LTC6404 [Linear]

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver; 为600MHz ,低噪声,高精度全差动输入/输出功率放大器器/驱动器
LTC6404
型号: LTC6404
厂家: Linear    Linear
描述:

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
为600MHz ,低噪声,高精度全差动输入/输出功率放大器器/驱动器

驱动器 放大器 功率放大器
文件: 总28页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6404  
600MHz, Low Noise,  
High Precision Fully Differential  
Input/Output Amplifier/Driver  
FEATURES  
DESCRIPTION  
The LTC®6404 is a family of AC precision, very low noise,  
low distortion, fully differential input/output amplifiers  
optimized for 3V, single supply operation.  
n
Fully Differential Input and Output  
n
Low Noise: 1.5nV/√Hz RTI  
n
Very Low Distortion:  
LTC6404-1 (2V , 10MHz): –91dBc  
P-P  
P-P  
P-P  
The LTC6404-1 is unity-gain stable. The LTC6404-2 is  
designed for closed-loop gains greater than or equal to  
2V/V. The LTC6404-4 is designed for closed-loop gains  
greater than or equal to 4V/V. The LTC6404 closed-loop  
bandwidth extends from DC to 600MHz. In addition to the  
LTC6404-2 (2V , 10MHz): –96dBc  
LTC6404-4 (2V , 10MHz): –101dBc  
n
n
n
n
n
n
n
n
n
Closed-Loop –3dB Bandwidth: 600MHz  
Slew Rate: 1200V/μs (LTC6404-4)  
Adjustable Output Common Mode Voltage  
Rail-to-Rail Output Swing  
Input Range Extends to Ground  
Large Output Current: 85mA (Typ)  
DC Voltage Offset < 2mV (Max)  
+
normal unfiltered outputs (OUT and OUT ), the LTC6404  
has a built-in 88.5MHz differential single-pole lowpass  
+
filter and an additional pair of filtered outputs (OUTF ,  
OUTF ). An input referred voltage noise of 1.5nV/√Hz  
make the LTC6404 able to drive state-of-the-art 16-/18-bit  
ADCs while operating on the same supply voltage, saving  
systemcostandpower. TheLTC6404ischaracterized, and  
maintains its performance for supplies as low as 2.7V and  
canoperateonsuppliesupto5.25V. Itdrawsonly27.3mA,  
and has a hardware shutdown feature which reduces cur-  
rent consumption to 250μA.  
Low Power Shutdown  
Tiny 3mm × 3mm × 0.75mm 16-Pin QFN Package  
APPLICATIONS  
n
Differential Input A/D Converter Driver  
n
Single-Ended to Differential Conversion/Amplification  
The LTC6404 family is available in a compact 3mm × 3mm  
16-pin leadless QFN package and operates over a –40°C  
to 125°C temperature range.  
n
Common Mode Level Translation  
Low Voltage, Low Noise, Signal Processing  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LTC6404-4 Distortion vs Frequency  
Single-Ended Input to Differential Output  
with Common Mode Level Shifting  
–40  
V
V
V
= V  
= MID-SUPPLY  
OCM  
CM  
= 3V  
0.5V  
P-P  
–50  
–60  
S
= 2V  
OUT  
P-P  
F
0V  
R = 100Ω, R = 402Ω  
I
V
S
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
100Ω  
402Ω  
0.1μF  
50Ω  
–70  
–80  
3V  
71.5Ω  
–90  
SIGNAL  
HD2  
HD2  
1V  
1V  
P-P  
–100  
–110  
–120  
–130  
GENERATOR  
1.5VDC  
1.5VDC  
+
1.5VDC  
V
OCM  
HD3  
0.1μF  
130Ω  
HD3  
1
P-P  
0.1  
10  
100  
402Ω  
6404 TA01  
FREQUENCY (MHz)  
64044 G16  
6404f  
1
LTC6404  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Total Supply Voltage (V to V )................................5.5V  
Input Voltage:  
+
+
16 15 14 13  
IN , IN , V  
, SHDN (Note 2)...................... V to V  
OCM  
+
+
SHDN  
1
2
3
4
12  
11  
10  
9
V
V
V
V
Input Current:  
+
V
+
IN , IN , V  
, SHDN (Note 2)........................ 10mA  
17  
OCM  
V
Output Short-Circuit Duration (Note 3) ............ Indefinite  
V
OCM  
Output Current (Continuous):  
5
6
7
8
+
(OUTF , OUTF ) DC + AC  
........................... 40mA  
RMS  
Operating Temperature Range (Note 4).. –40°C to 125°C  
Specified Temperature Range (Note 5) .. –40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range................... –65°C to 150°C  
UD PACKAGE  
16-LEAD (3mm s 3mm) PLASTIC QFN  
T
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6404CUD-1#PBF LTC6404CUD-1#TRPBF  
LTC6404IUD-1#PBF LTC6404IUD-1#TRPBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LCLW  
LCLW  
LCLW  
LCLX  
LCLX  
LCLX  
LCLY  
LCLY  
LCLY  
0°C to 70°C  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6404HUD-1#PBF LTC6404HUD-1#TRPBF  
LTC6404CUD-2#PBF LTC6404CUD-2#TRPBF  
LTC6404IUD-2#PBF  
LTC6404IUD-2#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6404HUD-2#PBF LTC6404HUD-2#TRPBF  
LTC6404CUD-4#PBF LTC6404CUD-4#TRPBF  
LTC6404IUD-4#PBF  
LTC6404IUD-4#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
LTC6404HUD-4#PBF LTC6404HUD-4#TRPBF  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6404f  
2
LTC6404  
LTC6404 DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VCM = VOCM = VICM = Mid-Supply,  
VSHDN = OPEN, RL = OPEN, RBAL = 100k (See Figure 1). For the LTC6404-1: RI = 100Ω, RF = 100Ω. For the LTC6404-2: RI = 100Ω,  
RF = 200Ω. For the LTC6404-4: RI = 100Ω, RF = 402Ω, unless otherwise noted. VS is defined (V+ – V). VOUTCM = (VOUT+ + VOUT)/2.  
VICM is defined (VIN+ + VIN)/2. VOUTDIFF is defined (VOUT+ – VOUT). VINDIFF = (VINP – VINM  
)
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
1
MAX  
UNITS  
mV  
l
l
l
V
Differential Offset Voltage (Input Referred)  
Differential Offset Voltage Drift (Input Referred)  
Input Bias Current (Note 6)  
Input Bias Current Drift (Note 6)  
Input Offset Current (Note 6)  
Input Resistance  
V = 2.7V to 5.25V  
S
2
OSDIFF  
V = 2.7V to 5.25V  
S
μV/°C  
μA  
ΔV  
/ΔT  
OSDIFF  
I
B
V = 2.7V to 5.25V  
S
–60  
–23  
0.01  
1
0
V = 2.7V to 5.25V  
S
μA/°C  
μA  
ΔI /ΔT  
B
I
OS  
V = 2.7V to 5.25V  
S
10  
R
IN  
Common Mode  
Differential Mode  
1000  
3
kΩ  
kΩ  
C
Input Capacitance  
1
1.5  
3
pF  
nV/√Hz  
pA/√Hz  
IN  
e
n
Differential Input Referred Noise Voltage Density  
Input Noise Current Density  
f = 1MHz  
f = 1MHz  
i
n
e
Input Referred Common Mode Noise Voltage  
Density  
f = 1MHz, Referred to V  
Pin  
OCM  
nVOCM  
LTC6404-1  
9
10.5  
27  
nV/√Hz  
nV/√Hz  
nV/√Hz  
LTC6404-2  
LTC6404-4  
l
l
V
Input Signal Common Mode Range  
V = 3V  
0
0
1.6  
3.6  
V
V
ICMR  
S
(Note 7)  
V = 5V  
S
CMRRI  
(Note 8)  
Input Common Mode Rejection Ratio  
60  
60  
dB  
dB  
V = 3V, ΔV = 0.75V  
S
CM  
(Input Referred) ΔV /ΔV  
V = 5V, ΔV = 1.25V  
ICM  
OSDIFF  
S
CM  
CMRRIO  
(Note 8)  
Output Common Mode Rejection Ratio  
(Input Referred) ΔV /ΔV  
66  
dB  
V = 5V, ΔV  
S
= 1V  
OCM  
OCM  
OSDIFF  
l
PSRR  
(Note 9)  
Differential Power Supply Rejection  
(ΔV /ΔV  
V = 2.7V to 5.25V  
S
60  
94  
dB  
)
OSDIFF  
S
PSRRCM  
(Note 9)  
Output Common Mode Power Supply Rejection  
(ΔV /ΔV  
V = 2.7V to 5.25V  
S
l
l
l
)
OSCM  
LTC6404-1  
LTC6404-2  
LTC6404-4  
50  
50  
40  
63  
63  
51  
dB  
dB  
dB  
S
G
CM  
Common Mode Gain (ΔV  
/ΔV  
)
V = 5V, ΔV  
= 1V  
OCM  
OUTCM  
OCM  
S
l
l
l
1
1
0.99  
V/V  
V/V  
V/V  
LTC6404-1  
LTC6404-2  
LTC6404-4  
Common Mode Gain Error  
V = 5V, ΔV  
= 1V  
OCM  
S
l
l
l
–0.6  
–0.6  
–1.6  
–0.125  
–0.25  
–1  
0.1  
0.1  
–0.4  
%
%
%
LTC6404-1  
LTC6404-2  
LTC6404-4  
BAL  
Output Balance (ΔV /ΔV  
OUTCM  
)
ΔV  
= 2V, Single-Ended Input  
OUTDIFF  
OUTDIFF  
l
l
l
–60  
–60  
–53  
–40  
–40  
–40  
dB  
dB  
dB  
LTC6404-1  
LTC6404-2  
LTC6404-4  
ΔV  
= 2V, Differential Input  
OUTDIFF  
l
l
l
–66  
–66  
–66  
–40  
–40  
–40  
dB  
dB  
dB  
LTC6404-1  
LTC6404-2  
LTC6404-4  
V
Common Mode Offset Voltage (V  
– V  
)
V = 2.7V to 5.25V  
OSCM  
OUTCM  
OCM  
S
l
l
l
LTC6404-1  
LTC6404-2  
LTC6404-4  
10  
20  
40  
25  
50  
100  
mV  
mV  
mV  
6404f  
3
LTC6404  
LTC6404 DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VCM = VOCM = VICM = Mid-Supply,  
VSHDN = OPEN, RL = OPEN, RBAL = 100k (See Figure 1). For the LTC6404-1: RI = 100Ω, RF = 100Ω. For the LTC6404-2: RI = 100Ω,  
RF = 200Ω. For the LTC6404-4: RI = 100Ω, RF = 402Ω, unless otherwise noted. VS is defined (V+ – V). VOUTCM = (VOUT+ + VOUT)/2.  
VICM is defined (VIN+ + VIN)/2. VOUTDIFF is defined (VOUT+ – VOUT). VINDIFF = (VINP – VINM  
)
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Common Mode Offset Voltage Drift  
V = 2.7V to 5.25V  
ΔV  
/ΔT  
OSCM  
S
LTC6404-1  
LTC6404-2  
LTC6404-4  
10  
20  
20  
μV/°C  
μV/°C  
μV/°C  
V
Output Signal Common Mode Range  
V = 3V  
OUTCMR  
S
l
l
l
(Note 7)  
(Voltage Range for the V  
Pin)  
LTC6404-1  
LTC6404-2  
LTC6404-4  
1.1  
1.1  
1.1  
2
2
1.7  
V
V
V
OCM  
V = 5V  
S
l
l
l
LTC6404-1  
LTC6404-2  
LTC6404-4  
1.1  
1.1  
1.1  
4
4
3.7  
V
V
V
l
l
l
R
Input Resistance, V  
Pin  
LTC6404-1  
LTC6404-2  
LTC6404-4  
15  
8
4
23.5  
14  
7
32  
20  
10  
kΩ  
kΩ  
kΩ  
INVOCM  
OCM  
l
V
V
Voltage at the V  
Pin  
V = 3V  
1.45  
1.5  
1.55  
V
MID  
OCM  
S
l
l
l
Output Voltage High, Either Output Pin (Note 10)  
V = 3V, I = 0mA  
325  
360  
480  
550  
600  
750  
mV  
mV  
mV  
OUT  
S
L
L
L
V = 3V, I = 5mA  
S
V = 3V, I = 20mA  
S
l
l
l
V = 5V, I = 0mA  
460  
500  
650  
700  
750  
1000  
mV  
mV  
mV  
S
L
V = 5V, I = 5mA  
S
L
V = 5V, I = 20mA  
S
L
l
l
l
Output Voltage Low, Either Output Pin (Note 10)  
V = 3V, I = 0mA  
120  
140  
200  
230  
260  
350  
mV  
mV  
mV  
S
L
V = 3V, I = 5mA  
S
L
V = 3V, I = 20mA  
S
L
l
l
l
V = 5V, I = 0mA  
175  
200  
285  
320  
350  
550  
mV  
mV  
mV  
S
L
V = 5V, I = 5mA  
S
L
V = 5V, I = 20mA  
S
L
l
l
l
I
Output Short-Circuit Current, Either Output Pin  
(Note 11)  
V = 2.7V  
35  
40  
55  
60  
65  
85  
mA  
mA  
mA  
SC  
S
V = 3V  
S
V = 5V  
S
A
Large-Signal Voltage Gain  
Supply Voltage Range  
V = 3V  
S
90  
dB  
V
VOL  
l
V
2.7  
5.25  
S
l
l
l
I
Supply Current (LTC6404-1)  
V = 2.7V, V  
= V – 0.6V  
27.2  
27.3  
27.8  
35.5  
35.5  
36.5  
mA  
mA  
mA  
S
S
SHDN  
S
V = 3V, V  
= V – 0.6V  
S
SHDN  
SHDN  
S
V = 5V, V  
= V – 0.6V  
S
S
l
l
l
Supply Current (LTC6404-2)  
V = 2.7V, V  
= V – 0.6V  
29.7  
29.8  
30.4  
38.5  
38.5  
39.5  
mA  
mA  
mA  
S
SHDN  
S
V = 3V, V  
= V – 0.6V  
S
SHDN  
SHDN  
S
V = 5V, V  
= V – 0.6V  
S
S
l
l
l
Supply Current (LTC6404-4)  
V = 2.7V, V  
= V – 0.6V  
30.0  
30.2  
31.0  
39  
39  
40  
mA  
mA  
mA  
S
SHDN  
S
V = 3V, V  
= V – 0.6V  
S
SHDN  
SHDN  
S
V = 5V, V  
= V – 0.6V  
S
S
l
l
l
I
Supply Current in Shutdown (LTC6404-1)  
Supply Current in Shutdown (LTC6404-2)  
Supply Current in Shutdown (LTC6404-4)  
V = 2.7V, V  
= V – 2.1V  
0.22  
0.25  
0.35  
1
1
2
mA  
mA  
mA  
SHDN  
S
SHDN  
S
V = 3V, V  
= V – 2.1V  
S
S
SHDN  
SHDN  
S
V = 5V, V  
= V – 2.1V  
S
l
l
l
V = 2.7V, V  
= V – 2.1V  
0.22  
0.25  
0.35  
1
1
2
mA  
mA  
mA  
S
SHDN  
S
V = 3V, V  
S
= V – 2.1V  
S
SHDN  
SHDN  
S
V = 5V, V  
= V – 2.1V  
S
l
l
l
V = 2.7V, V  
= V – 2.1V  
0.28  
0.30  
0.50  
1.2  
1.2  
2.4  
mA  
mA  
mA  
S
SHDN  
S
V = 3V, V  
S
= V – 2.1V  
S
SHDN  
SHDN  
S
V = 5V, V  
= V – 2.1V  
S
6404f  
4
LTC6404  
LTC6404 DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VCM = VOCM = VICM = Mid-Supply,  
VSHDN = OPEN, RL = OPEN, RBAL = 100k (See Figure 1). For the LTC6404-1: RI = 100Ω, RF = 100Ω. For the LTC6404-2: RI = 100Ω,  
RF = 200Ω. For the LTC6404-4: RI = 100Ω, RF = 402Ω, unless otherwise noted. VS is defined (V+ – V). VOUTCM = (VOUT+ + VOUT)/2.  
VICM is defined (VIN+ + VIN)/2. VOUTDIFF is defined (VOUT+ – VOUT). VINDIFF = (VINP – VINM  
)
SYMBOL  
PARAMETER  
CONDITIONS  
V = 2.7V to 5V  
MIN  
TYP  
MAX  
UNITS  
V
+
l
l
l
V
V
SHDN Input Logic Low  
SHDN Input Logic High  
SHDN Pin Input Impedance  
Turn-On Time  
V – 2.1  
IL  
S
+
V = 2.7V to 5V  
S
V – 0.6  
38  
V
IH  
R
SHDN  
V = 5V, V  
= 2.9V to 0V  
= 0.5V to 3V  
= 3V to 0.5V  
66  
94  
kΩ  
ns  
S
SHDN  
SHDN  
SHDN  
t
t
V = 3V, V  
S
750  
300  
ON  
OFF  
Turn-Off Time  
V = 3V, V  
S
ns  
LTC6404-1 AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VCM = VOCM = VICM = Mid-Supply,  
V
SHDN = OPEN, RI = 100Ω, RF = 100Ω, RL = 200Ω (See Figure 2) unless otherwise noted. VS is defined (V+ – V).  
VOUTCM = (VOUT+ + VOUT)/2. VICM is defined as (VIN+ + VIN)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF = (VINP – VINM).  
SYMBOL  
SR  
PARAMETER  
CONDITIONS  
V = 3V to 5V  
MIN  
TYP  
450  
500  
MAX  
UNITS  
V/μs  
Slew Rate  
S
GBW  
Gain-Bandwidth Product  
V = 3V to 5V, R = 100Ω, R = 499Ω,  
MHz  
S
TEST  
I
F
f
= 500MHz  
l
f
–3dB Frequency (See Figure 2)  
10MHz Distortion  
V = 3V to 5V  
300  
600  
MHz  
3dB  
S
HD  
V = 3V, V  
= 2V  
SEIN  
S
OUTDIFF  
P-P  
P-P  
P-P  
Single-Ended Input  
2nd Harmonic  
–88  
–91  
dBc  
dBc  
3rd Harmonic  
HD  
10MHz Distortion  
V = 3V, V  
OUTDIFF  
= 2V  
DIFFIN  
S
Differential Input  
2nd Harmonic  
3rd Harmonic  
–102  
–91  
dBc  
dBc  
IMD  
Third-Order IMD at 10MHz  
V = 3V, V  
S OUTDIFF  
= 2V  
–93  
dBc  
10M  
f = 9.5MHz, f = 10.5MHz  
1
2
OIP3  
OIP3 at 10MHz (Note 12)  
50  
dBm  
10M  
t
S
Settling Time  
2V Step at Output  
1% Settling  
0.1% Settling  
0.01% Settling  
10  
13  
17  
ns  
ns  
ns  
NF  
f = 10MHz  
13.4  
88.5  
dB  
Noise Figure, R = 50Ω  
Differential Filter 3dB Bandwidth (Note 13)  
S
f
MHz  
3dBFILTER  
6404f  
5
LTC6404  
LTC6404-2 AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VCM = VOCM = VICM = Mid-Supply,  
VSHDN = OPEN, RI = 100Ω, RF = 200Ω, RL = 200Ω (See Figure 2) unless otherwise noted. VS is defined (V+ – V).  
VOUTCM = (VOUT+ + VOUT)/2. VICM is defined as (VIN+ + VIN)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF = (VINP – VINM).  
SYMBOL  
SR  
PARAMETER  
CONDITIONS  
V = 3V to 5V  
MIN  
TYP  
700  
900  
MAX  
UNITS  
V/μs  
Slew Rate  
S
GBW  
Gain-Bandwidth Product  
V = 3V to 5V, R = 100Ω, R = 499Ω,  
MHz  
S
TEST  
I
F
f
= 500MHz  
l
f
–3dB Frequency (See Figure 2)  
10MHz Distortion  
V = 3V to 5V  
300  
600  
MHz  
3dB  
S
HD  
V = 3V, V  
= 2V  
SEIN  
S
OUTDIFF  
P-P  
P-P  
P-P  
Single-Ended Input  
2nd Harmonic  
–95  
–96  
dBc  
dBc  
3rd Harmonic  
HD  
10MHz Distortion  
V = 3V, V  
OUTDIFF  
= 2V  
DIFFIN  
S
Differential Input  
2nd Harmonic  
3rd Harmonic  
–98  
–99  
dBc  
dBc  
IMD  
Third-Order IMD at 10MHz  
V = 3V, V  
S OUTDIFF  
= 2V  
–100  
dBc  
10M  
f = 9.5MHz, f = 10.5MHz  
1
2
OIP3  
OIP3 at 10MHz (Note 12)  
53  
dBm  
10M  
t
S
Settling Time  
2V Step at Output  
1% Settling  
0.1% Settling  
0.01% Settling  
9
12  
15  
ns  
ns  
ns  
NF  
Noise Figure, R = 50Ω  
f = 10MHz  
10  
dB  
S
f
Differential Filter 3dB Bandwidth (Note 13)  
88.5  
MHz  
3dBFILTER  
LTC6404-4 AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VCM = VOCM = VICM = Mid-Supply,  
VSHDN = OPEN, RI = 100Ω, RF = 402Ω, RL = 200Ω (See Figure 2) unless otherwise noted. VS is defined (V+ – V).  
VOUTCM = (VOUT+ + VOUT)/2. VICM is defined as (VIN+ + VIN)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF = (VINP – VINM).  
SYMBOL  
SR  
PARAMETER  
CONDITIONS  
V = 3V to 5V  
MIN  
TYP  
1200  
1700  
MAX  
UNITS  
V/μs  
Slew Rate  
S
GBW  
Gain-Bandwidth Product  
V = 3V to 5V, R = 100Ω, R = 499Ω,  
MHz  
S
TEST  
I
F
f
= 500MHz  
l
f
–3dB Frequency (See Figure 2)  
10MHz Distortion  
V = 3V to 5V  
300  
530  
MHz  
3dB  
S
HD  
V = 3V, V  
= 2V  
SEIN  
S
OUTDIFF  
P-P  
P-P  
P-P  
Single-Ended Input  
2nd Harmonic  
–97  
–98  
dBc  
dBc  
3rd Harmonic  
HD  
10MHz Distortion  
V = 3V, V  
OUTDIFF  
= 2V  
DIFFIN  
S
Differential Input  
2nd Harmonic  
3rd Harmonic  
–100  
–101  
dBc  
dBc  
IMD  
Third-Order IMD at 10MHz  
V = 3V, V  
S OUTDIFF  
= 2V  
–101  
dBc  
10M  
f = 9.5MHz, f = 10.5MHz  
1
2
OIP3  
OIP3 at 10MHz (Note 12)  
54  
dBm  
10M  
t
S
Settling Time  
2V Step at Output  
1% Settling  
0.1% Settling  
0.01% Settling  
8
11  
14  
ns  
ns  
ns  
NF  
Noise Figure, R = 50Ω  
f = 10MHz  
8
dB  
S
f
Differential Filter 3dB Bandwidth (Note 13)  
88.5  
MHz  
3dBFILTER  
6404f  
6
LTC6404  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
The voltage range for the output common mode range is tested using the  
test circuit of Figure 1 by applying a voltage on the V  
pin and testing at  
OCM  
both mid-supply and at the Electrical Characteristics table limits to verify  
that the the common mode offset (V ) has not deviated by more than  
OSCM  
+
15mV (LTC6404-1), 20mV (LTC6404-2) or 40mV (LTC6404-4).  
Note 2: The inputs IN , IN are protected by a pair of back-to-back diodes.  
If the differential input voltage exceeds 1.4V, the input current should be  
Note 8: Input CMRR is defined as the ratio of the change in the input  
common mode voltage at the pins IN or IN to the change in differential  
input referred voltage offset. Output CMRR is defined as the ratio of the  
+
+
limited to less than 10mA. Input pins (IN , IN , V  
and SHDN) are also  
OCM  
protected by steering diodes to either supply. If the inputs should exceed  
either supply voltage, the input current should be limited to less than  
10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely. Long-term application of output currents in excess of the  
absolute maximum ratings may impair the life of the device.  
Note 4: The LTC6404C/LTC6404I are guaranteed functional over the  
operating temperature range –40°C to 85°C. The LTC6404H is guaranteed  
functional over the operating temperature range –40°C to 125°C.  
Note 5: The LTC6404C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6404C is designed, characterized, and expected  
to meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LTC6404I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6404H is guaranteed  
to meet specified performance from –40°C to 125°C.  
change in the voltage at the V  
pin to the change in differential input  
OCM  
referred voltage offset. These specifications are strongly dependent on  
feedback ratio matching between the two outputs and their respective  
inputs, and is difficult to measure actual amplifier performance. (See “The  
Effects of Resistor Pair Mismatch” in the Applications Information section  
of this data sheet. For a better indicator of actual amplifier performance  
independent of feedback component matching, refer to the PSRR  
specification.  
Note 9: Differential power supply rejection (PSRR) is defined as the ratio  
of the change in supply voltage to the change in differential input referred  
voltage offset. Common mode power supply rejection (PSRRCM) is  
defined as the ratio of the change in supply voltage to the change in the  
common mode offset, V  
– V  
.
OUTCM  
OCM  
Note 10: This parameter is pulse tested. Output swings are measured as  
differences between the output and the respective power supply rail.  
Note 11: This parameter is pulse tested. Extended operation with the  
output shorted may cause junction temperatures to exceed the 125°C limit  
and is not recommended. See Note 3 for more details.  
Note 12: Since the LTC6404 is a voltage feedback amplifier with low  
output impedance, a resistive load is not required when driving an ADC.  
Therefore, typical output power is very small. In order to compare the  
LTC6404 with amplifiers that require 50Ω output loads, output swing of  
the LTC6404 driving an ADC is converted into an “effective” OIP3 as if the  
LTC6404 were driving a 50Ω load.  
Note 6: Input bias current is defined as the average of the input currents  
+
flowing into Pin 6 and Pin 15 (IN and IN ). Input offset current is defined  
as the difference of the input currents flowing into Pin 15 and Pin 6  
+
(I = I – I )  
OS  
B
B
Note 7: Input common mode range is tested using the test circuit of  
Figure 1 by measuring the differential gain with a 1V differential output  
with V  
= mid-supply, and with V  
at the input common mode range  
ICM  
ICM  
limits listed in the Electrical Characteristics table, verifying the differential  
gain has not deviated from the mid-supply common mode input case  
by more than 1%, and the common mode offset (V  
deviated from the zero bias common mode offset by more than 15mV  
(LTC6404-1), 20mV (LTC6404-2) or 40mV (LTC6404-4).  
) has not  
Note 13: The capacitors used to set the filter pole might have up to 15%  
variation. The resistors used to set the filter pole might have up to 12%  
variation.  
OSCM  
6404f  
7
LTC6404  
LTC6404-1 TYPICAL PERFORMANCE CHARACTERISTICS  
Active Supply Current vs  
Temperature  
Shutdown Supply Current vs  
Temperature  
Differential Voltage Offset (Input  
Referred) vs Temperature  
1.0  
0.8  
30  
29  
0.5  
0.4  
5 REPRESENTATIVE UNITS  
V
= V  
= MID-SUPPLY  
OCM  
V
= V  
= MID-SUPPLY  
OCM  
CM  
CM  
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
= 3V  
0.6  
V
= 5V  
S
V
= 5V  
0.4  
S
28  
V
= 3V  
0.2  
S
0.3  
V
= 2.7V  
S
0
27  
26  
V
= 3V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.2  
0.1  
0
V
= 2.7V  
S
25  
24  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
64041 G03  
64041 G01  
64041 G02  
Common Mode Voltage Offset vs  
Temperature  
Active Supply Current vs Supply  
Voltage and Temperature  
SHDN Supply Current vs Supply  
Voltage and Temperature  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
0
30  
25  
20  
15  
10  
5
V
= V  
=
OCM  
5 REPRESENTATIVE UNITS  
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
CM  
A
A
A
A
A
A
A
A
A
MID-SUPPLY  
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
+
SHDN = V  
= 3V  
6
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
4
2
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
A
A
A
A
A
A
A
A
A
0
–2  
–4  
–6  
–8  
–10  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
V
= V  
= MID-SUPPLY  
4 5  
CM  
OCM  
SHDN = V  
0
0
1
2
3
0
1
2
3
4
5
–75 –50 –25  
0
25 50 75 100 125 150  
V
(V)  
V
(V)  
TEMPERATURE (°C)  
SUPPLY  
SUPPLY  
64041 G06  
64041 G05  
64041 G04  
SHDN Pin Current vs SHDN Pin  
Voltage and Temperature  
Supply Current vs SHDN Pin  
Voltage and Temperature  
Small-Signal Frequency  
Response  
30  
25  
20  
15  
10  
5
5
0
0
–5  
V
V
= V  
= MID-SUPPLY  
OCM  
V
V
= V  
= MID-SUPPLY  
OCM  
CM  
S
V
V
= 3V  
= 5V  
C = 0pF  
CM  
S
S
S
F
= 3V  
= 3V  
C = 1.8pF  
F
–10  
–15  
–20  
–25  
–30  
–5  
T
T
T
T
T
T
T
T
T
= 125°C  
A
A
A
A
A
A
A
A
A
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
A
A
A
A
A
A
A
A
A
= 105°C  
= 90°C  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
–10  
–15  
–20  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
UNFILTERED OUTPUTS  
V
T
= V  
= MID-SUPPLY  
CM  
A
F
OCM  
= 25°C  
R = R = 100Ω, C IN PARALLEL WITH R  
F
I
F
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
10  
100  
FREQUENCY (MHz)  
1000  
SHDN PIN VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
64041 G08  
64041 G07  
64041 G09  
6404f  
8
LTC6404  
LTC6404-1 TYPICAL PERFORMANCE CHARACTERISTICS  
Small-Signal Frequency Response  
vs Gain Setting Resistor Values  
and Supply Voltage  
Small-Signal Frequency  
Response vs CLOAD  
Small-Signal Frequency  
Response vs Temperature  
10  
5
10  
5
5
0
C
= 10pF  
LOAD  
T
= –45°C  
A
R = R = 100Ω  
F
I
–5  
0
0
C
= 5pF  
R = R = 200Ω  
LOAD  
F
I
T
= 25°C  
A
–10  
–15  
–20  
–25  
–30  
C
= 0pF  
LOAD  
–5  
–5  
R = R = 499Ω  
F
I
UNFILTERED OUTPUTS  
T
= 90°C  
A
V
V
= 3V  
= 5V  
S
S
V
T
= V  
= MID-SUPPLY  
–10  
–15  
–20  
CM  
A
OCM  
–10  
–15  
–20  
= 25°C  
I
R = R = 100Ω  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
= V = MID-SUPPLY  
F
V
= 3V AND V = 5V  
V
T
= V  
= MID-SUPPLY  
V
S
S
CM  
A
S
OCM  
CM  
OCM  
R
= 200Ω,  
= 25°C  
R = R = 100Ω  
LOAD  
F
S
I
(EACH OUTPUT TO GROUND)  
V
= 3V AND V = 5V  
V
= 3V AND V = 5V  
S
S
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
64041 G11  
64041 G12  
64041 G10  
Small-Signal Frequency  
Response vs Temperature  
Large-Signal Step Response  
Small-Signal Step Response  
0.50  
0.25  
0
5
0
1.5  
1.0  
UNFILTERED DIFFERENTIAL  
OUTPUT  
T
= 25°C  
A
V
INDIFF  
–5  
FILTERED  
DIFFERENTIAL  
OUTPUT  
0.5  
–10  
–15  
–20  
–25  
–30  
–35  
V
V
V
OUTDIFF  
OUTDIFF  
INDIFF  
T
= 90°C  
A
0
T
= 25°C  
A
T
= –45°C  
–0.5  
–1.0  
–1.5  
A
–0.25  
–0.50  
FILTERED OUTPUT  
= V = MID-SUPPLY  
V
CM  
OCM  
R = R = 100Ω  
V
= V  
I
= MID-SUPPLY  
V
= V  
I
= MID-SUPPLY  
OCM  
F
I
CM  
F
OCM  
CM  
F
V
= 3V AND V = 5V  
S
R = R = 100Ω  
R = R = 100Ω  
S
10  
100  
FREQUENCY (MHz)  
1000  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
TIME (ns)  
TIME (ns)  
64041 G15  
64041 G14  
64041 G13  
Distortion vs Input Common Mode  
Voltage  
Distortion vs Output Amplitude  
Distortion vs Frequency  
–40  
–50  
–30  
–40  
–40  
–50  
V
= 3V  
I
V
V
= V  
= MID-SUPPLY  
OCM  
S
F
CM  
S
A
V
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
R = R = 100Ω  
= 3V  
= 3V  
V
= 2V  
IN  
= 10MHz  
T
= 25oC  
P-P  
= 2V  
OUTDIFF  
P-P  
f
C = 0pF  
IN  
F
R = R = 100Ω  
F
I
–50  
–60  
R = R = 1007  
–60  
F
I
DIFFERENTIAL  
INPUT  
SINGLE-ENDED  
INPUT  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
V
= FULLY DIFFERENTIAL INPUT  
IN  
–60  
–70  
f
= 10MHz  
IN  
–70  
–70  
–80  
–80  
HD2  
–80  
–90  
HD3  
HD2  
–90  
HD3  
HD2  
HD2  
–90  
–100  
–110  
–120  
HD2  
HD3  
–100  
–110  
–100  
–110  
HD3  
1.0  
HD3  
1.5  
0
0.5  
1.0  
2.0  
+
2.5  
3.0  
0
1
2
3
4
5
6
0.1  
10  
100  
DC COMMON MODE INPUT (AT IN AND IN PINS) (V)  
V
(V  
)
FREQUENCY (MHz)  
OUTDIFF P-P  
64041 G17  
64041 G18  
64041 G16  
6404f  
9
LTC6404  
LTC6404-1 TYPICAL PERFORMANCE CHARACTERISTICS  
LTC6404-1 Driving LTC2207  
16-Bit ADC  
LTC6404-1 Driving LTC2207  
Distortion vs Output Amplitude  
16-Bit ADC  
–30  
–40  
0
–20  
0
–20  
V
V
T
= V  
= MID-SUPPLY  
OCM  
V
V
= V  
= 1.7V  
OCM  
V
V
= V  
= 1.5V  
CM  
S
A
F
CM  
S
F
IN  
CM  
S
F
IN  
OCM  
= 3V  
= 3.3V  
= 3V  
= 25°C  
R = R = 100Ω  
R = R = 100Ω  
I
I
R = R = 100Ω  
V
f
= 2V DIFFERENTIAL  
V
f
= 2V DIFFERENTIAL  
I
P-P  
= 105Msps  
P-P  
–50  
V
f
= SINGLE-ENDED INPUT  
= 105Msps  
IN  
SAMPLE  
SAMPLE  
–40  
–40  
= 10MHz  
10MHz, 4092 POINT FFT  
10MHz, 65536 POINT FFT  
IN  
–60  
FUNDAMENTAL = –1dBFS  
HD2 = –98.8dBc  
HD3 = –90.2dBc  
FUNDAMENTAL = –1dBFS  
HD2 = –90.7dBc  
HD3 = –86.6dBc  
–60  
–70  
–60  
–80  
–80  
HD3  
–80  
HD2  
HD8  
HD2  
HD3  
HD3  
HD5  
–90  
HD4  
40  
HD5  
HD7  
–100  
–120  
HD7  
HD2  
HD9  
HD9  
–100  
–120  
HD4  
40  
–100  
–110  
0
1
2
3
4
5
0
10  
20  
30  
50  
0
10  
20  
30  
50  
V
(V  
)
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTDIFF P-P  
64041 G19  
64041 G20  
64041 G21  
Voltage Noise Density vs  
Frequency  
LTC6404-1 Noise Figure vs  
Frequency  
100  
10  
1
28  
V
V
= V  
= MID-SUPPLY  
OCM  
CM  
S
A
V
V
= V  
= MID-SUPPLY  
OCM  
CM  
S
A
= 3V  
= 3V  
24  
20  
16  
12  
8
T
= 25°C  
I
T
= 25°C  
R = R = 100Ω  
F
SEE FIGURE 2 CIRCUIT  
COMMON MODE  
DIFFERENTIAL INPUT  
REFERRED  
4
0
0.01  
0.1  
1
10  
100  
1000  
10  
1000  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64041 G22  
64041 G23  
6404f  
10  
LTC6404  
LTC6404-2 TYPICAL PERFORMANCE CHARACTERISTICS  
Active Supply Current vs  
Temperature  
Shutdown Supply Current vs  
Temperature  
Differential Voltage Offset (Input  
Referred) vs Temperature  
1.0  
0.8  
33  
32  
0.5  
0.4  
5 REPRESENTATIVE UNITS  
V
= V  
= MID-SUPPLY  
OCM  
V
= V  
= MID-SUPPLY  
CM  
CM  
OCM  
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
= 3V  
0.6  
V
= 5V  
V
= 5V  
S
S
0.4  
31  
0.2  
V
= 3V  
0.3  
S
0
30  
29  
V
= 3V  
S
V
= 2.7V  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
S
0.2  
0.1  
0
V
= 2.7V  
S
28  
27  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
100  
125 150  
25 50 75  
–75 –50 –25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
64042 G03  
64042 G01  
64042 G02  
Common Mode Voltage Offset  
(Input Referred) vs Temperature  
Active Supply Current vs Supply  
Voltage and Temperature  
SHDN Supply Current vs Supply  
Voltage and Temperature  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
35  
30  
25  
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
5 REPRESENTATIVE UNITS  
A
A
A
A
A
A
A
A
A
V
= V  
= MID-SUPPLY  
CM  
OCM  
+
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
SHDN = V  
= 3V  
6
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
4
2
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
A
A
A
A
A
A
A
A
A
0
20  
15  
–2  
–4  
–6  
–8  
–10  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
10  
5
V
= V  
= MID-SUPPLY  
4 5  
CM  
OCM  
SHDN = V  
0
–75 –50 –25  
0
25 50 75 100 125 150  
0
1
2
3
1
2
3
4
0
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
SUPPLY  
SUPPLY  
64042 G06  
64042 G03  
64042 G05  
SHDN Pin Current vs SHDN Pin  
Voltage and Temperature  
Supply Current vs SHDN Pin  
Voltage and Temperature  
Small-Signal Frequency  
Response  
15  
10  
0
–5  
35  
30  
25  
20  
15  
10  
5
V
V
= V  
= MID-SUPPLY  
OCM  
V
V
= 3V  
= 5V  
CM  
S
V
V
= V  
= MID-SUPPLY  
OCM  
S
S
CM  
S
= 3V  
= 3V  
C = 0pF  
F
5
–10  
–15  
–20  
–25  
–30  
C = 1pF  
F
0
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
A
A
A
A
A
A
A
A
A
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
A
A
A
A
A
A
A
A
A
= 90°C  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
–5  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
UNFILTERED OUTPUTS  
–10  
–15  
–20  
V
T
= V  
= MID-SUPPLY  
CM  
A
I
F
OCM  
= 25°C  
R = 100ꢀ, R = 200ꢀ,  
C IN PARALLEL WITH R  
F
F
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
10  
100  
FREQUENCY (MHz)  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SHDN PIN VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
64042 G07  
64042 G08  
64042 G09  
6404f  
11  
LTC6404  
LTC6404-2 TYPICAL PERFORMANCE CHARACTERISTICS  
Small-Signal Frequency  
Response vs CLOAD  
Small-Signal Frequency  
Response vs Temperature  
Small-Signal Frequency Response  
vs Gain Setting Resistor Values  
15  
10  
25  
20  
15  
10  
5
15  
10  
5
T
= –45°C  
A
R = 100ꢀ, R = 200ꢀ  
C
= 10pF  
I
F
LOAD  
C
= 5pF  
LOAD  
5
T
= 25°C  
A
R = 200ꢀ, R = 402ꢀ  
I
F
0
T
= 90°C  
A
R = 499ꢀ, R = 1k  
C
= 0pF  
0
I
F
LOAD  
–5  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
= V = MID-SUPPLY  
0
V
V
= 3V  
= 5V  
S
S
V
T
= V  
= MID-SUPPLY  
V
CM  
A
OCM  
–5 CM  
OCM  
= 25°C  
–10  
–20  
–25  
T
= 25°C  
A
–5  
–10  
–15  
UNFILTERED OUTPUTS  
R = 100ꢀ, R = 200ꢀ  
R = 100ꢀ, R = 200ꢀ  
I
S
F
I
S
F
V
T
= V  
= MID-SUPPLY  
V
R
= 3V AND V = 5V  
–10  
–15  
CM  
A
S
OCM  
V
= 3V AND V = 5V  
S
S
= 25°C  
= 200ꢀ,  
R
LOAD  
= 200ꢀ,  
LOAD  
V
= 3V AND V = 5V  
(EACH OUTPUT TO GROUND)  
S
(EACH OUTPUT TO GROUND)  
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
64042 G10  
64042 G11  
64042 G12  
Small-Signal Frequency  
Response vs Temperature  
Large-Signal Step Response  
Small-Signal Step Response  
1.00  
0.75  
0.50  
0.25  
0
15  
10  
1.5  
1.0  
UNFILTERED DIFFERENTIAL  
OUTPUT  
V
OUTDIFF  
V
OUTDIFF  
T
= 25°C  
A
5
0
0.5  
FILTERED  
DIFFERENTIAL  
OUTPUT  
V
INDIFF  
V
INDIFF  
–5  
T
= 90°C  
0
A
–10  
–15  
–20  
–25  
–30  
–0.25  
–0.50  
–0.75  
–1.00  
T
= 25°C  
–0.5  
–1.0  
–1.5  
A
T
= –45°C  
A
V
= V  
= MID-SUPPLY  
OCM  
CM  
I
S
V
= V  
= MID-SUPPLY  
OCM  
R = 100ꢀ, R = 200ꢀ  
V
= V  
= MID-SUPPLY  
OCM  
F
CM  
CM  
I
R = 100ꢀ, R = 200ꢀ  
I F  
R = 100ꢀ, R = 200ꢀ  
V
= 3V  
F
10  
100  
FREQUENCY (MHz)  
1000  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
TIME (ns)  
TIME (ns)  
64042 G14  
64042 G15  
64042 G13  
Distortion vs Input Common Mode  
Voltage  
Distortion vs Frequency  
Distortion vs Output Amplitude  
–40  
–50  
–60  
–70  
–40  
–50  
–40  
–50  
V
V
= 3V  
= V  
V
V
= 3V  
= V  
V
V
V
= V  
= MID-SUPPLY  
OCM  
S
CM  
S
CM  
CM  
S
= MID-SUPPLY  
F
= MID-SUPPLY  
OCM  
= 3V  
OCM  
R = 100ꢀ, R = 200ꢀ  
R = 100ꢀ, R = 200ꢀ  
= 2V  
I
I
F
OUTDIFF  
R = 100Ω, R = 200Ω  
P-P  
V
f
= 1V  
V
f
= DIFFERENTIAL INPUT  
IN  
P-P  
IN  
F
I
–60  
–60  
= 10MHz  
= 10MHz  
IN  
IN  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
–70  
–80  
–90  
–70  
HD3  
–80  
HD2  
HD3  
–80  
HD2  
–100  
–110  
–120  
–130  
–140  
–90  
HD2  
–90  
–100  
–110  
–120  
HD2  
HD3  
HD3  
–100  
–110  
HD2  
2.0  
HD3  
0.1  
1
10  
100  
0
1
2
3
4
5
6
0
0.5  
1.0  
1.5  
2.5  
+
V
(V  
)
DC COMMON MODE INPUT (AT IN AND IN PINS) (V)  
FREQUENCY (MHz)  
OUTDIFF P-P  
64042 G18  
64042 G17  
64042 G16  
6404f  
12  
LTC6404  
LTC6404-2 TYPICAL PERFORMANCE CHARACTERISTICS  
LTC6404-2 Driving LTC2207  
16-Bit ADC (Two Tones)  
LTC6404-2 Driving LTC2207  
16-Bit ADC (Single Tone)  
Distortion vs Output Amplitude  
–40  
–50  
0
–20  
0
–20  
V
V
= 3V  
= V  
V
V
V
= 3.3V  
V
= 3.3V  
INDIFF  
S
CM  
S
S
= MID-SUPPLY  
OCM  
= 2V  
V
= 1V  
OUTDIFF  
= V  
P-P  
P-P  
R = 100ꢀ, R = 200ꢀ  
= 1.25V  
FULLY DIFFERENTIAL  
I
F
CM  
OCM  
V
f
= SINGLE-ENDED INPUT  
= 10MHz  
R = 1007, R = 2007  
V
V
= 2V  
IN  
I
F
OUTDIFF  
= V  
P-P  
–60  
10.1MHz, 16184 POINT FFT  
= 105Msps  
= 1.25V  
OCM  
IN  
CM  
–40  
–40  
f
R = 100ꢀ, R = 200ꢀ  
SAMPLE  
I
F
–70  
FUNDAMENTAL = –1dBFS  
HD2 = –92.4dBc  
16184 POINT FFT  
= 105Msps  
–60  
f
SAMPLE  
–80  
–60  
HD3 = –93.02dBc  
TONE1, TONE2 = –7dBFS  
IM3U = –106.8dBc  
IM3U  
IM3L  
–80  
–90  
IM3L = –107.7dBc  
HD2  
HD3  
–80  
HD2  
HD3  
HD7  
–100  
–110  
–120  
HD4  
40  
HD5  
–100  
–120  
–100  
–120  
0
1
2
3
4
5
6
0
10  
20  
30  
50  
0
10  
20  
30  
40  
50  
V
(V  
)
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTDIFF P-P  
64042 G19  
64042 G20  
64042 G21  
Voltage Noise Density vs  
Frequency  
LTC6404-2 Noise Figure vs  
Frequency  
100  
10  
1
28  
V
V
= 3V  
= V  
V
V
T
= V  
= MID-SUPPLY  
OCM  
S
CM  
CM  
S
A
= MID-SUPPLY  
OCM  
= 3V  
24  
20  
16  
12  
8
R = 100Ω, R = 200Ω  
= 25°C  
SEE FIGURE 2 CIRCUIT  
I
F
T
= 25°C  
A
COMMON MODE  
DIFFERENTIAL INPUT  
REFERRED  
4
0
0.01  
0.1  
1
10  
100  
1000  
10  
1000  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64042 G22  
64042 G23  
6404f  
13  
LTC6404  
LTC6404-4 TYPICAL PERFORMANCE CHARACTERISTICS  
Active Supply Current vs  
Temperature  
Shutdown Supply Current vs  
Temperature  
Differential Voltage Offset (Input  
Referred) vs Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.8  
33  
32  
V
= V  
= MID-SUPPLY  
OCM  
5 REPRESENTATIVE UNITS  
V
= V  
= MID-SUPPLY  
OCM  
CM  
CM  
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
= 3V  
0.6  
V
= 5V  
S
V
= 5V  
S
0.4  
31  
V
S
= 3V  
0.2  
V
= 3V  
30  
29  
0
S
V
= 2.7V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= 2.7V  
S
28  
27  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50  
150  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
64044 G03  
64044 G01  
64044 G02  
Common Mode Voltage Offset  
(Input Referred) vs Temperature  
Active Supply Current vs Supply  
Voltage and Temperature  
SHDN Supply Current vs Supply  
Voltage and Temperature  
50  
40  
40  
0.7  
0.6  
V
= V  
=
OCM  
5 REPRESENTATIVE UNITS  
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
CM  
A
A
A
A
A
A
A
A
A
MID-SUPPLY  
V
V
= V  
= MID-SUPPLY  
CM  
S
OCM  
35  
30  
25  
+
SHDN = V  
= 3V  
30  
= 75°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
20  
10  
T
T
T
T
T
T
T
T
T
= 125°C  
A
A
A
A
A
A
A
A
A
0
20  
15  
= 105°C  
= 90°C  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
–10  
–20  
–30  
–40  
–50  
10  
5
V
= V  
= MID-SUPPLY  
5
4
CM  
OCM  
+
SHDN = V  
0
1
2
4
0
5
–75 –50 –25  
0
25 50 75 100 125 150  
3
0
1
2
3
TEMPERATURE (°C)  
V
(V)  
V
(V)  
SUPPLY  
SUPPLY  
64044 G05  
64044 G04  
64044 G06  
SHDN Pin Current vs SHDN Pin  
Voltage and Temperature  
Supply Current vs SHDN Pin  
Voltage and Temperature  
Small-Signal Frequency  
Response  
35  
30  
25  
20  
15  
10  
5
0
–5  
20  
15  
10  
5
V
V
= 3V  
= 5V  
V
V
= V  
= MID-SUPPLY  
V
V
= V  
= MID-SUPPLY  
OCM  
S
S
CM  
S
OCM  
C = 0pF  
F
CM  
S
= 3V  
= 3V  
–10  
–15  
–20  
–25  
–30  
C = 1pF  
F
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
A
A
A
A
A
A
A
A
A
T
T
T
T
T
T
T
T
T
= 125°C  
= 105°C  
= 90°C  
A
A
A
A
A
A
A
A
A
= 90°C  
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
0
= 75°C  
= 50°C  
= 25°C  
= –10°C  
= –45°C  
= –60°C  
–5  
–10  
–15  
V
= V  
= MID-SUPPLY  
OCM  
CM  
I
F
R = 100ꢀ, R = 402ꢀ,  
F
C IN PARALLEL WITH R  
F
0
2.0  
3.0  
0
0.5  
1.0  
1.5  
2.5  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
10  
100  
FREQUENCY (MHz)  
1000  
SHDN PIN VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
64044 G09  
64044 G08  
64044 G07  
6404f  
14  
LTC6404  
LTC6404-4 TYPICAL PERFORMANCE CHARACTERISTICS  
Small-Signal Frequency  
Response vs CLOAD  
Small-Signal Frequency  
Response vs Temperature  
Small-Signal Frequency Response  
vs Gain Setting Resistor Values  
20  
15  
10  
5
20  
15  
10  
5
25  
20  
15  
10  
5
C
= 10pF  
LOAD  
R = 100ꢀ, R = 402ꢀ  
I
F
C
= 5pF  
LOAD  
T
= –45°C  
A
R = 140ꢀ, R = 562ꢀ  
I
F
T = 25°C  
A
C
= 0pF  
LOAD  
T
= 90°C  
A
R = 200ꢀ, R = 800Ω  
I
F
0
0
0
V
V
= 3V  
= 5V  
= MID-SUPPLY  
S
S
–5  
–10  
–15  
–5  
–10  
–15  
V
V
= 3V  
= 5V  
= MID-SUPPLY  
–5  
–10  
–15  
S
S
V
= V  
= MID-SUPPLY  
OCM  
V
= V  
CM  
I
S
CM  
I
S
OCM  
R = 100ꢀ, R = 402ꢀ  
R = 100ꢀ, R = 402ꢀ  
V
V
= V  
OCM  
F
F
CM  
S
V
= 3V AND V = 5V  
S
V
= 3V AND V = 5V  
S
= 3V AND V = 5V  
S
10  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
100  
FREQUENCY (MHz)  
64044 G10  
64044 G11  
64044 G12  
Small-Signal Frequency  
Response vs Temperature  
Large-Signal Step Response  
Small-Signal Step Response  
20  
15  
0.75  
0.50  
2.5  
2.0  
UNFILTERED DIFFERENTIAL  
OUTPUT AT 25°C  
V
OUTDIFF  
V
OUTDIFF  
1.5  
10  
1.0  
5
0.25  
0
V
V
INDIFF  
INDIFF  
0.5  
FILTERED  
0
DIFFERENTIAL OUTPUT  
0
–5  
T
= 25°C  
A
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–10  
–15  
–20  
–25  
T
= –45°C  
–0.25  
–0.50  
–0.75  
A
T
= 90°C  
A
V
= V  
= MID-SUPPLY  
OCM  
V
V
= V  
= 3V  
= MID-SUPPLY  
OCM  
V
= V  
= MID-SUPPLY  
CM  
S
I
CM  
S
I
CM  
I
S
OCM  
V
= 3V  
R = 100ꢀ, R = 402ꢀ  
F
R = 100ꢀ, R = 402ꢀ  
R = 100ꢀ, R = 402ꢀ  
V
= 3V  
F
F
10  
100  
FREQUENCY (MHz)  
1000  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
TIME (ns)  
TIME (ns)  
64044 G13  
64044 G15  
64044 G14  
Distortion vs Input Common Mode  
Voltage  
Distortion vs Frequency  
Distortion vs Output Amplitude  
–40  
–50  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
V
V
= V  
= MID-SUPPLY  
OCM  
V
V
= V  
= MID-SUPPLY  
OCM  
V
V
V
= V  
= MID-SUPPLY  
OCM  
CM  
S
I
CM  
S
I
CM  
S
= 3V  
= 3V  
= 3V  
R = 100Ω, R = 402Ω  
= 10MHz  
R = 100Ω, R = 402Ω  
= 10MHz  
= 2V  
F
F
OUT  
P-P  
F
–60  
f
f
R = 100Ω, R = 402Ω  
IN  
IN  
I
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
–70  
–80  
–80  
–90  
–80  
–90  
HD3  
HD3  
HD2  
–90  
HD2  
HD3  
HD2  
HD2  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–100  
–110  
–120  
HD2  
HD2  
HD3  
1.0  
HD3  
HD3  
1
0.1  
10  
100  
0
0.5  
2.0  
2.5  
0
1
2
4
)
5
6
1.5  
3
+
FREQUENCY (MHz)  
DC COMMON MODE INPUT (AT IN AND IN PINS) (V)  
V
(V  
OUTDIFF P-P  
64044 G16  
64044 G17  
64044 G18  
6404f  
15  
LTC6404  
LTC6404-4 TYPICAL PERFORMANCE CHARACTERISTICS  
LTC6404-4 Driving LTC2207  
16-Bit ADC (Two Tones)  
LTC6404-4 Driving LTC2207  
16-Bit ADC (Single Tone)  
0
0
V
V
V
= 3.3V  
V
V
V
= 3.3V  
S
S
= 2V  
= 2V  
OUTDIFF  
= V  
P-P  
OUTDIFF  
= V  
P-P  
–20  
–20  
= 1.25V  
= 1.4V  
CM  
OCM  
CM  
OCM  
R = 100Ω, R = 402Ω  
R = 100Ω, R = 402Ω  
I
F
I
F
10.1MHz, 64k POINT FFT  
= 105Msps  
64k POINT FFT  
= 105Msps  
–40  
–60  
–40  
–60  
f
f
SAMPLE  
SAMPLE  
FUNDAMENTAL = –1dBFS  
HD2 = –98.9dBc  
9.5MHz, 10.5MHz = –7dBFS  
IMD3L = –100.8dBc  
HD3 = –99.6dBc  
IMD3U = –102dBc  
–80  
–80  
IMD3L  
IMD3U  
–100  
–120  
–140  
–100  
–120  
–140  
10  
20  
30  
50  
0
40  
10  
20  
30  
50  
0
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64044 G19  
64044 G20  
LTC6404-4 Noise Figure vs  
Frequency  
Voltage Noise Density vs  
Frequency  
100  
10  
1
28  
24  
20  
16  
12  
8
V
V
= V  
= MID-SUPPLY  
OCM  
V
V
T
= V  
= MID-SUPPLY  
OCM  
CM  
S
I
CM  
S
A
= 3V  
= 3V  
R = 100Ω, R = 402Ω  
= 25°C  
= 25°C  
SEE FIGURE 2 CIRCUIT  
F
T
A
COMMON MODE  
DIFFERENTIAL INPUT  
REFERRED  
4
0
0.01  
0.1  
1
10  
100  
1000  
10  
1000  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64044 G21  
64044 G22  
PIN FUNCTIONS  
SHDN (Pin 1): When SHDN is floating or directly tied to  
V
(Pin 4): Output Common Mode Reference Voltage.  
OCM  
+
V , the LTC6404 is in the normal (active) operating mode.  
The voltage on V  
sets the output common mode  
OCM  
+
When Pin 1 is pulled a minimum of 2.1V below V , the  
voltage level (which is defined as the average of the volt-  
ages on the OUT and OUT pins). The V  
+
LTC6404 enters into a low power shutdown state. See  
Applications Information for more details.  
pin is the  
OCM  
midpoint of an internal resistive voltage divider between  
the supplies, developing a (default) mid-supply voltage  
potential to maximize output signal swing. In general, the  
+
V , V (Pins 2, 10, 11 and Pins 3, 9, 12): Power Supply  
Pins.Threepairsofpowersupplypinsareprovidedtokeep  
the power supply inductance as low as possible to prevent  
degradation of amplifier 2nd harmonic performance. See  
the Layout Considerations section for more detail.  
V
OCM  
pin can be overdriven by an external voltage refer-  
ence capable of driving the input impedance presented  
by the V  
pin. On the LTC6404-1, the V  
pin has a  
OCM  
OCM  
input resistance of approximately 23.5k to a mid-supply  
6404f  
16  
LTC6404  
PIN FUNCTIONS  
potential. On the LTC6404-2, the V  
resistance of approximately 14k. On the LTC6404-4, the  
pin has a input  
thatthecontinuous(DC+AC  
to under 50mA.  
)outputcurrentbelimited  
OCM  
RMS  
V
V
pin has a input resistance of approximately 7k. The  
pin should be bypassed with a high quality ceramic  
OCM  
OCM  
+
OUTF , OUTF (Pins 8, 13): Filtered Output Pins. These  
pins have a series 50Ω resistor connected between the  
filtered and unfiltered outputs and three 12pF capacitors.  
bypass capacitor of at least 0.01ꢁF, (unless you are using  
split supplies, then connect directly to a low impedance,  
lownoisegroundplane)tominimizecommonmodenoise  
from being converted to differential noise by impedance  
mismatches both externally and internally to the IC.  
+
BothOUTF andOUTF have12pFtoV , plusanadditional  
+
12pF differentially between OUTF and OUTF . This filter  
creates a differential lowpass frequency response with  
a –3dB bandwidth of 88.5MHz. For long-term device  
reliability, it is recommended that the continuous (DC +  
NC (Pins 5, 16): No Connection. These pins are not con-  
nected internally.  
AC ) output current be limited to under 40mA.  
RMS  
+
+
OUT , OUT (Pins 7, 14): Unfiltered Output Pins. Besides  
driving the feedback network, each pin can drive an ad-  
ditional 50Ω to ground with typical short-circuit current  
limiting of 65mA. Each amplifier output is designed to  
drive a load capacitance of 10pF. This basically means  
the amplifier can drive 10pF from each output to ground  
or 5pF differentially. Larger capacitive loads should be  
decoupled with at least 25Ω resistors in series with each  
output. For long-term device reliability, it is recommended  
IN ,IN (Pins15,6):NoninvertingandInvertingInputPins  
of the Amplifier, Respectively. For best performance, it is  
highly recommended that stray capacitance be kept to an  
absolute minimum by keeping printed circuit connections  
asshortaspossible,andifnecessary,strippingbacknearby  
surrounding ground plane away from these pins.  
ExposedPad(Pin17):TiethepadtoV (Pins3,9,and12).  
If split supplies are used, do not tie the pad to ground.  
BLOCK DIAGRAM  
16  
15  
14  
13  
+
IN  
OUT  
OUTF  
NC  
+
V
+
+
V
V
V
V
+
V
V
+
V
12pF  
V
V
66k  
SHDN  
12  
1
2
+
V
50Ω  
50Ω  
+
+
V
V
V
+
+
11  
V
2 • R  
2 • R  
VOCM  
VOCM  
+
V
V
+
12pF  
V
V
OCM  
+
V
V
V
3
4
10  
V
12pF  
V
OCM  
V
9
+
+
V
V
V
V
V
+
V
V
+
+
NC  
IN  
OUT  
OUTF  
5
6
7
8
6404 BD  
IC  
2 • R  
VOCM  
LTC6404-1  
LTC6404-2  
LTC6404-4  
47k  
28k  
14k  
6404f  
17  
LTC6404  
APPLICATIONS INFORMATION  
I
L
+
R
R
F
I
V
V
OUT  
IN  
+
V
OUTF  
13  
V
INP  
16  
15  
14  
+
NC  
IN  
OUT  
OUTF  
LTC6404  
SHDN  
12pF  
R
BAL  
V
SHDN  
12  
V
V
1
2
SHDN  
0.1μF  
50Ω  
50Ω  
0.1μF  
0.1μF  
+
+
V
V
V
V
+
+
11  
V
V
+
V
12pF  
OUTCM  
+
+
V
V
V
0.1μF  
V
OCM  
CM  
+
V
V
V
0.1μF  
3
4
10  
V
V
12pF  
V
OCM  
R
BAL  
V
9
V
OCM  
0.1μF  
0.01μF  
+
+
NC  
IN  
OUT  
OUTF  
+
5
6
7
8
V
+
INM  
V
OUTF  
I
L
+
R
R
F
I
V
V
OUT  
IN  
6404 F01  
Figure 1. DC Test Circuit  
0.01μF  
0.01μF  
+
R
R
100Ω  
I
F
V
V
OUT  
IN  
V
OUTF  
13  
16  
15  
14  
+
NC  
IN  
OUT  
OUTF  
LTC6404  
SHDN  
12pF  
V
MINI-CIRCUITS  
TCM4-19  
MINI-CIRCUITS  
TCM4-19  
SHDN  
12  
V
50Ω  
V
1
2
SHDN  
0.1μF  
50Ω  
50Ω  
0.1μF  
+
+
V
V
V
+
+
+
11  
V
V
+
12pF  
V
50Ω  
IN  
+
+
V
V
V
0.1μF  
OCM  
+
V
V
V
0.1μF  
3
10  
V
V
V
12pF  
0.1μF  
V
OCM  
V
4
9
V
OCM  
0.1μF  
0.01μF  
+
+
NC  
IN  
OUT  
OUTF  
5
6
7
8
+
0.01μF  
0.01μF  
V
OUTF  
+
R
R
F
100Ω  
I
V
V
OUT  
IN  
6404 F02  
Figure 2. AC Test Circuit (–3dB BW testing)  
6404f  
18  
LTC6404  
APPLICATIONS INFORMATION  
Functional Description  
on-chipsinglepoleRCpassivelterbandlimitstheltered  
outputs to a –3dB frequency of 88.5MHz. The user has a  
choice of using the unfiltered outputs, the filtered outputs,  
or modifying the filtered outputs to adjust the frequency  
response by adding additional components.  
The LTC6404 is a small outline, wide band, low noise,  
andlowdistortionfully-differentialamplifierwithaccurate  
outputphasebalancing. TheLTC6404isoptimizedtodrive  
lowvoltage,single-supply,differentialinput14-bitto18-bit  
analog-to-digitalconverters(ADCs).TheLTC6404’soutput  
is capable of swinging rail-to-rail on supplies as low as  
2.7V,whichmakestheamplifieridealforconvertingground  
referenced, single-ended signals into DC level-shifted  
differential signals in preparation for driving low voltage,  
single-supply, differential input ADCs. Unlike traditional  
op amps which have a single output, the LTC6404 has  
two outputs to process signals differentially. This allows  
for two times the signal swing in low voltage systems  
when compared to single-ended output amplifiers. The  
balanced differential nature of the amplifier also provides  
even-order harmonic distortion cancellation, and less  
susceptibility to common mode noise (e.g., power supply  
noise). The LTC6404 can be used as a single-ended input  
to differential output amplifier, or as a differential input to  
differential output amplifier.  
In applications where the full bandwidth of the LTC6404 is  
+
desired,theunfilteredoutputs(OUT andOUT )shouldbe  
+
used. The unfiltered outputs OUT and OUT are designed  
todrive10pFtoground(or5pFdifferentially).Capacitances  
greater than 10pF will produce excess peaking, and can  
be mitigated by placing at least 25Ω in series with each  
output pin.  
Input Pin Protection  
The LTC6404’s input stage is protected against differential  
input voltages which exceed 1.4V by two pairs of back-  
to-back diodes connected in anti-parallel series between  
+
IN and IN (Pins 6 and 15). In addition, the input pins  
have steering diodes to either power supply. If the input  
pair is overdriven, the current should be limited to under  
10mA to prevent damage to the IC. The LTC6404 also has  
steering diodes to either power supply on the V  
and  
The LTC6404’s output common mode voltage, defined  
as the average of the two output voltages, is independent  
of the input common mode voltage, and is adjusted by  
OCM  
SHDN pins (Pins 4 and 1), and if forced to voltages which  
exceed either supply, they too, should be current-limited  
to under 10mA.  
applying a voltage on the V  
pin. If the pin is left open,  
OCM  
there is an internal resistive voltage divider that develops  
+
SHDN Pin  
a potential halfway between the V and V pins. Whenever  
this pin is not hard tied to a low impedance ground plane,  
it is recommended that a high quality ceramic capacitor is  
If the SHDN pin (Pin 1) is pulled 2.1V below the posi-  
tive supply, circuitry is activated which powers down  
the LTC6404. The pin will have the Thevenin equivalent  
used to bypass the V  
pin to a low impedance ground  
OCM  
+
plane (See Layout Considerations in this document). The  
LTC6404’s internal common mode feedback path forces  
accurate output phase balancing to reduce even order  
harmonics, and centers each individual output about the  
impedance of approximately 66kΩ to V . If the pin is left  
unconnected, an internal pull-up resistor of 150k will  
keep the part in normal active operation. Care should  
be taken to control leakage currents at this pin to under  
1μA to prevent inadvertently putting the LTC6404 into  
shutdown. In shutdown, all biasing current sources are  
potential set by the V  
pin.  
OCM  
VOUT+ + VOUT  
+
shut off, and the output pins, OUT and OUT , will each  
appear as open collectors with a non-linear capacitor in  
parallel and steering diodes to either supply. Because of  
thenon-linearcapacitance,theoutputsstillhavetheability  
to sink and source small amounts of transient current if  
VOUTCM = VOCM  
=
2
+
The outputs (OUT and OUT ) of the LTC6404 are capable  
of swinging rail-to-rail. They can source or sink up to ap-  
proximately 65mA of current.  
+
driven by significant voltage transients. The inputs (IN ,  
+
Additional outputs (OUTF and OUTF ) are available that  
and IN ) appear as anti-parallel diodes which can conduct  
+
providelteredversionsoftheOUT andOUT outputs.An  
6404f  
19  
LTC6404  
APPLICATIONS INFORMATION  
if voltage transients at the input exceed 1.4V. The inputs  
alsohavesteeringdiodestoeithersupply. Theturn-onand  
turn-off time between the shutdown and active states is  
typically less than 1μs.  
of single ended signals to differential output signals to  
drive differential input ADCs.  
Effects of Resistor Pair Mismatch  
In the circuit of Figure 3, it is possible the gain setting  
resistors will not perfectly match. Assuming infinite open  
loop gain, the differential output relationship is given by  
the equation:  
General Amplifier Applications  
As levels of integration have increased and correspond-  
ingly, system supply voltages decreased, there has been  
a need for ADCs to process signals differentially in order  
to maintain good signal to noise ratios. These ADCs are  
typically supplied from a single supply voltage which  
can be as low as 3V (2.7V min), and will have an optimal  
commonmodeinputrangenearmid-supply.TheLTC6404  
makes interfacing to these ADCs easy, by providing both  
single-ended to differential conversion as well as com-  
mon mode level shifting. The front page of this data sheet  
shows a typical application. Referring to Figure 1, the gain  
RF  
RI  
VOUTDIFF = VOUT+ VOUT  
• V  
+
INDIFF  
Δβ  
βAVG  
Δβ  
βAVG  
• V  
• VOCM  
INCM  
where:  
RI1  
RI2  
RI2 +RF2  
1
AVG = •  
2
β
+
R +R  
I1  
F1  
to V  
from V  
and V is:  
OUTDIFF  
INM  
INP  
R is the average of R , and R , and R is the average  
F
F1  
F2  
I
RF  
RI  
VOUTDIFF = VOUT+ VOUT  
VINP – V  
(
)
of R , and R .  
INM  
I1  
I2  
β
is defined as the average feedback factor (or gain)  
AVG  
Note from the above equation, the differential output volt-  
from the outputs to their respective inputs:  
+
age (V  
– V  
) is completely independent of input  
OUT  
OUT  
Δβ is defined as the difference in feedback factors:  
and output common mode voltages, or the voltage at  
the common mode pin. This makes the LTC6404 ideally  
suited for pre-amplification, level shifting and conversion  
RI2  
RI1  
Δβ =  
RI2 +RF2 RI1+RF1  
R
R
I2  
F2  
V
OUT  
V
OUTF  
13  
+
V
INP  
16  
15  
14  
+
NC  
IN  
OUT  
OUTF  
LTC6404  
SHDN  
V
SHDN  
12  
V
V
1
2
SHDN  
0.1μF  
0.1μF  
+
+
V
V
V
+
+
11  
V
V
+
+
+
V
V
V
0.1μF  
OCM  
+
V
V
V
0.1μF  
3
4
10  
V
V
V
0.1μF  
V
OCM  
V
9
V
VOCM  
0.1μF  
0.01μF  
+
+
+
NC  
IN  
OUT  
OUTF  
5
6
7
8
6404 F03  
V
INM  
+
R
R
F1  
I1  
V
OUTF  
+
V
OUT  
Figure 3. Basic Differential Amplifier with Feedback Resistor Pair Mismatch  
6404f  
20  
LTC6404  
APPLICATIONS INFORMATION  
V
is defined as the average of the two input voltages  
Using the LTC6404-1 in a single supply application on a  
single5Vsupplywith1%resistors, andtheinputcommon  
INCM  
V , and V  
(also called the source-referred input com-  
INP  
INM  
mon mode voltage):  
mode grounded, with the V  
pin biased at mid-supply,  
OCM  
the worst-case DC offset can induce 25mV of apparent  
offset voltage. With 0.1% resistors, the worst case appar-  
ent offset reduces to 2.5mV.  
1
2
V
= VINP + V  
(
)
INCM  
INM  
and V  
voltages:  
is defined as the difference of the input  
INDIFF  
Input Impedance and Loading Effects  
The input impedance looking into the V or V  
input  
INM  
INP  
V
= V – V  
INP INM  
INP  
INDIFF  
of Figure 1 depends on whether the sources V  
and  
When the feedback ratios mismatch (Δβ), common mode  
to differential conversion occurs.  
V
are fully differential. For balanced input sources  
INM  
(V = –V ), the input impedance seen at either input  
INP  
INM  
Setting the differential input to zero (V  
gree of common mode to differential conversion is given  
by the equation:  
= 0), the de-  
is simply:  
INDIFF  
R
INP  
= R = R  
INM I  
For single ended inputs, because of the signal imbalance  
at the input, the input impedance increases over the bal-  
anced differential case. The input impedance looking into  
either input is:  
VOUTDIFF = VOUT+ VOUT  
Δβ  
β
AVG  
VINCM – VOCM  
(
)
VINDIFF = 0  
RI  
RINP =RINM  
=
In general, the degree of feedback pair mismatch is a  
sourceofcommonmodetodifferentialconversionofboth  
signalsandnoise.Using1%resistorsorbetterwillmitigate  
mostproblems,andwillprovideabout34dBworst-caseof  
commonmoderejection.Using0.1%resistorswillprovide  
about 54dB of common mode rejection. A low impedance  
ground plane should be used as a reference for both the  
RF  
1
1– •  
2
R +R  
I
F
Inputsignalsourceswithnon-zerooutputimpedancescan  
alsocausefeedbackimbalancebetweenthepairoffeedback  
networks. For the best performance, it is recommended  
that the source’s output impedance be compensated for.  
If input impedance matching is required by the source,  
R1 should be chosen (see Figure 4):  
input signal source, and the V  
pin. A direct short of  
OCM  
V
to this ground or bypassing the V  
with a high  
OCM  
OCM  
quality 0.1μF ceramic capacitor to this ground plane, will  
further prevent common mode signals from being con-  
verted to differential.  
RINM RS  
R1=  
RINM RS  
There may be concern on how feedback ratio mismatch  
affectsdistortion.Distortioncausedbyfeedbackratiomis-  
match using 1% resistors or better is negligible. However,  
in single supply level shifting applications where there is  
a voltage difference between the input common mode  
voltage and the output common mode voltage, resistor  
mismatch can make the apparent voltage offset of the  
amplifier appear higher than specified.  
R
INM  
R
R
R
R
F
S
I
R1  
V
S
+
R1 CHOSEN SO THAT R1 || R  
= R  
S
+
INM  
S
R2 CHOSEN TO BALANCE R1 || R  
R
I
F
6404 F04  
The apparent input referred offset induced by feedback  
ratio mismatch is derived from the following equation:  
R2 = R || R1  
S
V
≈ (V  
– V  
) • Δβ  
OCM  
OSDIFF(APPARENT)  
ICM  
Figure 4. Optimal Compensation for Signal Source Impedance  
6404f  
21  
LTC6404  
APPLICATIONS INFORMATION  
With singled ended inputs, there is an input signal com-  
ponent to the input common mode voltage. Applying only  
According to Figure 4, the input impedance looking into  
thedifferentialamp(R )reflectsthesingleendedsource  
INM  
V
(setting V  
to zero), the input common voltage is  
case, thus:  
INP  
INM  
approximately:  
RI  
RINM  
=
V
+ + V  
2
RI  
R +R  
RF  
1
1– •  
2
IN  
IN  
V
=
VOCM  
+
ICM  
R +R  
I
F
I
F
RF  
R +R  
V
RF  
R +R  
INP  
2
VCM  
+
R2 is chosen to balance R1 || R :  
S
F
I
F
I
RI RS  
R2 =  
RI +RS  
Output Common Mode Voltage Range  
The output common mode voltage is defined as the aver-  
age of the two outputs:  
Input Common Mode Voltage Range  
The LTC6404’s input common mode voltage (V ) is  
ICM  
VOUT+ + VOUT  
+
defined as the average of the two input voltages, V , and  
VOUTCM = VOCM  
The V  
=
IN  
+
2
V
. It extends from V to 1.4V below V . The operating  
IN  
input common mode range depends on the circuit con-  
pin sets this average by an internal common  
OCM  
figuration (gain), V  
and V (Refer to Figure 5). For  
+
OCM  
CM  
modefeedbackloopwhichinternallyforcesV  
=V  
.
OUT  
OUT  
fully differential input applications, where V = –V  
,
INM  
INP  
Theoutputcommonmoderangeextendsfrom1.1Vabove  
the common mode input voltage is approximately:  
+
V to 1V below V (see the Electrical Characteristics table  
for the LTC6404-4 output common mode voltage range).  
V
+ + V  
2
RI  
R +R  
IN  
IN  
The V  
pin sits in the middle of a voltage divider which  
sets the default mid-supply open circuit potential.  
V
=
VOCM  
+
OCM  
ICM  
I
F
RF  
R +R  
VCM  
F
I
R
R
F
I
V
OUT  
V
OUTF  
13  
+
V
INP  
16  
15  
14  
+
NC  
IN  
OUT  
OUTF  
LTC6404  
SHDN  
V
SHDN  
12  
V
V
1
2
SHDN  
0.1μF  
0.1μF  
+
+
V
V
V
+
+
11  
V
V
+
V
CM  
+
+
V
V
V
0.1μF  
OCM  
+
V
V
V
0.1μF  
3
4
10  
V
V
V
0.1μF  
V
OCM  
V
9
V
VOCM  
0.01μF  
+
+
0.1μF  
+
NC  
IN  
OUT  
OUTF  
5
6
7
8
6404 F05  
V
INM  
+
R
R
F
V
I
OUTF  
+
V
OUT  
Figure 5. Circuit for Common Mode Range  
6404f  
22  
LTC6404  
APPLICATIONS INFORMATION  
In single supply applications, where the LTC6404 is used  
to interface to an ADC, the optimal common mode input  
range to the ADC is often determined by the ADC’s refer-  
ence. If the ADC makes a reference available for setting  
the input common mode voltage, it can be directly tied  
88.5MHz, and a noise bandwidth of 139MHz. The filter  
cutoff frequency is easily modified with just a few external  
components.Toincreasethecutofffrequency,simplyadd2  
+
+
equalvalueresistors,onebetweenOUT andOUTF andthe  
otherbetweenOUT andOUTF (Figure7).Theseresistors,  
in parallel with the internal 50Ω resistor, lower the overall  
resistance and therefore increase filter bandwidth. For  
example, to double the filter bandwidth, add two external  
50Ω resistors to lower the series filter resistance to 25Ω.  
The 36pF of capacitance remains unchanged, so filter  
bandwidth doubles. Keep in mind, the series resistance  
alsoservestodecoupletheoutputsfromloadcapacitance.  
The unfiltered outputs of the LTC6404 are designed to  
drive 10pF to ground or 5pF differentially, so care should  
be taken to not lower the effective impedance between  
to the V  
pin, but must be capable of driving the input  
OCM  
impedance presented by the V  
as listed in the Electri-  
OCM  
cal Characteristics Table. This impedance can be assumed  
to be connected to a mid-supply potential. If an external  
reference drives the V  
pin, it should still be bypassed  
OCM  
with a high quality 0.01μF or larger capacitor to a low  
impedance ground plane to filter any thermal noise and  
to prevent common mode signals on this pin from being  
inadvertently converted to differential signals.  
+
+
Output Filter Considerations and Use  
OUT and OUTF or OUT and OUTF below 25Ω.  
Filtering at the output of the LTC6404 is often desired to  
provide either anti-aliasing or improved signal to noise  
ratio. To simplify this filtering, the LTC6404 includes an  
additional pair of differential outputs (OUTF and OUTF )  
which incorporate an internal lowpass filter network with  
a –3dB bandwidth of 88.5MHz (Figure 6).  
To decrease filter bandwidth, add two external capacitors,  
+
one from OUTF to ground, and the other from OUTF to  
ground. A single differential capacitor connected between  
+
+
OUTF and OUTF can also be used, but since it is being  
driven differentially it will appear at each filtered output  
as a single-ended capacitance of twice the value. To halve  
the filter bandwidth, for example, two 36pF capacitors  
could be added (one from each filtered output to ground).  
Alternatively, one 18pF capacitor could be added between  
the filtered outputs, again halving the filter bandwidth.  
Combinations of capacitors could be used as well; a three  
These pins each have a DC output impedance of 50Ω. In-  
ternal capacitances are 12pF to V on each filtered output,  
plus an additional 12pF capacitor connected differentially  
between the two filtered outputs. This resistor/capacitor  
combination creates filtered outputs that look like a series  
50Ω resistor with a 36pF capacitor shunting each filtered  
output to AC ground, providing a –3dB bandwidth of  
49.9Ω  
14  
13  
OUT  
OUTF  
12pF  
LTC6404  
14  
13  
LTC6404  
OUT  
OUTF  
12pF  
V
12  
V
50Ω  
50Ω  
V
12  
50Ω  
50Ω  
+
V
FILTERED OUTPUT  
(176MHz)  
12pF  
+
FILTERED OUTPUT  
(88.5MHz)  
12pF  
V
12pF  
V
9
V
12pF  
V
+
+
9
OUT  
OUTF  
7
8
6404 F07  
+
+
OUT  
OUTF  
49.9Ω  
7
8
6404 F06  
Figure 7. LTC6404 Filter Topology Modified for 2x Filter  
Bandwidth (2 External Resistors)  
Figure 6. LTC6404 Internal Filter Topology  
6404f  
23  
LTC6404  
APPLICATIONS INFORMATION  
capacitor solution of 12pF from each filtered output to  
ground plus a 12pF capacitor between the filtered outputs  
would also halve the filter bandwidth (Figure 8).  
Noise Considerations  
The LTC6404’s input referred voltage noise is on the  
order of 1.5nV/√Hz. Its input referred current noise is on  
the order of 3pA/√Hz. In addition to the noise generated  
by the amplifier, the surrounding feedback resistors also  
contribute noise. A noise model is shown in Figure 9.  
The output noise generated by both the amplifier and the  
feedback components is governed by the equation:  
14  
13  
OUT  
OUTF  
12pF  
LTC6404  
12pF  
V
12  
50Ω  
50Ω  
V
2
+
FILTERED OUTPUT  
(44.25MHz)  
RF  
RI  
2
12pF  
eni • 1+  
+ 2• I •R  
+
12pF  
(
)
n
F
eno =  
2
V
12pF  
12pF  
V
RF  
2
9
2• enRI  
+ 2enRF  
R
I
+
+
OUT  
OUTF  
7
8
6404 F08  
A plot of this equation, and a plot of the noise generated  
by the feedback components for the LTC6404 is shown  
in Figure 10.  
Figure 8. LTC6404 Filter Topology Modified for 1/2x Filter  
Bandwidth (3 External Capacitors)  
2
2
e
e
nRF2  
nRI2  
R
I2  
R
F2  
+2  
i
n
16  
15  
14  
13  
+
NC  
IN  
OUT  
OUTF  
LTC6404  
SHDN  
V
SHDN  
+
12  
V
V
V
1
2
+
+
V
V
V
+
+
11  
V
V
V
+
+
2
2
V
V
OCM  
e
e
no  
nof  
+
V
V
3
4
10  
V
2
V
e
ncm  
V
V
OCM  
9
+
+
NC  
IN  
OUT  
OUTF  
5
6
7
8
6404 F09  
–2  
i
n
2
e
ni  
2
2
e
e
nRF1  
nRI1  
R
I1  
R
F1  
Figure 9. Noise Model of the LTC6404  
6404f  
24  
LTC6404  
APPLICATIONS INFORMATION  
100  
Layout Considerations  
TOTAL (AMPLIFIER AND  
FEEDBACK NETWORK)  
OUTPUT NOISE  
Because the LTC6404 is a very high speed amplifier, it is  
sensitive to both stray capacitance and stray inductance.  
Three pairs of power supply pins are provided to keep the  
power supply inductance as low as possible to prevent  
degradation of amplifier 2nd Harmonic performance. It is  
criticalthatcloseattentionbepaidtosupplybypassing.For  
single supply applications (Pins 3, 9 and 12 grounded) it  
is recommended that 3 high quality 0.1μF surface mount  
ceramic bypass capacitor be placed between pins 2 and  
3, between pins 11and 12, and between pins10 and 9 with  
direct short connections. Pins 3, 9 and 10 should be tied  
directly to a low impedance ground plane with minimal  
routing.Fordual(split)powersupplies,itisrecommended  
that at least two additional high quality, 0.1μF ceramic  
capacitors are used to bypass pin V to ground and V to  
ground,againwithminimalrouting.Fordrivinglargeloads  
(<200Ω),additionalbypasscapacitancemaybeneededfor  
optimal performance. Keep in mind that small geometry  
(e.g.0603)surfacemountceramiccapacitorshaveamuch  
higher self resonant frequency than do leaded capacitors,  
and perform best in high speed applications.  
10  
FEEDBACK RESISTOR  
NETWORK NOISE ALONE  
1
0.1  
10  
100  
1k  
10k  
R = R (Ω)  
F
I
6404 F10  
Figure 10. LTC6404-1 Output Spot Noise vs Spot Noise  
Contributed by Feedback Network Alone  
TheLTC6404’sinputreferredvoltagenoisecontributesthe  
equivalent noise of a 140Ω resistor. When the feedback  
network is comprised of resistors whose values are less  
than this, the LTC6404’s output noise is voltage noise  
dominant (See Figure 10.):  
+
RF  
RI  
eno eni • 1+  
Any stray parasitic capacitances to ground at the sum-  
Feedback networks consisting of resistors with values  
greater than about 200Ω will result in output noise which  
is resistor noise and amplifier current noise dominant.  
+
ming junctions IN , and IN should be kept to an absolute  
minimum even if it means stripping back the ground plane  
away from any trace attached to this node. This becomes  
especially true when the feedback resistor network uses  
RF  
RI  
eno 2 • I R 2 + 1+  
4•k • T •RF  
(
)
n
F
resistor values >400Ω in circuits with R = R . Excessive  
F
I
peakinginthefrequencyresponsecanbemitigatedbyadd-  
ing small amounts of feedback capacitance (0.5pF to 2pF)  
Lowerresistorvalues(<100Ω)alwaysresultinlowernoise  
atthepenaltyofincreaseddistortionduetoincreasedload-  
ing of the feedback network on the output. Higher resistor  
values(butstilllessthan400Ω)willresultinhigheroutput  
noise, but improved distortion due to less loading on the  
output. The optimal feedback resistance for the LTC6404  
runs between 100Ω to 400Ω. Higher resistances are not  
recommended.  
around R . Always keep in mind the differential nature of  
F
theLTC6404, andthatitiscriticalthattheloadimpedances  
seen by both outputs (stray or intended) should be as bal-  
anced and symmetric as possible. This will help preserve  
the natural balance of the LTC6404, which minimizes the  
generation of even order harmonics, and preserves the  
rejection of common mode signals and noise.  
+
It is highly recommended that the V  
pin be either hard  
OCM  
ThedifferentiallteredoutputsOUTF andOUTF willhave  
alittlehigherspotnoisethantheunfilteredoutputs(dueto  
the two 50Ω resistors which contribute 0.9nV/√Hz each),  
but actually will provide superior Signal-to-Noise in noise  
bandwidths exceeding 139MHz due to the noise-filtering  
function the filter provides.  
tied to a low impedance ground plane (in split supply  
applications), or bypassed to ground with a high quality  
ceramic capacitor whose value exceeds 0.01μF. This will  
help stabilize the common mode feedback loop as well as  
preventthermalnoisefromtheinternalvoltagedividerand  
6404f  
25  
LTC6404  
APPLICATIONS INFORMATION  
other external sources of noise from being converted to  
differentialnoiseduetodividermismatchesinthefeedback  
networks. It is also recommended that the resistive feed-  
back networks be comprised of 1% resistors (or better)  
to enhance the output common mode rejection. This will  
Interfacing the LTC6404 to A/D Converters  
TheLTC6404’srail-to-railoutputandfastsettlingtimemake  
the LTC6404 ideal for interfacing to low voltage, single  
supply, differential input ADCs. The sampling process of  
ADCs create a sampling glitch caused by switching in the  
samplingcapacitorontheADCfrontendwhichmomentarily  
“shortstheoutputoftheamplifieraschargeistransferred  
between the amplifier and the sampling cap. The amplifier  
must recover and settle from this load transient before  
this acquisition period ends for a valid representation of  
the input signal. In general, the LTC6404 will settle much  
more quickly from these periodic load impulses than  
from a 2V input step, but it is a good idea to either use  
the filtered outputs to drive the ADC (Figure 11 shows an  
example of this), or to place a discrete R-C filter network  
between the differential unfiltered outputs of the LTC6404  
andtheinputoftheADCtohelpabsorbthechargetransfer  
required during the ADC sampling process. The capaci-  
tance of the filter network serves as a charge reservoir  
to provide high frequency charging during the sampling  
process, while the two resistors of the filter network are  
used to dampen and attenuate any charge kickback from  
the ADC. The selection of the R-C time constant is trial  
and error for a given ADC, but the following guidelines  
are recommended: Choosing too large of a resistor in the  
decoupling network (leaving insufficient settling time)  
also prevent V  
referred common mode noise of the  
OCM  
common mode amplifier path (which cannot be filtered)  
from being converted to differential noise, degrading the  
differential noise performance.  
Feedback factor mismatch has a weak effect on distortion.  
Using 1% or better resistors should prevent mismatch  
from impacting amplifier linearity. However, in single  
supply level shifting applications where there is a voltage  
difference between the input common mode voltage and  
the output common mode voltage, resistor mismatch can  
make the apparent voltage offset of the amplifier appear  
worse than specified.  
In general, the apparent input referred offset induced by  
feedback factor mismatch is given by the equation:  
V
≈ (V  
– V ) • Δβ  
OCM  
OSDIFF(APPARENT)  
INCM  
where  
RI2  
RI1  
Δβ =  
RI2 +RF2 RI1+RF1  
V
2V  
IN  
P-P  
100Ω  
NC  
100Ω  
16  
15  
14 13  
+
IN  
OUT  
OUTF  
LTC6404-1  
SHDN  
SHDN  
CONTROL  
V
V
CM  
12  
2.2μF  
1
2
+
+
V
V
V
D15  
0.1μF  
3.3V  
+
+
AIN  
AIN  
11  
3.3V  
V
V
+
+
0.1μF  
V
LTC2207  
GND  
V
D0  
OCM  
+
V
V
V
3
4
10  
3.3V  
1μF  
V
DD  
0.1μF  
V
1μF  
V
OCM  
9
0.1μF  
+
+
NC  
IN  
OUT  
OUTF  
5
6
7
8
6404 F11  
100Ω  
100Ω  
Figure 11. Interfacing the LTC6404-1 to a High Speed 105Msps ADC  
6404f  
26  
LTC6404  
APPLICATIONS INFORMATION  
settling. 16-bit applications typically require a minimum  
of 11 R-C time constants. It is recommended that the ca-  
pacitor chosen have a high quality dielectric (for example,  
C0G multilayer ceramic).  
will create a voltage divider between the dynamic input  
impedance of the ADC and the decoupling resistors.  
Choosing too small of a resistor will possibly prevent the  
resistor from properly damping the load transient caused  
by the sampling process, prolonging the time required for  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 0.05  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6404f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC6404  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1809/LT1810  
Single/Dual 180Mhz, 350V/μs Rail-to-Rail Input and Output  
Low Distortion Op Amps  
180MHz, 350V/μs Slew Rate, Shutdown  
LTC1992/LTC1992-x Fully Differential Input/Output Amplifiers  
Programmable Gain or Fixed Gain (G = 1, 2, 5, 10)  
LT1994  
Low Noise, Low Distortion Fully differential Input/Output  
Amplifier/Driver  
Low Distortion, 2V , 1MHz: –94dBc, 13mA, Low Noise: 3nV/√Hz  
P-P  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-20  
LTC6401-26  
LT6402-12  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
1.9GHz Low Noise, Low Distortion, Differential ADC Driver  
2.2GHz Low Noise, Low Distortion, Differential ADC Driver  
1.3GHz Low Noise, Low Distortion, Differential ADC Driver  
1.6GHz Low Noise, Low Distortion, Differential ADC Driver  
A = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz  
V
A = 26dB, 85mA Supply Current, IMD3 = –71dBc at 300MHz  
V
A = 8dB, 45mA Supply Current, IMD3 = –80dBc at 140MHz  
V
A = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz  
V
A = 26dB, 45mA Supply Current, IMD3 = –72dBc at 140MHz  
V
300MHz Low Distortion, Low Noise Differential Amplifier/ADC A = 4V/V, NF = 15dB, OIP3 = 43dBm at 20MHz  
Driver  
V
LTC6406  
3GHz Low Noise, Rail-to-Rail Input Differential ADC Driver  
Very Low Noise, Fully Differential Amplifier and 2.5MHz Filter 86dB S/N with 3V Supply, SO-8 Package  
Very Low Noise, Fully Differential Amplifier and 5MHz Filter 82dB S/N with 3V Supply, SO-8 Package  
Low Noise: 1.6nV/√Hz, Low Power: 18mA  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
LTC6403-1  
Very Low Noise, Fully Differential Amplifier and 10MHz Filter 82dB S/N with 3V Supply, SO-8 Package  
Very Low Noise, Fully Differential Amplifier and 15MHz Filter 76dB S/N with 3V Supply, SO-8 Package  
Very Low Noise, Fully Differential Amplifier and 20MHz Filter 76dB S/N with 3V Supply, SO-8 Package  
200MHz Low Noise, Low Distortion Differential ADC Driver  
10.8mA Supply Current, –95dB Distortion at 3MHz  
6404f  
LT 0608 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6404-1

16-Bit, 20Msps ADC
Linear

LTC6404-2

High Linearity Differential RF/IF Amplifier/ADC Driver
Linear

LTC6404-4

2.7GHz, 5V, Low Noise,Rail-to-Rail Input Differential Amplifier/Driver
Linear

LTC6404CUD-1-PBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404CUD-1-TRPBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404CUD-2-PBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404CUD-2-TRPBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404CUD-4#PBF

LTC6404 - 600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifier/Driver; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6404CUD-4-PBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404CUD-4-TRPBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404HUD-1-PBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404HUD-1-TRPBF

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear