LTC6420IUDC-20-TRPBF [Linear]

Dual Matched 1.8GHz Differential Amplifi ers/ADC Drivers; 双通道匹配1.8GHz的差分功率放大器器/ ADC驱动器
LTC6420IUDC-20-TRPBF
型号: LTC6420IUDC-20-TRPBF
厂家: Linear    Linear
描述:

Dual Matched 1.8GHz Differential Amplifi ers/ADC Drivers
双通道匹配1.8GHz的差分功率放大器器/ ADC驱动器

驱动器 放大器 功率放大器
文件: 总12页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6420-20  
Dual Matched  
1.8GHz Differential  
Amplifiers/ADC Drivers  
FEATURES  
DESCRIPTION  
TheLTC®6420-20isadualhigh-speeddifferentialamplifier  
targeted at processing signals from DC to 300MHz. The  
part has been specifically designed to drive 12-, 14- and  
16-bitADCswithlownoiseandlowdistortion,butcanalso  
be used as a general-purpose broadband gain block.  
n
Matched Gain ±±0.dꢀ  
n
Matched Phase ±±0.1 at .±±MꢁH  
n
Channel Separation 8±dꢀ at .±±MꢁH  
n
1.8GHz –3dB Bandwidth; Fixed Gain of 10V/V (20dB)  
n
IMD3 = –84dBc at 100MHz, 2V  
P-P  
n
Equivalent OIP3 = 46dBm at 100MHz  
The LTC6420-20 is easy to use, with minimal support  
circuitry required. The output common mode voltage  
is set using an external pin, independent of the inputs,  
whicheliminatestheneedfortransformersorAC-coupling  
capacitors in many applications. The gain is internally  
fixed at 20dB (10V/V).  
n
1nV/√Hz Internal Op Amp Noise  
n
6.2dB Noise Figure  
n
Differential Inputs and Outputs  
n
Rail-to-Rail Output Swing  
n
80mA Supply Current (240mW) per Amplifier  
n
1.1V to 1.6V Output Common Mode Voltage,  
The LTC6420-20 saves space and power compared to  
alternativesolutionsusingIFgainblocksandtransformers.  
The LTC6420-20 is packaged in a compact 20-lead  
3mm × 4mm QFN package and operates over the –40°C  
to 85°C temperature range.  
Adjustable  
DC- or AC-Coupled Operation  
n
n
20-Lead 3mm × 4mm × 0.75mm QFN Package  
APPLICATIONS  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Differential ADC Driver  
n
Differential Driver/Receiver  
n
Single Ended to Differential Conversion  
IF Sampling (Diversity) Receivers  
n
TYPICAL APPLICATION  
Matched Dual Amplifier with Output Common Mode ꢀiasing  
Distribution of Gain Match  
3V  
40  
35  
30  
25  
20  
15  
10  
5
0.1μF  
1000pF  
V
A
OCM  
V
A
V+ A  
ENABLEA  
OCM  
Z
IN  
= 200Ω  
1000Ω  
0.1μF  
0.1μF  
100Ω  
100Ω  
12.5Ω  
12.5Ω  
–IN A  
+OUT A  
V
V
A
A
OCM  
OCM  
V
IN  
A
+IN A  
V–  
+
–OUT A  
V–  
1000Ω  
1000Ω  
0
0.1dB GAIN MATCHING  
0.1° PHASE MATCHING AT 100MHz  
LTC6420-20  
100Ω  
0.25 0.15 0.05  
0.05  
0.15  
0.25  
CHANNEL-TO-CHANNEL GAIN MATCH (dB)  
0.1μF  
0.1μF  
642020 TA01b  
12.5Ω  
12.5Ω  
+IN B  
–IN B  
OUT B  
+OUT B  
+
V
V
B
B
OCM  
OCM  
V
IN  
B
100Ω  
1000Ω  
Z
= 200Ω  
IN  
V+ B  
V
V
B
B
ENABLEB  
OCM  
OCM  
0.1μF  
1000pF  
642020 TA01a  
3V  
642020fa  
1
LTC6420-20  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note .)  
+
TOP VIEW  
Supply Voltage (V – V ) .........................................3.6V  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range (Note 3)...–40°C to 85°C  
Specified Temperature Range (Note 4) ....–40°C to 85°C  
Storage Temperature Range...................65°C to 150°C  
Maximum Junction Temperature........................... 150°C  
Output Short Circuit Duration........................... Indefinite  
20 19 18 17  
+INA  
–INA  
1
2
3
4
5
6
16 –OUTA  
+
V
V
V
V
A
15  
14  
13  
12  
+
V
21  
V
–INB  
+INB  
B
11 –OUTB  
7
8
9 10  
UDC PACKAGE  
20-LEAD (3mm s 4mm) PLASTIC QFN  
T
= 150°C, θ = 43°C/W, θ = 5°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 21) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISꢁ  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6420CUDC-20#PBF  
LTC6420IUDC-20#PBF  
LTC6420CUDC-20#TRPBF LDDM  
LTC6420IUDC-20#TRPBF LDDM  
0°C to 70°C  
20-Lead (3mm × 4mm) Plastic QFN  
20-Lead (3mm × 4mm) Plastic QFN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
SELECTOR GUIDE  
PART NUMꢀER  
GAIN  
(dꢀ)  
GAIN  
(V/V)  
Z
IN  
(DIFFERENTIAL)  
SINGLE  
LTC6400-8  
LTC6400-14  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-14  
LTC6401-20  
LTC6401-26  
DUAL  
COMMENT  
Lowest Distortion  
Lowest Distortion  
Lowest Distortion  
Lowest Distortion  
Lowest Power  
(Ω)  
8
2.5  
5
400  
200  
200  
50  
14  
20  
26  
8
LTC6420-20  
10  
20  
2.5  
5
400  
200  
200  
50  
14  
20  
26  
Lowest Power  
LTC6421-20  
10  
20  
Lowest Power  
Lowest Power  
642020fa  
2
LTC6420-20  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 251C0 V+ = 3V, V= ±V, +IN = –IN = VOCM = .025V, ENABLE = ±V, No RL unless  
otherwise noted0  
SYMꢀOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristic  
l
l
l
l
l
l
l
l
l
l
l
l
l
G
Gain  
V
=
100mV Differential  
Channel-to-Channel  
100mV Differential  
19.6  
20  
0.1  
20.4  
0.25  
dB  
dB  
DIFF  
IN  
ΔG  
Gain Matching  
Gain Temperature Drift  
TC  
V
IN  
=
0.0015  
0.2  
dB/°C  
V
GAIN  
V
V
V
Output Swing Low (V  
= 1.5V)  
= 1.5V)  
Each Output, V  
Each Output, V  
=
=
400mV Differential  
400mV Differential  
0.35  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
OCM  
IN  
IN  
Output Swing High (V  
2.65  
4.6  
20  
2.8  
V
OCM  
Maximum Differential Output Swing  
Output Current Drive  
5.2  
V
P-P  
I
2V  
(Note 10)  
mA  
mV  
μV/°C  
V
P-P, OUT  
V
OS  
Input Offset Voltage  
Differential  
Differential  
–2  
0.4  
1.2  
2
1
TCV  
Input Offset Voltage Drift  
OS  
VRMIN  
VRMAX  
I
I
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, –IN)  
Input Impedance Matching  
1.6  
V
R
INDIFF  
Differential  
170  
200  
0.5  
1
230  
2.5  
ΔR  
Channel-to-Channel  
%
IN  
C
Input Capacitance (+IN, –IN)  
Output Resistance (+OUT, – OUT)  
Common Mode Rejection Ratio  
Differential, Includes Parasitic  
Differential  
pF  
INDIFF  
l
l
R
20  
45  
25  
68  
36  
Ω
OUTDIFF  
CMRR  
Input Common Mode Voltage 1V to 1.6V  
dB  
Output Common Mode Voltage Control  
G
Common Mode Gain  
V
= 1.1V to 1.6V  
= 1.25V to 1.5V  
1
V/V  
V
CM  
OCM  
OCM  
l
l
l
l
l
V
V
V
Output Common Mode Range, MIN  
Output Common Mode Range, MAX  
Common Mode Offset Voltage  
Common Mode Offset Voltage Drift  
1.1  
10  
0
OCMMIN  
OCMMAX  
OSCM  
1.6  
V
V
–10  
2
16  
–3  
mV  
μV/°C  
μA  
TCV  
OSCM  
IV  
V
OCM  
Input Current  
–15  
2.4  
OCM  
ENABLEx Pins (x = A, ꢀ)  
l
l
V
V
ENABLEx Input Low Voltage  
ENABLEx Input High Voltage  
ENABLEx Input Current  
0.8  
V
V
IL  
IH  
l
l
ENABLEx ≤ 0.8V  
ENABLEx ≥ 2.4V  
0.5  
4
μA  
μA  
1.5  
Power Supply  
l
l
l
l
V
Operating Supply Range  
Supply Current  
2.85  
55  
3
80  
1
3.5  
95  
3
V
mA  
mA  
dB  
S
I
I
ENABLEx ≤ 0.8V; per Amplifier  
S
Shutdown Supply Current  
ENABLEx ≥ 2.4V; per Amplifier. Inputs Floating  
SHDN  
+
PSRR  
Power Supply Rejection Ratio (Differential  
Outputs)  
V = 2.85V to 3.5V  
86  
642020fa  
3
LTC6420-20  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 251C0 V+ = 3V, V= ±V, VOCM = .025V, ENABLE = ±V, No RL unless otherwise noted0  
SYMꢀOL  
ΔG  
PARAMETER  
CONDITIONS  
f = 100MHz (Note 9)  
f = 100MHz  
MIN  
TYP  
0.1  
0.1  
80  
MAX  
UNITS  
dB  
l
Gain Matching  
0.25  
ΔP  
Phase Matching  
deg  
Channel Separation (Note 8)  
–3dB Bandwidth  
f = 100MHz  
dB  
–3dBBW  
0.5dBBW  
0.1dBBW  
NF  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1.8  
0.7  
0.3  
6.2  
2.2  
22  
GHz  
GHz  
GHz  
dB  
P-P,OUT  
P-P,OUT  
P-P,OUT  
Bandwidth for 0.5dB Flatness  
Bandwidth for 0.1dB Flatness  
Noise Figure  
R = 375ꢀ (Note 5), f = 100MHz  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs), f = 100MHz  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs), f = 100MHz  
1/f Noise Corner  
nV/√Hz  
nV/√Hz  
kHz  
IN  
ON  
1/f  
10  
SR  
Slew Rate  
Differential (Note 6)  
2V (Note 6)  
4500  
0.8  
4
V/μs  
ns  
t
t
1% Settling Time  
Overdrive Recovery Time  
1dB Compression Point  
Turn-On Time  
S1%  
P-P,OUT  
1.9V  
(Note 6): Single Ended  
P-P,OUT  
ns  
OVDR  
P
1dB  
R = 375ꢀ (Notes 5, 7), f = 100MHz  
L
18  
dBm  
ns  
t
t
+OUT, –OUT Within 10% of Final Values  
82  
ON  
OFF  
Turn-Off Time  
I
Falls to 10% of Nominal  
190  
15  
ns  
CC  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended at  
OCM  
MHz  
VOCM  
OCM  
P-P  
Output (Note 6)  
3rd Order Intermodulation Distortion f = 100MHz (1MHz Spacing)  
= 2V Composite  
IMD3  
–84  
46  
dBc  
V
OUT  
P-P  
OIP3  
IIP3  
3rd Order Output Intercept  
3rd Order Input Intercept  
f = 100MHz (Note 7)  
dBm  
f = 100MHz (Z = 50Ω)  
26  
20  
dBm  
dBm  
IN  
f = 100MHz (Z = 200Ω)  
IN  
HD  
HD  
2nd Order Harmonic Distortion  
3rd Order Harmonic Distortion  
f = 100MHz; V  
f = 100MHz; V  
= 2V  
= 2V  
–80  
–88  
dBc  
dBc  
2
3
OUT  
OUT  
P-P  
P-P  
Note .: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
Note 6: Measured using Test Circuit B. R = 87.5Ω on each output.  
L
Note 7: Since the LTC6420-20 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6420-20 with amplifiers that require 50Ω output load, the output  
voltage swing driving a given R is converted to OIP and P as if it were  
L
3
1dB  
driving a 50Ω load. Using this modified convention, 2V is by definition  
P-P  
equal to 10dBm, regardless of actual R .  
L
Note 3: The LTC6420C and LTC6420I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 8: Channel separation (the inverse of crosstalk) is measured by  
driving a signal into one input, while terminating the other input. Channel  
separation is the ratio of the resulting output signal at the driven channel  
to the channel that is not driven.  
Note 9: Not production tested. Guaranteed by design and by correlation to  
production tested parameters.  
Note 4: The LTC6420C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LTC6420I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note .±: The output swing range is at least 2V differential even when  
P-P  
sourcing or sinking 20mA. Tested at V  
= 1.5V.  
OCM  
642020fa  
4
LTC6420-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Channel to Channel Gain Match  
vs Frequency  
Channel to Channel Group Delay  
Match vs Frequency  
Channel to Channel Phase Match  
vs Frequency  
0.5  
0.4  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.3  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.0  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
10  
100  
1000 2000  
10  
100  
1000 2000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642020 G01  
642020 G02  
642020 G03  
S2. Phase and Group Delay  
vs Frequency  
Frequency Response  
25  
20  
15  
10  
5
0
–100  
–200  
–300  
–400  
1.2  
TEST CIRCUIT B  
TEST CIRCUIT B  
0.9  
0.6  
0.3  
0
PHASE  
GROUP DELAY  
0
10  
100  
1000  
3000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642020 G05  
642020 G04  
Input and Output Impedance  
vs Frequency  
Input and Output Reflection and  
Reverse Isolation vs Frequency  
250  
200  
150  
100  
50  
50  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
TEST CIRCUIT B  
Z
IN  
30  
S11  
S22  
Z
OUT  
10  
Z
IN  
–10  
–30  
–50  
PHASE  
IMPEDANCE MAGNITUDE  
S12  
Z
OUT  
0
1
10  
100  
1000  
10  
100  
1000  
3000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642020 G07  
642020 G06  
642020fa  
5
LTC6420-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Overdrive Transient Response  
Small Signal Transient Response  
1.35  
1.30  
1.25  
1.20  
1.15  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
6
4
2
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 87.5Ω PER OUTPUT  
R
= 87.5Ω PER OUTPUT  
L
L
+OUT  
+OUT  
NOISE FIGURE  
e
IN  
4
3
2
1
–OUT  
–OUT  
0
0
1000  
0
2
4
6
8
10  
10  
100  
FREQUENCY (MHz)  
0
50  
100  
150  
200  
TIME (ns)  
TIME (ns)  
642020 G09  
642020 G10  
642020 G08  
Third Order Intermodulation  
Distortion vs Frequency  
ꢁarmonic Distortion vs Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
DIFFERENTIAL INPUT  
DRIVING LTC2285  
V
= 2V  
OUT  
P-P  
–50  
–60  
–70  
–80  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
–100  
–110  
HD3 NO R  
HD3 200Ω R  
DIFFERENTIAL INPUT  
L
V
= 2V COMPOSITE  
L
OUT  
P-P  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642020 G11  
642020 G12  
Channel Separation  
vs Frequency (Note 8)  
Equivalent Output Third Order  
Intercept vs Frequency  
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
DIFFERENTIAL INPUT  
V
= 2V COMPOSITE  
OUT  
(NOTE 7)  
P-P  
DRIVING LTC2285  
0
50  
100  
150  
200  
250  
300  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642020 G13  
642020 G14  
642020fa  
6
LTC6420-20  
PIN FUNCTIONS  
+INA, –INA, –INꢀ, +INꢀ (Pins ., 2, 5, 6): Differential  
Inputs of A and B channel respectively.  
+
+
V A , V ꢀ (Pins .5, 2±, 7, .2 ): Positive Power Supply  
(Normallytiedto3Vor3.3V).SupplypinsofAandBchannels  
are internally separate. Bypass each pin with 1000pF and  
0.1μF capacitors as close to the pins as possible.  
V (Pins 3, 4, .3, .4, 2.): Negative Power Supply. All  
four pins, as well as the exposed back, must be connected  
to same voltage/ground.  
–OUTA, +OUTA, –OUTꢀ, +OUTꢀ (Pins .6, .7, .., .±):  
Differential Outputs of channels A and B respectively.  
ENABLEA, ENABLEB (Pins 9, .8): Logic inputs. If low,  
the amplifier is enabled. If high, the amplifier is disabled  
and placed in a low power shutdown mode, making  
the amplifier outputs high impedance. These pins are  
internally separate. These pins should not be left floating.  
V
, V  
(Pins .9, 8): These pins set the output  
OCMꢀ  
OCMA  
common mode voltage for the respective channel. They  
are internally separate. A 0.1μF external bypass capacitor  
is recommended.  
Exposed Pad (Pin 2.): V . The Exposed Pad must be  
connected to same voltage/ground as pins 3, 4, 13, 14.  
BLOCK DIAGRAM  
+
V
A
V
ENABLEA  
+OUTA  
17  
OCMA  
19  
20  
18  
R
F
R
R
1000Ω  
OUT  
G
12.5Ω  
100Ω  
1
2
+
16  
15  
+INA  
–INA  
OUTA  
+
R
G
100Ω  
R
OUT  
12.5Ω  
V
A
+
R
F
1000Ω  
14  
13  
3
4
V
V
V
V
R
R
OUT  
G
100Ω  
12.5Ω  
+
5
6
+
–INB  
+INB  
+
V
B
12  
R
R
G
100Ω  
OUT  
12.5Ω  
11 OUTB  
R
F
1000Ω  
7
8
9
10  
640020 BD  
+
V
B
V
ENABLEB  
+OUTB  
OCMB  
642020fa  
7
LTC6420-20  
APPLICATIONS INFORMATION  
Circuit Operation  
Input Impedance and Matching  
Each of the two channels of the LTC6420-20 is composed  
of a fully differential amplifier with on chip feedback and  
outputcommonmodevoltagecontrolcircuitry.Differential  
gain and input impedance are set by 100ꢀ/1000ꢀ  
resistors in the feedback network. Small output resistors  
of 12.5ꢀ improve the circuit stability over various load  
conditions.  
The differential input impedance of the LTC6420-20 is  
200ꢀ. If a 200ꢀ source impedance is unavailable, then  
the differential inputs may need to be terminated to a  
lower value impedance, e.g. 50ꢀ, in order to provide an  
impedancematchforthesource.Severalchoicesareavail-  
able. One approach is to use a differential shunt resistor  
(Figure 1). Another approach is to employ a wide band  
transformer (Figure 2). Both methods provide a wide  
band impedance match. The termination resistor or the  
transformer must be placed close to the input pins in  
order to minimize the reflection due to input mismatch.  
Alternatively, one could apply a narrowband impedance  
match at the inputs of the LTC6420-20 for frequency  
selection and/or noise reduction.  
The LTC6420-20 is very flexible in terms of I/O coupling. It  
canbeAC-orDC-coupledattheinputs,theoutputsorboth.If  
theinputsareAC-coupled,theinputcommonmodevoltage  
is automatically biased close to V  
and thus no external  
OCM  
circuitry is needed for bias. The LTC6420-20 provides an  
output common mode voltage set by V , which allows  
OCM  
driving an ADC directly without external components such  
asatransformerorACcouplingcapacitors.Theinputsignal  
can be either single-ended or differential with only minor  
differences in distortion performance.  
ReferringtoFigure3,LTC6420-20canbeeasilyconfigured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
1/2 LTC6420-20  
1000Ω  
1/2 LTC6420-20  
1000Ω  
25Ω  
100Ω  
25Ω  
100Ω  
+IN  
+IN  
+
+
1:4  
• •  
+
+
IN  
IN  
OUT  
IN  
IN  
OUT  
V
IN  
V
IN  
+
+
66.5Ω  
OUT  
OUT  
1000Ω  
1000Ω  
25Ω  
100Ω  
25Ω  
100Ω  
IN  
IN  
640020 F01  
640020 F02  
Figure 20 Input Termination for Differential 5±Input Impedance  
Using a .:4 ꢀalun  
Figure .0 Input Termination for Differential 5±Input Impedance  
Using Shunt Resistor  
1/2 LTC6420-20  
100Ω  
R
S
0.1μF  
1000Ω  
50Ω  
+IN  
V
IN  
+
R
T
66.5Ω  
+
IN  
IN  
OUT  
+
OUT  
R //R  
S
T
0.1μF  
1000Ω  
28.7Ω  
100Ω  
IN  
642020 F03  
Figure 30 Input Termination for Single-Ended 5±Input Impedance  
642020fa  
8
LTC6420-20  
APPLICATIONS INFORMATION  
matchingnetworkwhiletheotherinputisconnectedtothe  
samematchingnetworkandasourceresistor.Becausethe  
return ratios of the two feedback paths are equal, the two  
outputshavethesamegainandthussymmetricalswing.In  
general,thesingle-endedinputimpedanceandtermination  
Driving A/D Converters  
TheLTC6420-20hasbeenspecificallydesignedtointerface  
directly with high speed A/D converters. The back page of  
thisdatasheetshowstheLTC6420-20drivinganLTC2285,  
which is a dual 14-bit, 125Msps ADC.  
resistor R are determined by the combination of R , R  
T
S
G
The V  
CM  
pins of the LTC6420-20 are connected to the  
and R . For example, when R is 50ꢀ, it is found that the  
OCM  
F
S
V
pins of the LTC2285, which provide a DC voltage  
single-ended input impedance is 202ꢀ and R is 66.5ꢀ  
T
level of 1.5V. Both ICs are powered from the same 3V  
supply voltage.  
in order to match to a 50ꢀ source impedance.  
The LTC6420-20 is unconditionally stable. However,  
the overall differential gain is affected by both source  
impedance and load impedance as follows:  
TheinputstotheLTC6420-20canbeconfiguredinvarious  
ways, as described in the Input Impedance and Matching  
section of this data sheet. The outputs of the LTC6420-20  
may be connected directly to the analog inputs of an ADC,  
or a simple lowpass or bandpass filter network may be  
inserted to reduce out-of-band noise.  
VOUT  
RL  
RS + 200 25+RL  
2000  
AV =  
=
V
IN  
Output Impedance Match  
Test Circuits  
TheLTC6420-20candriveanADCdirectlywithoutexternal  
output impedance matching. Alternatively, the differential  
output impedance of 25ꢀ can be matched to a higher  
value impedance, e.g. 50ꢀ, by series resistors or an LC  
network.  
Due to the fully-differential design of the LTC6420 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this data sheet. Test Circuit A is DC1299, a  
two-port demonstration circuit for the LTC6420/LTC6421  
family.TheschematicandsilkscreenareshowninFigure4.  
Thiscircuitincludesinputandoutputtransformers(baluns)  
forsingle-ended-to-differentialconversionandimpedance  
transformation,allowingdirecthook-uptoa2-portnetwork  
analyzer. There are also series resistors at the output to  
avoid loading the amplifier directly with a 50Ω load. Due  
to the input and output transformers, the –3dB bandwidth  
is reduced from 1.8GHz to approximately 1.3GHz.  
Output Common Mode Adjustment  
The output common mode voltage is set by the V  
pin,  
OCM  
which is a high impedance input. The output common  
mode voltage is capable of tracking V in a range from  
OCM  
1.1V to 1.6V. The bandwidth of V  
control is typically  
OCM  
15MHz, which is dominated by a low pass filter connected  
to the V pin and is aimed to reduce common mode  
OCM  
noise generation at the outputs. The internal common  
mode feedback loop has a –3dB bandwidth of 300MHz,  
allowingfastrejectionofanycommonmodeoutputvoltage  
Test Circuit B uses a 4-port network analyzer to measure  
S-parametersandgain/phaseresponse.Thisremovesthe  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
disturbance. The V  
pin should be tied to a DC bias  
OCM  
voltage with a 0.1μF bypass capacitor. When interfacing  
with A/D converters such as the LTC22xx families, the  
V
pin can be connected to the V pin of the ADC.  
OCM  
CM  
642020fa  
9
LTC6420-20  
APPLICATIONS INFORMATION  
Figure 4a0 Top Silkscreen of DC.299, Test Circuit A  
+
V
R1  
1.21k  
1%  
TD4  
V
OCMA  
TD5  
GND  
+
+
ENA  
V
R2  
1k  
1%  
V
C16  
JP1  
0.1μF  
1
2
3
C18  
C19  
DIS  
C22  
0.1μF  
0.1μF  
C30  
0.1μF  
2
C21  
[1]  
C17  
[1]  
0.1μF  
EN  
J1  
J2  
R3  
1.5k  
1%  
J3  
J4  
1
1
2
1
1
+INA  
R4  
+OUTA  
–OUTA  
5
4
T1  
1
2
3
R5  
[2]  
C25  
T2  
88.7  
3
2
1
4
5
0.1μF  
20  
19  
18  
17  
U1  
[2]  
R7  
OPT  
R5  
[1]  
+
R5  
88.7  
V A  
V
OCMA  
ENB +OUTA  
C22  
[1]  
C34  
[1]  
• •  
[2]  
C22  
0.1μF  
R9  
[2]  
1
2
3
4
5
6
16  
+
TCM4-19+  
+INA  
–OUTA  
V
2
2
–INA  
C43  
0.1μF  
15  
+
C28  
0.1μF  
–INA  
V A  
C35  
1000pF  
14  
13  
12  
11  
V
V
1
2
LTC6420-20  
C31  
[1]  
C35  
[1]  
2
V
V
+
C30  
0.1μF  
C39  
0.1μF  
C32  
0.1μF  
C32  
1000pF  
J6  
J8  
J5  
J7  
1
1
1
1
2
2
–INB  
V B  
–INB  
+INB  
–OUTB  
+OUTB  
T4  
5
4
T3  
1
2
3
R10  
[2]  
C34  
3
4
5
+INB  
–OUTB  
0.1μF  
R12  
88.7  
2
1
R14  
[1]  
R11  
OPT  
+
V
V B  
7
V
OCMB  
ENA +OUTB  
C40  
0.1μF  
C30  
0.1μF  
• •  
[2]  
C22  
[1]  
21  
8
9
10  
R12  
[2]  
TCM4-19+  
+
ENB  
JP2  
R15  
88.7  
R17 V  
1.5k  
2
C44  
0.1μF  
C41  
[1]  
1
2
3
+
1%  
+
V
V
DIS  
R16  
1.21k  
1%  
C18  
0.1μF  
C19  
0.1μF  
EN  
NOTES: UNLESS OTHERWISE SPECIFIED  
[1] DO NOT STUFF  
[2]  
TD1  
OCMB  
TD2  
V
+
V
R18  
1k  
1%  
C42  
VERSION  
–C  
–G  
U.  
R5, R9, R.±, R.3  
NONE  
T., T3  
0.1μF  
+
LTC6420CUDC-20  
LTC6421CUDC-20  
TCM4-19+  
TCM4-19+  
V
NONE  
2.85V TO  
3.5V  
C14  
4.7μF  
C15  
1μF  
642020 F04b  
TD3  
GND  
Figure 4b0 Demo Circuit .299 Schematic (Test Circuit A)  
642020fa  
10  
LTC6420-20  
TYPICAL APPLICATIONS  
Test Circuit ꢀ, 4-Port Measurements  
(Only the Signal-Path Connections Are Shown)  
Parallel ADC Drivers to Reduce Wideband Noise  
3.3V  
3.3V  
C1  
0.1μF  
C4  
0.1μF  
R5  
49.9ꢀ  
0.1μF  
R
F
PORT 1  
(50Ω)  
R
R
1000Ω  
OUT  
G
0.1μF  
0.1μF  
1/2  
LTC6420-20  
+INA  
–INA  
+OUTA  
–OUTA  
PORT 3  
(50Ω)  
1/2 AGILENT  
E5071C  
PORT 4  
(50Ω)  
37.4Ω  
37.4Ω  
12.5Ω  
R6  
100Ω  
R3  
C2  
+
49.9ꢀ  
10ꢀ  
12pF  
1/2  
AGILENT  
E5071C  
R
G
100Ω  
R
OUT  
200Ω  
0.1μF  
12.5Ω  
C5  
12pF  
+
R4  
10ꢀ  
R
+
V
IN  
LTC2208  
R7  
49.9ꢀ  
F
PORT 2  
(50Ω)  
1000Ω  
C3  
12pF  
V
CM  
1/2  
LTC6420-20  
642020 TA02  
R8  
49.9ꢀ  
(B CHANNEL NOT SHOWN)  
V
–3dB FILTER BANDWIDTH = 120MHz  
OCM  
642020 TA03  
C6  
2.2μF  
PACKAGE DESCRIPTION  
UDC Package  
2±-Lead Plastic QFN (3mm × 4mm)  
(Reference LTC DWG # 05-08-1742 Rev Ø)  
PIN 1 NOTCH  
R = 0.20 OR 0.25  
× 45° CHAMFER  
0.75 ± 0.05  
1.50 REF  
19 20  
R = 0.05 TYP  
3.00 ± 0.10  
0.70 ±0.05  
0.40 ± 0.10  
3.50 ± 0.05  
2.10 ± 0.05  
1.50 REF  
2.65 ± 0.05  
1.65 ± 0.05  
1
2
PIN 1  
TOP MARK  
(NOTE 6)  
2.65 ± 0.10  
1.65 ± 0.10  
4.00 ± 0.10  
PACKAGE  
OUTLINE  
2.50 REF  
0.25 ±0.05  
0.50 BSC  
2.50 REF  
(UDC20) QFN 1106 REV  
Ø
3.10 ± 0.05  
4.50 ± 0.05  
0.200 REF  
0.00 – 0.05  
0.25 ± 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
TYP  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
642020fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC6420-20  
TYPICAL APPLICATION  
Dual ADC Driver for Wideband Direct-Conversion Receivers  
3V  
3V  
C1  
0.1μF  
C4  
0.1μF  
R1  
40.2ꢀ  
R3  
10ꢀ  
C2  
12pF  
1/2  
LTC6420-20  
+
R2  
40.2ꢀ  
R4  
10ꢀ  
V
IN  
1/2 LTC2285  
C3  
12pF  
V
CM  
642020 TA04  
–3dB FILTER BANDWIDTH = 140MHz  
RELATED PARTS  
PART NUMꢀER DESCRIPTION  
COMMENTS  
ꢁigh-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LT6402-6  
LT6402-12  
LT6402-20  
LT6411  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 6dB, Distortion < –80dBc at 25MHz  
V
A = 12dB, Distortion < –80dBc at 25MHz  
V
A = 20dB, Distortion < –80dBc at 25MHz  
V
Low Power Differential ADC Driver/Dual Selectable Gain  
Amplifier  
16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
LTC6400-20,  
LTC6400-26  
Low Noise, Low Distortion, Differential ADC Drivers  
A = 20dB, 26dB; Single Amplifier per IC, High Performance  
V
LTC6401-8,  
LTC6401-14  
LTC6401-20,  
LTC6401-26  
Low Noise, Low Distortion, Differential ADC Drivers  
A = 8dB, 14dB, 20dB, 26dB; Single Amplifier per IC, Low Power  
V
LTC6404-1  
LTC6406  
Low Noise Rail-to-Rail Output Differential Amplifier/ADC Driver 1.5nV/√Hz, –92dB Distortion at 10MHz  
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
642020fa  
LT 1008 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6421-20

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear

LTC6421CUDC-20

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear

LTC6421CUDC-20#PBF

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6421CUDC-20#TR

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6421CUDC-20#TRPBF

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6421CUDC-20-PBF

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear

LTC6421CUDC-20-TRPBF

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear

LTC6421IUDC-20

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6421IUDC-20#PBF

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6421IUDC-20#TR

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6421IUDC-20#TRPBF

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6421IUDC-20-PBF

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear