC6401-20 is packaged in a compact 16-lead  
3mm × 3mm QFN package and operates over the –40°C  
to 85°C temperature range.  
Max Differential Output Swing 4.4V  
P-P  
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIONS  
Differential ADC Driver  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
IF Sampling Receivers  
SAW Filter Interfacing  
TYPICAL APPLICATION  
Single-Ended to Differential ADC Driver  
Equivalent Output IP3 vs Frequency  
70  
(NOTE 7)  
3.3V  
1.25V  
60  
0.1μF + 1000pF  
0.1μF  
3.3V  
50  
+
V
0.1μF  
0.1μF  
V
OCM  
40  
10Ω  
10Ω  
V
V
DD  
CM  
+
INPUT  
66.5Ω  
+IN  
+OUT  
+OUTF  
AIN  
AIN  
30  
20  
10  
0
LTC6401-20  
LTC2208  
–OUTF  
–OUT  
–IN  
ENABLE  
V
29Ω  
LTC2208 130Msps  
16-Bit ADC  
20dB GAIN  
640120 TA01a  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
640120 TA01b  
640120f  
1
LTC6401-20  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Supply Voltage (V – V )..........................................3.6V  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range  
16 15 14 13  
+
V
1
2
3
4
12 V  
(Note 3) ............................................... –40°C to 85°C  
Specified Temperature Range  
(Note 4) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Maximum Junction Temperature........................... 150°C  
V
11 ENABLE  
+
OCM  
+
17  
V
V
V
10  
9
V
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6401CUD-20#PBF  
LTC6401IUD-20#PBF  
TAPE AND REEL  
LTC6401CUD-20#TRPBF LCDB  
LTC6401IUD-20#TRPBF LCDB  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
LTC6400 AND LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
IN  
(DIFFERENTIAL)  
I
CC  
(mA)  
(Ω)  
LTC6400-20  
LTC6401-20  
20  
20  
10  
10  
200  
200  
90  
50  
In addition to the LTC6401 family of amplifiers, a lower distortion LTC6400 family is available. The LTC6400 is pin compatible to the LTC6401, and has the  
same low noise performance. The low distortion of the LTC6400 comes at the expense of higher power consumption. Please refer to the separate LTC6400  
data sheets for complete details. Other gain versions from 8dB to 26dB will follow.  
640120f  
2
LTC6401-20  
DC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = –IN = VOCM = 1.25V, ENABLE = 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
20.6  
170  
UNITS  
Input/Output Characteristic  
G
G
Gain  
V
V
=
=
100mV Differential  
100mV Differential  
19.4  
20  
1
dB  
mdB/°C  
mV  
DIFF  
IN  
Gain Temperature Drift  
Output Swing Low  
TEMP  
IN  
V
V
V
Each Output, V  
Each Output, V  
=
=
400mV Differential  
400mV Differential  
90  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
IN  
IN  
Output Swing High  
2.3  
2.44  
4.4  
V
Maximum Differential Output Swing  
Output Current Drive  
1dB Compressed  
Single-Ended  
Differential  
V
P-P  
I
10  
–2  
mA  
mV  
μV/°C  
V
V
Input Offset Voltage  
2
1
OS  
TCV  
Input Offset Voltage Drift  
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance  
Differential  
1.4  
OS  
VRMIN  
VRMAX  
I
I
1.6  
V
Ω
R
Differential  
170  
200  
1
230  
INDIFF  
INDIFF  
C
Input Capacitance  
Differential, Includes Parasitic  
Differential  
pF  
Ω
R
R
Output Resistance  
18  
85  
25  
32  
OUTDIFF  
OUTFDIFF  
OUTFDIFF  
Ω
Filtered Output Resistance  
Filtered Output Capacitance  
Common Mode Rejection Ratio  
Differential  
100  
2.7  
66  
115  
C
Differential, Includes Parasitic  
Input Common Mode Voltage 1.1V to 1.4V  
pF  
CMRR  
45  
dB  
Output Common Mode Voltage Control  
G
Common Mode Gain  
V
= 1V to 1.6V  
1
V/V  
CM  
OCM  
OCM  
V
V
V
Output Common Mode Range, MIN  
1
V
V
OCMMIN  
1.1  
Output Common Mode Range, MAX  
1.6  
1.5  
V
V
OCMMAX  
Common Mode Offset Voltage  
V
= 1.1V to 1.5V  
–15  
15  
15  
mV  
μV/°C  
μA  
OSCM  
TCV  
Common Mode Offset Voltage Drift  
6
5
OSCM  
IV  
V
Input Current  
OCM  
OCM  
ENABLE Pin  
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2.4  
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2.4V  
0.5  
3
μA  
μA  
1.2  
Power Supply  
V
Operating Supply Range  
Supply Current  
2.85  
38  
3
50  
1
3.5  
62  
3
V
mA  
mA  
dB  
S
I
I
ENABLE = 0.8V  
ENABLE = 2.4V  
2.85V to 3.5V  
S
Shutdown Supply Current  
SHDN  
PSRR  
Power Supply Rejection Ratio  
(Differential Outputs)  
55  
84  
640120f  
3
LTC6401-20  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN and –IN  
floating, VOCM = 1.25V, ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
–3dBBW  
0.1dBBW  
0.5dBBW  
1/f  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.25  
130  
250  
12.5  
4500  
2
MAX  
UNITS  
GHz  
MHz  
MHz  
kHz  
V/μs  
ns  
–3dB Bandwidth  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
P-P,OUT  
P-P,OUT  
P-P,OUT  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
1/f Noise Corner  
SR  
Slew Rate  
Differential (Note 6)  
2V (Note 6)  
t
t
t
t
1% Settling Time  
S1%  
OVDR  
ON  
P-P,OUT  
Output Overdrive Recovery Time  
Turn-On Time  
1.9V  
(Note 6)  
7
ns  
P-P,OUT  
+OUT, OUT Within 10% of Final Values  
Falls to 10% of Nominal  
78  
ns  
Turn-Off Time  
I
146  
15  
ns  
OFF  
CC  
–3dBBW  
Common Mode Small Signal –3dB  
BW  
0.1V at V , Measured Single-Ended at  
OCM  
MHz  
CM  
P-P  
Output (Note 6)  
10MHz Input Signal  
HD /HD  
Second/Third Order Harmonic  
Distortion  
2V  
2V  
2V  
2V  
2V  
2V  
2V  
, R = 400Ω  
–122/–92  
–110/–103  
–113/–102  
–96  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
2,10M  
3,10M  
P-P,OUT  
L
, No R  
P-P,OUT  
L
, No R  
P-P,OUTFILT  
L
IMD  
Third-Order Intermodulation  
(f1 = 9.5MHz f2 = 10.5MHz)  
Composite, R = 400Ω  
P-P,OUT L  
3,10M  
Composite, No R  
–108  
P-P,OUT  
L
Composite, No R  
–105  
P-P,OUTFILT  
L
OIP  
Third-Order Output Intercept Point  
(f1 = 9.5MHz f2 = 10.5MHz)  
Composite, No R (Note 7)  
58  
3,10M  
P-P,OUT  
L
P
1dB Compression Point  
Noise Figure  
R = 375Ω (Notes 5, 7)  
17.3  
6.2  
2.1  
21  
dBm  
dB  
1dB,10M  
L
NF  
R = 375Ω (Note 5)  
L
10M  
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,10M  
ON,10M  
70MHz Input Signal  
HD /HD  
Second/Third Order Harmonic  
Distortion  
2V  
2V  
2V  
2V  
2V  
2V  
2V  
, R = 400Ω  
–91/–80  
–95/–88  
–95/–88  
–88  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
2,70M  
3,70M  
P-P,OUT  
L
, No R  
P-P,OUT  
L
, No R  
P-P,OUTFILT  
L
IMD  
Third-Order Intermodulation  
(f1 = 69.5MHz f2 = 70.5MHz)  
Composite, R = 400Ω  
P-P,OUT L  
3,70M  
Composite, No R  
–93  
P-P,OUT  
L
Composite, No R  
–92  
P-P,OUTFILT  
L
OIP  
Third-Order Output Intercept Point  
(f1 = 69.5MHz f2 = 70.5MHz)  
Composite, No R (Note 7)  
50.5  
3,70M  
P-P,OUT  
L
P
1dB Compression Point  
Noise Figure  
R = 375Ω (Notes 5, 7)  
17.3  
6.1  
2.1  
21  
dBm  
dB  
1dB,70M  
L
NF  
R = 375Ω (Note 5)  
L
70M  
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,70M  
ON,70M  
140MHz Input Signal  
HD /HD  
Second/Third Order Harmonic  
Distortion  
2V  
2V  
2V  
, R = 400Ω  
–80/–57  
–81/–60  
–80/–65  
dBc  
dBc  
dBc  
2,140M  
3,140M  
P-P,OUT  
L
, No R  
P-P,OUT  
L
, No R  
P-P,OUTFILT  
L
640120f  
4
LTC6401-20  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN and –IN  
floating, VOCM = 1.25V, ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–71  
–74  
–72  
41  
MAX  
UNITS  
dBc  
IMD  
Third-Order Intermodulation  
(f1 = 139.5MHz f2 = 140.5MHz)  
2V  
2V  
2V  
2V  
Composite, R = 400Ω  
3,140M  
P-P,OUT L  
Composite, No R  
dBc  
P-P,OUT  
L
Composite, No R  
dBc  
P-P,OUTFILT  
L
OIP  
Third-Order Output Intercept Point  
(f1 = 139.5MHz f2 = 140.5MHz)  
Composite, No R (Note 7)  
dBm  
3,140M  
P-P,OUT  
L
P
1dB Compression Point  
Noise Figure  
R = 375Ω (Notes 5, 7)  
18  
6.4  
2.1  
22  
dBm  
dB  
1dB,140M  
L
NF  
R = 375Ω (Note 5)  
L
140M  
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs)  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
dBc  
IN,140M  
ON,140M  
IMD  
Third-Order Intermodulation  
(f1 = 130MHz f2 = 150MHz) Measure  
at 170MHz  
2V  
P-P,OUT  
Composite, R = 375Ω (Note 5)  
–61  
–69  
3,130M/150M  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
temperatures. The LTC6401I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 6: Measured using Test Circuit B.  
Note 7: Since the LTC6401-20 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6401-20 with amplifiers that require 50Ω output load, the LTC6401-20  
Note 3: The LTC6401C and LTC6401I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
output voltage swing driving a given R is converted to OIP and P as  
L
3
1dB  
Note 4: The LTC6401C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C to 85°C but is not tested or QA sampled at these  
if it were driving a 50Ω load. Using this modified convention, 2V is by  
P-P  
definition equal to 10dBm, regardless of the actual R .  
L
TYPICAL PERFORMANCE CHARACTERISTICS  
S21 Phase and Group Delay vs  
Frequency  
Frequency Response  
Gain 0.1dB Flatness  
25  
20  
15  
10  
5
1.0  
0.8  
100  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
TEST CIRCUIT B  
TEST CIRCUIT B  
TEST CIRCUIT B  
0.6  
0.4  
0.2  
–100  
–200  
–300  
–400  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
PHASE  
GROUP DELAY  
0
10  
100  
1000  
3000  
10  
100  
1000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640120 G03  
640120 G01  
640120 G02  
640120f  
5
LTC6401-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input and Output Reflection and  
Reverse Isolation vs Frequency  
Input and Output Impedance vs  
Frequency  
PSRR and CMRR vs Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
250  
225  
200  
175  
150  
125  
100  
75  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TEST CIRCUIT B  
Z
IN  
60  
PSRR  
CMRR  
S11  
S22  
40  
Z
OUT  
20  
0
Z
IN  
–20  
–40  
–60  
–80  
–100  
PHASE  
IMPEDANCE MAGNITUDE  
S12  
50  
25  
Z
OUT  
0
10  
100  
1000  
3000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640120 G04  
640120 G05  
640120 G06  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small Signal Transient Response  
Large Signal Transient Response  
1.35  
1.30  
1.25  
1.20  
1.15  
2.5  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
6
4
2
R
= 87.5Ω PER OUTPUT  
R
= 87.5Ω PER OUTPUT  
L
L
2.0  
1.5  
1.0  
0.5  
0
+OUT  
+OUT  
NOISE FIGURE  
e
IN  
4
3
2
1
–OUT  
–OUT  
0
0
1000  
0
5
10  
TIME (ns)  
15  
20  
0
5
10  
TIME (ns)  
15  
20  
10  
100  
FREQUENCY (MHz)  
640120 G08  
640120 G09  
640120 G07  
1% Settling Time for 2V  
Output Step  
Overdrive Transient Response  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
R
= 87.5Ω PER OUTPUT  
R = 87.5Ω PER OUTPUT  
L
L
–OUT  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
+OUT  
50  
0
100  
TIME (ns)  
150  
200  
0
1
2
3
4
5
6
TIME (ns)  
640120 G10  
640120 G11  
640120f  
6
LTC6401-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Harmonic Distortion (Unfiltered)  
vs Frequency  
Harmonic Distortion (Filtered) vs  
Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
DIFFERENTIAL INPUT  
DIFFERENTIAL INPUT  
UNFILTERED NO R  
L
V
= 2V  
V
= 2V  
L
UNFILTERED 200Ω R  
L
OUT  
P-P  
OUT  
P-P  
NO R  
FILTERED NO R  
L
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
HD2 NO R  
L
HD2 200Ω R  
L
HD3 NO R  
L
HD3 200Ω R  
DIFFERENTIAL INPUT  
HD2  
HD3  
V
= 2V COMPOSITE  
L
OUT  
P-P  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640120 G12  
640120 G13  
640120 G14  
Harmonic Distortion (Unfiltered)  
vs Frequency  
Harmonic Distortion (Filtered) vs  
Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
UNFILTERED NO R  
L
SINGLE-ENDED INPUT  
SINGLE-ENDED INPUT  
UNFILTERED 200Ω R  
FILTERED NO R  
L
V
= 2V  
V
= 2V  
L
L
OUT  
P-P  
OUT P-P  
NO R  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
HD2 NO R  
L
HD2 200Ω R  
L
SINGLE-ENDED INPUT  
HD3 NO R  
L
HD3 200Ω R  
HD2  
HD3  
V
= 2V COMPOSITE  
OUT  
P-P  
L
0
50  
100  
150  
200  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640120 G17  
640120 G15  
640120 G16  
Harmonic Distortion vs Output  
Common Mode Voltage  
(Unfiltered Outputs)  
Equivalent Output 1dB  
Compression Point vs Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
19  
18  
17  
16  
15  
DIFFERENTIAL INPUT  
DIFFERENTIAL INPUT  
V
R
= 2V at 100MHz  
R
= 400Ω  
OUT  
L
P-P  
L
= 400Ω  
(NOTE 7)  
HD3  
HD2  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
50  
80  
110  
140  
170  
200  
OUTPUT COMMON MODE VOLTAGE (V)  
FREQUENCY (MHz)  
640020 G19  
640120 G18  
640120f  
7
LTC6401-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Equivalent Output Third Order  
Intercept vs Frequency  
Turn-On Time  
Turn-Off Time  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
UNFILTERED NO R  
R
= 87.5Ω PER OUTPUT  
R = 87.5Ω PER OUTPUT  
L
L
L
UNFILTERED 200Ω R  
L
FILTERED NO R  
L
I
CC  
ENABLE  
–OUT  
–OUT  
+OUT  
+OUT  
ENABLE  
I
CC  
DIFFERENTIAL INPUT  
V
= 2V COMPOSITE  
OUT  
P-P  
(NOTE 7)  
–0.5  
–10  
–0.5  
–10  
0
50  
100  
150  
200  
–100  
0
100  
200  
TIME (ns)  
300  
400  
500  
–100  
0
100  
200  
TIME (ns)  
300  
400  
500  
FREQUENCY (MHz)  
640120 G20  
640120 G21  
640120 G22  
640120f  
8
LTC6401-20  
PIN FUNCTIONS  
V (Pins 1, 3, 10): Positive Power Supply (Normally tied  
to 3V or 3.3V). All three pins must be tied to the same  
voltage. Bypass each pin with 1000pF and 0.1μF capaci-  
tors as close to the pins as possible.  
+
–OUTF,+OUTF(Pins6,7):FilteredOutputs.Thesepinshave  
50Ω series resistors and a 1.7pF shunt capacitance.  
ENABLE (Pin 11): This pin is a logic input referenced to  
V . If low, the part is enabled. If high, the part is disabled  
V
(Pin 2): This pin sets the output common mode  
and draws approximately 1mA supply current.  
OCM  
voltage. A 0.1μF external bypass capacitor is recom-  
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are  
internally shorted together.  
mended.  
V (Pins 4, 9, 12, 17): Negative Power Supply. All four  
–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are  
internally shorted together.  
pins must be connected to the same voltage/ground.  
–OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins  
have 12.5Ω series resistors.  
Exposed Pad (Pin 17): V . The Exposed Pad must be con-  
nected to the same voltage/ground as pins 4, 9, 12.  
BLOCK DIAGRAM  
+
V
ENABLE  
V
V
12  
11  
10  
9
BIAS CONTROL  
R
F
R
R
OUT  
G
+IN  
13  
+OUT  
1000Ω  
100Ω  
12.5Ω  
8
7
R
FILT  
+OUTF  
50Ω  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
C
FILT  
R
FILT  
1.7pF  
–OUTF  
–OUT  
50Ω  
6
5
OUT+  
R
R
G
100Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
1000Ω  
2k  
COMMON  
MODE CONTROL  
5.3pF  
640120 BD  
1
2
3
4
+
+
V
V
V
V
OCM  
640120f  
9
LTC6401-20  
APPLICATIONS INFORMATION  
Circuit Operation  
thedifferentialinputsmayneedtobeterminatedtoalower  
value impedance, e.g. 50Ω, in order to provide an imped-  
ance match to the source. Several choices are available.  
One approach is to use a differential shunt resistor (Figure  
1).Anotherapproachistoemployawidebandtransformer  
(Figure 2). Both methods provide a wideband match. The  
termination resistor or the transformer must be placed  
close to the input pins in order to minimize the reflection  
due to input mismatch. Alternatively, one could apply a  
narrowbandimpedancematchattheinputsoftheLTC6401-  
20 for frequency selection and/or noise reduction.  
The LTC6401-20 is a low noise and low distortion fully  
differential op amp/ADC driver with:  
• Operation from DC to 1.3GHz –3dB bandwidth  
impedance  
• Fixed gain of 10V/V (20dB)  
• Differential input impedance 200Ω  
• Differential output impedance 25Ω  
• Differential impedance of output filter 100Ω  
ReferringtoFigure3,LTC6401-20canbeeasilyconfigured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matching network while the other input is connected to  
thesamematchingnetworkandasourceresistor.Because  
the return ratios of the two feedback paths are equal, the  
TheLTC6401-20iscomposedofafullydifferentialamplifier  
with on chip feedback and output common mode voltage  
controlcircuitry. Differentialgainandinputimpedanceare  
set by 100Ω/1000Ω resistors in the feedback network.  
Smalloutputresistorsof12.5Ωimprovethecircuitstability  
over various load conditions. They also provide a possible  
external filtering option, which is often desirable when the  
load is an ADC.  
LTC6401-20  
1000Ω  
25Ω  
100Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
Filter resistors of 50Ω are available for additional filtering.  
Lowpass/bandpassltersareeasilyimplementedwithjust  
a couple of external components. Moreover, they offer  
single-ended 50Ω matching in wideband applications and  
no external resistor is needed.  
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
14 +IN  
+
66.5Ω  
50Ω  
1.7pF  
15 –IN  
–OUTF  
6
5
OUT+  
1000Ω  
25Ω  
100Ω  
12.5Ω  
The LTC6401-20 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both. Due to the internal connection between input and  
output, users are advised to keep input common mode  
voltage between 1V and 1.6V for proper operation. If the  
inputs are AC-coupled, the input common mode voltage  
16 –IN  
–OUT  
640120 F01  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
Using Shunt Resistor  
LTC6401-20  
1000Ω  
25Ω  
100Ω  
12.5Ω  
50Ω  
is automatically biased close to V  
and thus no external  
OCM  
13 +IN  
+OUT  
8
7
circuitry is needed for bias. The LTC6401-20 provides an  
output common mode voltage set by V , which allows  
1:4  
• •  
OCM  
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
drivinganADCdirectlywithoutexternalcomponentssuch  
as a transformer or AC coupling capacitors. The input  
signal can be either single-ended or differential with only  
minor differences in distortion performance.  
14 +IN  
15 –IN  
+
50Ω  
1.7pF  
–OUTF  
6
5
OUT+  
1000Ω  
25Ω  
100Ω  
12.5Ω  
16 –IN  
–OUT  
640120 F02  
Input Impedance and Matching  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using a 1:4 Balun  
The differential input impedance of the LTC6401-20 is  
200Ω. If a 200Ω source impedance is unavailable, then  
640120f  
10  
LTC6401-20  
APPLICATIONS INFORMATION  
R
LTC6401-20  
S
input Smith Chart, based on which users can choose the  
optimal source impedance for a given gain and noise  
requirement.  
0.1μF  
1000Ω  
50Ω  
100Ω  
12.5Ω  
13 +IN  
+OUT  
8
7
V
IN  
+
50Ω  
R
T
IN+  
IN–  
OUT–  
66.5Ω  
+OUTF  
14 +IN  
15 –IN  
0.1μF  
50Ω  
1.7pF  
Output Match and Filter  
–OUTF  
6
5
OUT+  
1000Ω  
R
S
50Ω  
The LTC6401-20 can drive an ADC directly without  
external output impedance matching. Alternatively, the  
differential output impedance of 25Ω can be matched to  
higher value impedance, e.g. 50Ω, by series resistors or  
an LC network.  
0.1μF  
100Ω  
12.5Ω  
16 –IN  
–OUT  
640120 F03  
R
T
66.5Ω  
Figure 3. Input Termination for Single-Ended 50Ω Input  
Impedance  
The internal low pass filter outputs at +OUTF/–OUTF  
have a –3dB bandwidth of 590MHz. External capacitor  
can reduce the low pass filter bandwidth as shown in  
Figure 5. A bandpass filter is easily implemented with  
only a few components as shown in Figure 6. Three  
39pF capacitors and a 16nH inductor create a bandpass  
filter with 165MHz center frequency, –3dB frequencies at  
138MHz and 200MHz.  
two outputs have the same gain and thus symmetrical  
swing. In general, the single-ended input impedance and  
terminationresistorR aredeterminedbythecombination  
T
of R , R and R . For example, when R is 50Ω, it is found  
S
G
F
S
that the single-ended input impedance is 200Ω and R is  
T
66.5Ω in order to match to a 50Ω source impedance.  
The LTC6401-20 is unconditionally stable. However, the  
overall differential gain is affected by both source imped-  
ance and load impedance as shown in Figure 4:  
LTC6401-20  
1000Ω  
100Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
8.2pF  
FILTERED OUTPUT  
IN+  
IN–  
OUT–  
VOUT  
RL  
RS + 200 25+RL  
2000  
+OUTF  
14 +IN  
15 –IN  
AV =  
=
12pF  
(87.5MHz)  
50Ω  
V
1.7pF  
IN  
–OUTF  
6
5
OUT+  
1000Ω  
8.2pF  
100Ω  
12.5Ω  
The noise performance of the LTC6401-20 also depends  
uponthesourceimpedanceandtermination. Forexample,  
an input 1:4 balun transformer in Figure 2 improves SNR  
by adding 6dB of gain at the inputs. A trade-off between  
gain and noise is obvious when constant noise figure  
circle and constant gain circle are plotted within the same  
16 –IN  
–OUT  
640120 F05  
Figure 5. LTC6401-20 Internal Filter Topology Modified for Low  
Filter Bandwidth (Three External Capacitors)  
39pF  
LTC6401-20  
12.5Ω  
LTC6401-20  
1000Ω  
100Ω  
10Ω  
4.99Ω  
1000Ω  
1/2 R  
S
100Ω  
12.5Ω  
50Ω  
1/2 R  
L
13 +IN  
+OUT  
8
7
13 +IN  
+OUT  
8
7
50Ω  
IN+  
IN–  
OUT–  
+OUTF  
IN+  
IN–  
OUT–  
+OUTF  
14 +IN  
15 –IN  
V
IN  
16nH  
LTC2208  
14 +IN  
15 –IN  
V
+
OUT  
1.7pF  
39pF  
50Ω  
50Ω  
1.7pF  
OUT+  
1000Ω  
–OUTF  
6
5
–OUTF  
6
5
OUT+  
1000Ω  
100Ω  
12.5Ω  
10Ω  
4.99Ω  
1/2 R  
S
100Ω  
12.5Ω  
1/2 R  
L
16 –IN  
–OUT  
39pF  
16 –IN  
–OUT  
640120 F06  
640120 F04  
Figure 4. Calculate Differential Gain  
Figure 6. LTC6401-20 Application Circuit for Bandpass  
Filtering (Three External Capacitors, One External Inductor)  
640120f  
11  
LTC6401-20  
APPLICATIONS INFORMATION  
Output Common Mode Adjustment  
1.25V  
0.1μF  
The LTC6401-20’s output common mode voltage is set  
0.1μF  
by the V  
pin, which is a high impedance input. The  
V
OCM  
+OUT  
+OUTF  
OCM  
10Ω  
V
+
CM  
IF IN  
66.5Ω  
+IN  
AIN  
output common mode voltage is capable of tracking V  
OCM  
control is  
LTC6401-20  
LTC2208  
in a range from 1V to 1.6V. Bandwidth of V  
–OUTF  
–OUT  
OCM  
–IN  
ENABLE  
AIN  
typically 15MHz, which is dominated by a low pass filter  
connected to the V pin and is aimed to reduce com-  
10Ω  
29Ω  
LTC2208 130Msps  
16-Bit ADC  
OCM  
20dB GAIN  
640120 F07  
mon mode noise generation at the outputs. The internal  
common mode feedback loop has a –3dB bandwidth  
around 300MHz, allowing fast common mode rejection at  
Figure 7. Single-Ended Input to LTC6401-20 and LTC2208  
Test Circuits  
the outputs of the LTC6401-20. The V  
pin should be  
OCM  
tied to a DC bias voltage where a 0.1μF bypass capacitor  
is recommended. When interfacing with A/D converters  
Due to the fully-differential design of the LTC6401 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this datasheet. Test Circuit A is DC987B,  
a two-port demonstration circuit for the LTC6401 family.  
The schematic and silkscreen are shown below. This  
circuit includes input and output transformers (baluns)  
for single-ended-to-differential conversion and imped-  
ance transformation, allowing direct hook-up to a 2-port  
network analyzer. There are also series resistors at the  
output to present the LTC6401 with a 375Ω differential  
load, optimizing distortion performance. Due to the input  
and output transformers, the –3dB bandwidth is reduced  
from 1.3GHz to approximately 1.1GHz.  
such as the LT22xx families, the V  
can be normally  
OCM  
connected to the V pin of the ADC.  
CM  
Driving A/D Converters  
The LTC6401-20 has been specifically designed to inter-  
face directly with high speed A/D converters. In Figure 7,  
an example schematic shows the LTC6401-20 with a  
single-ended input driving the LTC2208, which is a 16-bit,  
130Msps ADC. Two external 10Ω resistors help eliminate  
potential resonance associated with stray capacitance of  
PCB traces and bond wire inductance of either the ADC  
input or the driver output. V  
of the LTC6401-20 is  
OCM  
connected to V of the LTC2208 at 1.25V. Alternatively,  
CM  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
asingle-endedinputsignalcanbeconvertedtodifferential  
signal via a balun and fed to the input of the LTC6401-20.  
The balun also converts input impedance to match 50Ω  
source impedance.  
640120f  
12  
LTC6401-20  
APPLICATIONS INFORMATION  
Top Silkscreen  
640120f  
13  
LTC6401-20  
TYPICAL APPLICATION  
Demo Circuit 987B Schematic (Test Circuit A)  
V
CC  
ENABLE  
DIS  
1
3
V
CC  
2
JP1  
C17  
1000pF  
C18  
0.1μF  
R16  
0Ω  
12  
11  
10  
+
9
V
ENABLE  
V
V
R10  
R2  
(1)  
R14  
(1)  
86.6Ω  
13  
14  
15  
16  
8
7
6
5
+IN  
+IN  
–IN  
+OUT  
+OUTF  
–OUTF  
–OUT  
R6  
0Ω  
R12  
0Ω  
T2  
TCM 4-19  
1:4  
R8  
(1)  
C2  
0.1μF  
C4  
R4  
(2)  
T1  
(2)  
5
4
1
2
3
3
2
1
4
J1  
+IN  
J4  
+OUT  
0.1μF  
C21  
0.1μF  
R24  
(1)  
SL1  
(2)  
SL2  
(2)  
R7  
(1)  
LTC6401-20  
R5  
(1)  
R11  
(1)  
SL3  
(2)  
J5  
–OUT  
0dB  
5
J2  
–IN  
R3  
(2)  
C1  
0.1μF  
C3  
0.1μF  
R9  
86.6Ω  
–IN  
V
R13  
0Ω  
C22  
R1  
0Ω  
+
+
V
OCM  
V
V
0.1μF  
1
2
3
4
V
CC  
V
CC  
C10  
0.1μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.1μF  
V
CC  
R19  
1.5k  
TP5  
V
OCM  
R20  
1k  
C7  
0.1μF  
T3  
TCM 4-19  
1:4  
T4  
TCM 4-19  
1:4  
R17  
R18  
0Ω  
0Ω  
5
4
1
2
3
3
2
1
4
J6  
TEST IN  
J7  
C23  
C5  
C19  
0.1μF  
C20  
0.1μF  
TEST OUT  
0.1μF  
0.1μF  
R21  
(1)  
R22  
(1)  
R25  
0Ω  
R26  
0Ω  
C24  
0.1μF  
C6  
0.1μF  
5
V
CC  
TP2  
V
CC  
NOTE: UNLESS OTHERWISE SPECIFIED.  
(1) DO NOT STUFF.  
C14  
4.7μF  
C15  
1μF  
2.85V TO 3.5V  
(2) VERSION  
-G  
SL = SIGNAL LEVEL  
IC  
R3  
R4  
T1  
SL1  
SL2  
SL3  
TP3  
GND  
LTC6401CUD-20 OPEN OPEN MINI-CIRCUITS TCM4-19 (1:4) 6dB  
20dB 14dB  
640120 TA03  
640120f  
14  
LTC6401-20  
TYPICAL APPLICATION  
Test Circuit B, 4-Port Analysis  
+
V
1000pF  
0.1μF  
+
V
V
V
ENABLE  
12  
G
11  
10  
9
BIAS CONTROL  
R
F
1000Ω  
R
R
OUT  
12.5Ω  
+IN  
13  
+OUT  
100Ω  
37.4Ω  
PORT 1  
(50Ω)  
0.1μF  
PORT 3  
(50Ω)  
8
7
R
FILT  
50Ω  
0.1μF  
+OUTF  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
1/2  
AGILENT  
E5O71A  
1/2  
AGILENT  
E5O71A  
C
FILT  
1.7pF  
R
FILT  
200Ω  
–OUTF  
–OUT  
50Ω  
6
5
OUT+  
R
R
G
100Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
1000Ω  
37.4Ω  
PORT 2  
(50Ω)  
PORT 4  
(50Ω)  
0.1μF  
0.1μF  
COMMON  
MODE CONTROL  
640120 TA02  
1
2
3
4
+
+
V
V
V
V
OCM  
1000pF  
0.1μF  
0.1μF  
+
V
V
OCM  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 ± 0.05  
3.00 ± 0.10  
(4 SIDES)  
15 16  
0.70 ±0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ± 0.10  
1
2
1.45 ± 0.10  
(4-SIDES)  
3.50 ± 0.05  
2.10 ± 0.05  
1.45 ± 0.05  
(4 SIDES)  
PACKAGE  
OUTLINE  
(UD16) QFN 0904  
0.200 REF  
0.25 ± 0.05  
0.25 ±0.05  
0.50 BSC  
0.00 – 0.05  
0.50 BSC  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
640120f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6401-20  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-20  
LT6402-6  
LT6402-12  
LT6402-20  
LTC6406  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
3GHz Rail-to-Rail Input Differential Op Amp  
A = 20dB, 90mA Supply Current, IMD = –65dBc at 300MHz  
V 3  
A = 6dB, Distortion < –80dBc at 25MHz  
V
A = 12dB, Distortion < –80dBc at 25MHz  
V
A = 20dB, Distortion < –80dBc at 25MHz  
V
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
LT6411  
Low Power Differential ADC Driver/Dual Selectable Gain  
Amplifier  
16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
High-Speed Single-Ended Output Op Amps  
LT1812/LT1813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1814  
8nV/√Hz Noise, 750V/μs, 3mA Supply Current  
6nV/√Hz Noise, 1500V/μs, 6.5mA Supply Current  
6nV/√Hz Noise, 2500V/μs, 9mA Supply Current  
LT1815/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1817  
LT1818/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps  
LT6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps 0.95nV/√Hz Noise, 165MHz GBW, Distortion = –80dBc at 1MHz  
LT6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad  
LT6204 Op Amps  
1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW  
1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW  
1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW  
LT6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6232  
LT6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6235  
Integrated Filters  
LTC1562-2  
LT1568  
Very Low Noise, 8th Order Filter Building Block  
Very Low Noise, 4th Order Filter Building Block  
Linear Phase, Tunable 10th Order Lowpass Filter  
Very Low Noise Differential 2.5MHz Lowpass Filter  
Very Low Noise Differential 5MHz Lowpass Filter  
Very Low Noise Differential 10MHz Lowpass Filter  
Very Low Noise Differential 15MHz Lowpass Filter  
Very Low Noise Differential 20MHz Lowpass Filter  
Lowpass and Bandpass Filters up to 300kHz  
Lowpass and Bandpass Filters up to 10MHz  
Single-Resistor Programmable Cut-Off to 300kHz  
SNR = 86dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
LTC1569-7  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
640120f  
LT 0907 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6401-26

1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401-8

2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401CUD-14

2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear System

LTC6401CUD-14-PBF

2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401CUD-14-TRPBF

2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401CUD-20#PBF

LTC6401-20 - 1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-20#TRPBF

LTC6401-20 - 1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-20PBF

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LTC6401CUD-20TRPBF

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LTC6401CUD-26

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-26#PBF

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-26#TR

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear