LTC6421IUDC-20#PBF [Linear]

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40°C to 85°C;
LTC6421IUDC-20#PBF
型号: LTC6421IUDC-20#PBF
厂家: Linear    Linear
描述:

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40°C to 85°C

放大器
文件: 总16页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6421-20  
Dual Matched  
1.3GHz Differential  
Amplifiers/ADC Drivers  
FEATURES  
DESCRIPTION  
TheLTC®6421-20isadualhighspeeddifferentialamplifier  
targeted at processing signals from DC to 140MHz. The  
part has been specifically designed to drive 12-, 14- and  
16-bitADCswithlownoiseandlowdistortion,butcanalso  
be used as a general-purpose broadband gain block.  
n
Matched Gain 0.1dB  
n
Matched Phase 0.2° at 100MHz  
n
Channel Separation 80dB at 100MHz  
n
1.3GHz –3dB Bandwidth; Fixed Gain of 10V/V (20dB)  
n
IMD = –76dBc at 100MHz, 2V  
3
P-P  
n
n
n
n
n
n
n
Equivalent OIP = 42dBm at 100MHz  
3
The LTC6421-20 is easy to use, with minimal support  
circuitry required. The output common mode voltage  
is set using an external pin, independent of the inputs,  
whicheliminatestheneedfortransformersorAC-coupling  
capacitors in many applications. The gain is internally  
fixed at 20dB (10V/V).  
1nV/√Hz Internal Op Amp Noise  
6.2dB Noise Figure  
Differential Inputs and Outputs  
Rail-to-Rail Output Swing  
40mA Supply Current (120mW) per Amplifier  
1V to 1.6V Output Common Mode Voltage,  
Adjustable  
DC- or AC-Coupled Operation  
20-Lead 3mm × 4mm × 0.75mm QFN Package  
The LTC6421-20 saves space and power compared to  
alternativesolutionsusingIFgainblocksandtransformers.  
The LTC6421-20 is packaged in a compact 20-lead  
3mm × 4mm QFN package and operates over the 40°C  
to 85°C temperature range.  
n
n
APPLICATIONS  
n
Differential ADC Driver  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Single Ended to Differential Conversion  
n
IF Sampling (Diversity) Receivers  
Broadband I/Q Amplifiers  
Satellite Communications  
n
n
TYPICAL APPLICATION  
Matched Dual Amplifiers with Output Common Mode Biasing  
3V  
1000pF  
0.1μF  
V
V
OCMA  
OCMA  
Distribution of Gain Match  
+
V
A
ENABLEA  
Z
IN  
= 200Ω  
0.1μF  
LTC6421-20  
40  
35  
30  
25  
20  
15  
10  
5
1000Ω  
100Ω  
–INA  
12.5Ω  
+OUTA  
V
V
OCMA  
OCMA  
V
INA  
0.1μF  
100Ω  
12.5Ω  
+INA  
OUTA  
1000Ω  
1000Ω  
V
V
0.1dB GAIN MATCHING  
0.1° PHASE MATCHING  
AT 100MHz  
0.1μF  
0.1μF  
100Ω  
100Ω  
12.5Ω  
12.5Ω  
+INB  
INB  
OUTB  
+OUTB  
V
V
OCMB  
OCMB  
V
INB  
0
0.25 0.15 0.05  
0.05  
0.15  
0.25  
CHANNEL-TO-CHANNEL GAIN MATCH (dB)  
1000Ω  
Z
= 200Ω  
IN  
642120 TA01b  
+
V
B
V
OCMB  
ENABLEB  
642120 TA01a  
1000pF  
0.1μF  
V
OCMB  
3V  
642120fb  
1
LTC6421-20  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
+
Supply Voltage (V – V ).........................................3.6V  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range (Note 3)....40°C to 85°C  
Specified Temperature Range (Note 4) ....40°C to 85°C  
Storage Temperature Range...................65°C to 150°C  
Maximum Junction Temperature........................... 150°C  
Output Short-Circuit Duration .......................... Indefinite  
TOP VIEW  
20 19 18 17  
+INA  
INA  
1
2
3
4
5
6
16 OUTA  
+
V
V
V
V
A
15  
14  
13  
12  
+
V
21  
V
V
INB  
+INB  
B
11 OUTB  
7
8
9 10  
UDC PACKAGE  
20-LEAD (3mm × 4mm) PLASTIC QFN  
= 150°C, θ = 43°C/W, θ = 5°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 21) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6421CUDC-20#PBF  
LTC6421IUDC-20#PBF  
LTC6421CUDC-20#TRPBF LDDN  
LTC6421IUDC-20#TRPBF LDDN  
0°C to 70°C  
20-Lead (3mm × 4mm) Plastic QFN  
20-Lead (3mm × 4mm) Plastic QFN  
40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
SELECTOR GUIDE  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
(DIFFERENTIAL)  
IN  
SINGLE  
LTC6400-8  
LTC6400-14  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-14  
LTC6401-20  
LTC6401-26  
DUAL  
(Ω)  
COMMENT  
Lowest Distortion  
Lowest Distortion  
Lowest Distortion  
Lowest Distortion  
Lowest Power  
8
2.5  
5
400  
200  
200  
50  
14  
20  
26  
8
LTC6420-20  
10  
20  
2.5  
5
400  
200  
200  
50  
14  
20  
26  
Lowest Power  
LTC6421-20  
10  
20  
Lowest Power  
Lowest Power  
642120fb  
2
LTC6421-20  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = –IN = VOCM = 1.25V, ENABLE = 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristic  
l
l
l
l
l
l
l
l
l
l
l
l
l
G
Gain  
V
=
100mV Differential  
Channel-to-Channel  
100mV Differential  
19.6  
20  
0.1  
20.4  
0.25  
dB  
dB  
DIFF  
IN  
ΔG  
Gain Matching  
Gain Temperature Drift  
TC  
V
=
IN  
0.0015  
0.1  
dB/°C  
V
GAIN  
V
V
V
Output Swing Low (V  
= 1.5V)  
= 1.5V)  
Each Output, V  
Each Output, V  
=
=
400mV Differential  
400mV Differential  
0.25  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
OCM  
IN  
IN  
Output Swing High (V  
2.75  
5
2.9  
V
OCM  
Maximum Differential Output Swing  
Output Current Drive  
5.6  
V
P-P  
I
2V  
(Note 10)  
10  
–2  
mA  
mV  
μV/°C  
V
P-P, OUT  
V
OS  
Input Offset Voltage  
Differential  
Differential  
0.4  
1.4  
2
1
TCV  
Input Offset Voltage Drift  
OS  
VRMIN  
VRMAX  
I
I
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, IN)  
Input Impedance Matching  
1.6  
V
R
Differential  
170  
200  
1
230  
2.5  
Ω
INDIFF  
ΔR  
Channel-to-Channel  
%
IN  
C
Input Capacitance (+IN, IN)  
Output Resistance (+OUT, OUT)  
Common Mode Rejection Ratio  
Differential, Includes Parasitic  
Differential  
1
pF  
INDIFF  
l
l
R
20  
45  
25  
68  
36  
Ω
OUTDIFF  
CMRR  
Input Common Mode Voltage 1V to 1.6V  
dB  
Output Common Mode Voltage Control  
G
Common Mode Gain  
V
= 1V to 1.6V  
1
V/V  
V
CM  
OCM  
OCM  
l
l
l
l
l
V
V
V
Output Common Mode Range, MIN  
Output Common Mode Range, MAX  
Common Mode Offset Voltage  
Common Mode Offset Voltage Drift  
1
10  
0
OCMMIN  
OCMMAX  
OSCM  
1.6  
V
V
= 1.25V to 1.5V  
–10  
2
6
mV  
μV/°C  
μA  
TCV  
OSCM  
IV  
V
Input Current  
OCM  
–15  
2.4  
–3  
OCM  
ENABLEx Pins (x = A, B)  
l
l
V
V
ENABLEx Input Low Voltage  
ENABLEx Input High Voltage  
ENABLEx Input Current  
0.8  
V
V
IL  
IH  
l
l
0.5  
3
μA  
μA  
ENABLEx 0.8V  
ENABLEx 2.4V  
1.5  
Power Supply  
l
l
l
V
Operating Supply Range  
Supply Current  
2.85  
55  
3
40  
1
3.5  
50  
3
V
mA  
mA  
S
I
I
ENABLEx ≤ 0.8V; per Amplifier  
S
Shutdown Supply Current  
ENABLEx ≥ 2.4V; per Amplifier,  
Inputs Floating  
SHDN  
+
l
PSRR  
Power Supply Rejection Ratio (Differential  
Outputs)  
V
= 2.85V to 3.5V  
86  
dB  
642120fb  
3
LTC6421-20  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V, ENABLE = 0V, No RL unless otherwise  
noted.  
SYMBOL  
ΔG  
PARAMETER  
CONDITIONS  
f = 100MHz (Note 9)  
f = 100MHz  
MIN  
TYP  
0.1  
0.2  
80  
MAX  
UNITS  
dB  
l
Gain Matching  
0.25  
ΔP  
Phase Matching  
deg  
Channel Separation (Note 8)  
–3dB Bandwidth  
f = 100MHz  
dB  
–3dBBW  
0.5dBBW  
0.1dBBW  
NF  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1.3  
250  
130  
6.2  
2.2  
22  
GHz  
MHz  
MHz  
dB  
P-P, OUT  
P-P, OUT  
P-P, OUT  
Bandwidth for 0.5dB Flatness  
Bandwidth for 0.1dB Flatness  
Noise Figure  
R = 375Ω (Note 5), f = 100MHz  
L
e
e
Input Referred Voltage Noise Density Includes Resistors (Short Inputs), f = 100MHz  
Output Referred Voltage Noise Density Includes Resistors (Short Inputs), f = 100MHz  
1/f Noise Corner  
nV/√Hz  
nV/√Hz  
kHz  
IN  
ON  
1/f  
SR  
12.5  
4500  
2
Slew Rate  
Differential (Note 6)  
2V (Note 6)  
V/μs  
ns  
t
t
1% Settling Time  
Overdrive Recovery Time  
1dB Compression Point  
Turn-On Time  
S1%  
P-P, OUT  
1.9V  
(Note 6) Single Ended  
P-P, OUT  
7
ns  
OVDR  
P
18  
dBm  
ns  
R = 375Ω (Notes 5, 7), f = 100MHz  
L
1dB  
t
t
+OUT, –OUT Within 10% of Final Values  
80  
ON  
OFF  
Turn-Off Time  
I
Falls to 10% of Nominal  
150  
15  
ns  
CC  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended at  
OCM  
MHz  
VOCM  
OCM  
P-P  
Output (Note 6)  
3rd Order Intermodulation Distortion f = 100MHz (1MHz Spacing),  
= 2V Composite  
IMD  
–76  
42  
dBc  
dBc  
3
V
OUT  
P-P  
OIP  
3rd Order Output Intercept  
3rd Order Input Intercept  
f = 100MHz (Note 7)  
3
IIP  
3
f = 100MHz (Z = 50Ω)  
22  
16  
dBc  
dBc  
IN  
f = 100MHz (Z = 200Ω)  
IN  
HD  
HD  
2nd Order Harmonic Distortion  
3rd Order Harmonic Distortion  
f = 100MHz, V  
f = 100MHz, V  
= 2V  
= 2V  
–74  
–78  
dBc  
dBc  
2
OUT  
OUT  
P-P  
P-P  
3
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
Note 6: Measured using Test Circuit B. R = 87.5Ω on each output.  
L
Note 7: Since the LTC6421-20 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6421-20 with amplifiers that require 50Ω output load, the output  
voltage swing driving a given R is converted to OIP and P as if it were  
L
3
1dB  
driving a 50Ω load. Using this modified convention, 2V is by definition  
P-P  
equal to 10dBm, regardless of actual R .  
L
Note 3: The LTC6421C and LTC6421I are guaranteed functional over the  
operating temperature range of 40°C to 85°C.  
Note 8: Channel separation (the inverse of crosstalk) is measured by  
driving a signal into one input, while terminating the other input. Channel  
separation is the ratio of the resulting output signal at the driven channel  
to the channel that is not driven.  
Note 9: Not production tested. Guaranteed by design and by correlation to  
production tested parameters.  
Note 4: The LTC6421C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from 40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LTC6421I is guaranteed to meet specified performance  
from 40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 10: The output swing range is at least 2V differential even when  
P-P  
sourcing or sinking 20mA. Tested at V  
= 1.5V.  
OCM  
642120fb  
4
LTC6421-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Channel-to-Channel Gain Match  
vs Frequency  
Channel-to-Channel Group Delay  
Match vs Frequency  
Channel-to-Channel Phase Match  
vs Frequency  
0.5  
0.4  
0.3  
0.2  
0.5  
0.4  
0.3  
0.2  
1.0  
0.5  
0.1  
0
0.1  
0
0
–0.1  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
0.5  
–1.0  
10  
100  
1000 2000  
10  
100  
1000 2000  
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642120 G01  
642120 G02  
642120 G03  
S21 Phase and Group Delay  
vs Frequency  
Input and Output Reflection and  
Reverse Isolation vs Frequency  
Frequency Response  
0
25  
20  
15  
10  
5
100  
0
1.5  
TEST CIRCUIT B  
TEST CIRCUIT B  
TEST CIRCUIT B  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
1.2  
0.9  
0.6  
0.3  
0
S11  
S22  
PHASE  
–100  
–200  
–300  
400  
GROUP DELAY  
S12  
0
10  
100  
1000  
3000  
10  
100  
1000  
3000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
642120 G05  
642120 G06  
642120 G04  
Input and Output Impedance  
vs Frequency  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small-Signal Transient Response  
250  
225  
200  
175  
150  
125  
100  
75  
100  
80  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
6
4
2
0
1.35  
1.30  
1.25  
1.20  
1.15  
R
= 87.5Ω PER OUTPUT  
L
Z
IN  
60  
40  
+OUT  
Z
OUT  
20  
NOISE FIGURE  
0
Z
IN  
–20  
40  
60  
–80  
–100  
PHASE  
IMPEDANCE MAGNITUDE  
e
IN  
4
3
2
1
OUT  
50  
25  
Z
OUT  
0
0
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
0
5
10  
TIME (ns)  
15  
20  
FREQUENCY (MHz)  
642120 G09  
642120 G07  
642120 G08  
642120fb  
5
LTC6421-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Third Order Intermodulation  
Distortion vs Frequency  
Overdrive Transient Response  
Harmonic Distortion vs Frequency  
40  
–50  
40  
–50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 87.5Ω PER OUTPUT  
DIFFERENTIAL INPUT  
L
DIFFERENTIAL INPUT  
OUT  
V
= 2V COMPOSITE  
V
= 2V  
OUT  
P-P  
OUT  
P-P  
DRIVING LTC2235  
DRIVING LTC2285  
–60  
60  
–70  
–70  
–80  
HD2  
–90  
HD3  
–80  
–90  
–100  
–110  
–120  
+OUT  
50  
–100  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
0
100  
TIME (ns)  
150  
200  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
642120 G10  
642120 G12  
642120 G11  
Equivalent Output Third Order  
Intercept vs Frequency  
Channel Separation  
vs Frequency  
120  
70  
60  
50  
40  
30  
20  
10  
0
DIFFERENTIAL INPUT  
(NOTE 8)  
V
= 2V COMPOSITE  
OUT  
P-P  
100  
80  
60  
40  
20  
40  
(NOTE 7)  
DRIVING LTC2285  
1
10  
100  
1000  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
FREQUENCY (MHz)  
642120 G13  
642120 G14  
642120fb  
6
LTC6421-20  
PIN FUNCTIONS  
+INA, –INA, –INB, +INB (Pins 1, 2, 5, 6): Differential  
Inputs of A and B channel respectively.  
OUTA, +OUTA, OUTB, +OUTB (Pins 16, 17, 11, 10):  
Differential Outputs of channels A and B respectively.  
V (Pins 3, 4, 13, 14, 21): Negative Power Supply. All  
V
OCMA  
, V  
(Pins 19, 8): These pins set the output  
OCMB  
four pins, as well as the exposed back, must be connected  
to same voltage/ground.  
common mode voltage for the respective channel. They  
are internally separate. A 0.1μF external bypass capacitor  
is recommended.  
ENABLEA, ENABLEB (Pins 9, 18): Logic inputs. If low,  
the amplifier is enabled. If high, the amplifier is disabled  
and placed in a low-power shutdown mode, making  
the amplifier outputs high impedance. These pins are  
internally separate. These pins should not be left  
floating.  
Exposed Pad (Pin 21): V . The Exposed Pad must be  
connected to same voltage/ground as pins 3, 4, 13, 14.  
+
+
V A , V B (Pins 15, 20, 7, 12 ): Positive Power Supply  
(Normallytiedto3Vor3.3V).SupplypinsofAandBchannels  
are internally separate. Bypass each pin with 1000pF and  
0.1μF capacitors as close to the pins as possible.  
BLOCK DIAGRAM  
+
V
A
V
ENABLEA  
+OUTA  
17  
OCMA  
19  
20  
18  
R
F
R
R
1000Ω  
OUT  
G
12.5Ω  
100Ω  
1
2
16  
15  
+INA  
–INA  
–OUTA  
+
+
R
G
100Ω  
R
OUT  
12.5Ω  
V
A
+
R
F
1000Ω  
14  
13  
3
4
V
V
V
V
R
R
OUT  
G
100Ω  
12.5Ω  
+
5
6
+ –  
–INB  
+INB  
V
B
12  
R
R
G
100Ω  
OUT  
12.5Ω  
11 –OUTB  
+
R
F
1000Ω  
7
8
9
10  
642120 BD  
+
V
B
V
ENABLEB  
+OUTB  
OCMB  
642120fb  
7
LTC6421-20  
APPLICATIONS INFORMATION  
Circuit Operation  
Input Impedance and Matching  
Each of the two channels of the LTC6421-20 is composed  
of a fully differential amplifier with on chip feedback and  
outputcommonmodevoltagecontrolcircuitry.Differential  
gain and input impedance are set by 100Ω/1000Ω  
resistors in the feedback network. Small output resistors  
of 12.5Ω improve the circuit stability over various load  
conditions.  
The differential input impedance of the LTC6421-20 is  
200Ω. If a 200Ω source impedance is unavailable, then  
the differential inputs may need to be terminated to a  
lower value impedance, e.g. 50Ω, in order to provide  
an impedance match for the source. Several choices  
are available. One approach is to use a differential shunt  
resistor (Figure 1). Another approach is to employ a wide  
band transformer (Figure 2). Both methods provide a  
wide band impedance match. The termination resistor or  
the transformer must be placed close to the input pins in  
order to minimize the reflection due to input mismatch.  
Alternatively, one could apply a narrowband impedance  
match at the inputs of the LTC6421-20 for frequency  
selection and/or noise reduction.  
The LTC6421-20 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both.IftheinputsareAC-coupled,theinputcommonmode  
voltage is automatically biased close to V  
and thus  
OCM  
no external circuitry is needed for bias. The LTC6421-20  
provides an output common mode voltage set by V  
,
OCM  
which allows driving an ADC directly without external  
componentssuchasatransformerorACcouplingcapacitors.  
The input signal can be either single-ended or differential  
with only minor differences in distortion performance.  
1/2 LTC6421-20  
1/2 LTC6421-20  
1000Ω  
25Ω  
100Ω  
1000Ω  
25Ω  
100Ω  
+IN  
+IN  
+
+
1:4  
• •  
+
+
IN  
IN  
OUT  
IN  
IN  
OUT  
V
IN  
V
IN  
+
+
66.5Ω  
OUT  
1000Ω  
OUT  
1000Ω  
25Ω  
100Ω  
25Ω  
100Ω  
–IN  
–IN  
642120 F01  
642120 F02  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
Using Shunt Resistor  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using a 1:4 Balun  
642120fb  
8
LTC6421-20  
APPLICATIONS INFORMATION  
Output Impedance Match  
ReferringtoFigure3,LTC6421-20canbeeasilyconfigured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matchingnetworkwhiletheotherinputisconnectedtothe  
samematchingnetworkandasourceresistor.Becausethe  
return ratios of the two feedback paths are equal, the two  
outputshavethesamegainandthussymmetricalswing.In  
general,thesingle-endedinputimpedanceandtermination  
TheLTC6421-20candriveanADCdirectlywithoutexternal  
output impedance matching. Alternatively, the differential  
output impedance of 25Ω can be matched to a higher  
value impedance, e.g. 50Ω, by series resistors or an LC  
network.  
Output Common Mode Adjustment  
resistor R are determined by the combination of R , R  
T
S
G
The output common mode voltage is set by the VOCM pin,  
which is a high impedance input. The output common  
mode voltage is capable of tracking VOCM in a range from  
1V to 1.6V. The bandwidth of VOCM control is typically  
15MHz, whichisdominatedbyalowpasslterconnected  
to the VOCM pin and is aimed to reduce common mode  
noise generation at the outputs. The internal common  
mode feedback loop has a 3dB bandwidth of 300MHz,  
allowingfastrejectionofanycommonmodeoutputvoltage  
disturbance. The VOCM pin should be tied to a DC bias  
and R . For example, when R is 50Ω, it is found that the  
F
S
single-ended input impedance is 202Ω and R is 66.5Ω  
T
in order to match to a 50Ω source impedance.  
The LTC6421-20 is unconditionally stable. However,  
the overall differential gain is affected by both source  
impedance and load impedance as follows:  
VOUT  
RL  
RS + 200 25+RL  
2000  
AV =  
=
V
IN  
LTC6421-20  
100Ω  
R
S
0.1μF  
1000Ω  
50Ω  
+IN  
V
IN  
+
R
T
+
+
IN  
IN  
OUT  
66.5Ω  
OUT  
1000Ω  
R //R  
S
T
0.1μF  
28.7Ω  
100Ω  
–IN  
642120 F03  
Figure 3. Input Termination for Single-Ended 50Ω Input Impedance  
642120fb  
9
LTC6421-20  
APPLICATIONS INFORMATION  
voltage with a 0.1μF bypass capacitor. When interfacing  
with A/D converters such as the LTC22xx families, the  
VOCM pin can be connected to the VCM pin of the ADC.  
Test Circuits  
Due to the fully-differential design of the LTC6421 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this data sheet. Test Circuit A is DC1299, a  
two-port demonstration circuit for the LTC6420/LTC6421  
family. The schematic and silkscreen are shown in Fig-  
ure 4. This circuit includes input and output transformers  
(baluns) for single-ended-to-differential conversion and  
impedance transformation, allowing direct hook-up to a  
2-port network analyzer. There are also series resistors  
at the output to avoid loading the amplifier directly with a  
50Ω load. Due to the input and output transformers, the  
–3dBbandwidthisreducedfrom1.3GHztoapproximately  
1.1GHz.  
Driving A/D Converters  
TheLTC6421-20hasbeenspecificallydesignedtointerface  
directly with high speed A/D converters. The back page of  
thisdatasheetshowstheLTC6421-20drivinganLTC2285,  
which is a dual 14-bit, 125Msps ADC.  
The V  
CM  
pins of the LTC6421-20 are connected to the  
OCM  
V
pins of the LTC2285, which provide a DC voltage  
level of 1.5V. Both ICs are powered from the same 3V  
supply voltage.  
TheinputstotheLTC6421-20canbeconfiguredinvarious  
ways, as described in the Input Impedance and Matching  
section of this data sheet. The outputs of the LTC6421-20  
may be connected directly to the analog inputs of an ADC,  
or a simple lowpass or bandpass filter network may be  
inserted to reduce out-of-band noise.  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
642120fb  
10  
LTC6421-20  
APPLICATIONS INFORMATION  
Figure 4a. Top Silkscreen of DC1299 (Test Circuit A)  
642120fb  
11  
LTC6421-20  
APPLICATIONS INFORMATION  
+
V
R1  
1.21k  
1%  
TD4  
V
OCMA  
TD5  
C16  
+
R2  
1k  
+
ENA  
V
V
0.1μF  
JP1  
GND  
1
2
3
1%  
C18  
C19  
DIS  
C22  
0.1μF  
0.1μF  
C30  
0.1μF  
2
C21  
[1]  
C17  
[1]  
0.1μF  
EN  
J1  
J2  
R3  
1.5k  
1%  
J3  
J4  
1
1
2
1
1
+INA  
–INA  
R4  
+OUTA  
–OUTA  
5
4
T1  
1
2
3
R5  
[2]  
C25  
T2  
88.7  
3
2
1
4
5
0.1μF  
20  
V
19  
A V  
18  
17  
U1  
[2]  
R7  
OPT  
R5  
[1]  
R5  
88.7  
+
ENABLEA +OUTA  
OCMA  
C22  
[1]  
C34  
[1]  
• •  
[2]  
C22  
0.1μF  
R9  
[2]  
1
2
16  
+
TCM4-19+  
+INA  
–INA  
OUTA  
+
V
2
2
C43  
0.1μF  
15  
C28  
0.1μF  
V
V
A
C35  
1000pF  
3
4
5
6
14  
13  
12  
11  
V
V
1
2
LTC6421-20  
C31  
[1]  
C35  
[1]  
2
V
V
C30  
0.1μF  
C39  
0.1μF  
C32  
0.1μF  
C32  
1000pF  
J6  
J8  
J5  
J7  
+
1
1
1
1
2
2
–INB  
+INB  
B
–INB  
+INB  
–OUTB  
+OUTB  
T4  
T2  
5
4
1
2
3
R10  
[2]  
C34  
3
4
5
OUTB  
ENABLEB +OUTB  
0.1μF  
R12  
88.7  
2
1
R14  
[1]  
R11  
OPT  
+
V
7
B V  
OCMB  
C40  
0.1μF  
C30  
0.1μF  
• •  
[2]  
C22  
[1]  
21  
8
9
10  
V
R12  
[2]  
TCM4-19+  
+
ENB  
JP2  
R15  
88.7  
R17  
1.5k  
1%  
2
C44  
0.1μF  
C41  
[1]  
1
2
3
+
+
V
V
DIS  
R16  
1.21k  
1%  
C18  
0.1μF  
C19  
0.1μF  
EN  
TD1  
V
OCMB  
NOTES: UNLESS OTHERWISE SPECIFIED  
[1] DO NOT STUFF  
[2]  
R18  
1k  
1%  
C42  
0.1μF  
+
V
TD2  
+
V
VERSION  
–A  
–B  
U1  
R5, R9, R10, R13  
NONE  
T1, T3  
TCM4-19+  
TCM4-19+  
642020 F04b  
2.85V TO  
3.5V  
LTC6420CUDC-20  
LTC6421CUDC-20  
C14  
4.7μF  
C15  
1μF  
NONE  
TD3  
GND  
Figure 4b. Demo Circuit 1299 Schematic (Test Circuit A)  
642120fb  
12  
LTC6421-20  
TYPICAL APPLICATIONS  
Test Circuit B, 4-Port Measurements  
(Only the Signal-Path Connections Are Shown)  
0.1μF  
R
F
PORT 1  
R
R
10007  
OUT  
G
0.1μF  
0.1μF  
+INA  
–INA  
+OUTA  
–OUTA  
(507)  
37.47  
37.47  
12.57  
1007  
PORT 3  
+
+
1/2  
AGILENT  
E5071C  
(507)  
1/2  
AGILENT  
E5071C  
R
G
1007  
R
OUT  
2007  
12.57  
PORT 4  
(507)  
0.1μF  
R
F
10007  
PORT 2  
(507)  
642120 F04b  
(B CHANNEL NOT SHOWN)  
Parallel ADC Drivers to Reduce Wideband Noise  
3.3V  
3.3V  
C1  
0.1μF  
C4  
0.1μF  
R5  
49.9Ω  
1/2  
LTC6421-20  
R6  
49.9Ω  
C2  
12pF  
R3  
10Ω  
C5  
12pF  
+
R4  
10Ω  
V
IN  
LTC2208  
R7  
49.9Ω  
V
CM  
C3  
12pF  
1/2  
LTC6421-20  
R8  
49.9Ω  
642120 TA02  
V
–3dB FILTER BANDWIDTH = 120MHz  
OCM  
C6  
2.2μF  
642120fb  
13  
LTC6421-20  
PACKAGE DESCRIPTION  
UDC Package  
20-Lead Plastic QFN (3mm × 4mm)  
(Reference LTC DWG # 05-08-1742 Rev Ø)  
0.70 0.05  
3.50 0.05  
2.10 0.05  
2.65 0.05  
1.50 REF  
1.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
2.50 REF  
3.10 0.05  
4.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.25  
s 45° CHAMFER  
0.75 0.05  
1.50 REF  
19 20  
R = 0.05 TYP  
3.00 0.10  
0.40 0.10  
1
2
PIN 1  
TOP MARK  
(NOTE 6)  
2.65 0.10  
1.65 0.10  
4.00 0.10  
2.50 REF  
(UDC20) QFN 1106 REV Ø  
0.200 REF  
0.00 – 0.05  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
TYP  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
642120fb  
14  
LTC6421-20  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
3/10  
Changes to Applications  
Changes to Related Parts  
1
16  
642120fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6421-20  
TYPICAL APPLICATION  
Dual ADC Driver for Wideband Direct-Conversion Receivers  
3V  
3V  
C1  
0.1μF  
C4  
0.1μF  
R1  
40.2Ω  
R3  
10Ω  
C2  
12pF  
1/2  
LTC6421-20  
+
R2  
40.2Ω  
R4  
10Ω  
V
IN  
1/2 LTC2285  
C3  
12pF  
V
CM  
642120 TA03  
–3dB FILTER BANDWIDTH = 140MHz  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-8/  
LTC6400-14/  
LTC6400-20/  
LTC6400-26  
Low Noise, Low Distortion, Differential ADC Drivers  
A = 8dB/14dB/20dB/26dB, Single Amplifier per IC, High Performance  
V
LTC6401-8/  
LTC6401-14/  
LTC6401-20/  
LTC6401-26  
Low Noise, Low Distortion, Differential ADC Drivers  
A = 8dB/14dB/20dB/26dB, Single Amplifier per IC, Low Power  
V
LT6402-6  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 6dB, Distortion < –80dBc at 25MHz  
V
LT6402-12  
LT6402-20  
LTC6404-1  
A = 12dB, Distortion < –80dBc at 25MHz  
V
A = 20dB, Distortion < –80dBc at 25MHz  
V
600MHz, Low Noise, AC Precision, Fully Differential  
Input/Output Amplifier/Driver  
A = Unity Gain, e = 1.5nV/Hz, Distortion < –90dBc at 10MHz  
V n  
LTC6404-2  
LTC6404-4  
900MHz, Low Noise, AC Precision, Fully Differential  
Input/Output Amplifier/Driver  
A = 2V/V, e = 1.5nV/Hz, Distortion < –95dBc at 10MHz  
V n  
1800MHz, Low Noise, AC Precision, Fully Differential  
Input/Output Amplifier/Driver  
A = 4V/V, e = 1.5nV/Hz, Distortion < –98dBc at 10MHz  
V n  
LTC6406  
LT6411  
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
Low Power Differential ADC Driver/Dual Selectable Gain  
Amplifier  
V
642120fb  
LT 0310 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6421IUDC-20#TR

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6421IUDC-20#TRPBF

LTC6421-20 - Dual Matched 1.3GHz Differential Amplifiers/ADC Drivers; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6421IUDC-20-PBF

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear

LTC6421IUDC-20-TRPBF

Dual Matched 1.3GHz Differential Amplifi ers/ADC Drivers
Linear

LTC6430-15

High Linearity Differential RF/IF Amplifier/ADC Driver
Linear

LTC6431-15

High Linearity Differential RF/IF Amplifier/ADC Driver
Linear

LTC6561DICE/DWF

Analog Circuit
ADI

LTC656TG

Optoelectronic
ETC

LTC656TP

Optoelectronic
ETC

LTC660

100mA CMOS Voltage Converter
Linear

LTC6601-1

Low Noise, 0.5% Tolerance, 5MHz to 28MHz, Pin Confi gurable Filter/ADC Driver
Linear

LTC6601-2

Low Power, Low Distortion, 5MHz to 27MHz, Pin Confi gurable Filter/ADC Driver
Linear