LTC6431-15 [Linear]

High Linearity Differential RF/IF Amplifier/ADC Driver; 高线性差分RF / IF放大器/ ADC驱动器
LTC6431-15
型号: LTC6431-15
厂家: Linear    Linear
描述:

High Linearity Differential RF/IF Amplifier/ADC Driver
高线性差分RF / IF放大器/ ADC驱动器

驱动器 放大器
文件: 总28页 (文件大小:1703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6430-15  
High Linearity Differential  
RF/IF Amplifier/ADC Driver  
FeaTures  
DescripTion  
The LTC®6430-15 is a differential gain block amplifier  
designed to drive high resolution, high speed ADCs with  
excellent linearity beyond 1000MHz and with low associ-  
atedoutputnoise. TheLTC6430-15operatesfromasingle  
5V power supply and consumes only 800mW.  
n
50.0dBm OIP3 at 240MHz into a 100Ω Diff Load  
n
NF = 3.0dB at 240MHz  
n
20MHz to 2000MHz Bandwidth  
15.2dB Gain  
n
n
A-Grade 100% OIP3 Tested at 240MHz  
n
1.0nV/√Hz Total Input Noise  
Initsdifferentialconfiguration,theLTC6430-15candirectly  
drive the differential inputs of an ADC. Using 1:2 baluns,  
the device makes an excellent 50Ω wideband balanced  
amplifier. While using 1:1.33 baluns, the device makes  
a high fidelity 50MHz to 1000MHz 75Ω CATV amplifier.  
n
S11 < –15dB Up to 1.2GHz  
n
S22 < –15dB Up to 1.2GHz  
n
>2.75V Linear Output Swing  
P-P  
n
n
n
n
n
n
n
n
P1dB = 24.0dBm  
Insensitive to V Variation  
CC  
The LTC6430-15 is designed for ease of use, requiring a  
minimum of support components. The device is internally  
matched to 100Ω differential source/load impedance. On-  
chipbiasandtemperaturecompensationensureconsistent  
performance over environmental changes.  
100Ω Differential Gain-Block Operation  
Input/Output Internally Matched to 100Ω Diff  
Single 5V Supply  
DC Power = 800mW  
Unconditionally Stable  
4mm × 4mm, 24-Lead QFN Package  
The LTC6430-15 uses a high performance SiGe BiCMOS  
process for excellent repeatability compared with similar  
GaAsamplifiers.AllA-gradeLTC6430-15devicesaretested  
and guaranteed for OIP3 at 240MHz. The LTC6430-15 is  
housed in a 4mm × 4mm, 24-lead, QFN package with an  
exposedpadforthermalmanagementandlowinductance.  
For a single-ended 50Ω IF gain block with similar perfor-  
applicaTions  
n
Differential ADC Driver  
n
Differential IF Amplifier  
n
OFDM Signal Chain Amplifier  
n
50Ω Balanced IF Amplifier  
n
75Ω CATV Amplifier  
mance, see the related LTC6431-15.  
.
n
700MHz to 800MHz LTE Amplifier  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
OIP3 vs Frequency  
Typical applicaTion  
50  
48  
46  
44  
42  
40  
38  
36  
Differential 16-Bit ADC Driver  
5V  
V
CM  
R
F
V
= 5V  
CC  
CHOKES  
1:2  
BALUN  
ADC  
V
P
= 5V  
LTC6430-15  
R
CC  
50Ω  
= 2dBm/TONE  
OUT  
IN  
Z
T
= Z  
= 100Ω DIFF.  
OUT  
= 25°C  
= 100Ω  
R
= 100Ω  
FILTER  
LOAD  
A
SOURCE  
643015 TA01a  
DIFFERENTIAL  
DIFFERENTIAL  
0
200  
400  
600  
800 1000 1200  
FREQUENCY (MHz)  
643015 TA01b  
643015f  
1
LTC6430-15  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Total Supply Voltage (V to GND)...........................5.5V  
CC  
Amplifier Output Current (+OUT) .........................105mA  
Amplifier Output Current (–OUT).........................105mA  
RF Input Power, Continuous, 50Ω (Note 2)........ +15dBm  
RF Input Power, 100µs Pulse, 50Ω (Note 2) ......+20dBm  
24 23 22 21 20 19  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
1
2
3
4
5
6
18 +OUT  
GND  
17  
16  
Operating Temperature Range (T  
) ...–40°C to 85°C  
CASE  
T_DIODE  
25  
GND  
Storage Temperature Range .................. –65°C to 150°C  
15 DNC  
GND  
Junction Temperature (T ) .................................... 150°C  
J
14  
13 –OUT  
Lead Temperature (Soldering, 10 sec)...................300°C  
7
8
9 10 11 12  
UF PACKAGE  
24-LEAD (4mm × 4mm) PLASTIC QFN  
T
= 150°C,  
θ
= 40°C/W  
JMAX  
JC  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
The LTC6430-15 is available in two grades. The A-grade guarantees a minimum OIP3 at 240MHz while the B-grade does not.  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC6430AIUF-15#PBF  
LTC6430BIUF-15#PBF  
LTC6430AIUF-15#TRPBF 43015  
LTC6430BIUF-15#TRPBF 43015  
24-Lead (4mm × 4mm) Plastic QFN  
24-Lead (4mm × 4mm) Plastic QFN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
Dc elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω. Typical measured DC electrical  
performance using Test Circuit A (Note 3).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
5.0  
MAX  
UNITS  
V
Operating Supply Range  
Total Supply Current  
4.75  
5.25  
V
S
I
I
I
All V Pins Plus +OUT and –OUT  
126  
93  
160  
190  
216  
mA  
mA  
S,TOT  
CC  
l
l
l
Total Supply Current to OUT Pins  
Current to +OUT and –OUT  
112  
79  
146  
14  
176  
202  
mA  
mA  
S,OUT  
VCC  
Current to V Pin  
Either V Pin May Be Used  
12  
11  
22  
26  
mA  
mA  
CC  
CC  
643015f  
2
LTC6430-15  
ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω, unless otherwise noted (Note 3).  
Measurements are performed using Test Circuit A, measuring from 50Ω SMA to 50Ω SMA without de-embedding (Note 4).  
SYMBOL PARAMETER  
Small Signal  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BW  
–3dB Bandwidth  
De-Embedded to Package (Low Frequency Cut-Off,  
20MHz)  
2000  
MHz  
S11  
S21  
Differential Input Match, 25MHz to 2000MHz De-Embedded to Package  
–10  
dB  
dB  
Forward Differential Power Gain, 100MHz to De-Embedded to Package  
400MHz  
15.1  
S12  
S22  
Reverse Differential Isolation, 25MHz to  
4000MHz  
De-Embedded to Package  
–19  
–10  
dB  
dB  
Differential Output Match, 25MHz to 1600MHz De-Embedded to Package  
Frequency = 50MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
15.2  
dB  
OIP3  
Output Third-Order Intercept Point  
P
OUT  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
46.6  
45.6  
dBm  
dBm  
O
B-Grade  
IM3  
Third-Order Intermodulation  
P
OUT  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–89.2  
–87.2  
dBc  
dBc  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–82.0  
–95.3  
23.8  
3.0  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 140MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
15.1  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
47.2  
46.2  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–90.4  
–88.4  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–82.6  
–94.7  
23.8  
3.0  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
De-Embedded to Package  
Frequency = 240MHz  
S21  
OIP3  
IM3  
Differential Power Gain  
14.5  
14.3  
15.1  
16.5  
16.5  
dB  
dB  
l
Output Third-Order Intercept Point  
Third-Order Intermodulation  
P
P
= 2dBm/Tone, Δf = 8MHz, Z = 100Ω A-Grade  
47.0  
50.0  
47.0  
dBm  
dBm  
OUT  
O
B-Grade  
= 2dBm/Tone, Δf = 8MHz, Z = 100Ω A-Grade  
–90.0  
–96.0  
–90.0  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–80.5  
–87.0  
24.1  
3.0  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
643015f  
3
LTC6430-15  
ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω, unless otherwise noted (Note 3).  
Measurements are performed using Test Circuit A, measuring from 50Ω SMA to 50Ω SMA without de-embedding (Note 4).  
SYMBOL PARAMETER  
Frequency = 300MHz  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S21  
Differential Power Gain  
De-Embedded to Package  
15.1  
dB  
OIP3  
Output Third-Order Intercept Point  
P
OUT  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
48.5  
47.5  
dBm  
dBm  
O
B-Grade  
IM3  
Third-Order Intermodulation  
P
OUT  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–93.0  
–91.0  
dBc  
dBc  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–76.9  
–84.4  
23.7  
3.2  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 380MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
15.1  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
47.5  
46.5  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–91.0  
–89.0  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–81.9  
–88.0  
23.2  
3.2  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 500MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
15.0  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
47.2  
46.2  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–90.4  
–88.4  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–79.0  
–90.0  
23.4  
3.5  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 600MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
15.0  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
46.5  
45.5  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–89.0  
–87.0  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–72.7  
–81.4  
23.1  
3.5  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
De-Embedded to Package  
Frequency = 700MHz  
S21  
Differential Power Gain  
14.9  
dB  
643015f  
4
LTC6430-15  
ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω, unless otherwise noted (Note 3).  
Measurements are performed using Test Circuit A, measuring from 50Ω SMA to 50Ω SMA without de-embedding (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OIP3  
Output Third-Order Intercept Point  
P
OUT  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
45.3  
44.3  
dBm  
dBm  
O
B-Grade  
IM3  
Third-Order Intermodulation  
P
OUT  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–86.6  
–84.6  
dBc  
dBc  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–71.4  
–79.5  
23.0  
3.8  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 800MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
14.8  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
44.5  
43.5  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–85.0  
–83.0  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–71.2  
–76.7  
22.6  
4.0  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 900MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
14.8  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
43.7  
42.7  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–83.4  
–81.4  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–71.7  
–76.5  
22.3  
4.2  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Frequency = 1000MHz  
S21  
Differential Power Gain  
De-Embedded to Package  
14.7  
dB  
OIP3  
Output Third-Order Intercept Point  
P
P
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
43.5  
42.5  
dBm  
dBm  
OUT  
O
B-Grade  
IM3  
Third-Order Intermodulation  
= 2dBm/Tone, Δf = 1MHz, Z = 100Ω A-Grade  
–83.0  
–81.0  
dBc  
dBc  
OUT  
O
B-Grade  
HD2  
HD3  
P1dB  
NF  
Second Harmonic Distortion  
Third Harmonic Distortion  
Output 1dB Compression Point  
Noise Figure  
P
P
= 8dBm  
= 8dBm  
–74.2  
–86.0  
22.3  
4.2  
dBc  
dBc  
dBm  
dB  
OUT  
OUT  
De-Embedded to Package for Balun Input Loss  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LTC6430-15 is guaranteed functional over the case operating  
temperature range of –40°C to 85°C.  
Note 4: Small signal parameters S and noise are de-embedded to the  
package pins, while large signal parameters are measured directly from the  
Note 2: Guaranteed by design and characterization. This parameter is not tested.  
test circuit.  
643015f  
5
LTC6430-15  
Typical perForMance characTerisTics TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω,  
unless otherwise noted (Note 3). Measurements are performed using Test Circuit A, measuring from 50Ω SMA to 50Ω SMA without  
de-embedding (Note 4).  
Differential S Parameters  
vs Frequency  
Differential Stability Factor K  
vs Frequency Over Temperature  
Noise Figure vs Frequency  
Over Temperature  
25  
20  
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
T
=
CASE  
T
=
CASE  
100°C  
–40°C  
25°C  
85°C  
15  
85°C  
60°C  
35°C  
25°C  
0°C  
S11  
S21  
S12  
S22  
10  
5
0
–20°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
0
500 1000 1500 2000 2500 3000  
0
1000  
3000  
2000  
FREQUENCY (MHz)  
4000  
5000  
50  
250  
450  
650  
850 1050 1250  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 G01  
643015 G02  
643015 G03  
Differential Reverse Isolation  
(S12DD) vs Frequency Over  
Temperature  
Differential Input Match (S11DD  
)
Differential Gain (S21DD  
)
vs Frequency Over Temperature  
vs Frequency Over Temperature  
0
–5  
16  
15  
14  
13  
12  
11  
10  
0
–5  
T
=
T
=
CASE  
CASE  
100°C  
100°C  
85°C  
60°C  
35°C  
25°C  
0°C  
85°C  
60°C  
35°C  
25°C  
0°C  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
T
=
CASE  
–20°C  
–40°C  
–20°C  
–40°C  
100°C  
85°C  
60°C  
35°C  
25°C  
0°C  
–20°C  
–40°C  
0
1000  
1500  
2000  
500  
0
1000  
1500  
2000  
500  
0
1000  
1500  
2000  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 G04  
643015 G05  
643015 G06  
Differential Output Match (S22DD  
)
Common Mode Gain (S21CC  
)
CM-DM Gain (S21DC  
)
vs Frequency Over Temperature  
vs Frequency Over Temperature  
vs Frequency Over Temperature  
0
–5  
16  
15  
14  
13  
12  
11  
10  
9
0
–5  
T
=
CASE  
100°C  
85°C  
60°C  
35°C  
25°C  
0°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
T
=
CASE  
T
=
CASE  
–20°C  
–40°C  
100°C  
100°C  
85°C  
60°C  
35°C  
25°C  
0°C  
85°C  
60°C  
35°C  
25°C  
0°C  
8
7
–20°C  
–40°C  
6
–20°C  
–40°C  
5
0
1000  
1500  
2000  
0
1000  
1500  
2000  
500  
500  
0
500  
1500  
FREQUENCY (MHz)  
2000  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 G07  
643015 G08  
643015 G09  
643015f  
6
LTC6430-15  
Typical perForMance characTerisTics TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω,  
unless otherwise noted (Note 3). Measurements are performed using Test Circuit A, measuring from 50Ω SMA to 50Ω SMA without  
de-embedding (Note 4).  
OIP3 vs RF Power Out/Tone  
Over Frequency  
OIP3 vs Frequency Over  
VCC Voltage  
OIP3 vs Frequency  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
50  
48  
46  
44  
42  
40  
38  
36  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
V
= 5V  
OUT  
= 25°C  
CC  
IN  
Z
T
= Z  
= 100Ω  
A
T
=
CASE  
V
CC  
V
CC  
V
CC  
V
CC  
= 4.5V  
= 4.75V  
= 5V  
50MHz  
100MHz  
200MHz  
300MHz  
400MHz  
600MHz  
800MHz  
1000MHz  
= 5.25V  
V
P
= 5V  
CC  
= 2dBm/TONE  
P
= 2dBm/TONE  
OUT  
OUT  
IN  
Z
T
= Z  
= 100Ω DIFF.  
Z
T
= Z  
= 100Ω  
OUT  
OUT  
IN  
A
= 25°C  
= 25°C  
A
–10 –6 –4 –2  
–8  
0
2
4
6
8
10  
0
200  
400  
600  
800 1000 1200  
0
200 300 400 500 600 700 800 9001000  
100  
FREQUENCY (MHz)  
RF P  
OUT  
(dBm/TONE)  
FREQUENCY (MHz)  
643015 G10  
643015 G11  
643015 G12  
OIP3 vs Tone Spacing Over  
Frequency  
OIP3 vs Frequency Over  
Temperature  
HD2 vs Frequency Over POUT  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
55  
50  
45  
40  
35  
30  
25  
20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
P
P
P
= 6dBm  
= 8dBm  
= 10dBm  
OUT  
OUT  
OUT  
V
= 5V  
OUT  
= 25°C  
CC  
IN  
Z
T
= Z  
= 100Ω  
A
T
=
CASE  
85°C  
60°C  
25°C  
0°C  
–20°C  
–30°C  
–40°C  
50MHz  
400MHz  
600MHz  
800MHz  
1000MHz  
V
P
f
= 5V  
SUP  
OUT  
100MHz  
200MHz  
300MHz  
= 2dBm/TONE  
= 1MHz  
SPACE  
Z
= Z  
= 100Ω  
IN  
OUT  
0
200 300 400  
500  
600  
9001000  
700 800  
0
300 400 500 600 700 800 9001000  
0
10  
30  
TONE SPACING (MHz)  
40  
50  
100 200  
20  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 G13  
643015 G14  
643015 G15  
V
P
= 5V  
OUT  
Z
T
= Z  
= 100Ω  
OUT  
CC  
IN  
A
= 2dBm/TONE  
= 25°C  
HD3 vs Frequency Over POUT  
HD4 vs Frequency Over POUT  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
P
P
P
= 6dBm  
= 8dBm  
= 10dBm  
P
P
P
= 6dBm  
= 8dBm  
= 10dBm  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
Z
= 5V  
= Z  
V
Z
= 5V  
= Z  
CC  
CC  
IN  
= 100Ω  
= 100Ω  
IN  
A
OUT  
OUT  
T
= 25°C  
NOISE FLOOR LIMITED  
–100  
–110  
0
200 300 400 500 600 700 800 9001000  
100  
0
200 300 400 500 600 700 800 9001000  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 G16  
643015 G17  
643015f  
7
LTC6430-15  
Typical perForMance characTerisTics TA = 25°C, VCC = 5V, ZSOURCE = ZLOAD = 100Ω,  
unless otherwise noted (Note 3). Measurements are performed using Test Circuit A, measuring from 50Ω SMA to 50Ω SMA without  
de-embedding (Note 4).  
Output Power vs Input Power  
Over Frequency  
P1dB vs Frequency  
Total Current (ITOT) vs VCC  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
25  
24  
23  
22  
21  
20  
180  
170  
160  
150  
140  
130  
120  
110  
100  
T
= 25°C  
V
= 5V  
OUT  
= 25°C  
CASE  
CC  
IN  
Z
T
= Z  
= 100Ω  
A
3
4
4.5  
V
5
(V)  
5.5  
6
6.5  
2
4
5
6
7
8
9
10 11 12  
0
200 300 400 500 600 700 800 9001000  
100  
3.5  
3
INPUT POWER (dBm)  
FREQUENCY (MHz)  
CC  
643015 G20  
643015 G18  
643015 G19  
100MHz, P1dB = 23.8dBm  
200MHz, P1dB = 24.1dBm  
400MHz, P1dB = 23.5dBm  
600MHz, P1dB = 23.1dBm  
800MHz, P1dB = 22.6dBm  
1000MHz, P1dB = 22.3dBm  
Total Current (ITOT  
)
Total Current vs RF Input Power  
vs Case Temperature  
170  
150  
130  
110  
90  
175  
170  
165  
160  
155  
150  
145  
140  
70  
V
T
= 5V  
CC  
A
V
= 5V  
= 25°C  
CC  
50  
–5  
0
5
10  
15  
20  
–20  
0
20 40 60 80 100  
–15 –10  
–60 –40  
RF INPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
643015 G21  
643015 G22  
643015f  
8
LTC6430-15  
pin FuncTions  
GND (Pins 8, 14, 17, 23, Exposed Pad Pin 25): Ground.  
For best RF performance, all ground pins should be con-  
nected to the printed circuit board ground plane. The  
exposed pad (Pin 25) should have multiple via holes to  
an underlying ground plane for low inductance and good  
thermal dissipation.  
+OUT(Pin18):PositiveAmplifierOutputPin.Atransformer  
with a center tap tied to V or a choke inductor tied to 5V  
CC  
supply is required to provide DC current and RF isolation.  
For best performance select a choke with low loss and  
high self resonant frequency (SRF). See the Applications  
Information section for more information.  
+IN (Pin 24): Positive Signal Input Pin. This pin has an  
internally generated 2V DC bias. A DC-blocking capacitor  
is required. See the Applications Information section for  
specific recommendations.  
–OUT (Pin 13): Negative Amplifier Output Pin. A trans-  
former with a center tap tied to V or a choke inductor is  
CC  
required to provide DC current and RF isolation. For best  
performance select a choke with low loss and high SRF.  
–IN (Pin 7): Negative Signal Input Pin. This pin has an  
internally generated 2V DC bias. A DC-blocking capacitor  
is required. See the Applications Information section for  
specific recommendations.  
DNC (Pins 1 to 6, 10 to 12, 15, 19 to 21): Do Not Connect.  
Do not connect these pins, allow them to float. Failure  
to float these pins may impair the performance of the  
LTC6430-15.  
V
CC  
(Pins 9, 22): Positive Power Supply. Either or both  
T_DIODE(Pin16):Optional.Adiodewhichcanbeforward  
biasedtogroundwithupto1mAofcurrent. Themeasured  
voltage will be an indicator of the chip temperature.  
CC  
V
pins should be connected to the 5V supply. Bypass  
theV pinwith1000pFand0.1µFcapacitors. The1000pF  
CC  
capacitor should be physically close to a V pin.  
CC  
block DiagraM  
V
CC  
9, 22  
BIAS AND TEMPERATURE  
COMPENSATION  
+IN  
+OUT  
T_DIODE  
OUT  
15dB  
GAIN  
24  
18  
16  
13  
–IN  
15dB  
GAIN  
7
GND  
8, 14, 17, 23 AND PADDLE 25  
643015 BD  
643015f  
9
LTC6430-15  
Differential Application Test Circuit A (Balanced Amp)  
TesT circuiT a  
C7  
60pF  
C1  
1000pF  
R1  
350Ω  
L1  
560nH  
C3  
1000pF  
PORT  
T1  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
+OUT  
GND  
T2  
INPUT  
1:2  
2:1  
RF  
IN  
T_DIODE  
DNC  
PORT  
OUTPUT  
50Ω, SMA  
LTC6430-15  
C4  
1000pF  
BALUN_A  
GND  
BALUN_A  
RF  
C8  
OUT  
–OUT  
60pF  
50Ω, SMA  
C2  
1000pF  
L2  
560nH  
R2  
350Ω  
C5  
1nF  
C6  
0.1µF  
V
= 5V  
643015 F01  
CC  
BALUN_A = ADT2-IT FOR 50MHz TO 300MHz  
BALUN_A = ADT2-1P FOR 300MHz TO 400MHz  
BALUN_A = ADTL2-18 FOR 400MHz TO 1000MHz  
ALL ARE MINI-CIRCUITS CD542 FOOTPRINT  
Figure 1. Test Circuit A  
operaTion  
The LTC6430-15 is a highly linear, fixed-gain amplifier  
for differential signals. It can be considered a pair of 50Ω  
single-endeddevicesoperating180degreesapart.Itscore  
signal path consists of a single amplifier stage minimiz-  
ing stability issues. The input is a Darlington pair for high  
input impedance and high current gain. Additional circuit  
enhancements increase the output impedance commen-  
surate with the input impedance and minimize the effects  
of internal Miller capacitance.  
The LTC6430-15 uses a classic RF gain block topology,  
with enhancements to achieve excellent linearity. Shunt  
andseriesfeedbackelementsareaddedtolowertheinput/  
output impedance and match them simultaneously to the  
source and load. An internal bias controller optimizes the  
bias point for peak linearity over environmental changes.  
Thiscircuitarchitectureprovideslownoise,goodRFpower  
handling capability and wide bandwidth; characteristics  
that are desirable for IF signal-chain applications.  
643015f  
10  
LTC6430-15  
applicaTions inForMaTion  
The LTC6430-15 is a highly linear fixed-gain amplifier  
which is designed for ease of use. Both the input and  
output are internally matched to 100Ω differential source  
andloadimpedancefrom20MHzto1700MHz.Biasingand  
temperature compensation are also handled internally to  
deliver optimized performance. The designer need only  
supply input/output blocking capacitors, RF chokes and  
decouplingcapacitorsforthe5Vsupply.However,because  
the device is capable of such wideband operation, a single  
application circuit will probably not result in optimized  
performance across the full frequency band.  
Choosing the Right RF Choke  
Not all choke inductors are created equal. It is always im-  
portant to select an inductor with low R  
as resistance  
LOSS  
will drop the available voltage to the device. Also look for  
aninductorwithhighselfresonantfrequency(SRF)asthis  
will limit the upper frequency where the choke is useful.  
Above the SRF, the parasitic capacitance dominates and  
the choke’s impedance will drop. For these reasons, wire-  
wound inductors are preferred, while multilayer ceramic  
chip inductors should be avoided for an RF choke if pos-  
sible. Since the LTC6430-15 is capable of such wideband  
operation, a single choke value will not result in optimized  
performance across its full frequency band. Table 1 lists  
common frequency bands and suggested corresponding  
inductor values.  
Differential circuits minimize the common mode noise  
and 2nd harmonic distortion issues that plague many  
designs. Additionally, the LTC6430’s differential topol-  
ogy matches well with the differential inputs of an ADC.  
However, evaluation of these differential circuits is dif-  
ficult, as high resolution, high frequency, differential test  
equipment is lacking.  
Table 1. Target Frequency and Suggested Inductor Value  
INDUCTOR  
FREQUENCY  
BAND (MHz)  
VALUE  
(nH)  
SRF  
(MHz)  
MODEL  
NUMBER MANUFACTURER  
Our test circuit is designed for evaluation with standard  
single ended 50Ω test equipment. Therefore, 1:2 balun  
transformers have been added to the input and output to  
transformtheLTC6430-15’s100Ωdifferentialsource/load  
impedance to 50Ω single-ended impedance compatible  
with most test equipment.  
20 to 100  
1500nH  
560nH  
100nH  
51nH  
100  
525  
0603LS Coilcraft  
www.coilcraft.com  
100 to 500  
500 t o 1000  
1000 to 2000  
0603LS  
1150  
1400  
0603LS  
0603LS  
DC-Blocking Capacitor  
Other than the balun, the evaluation circuit requires a  
minimum of external components. Input and output DC-  
blockingcapacitorsarerequiredasthisdeviceisinternally  
biased for optimal operation. A frequency appropriate  
choke and de-coupling capacitors provide DC bias to the  
RF OUT nodes. Only a single 5V supply is necessary to  
The role of a DC-blocking capacitor is straightforward:  
block the path of DC current and allow a low series imped-  
ance path for the AC signal. Lower frequencies require a  
highervalueofDC-blockingcapacitance.Generally,1000pF  
to 10,000pF will suffice for operation down to 20MHz.  
The LTC6430-15 linearity is insensitive to the choice of  
blocking capacitor.  
either of the V pins on the device. Both V pins are  
CC  
CC  
connected inside the package. Two V pins are provided  
CC  
for the convenience of supply routing on the PCB. An op-  
tional parallel 60pF, 350Ω input network has been added  
to ensure low frequency stability.  
RF Bypass Capacitor  
RF bypass capacitors act to shunt the AC signals to  
ground with a low impedance path. They prevent the AC  
signal from getting into the DC bias supply. It is best to  
place the bypass capacitor as close as possible to the DC  
supply pins of the amplifier. Any extra distance translates  
into additional series inductance which lowers the effec-  
tiveness of the bypass capacitor network. The suggested  
bypass capacitor network consists of two capacitors:  
The particular element values shown in Test Circuit A are  
chosen for wide bandwidth operation. Depending on the  
desired frequency, performance may be improved by  
custom selection of these supporting components.  
a low value 1000pF capacitor to shunt high frequencies  
643015f  
11  
LTC6430-15  
applicaTions inForMaTion  
and a larger 0.1µF capacitor to handle lower frequencies.  
Use ceramic capacitors of appropriate physical size for  
each capacitance value (e.g., 0402 for the 1000pF, 0805  
for the 0.1µF) to minimize the equivalent series resistance  
(ESR) of the capacitor.  
backside of the PCB to prevent the solder from wicking  
away from the critical PCB to exposed pad interface. One  
to two ounces of copper plating is suggested to improve  
heat spreading from the device.  
Frequency Limitations  
Low Frequency Stability  
The LTC6430-15 is a wide bandwidth amplifier but it is not  
intended for operation down to DC. The lower frequency  
cutoff is limited by on-chip matching elements. The cutoff  
may be arbitrarily pushed lower with off chip elements;  
however, the translation between the low fixed DC com-  
mon mode input voltage and the higher open collector  
DC common mode output bias point make DC-coupled  
operation impractical.  
Most RF gain blocks suffer from low frequency instabil-  
ity. To avoid stability issues, the LTC6430-15, contains  
an internal feedback network that lowers the gain and  
matches the input and output impedance of the intrinsic  
amplifier. This feedback network contains a series capaci-  
tor, whose value is limited by physical size. So, at some  
lowfrequencies,thisfeedbackcapacitorlookslikeanopen  
circuit;thefeedbackfails,gainincreasesandgrossimped-  
ance mismatches occur which can create instability. This  
situation is easily resolved with a parallel capacitor and a  
resistor network on the input. This is shown in Figure 1.  
This network provides resistive loss at low frequencies  
and is bypassed by the capacitor at the desired band of  
operation. However, if the LTC6430-15 is preceded by  
a low frequency termination, such as a choke or balun  
transformer, the input stability network is not required.  
A choke at the output can also terminate low frequencies  
out-of-band and stabilize the device.  
Test Circuit A  
Test Circuit A, shown in Figure 1, is designed to allow for  
the evaluation of the LTC6430-15 with standard single-  
ended 50Ω test equipment. This allows the designer to  
verify the performance when the device is operated dif-  
ferentially. This evaluation circuit requires a minimum of  
externalcomponents.SincetheLTC6430-15operatesover  
averywideband,theevaluationtestcircuitisoptimizedfor  
widebandoperation.Obviously,fornarrowbandoperation,  
the circuit can be further optimized.  
Input and output DC-blocking capacitors are required, as  
thisdeviceisinternallyDCbiasedforoptimalperformance.  
A frequency appropriate choke and decoupling capacitors  
are required to provide DC bias to the RF output nodes  
(+OUT and –OUT). A 5V supply should also be applied to  
Exposed Pad and Ground Plane Considerations  
AswithanyRFdevice,minimizingthegroundinductanceis  
critical. Care should be taken with PC board layouts using  
exposed pad packages, as the exposed pad provides the  
lowest inductive path to ground. The maximum allowable  
number of minimum diameter via holes should be placed  
underneath the exposed pad and connected to as many  
ground plane layers as possible. This will provide good RF  
groundandlowthermalimpedance.Maximizingthecopper  
ground plane at the signal and microstrip ground will also  
improve the heat spreading and lower inductance. It is a  
good idea to cover the via holes with solder mask on the  
one of the V pins on the device.  
CC  
Components for a suggested parallel 60pF, 350Ω stabil-  
ity network have been added to ensure low frequency  
stability.The60pFcapacitancecanbeincreasedtoimprove  
low frequency (<150 MHz) performance, however the  
designer needs to be sure that the impedance presented  
at low frequency will not create an instability.  
643015f  
12  
LTC6430-15  
applicaTions inForMaTion  
Balanced Amplifier Circuit, 50Ω Input and 50Ω Output  
the circuit as a comprehensive protection for any passive  
element placed at the LTC6430-15 input. Its performance  
degradationatlowfrequenciescanbemitigatedbyincreas-  
ing the 60pF capacitor’s value.  
This balanced amplifier circuit is a replica of the Test  
CircuitA.Itisusefulforsingle-ended50Ωamplifierrequire-  
ments and is surprisingly wideband. Using this balanced  
arrangement and the frequency appropriate baluns, one  
canachievetheintermodulationandharmonicperformance  
listed in the AC Electrical Characteristics specifications  
of this data sheet. Besides its impressive intermodula-  
tion performance, the LTC6430-15 has impressive 2nd  
harmonic suppression as well. This makes it particularly  
well suited for multioctave applications where the 2nd  
harmonic cannot be filtered.  
Demo Boards 1774A-A and 1774A-B implement this  
balanced amplifier circuit. It is shown in Figure 18 and  
Figure 19.  
Please note that a number of DNC pins are connected on  
theevaluationboard.Theseconnectionsarenotnecessary  
for normal circuit operation.  
The evaluation board also includes an optional back to  
back pair of baluns so that their losses may be measured.  
Thisallowsthedesignertode-embedthebalunlossesand  
more accurately predict the LTC6430-15 performance in  
a differential circuit.  
This balanced circuit example uses two Mini-Circuits 1:2  
baluns. The baluns were chosen for their bandwidth and  
frequency options that utilize the same package footprint  
(see Table 2). A pair of these baluns, back-to-back has  
less than 1.5dB of loss, so the penalty for this level of  
performance is minimal. Any suitable 1:2 balun may be  
used to create a balanced amplifier with the LTC6430-15.  
Table 2. Target Frequency and Suggested 2:1 Balun  
FREQUENCY BAND (MHz)  
50 to 300  
MODEL NUMBER  
ADT2-1T  
MANUFACTURER  
Mini-Circuits  
www.minicircuits.com  
300 to 400  
ADT2-1P  
The optional stability network is only required when the  
balun’s bandwidth reaches below 20MHz. It is included in  
400 to 1300  
ADTL2-18  
C7  
60pF  
C1  
1000pF  
R1  
350Ω  
L1  
560nH  
C3  
1000pF  
PORT  
T1  
T2  
INPUT  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
+OUT  
GND  
1:2  
2:1  
100Ω  
RF  
IN  
50Ω, SMA  
100Ω  
T_DIODE  
DNC  
DIFFERENTIAL  
PORT  
OUTPUT  
DIFFERENTIAL  
C4  
1000pF  
LTC6430-15  
BALUN_A  
GND  
BALUN_A  
RF  
OUT  
50Ω, SMA  
C8  
60pF  
–OUT  
C2  
1000pF  
L2  
560nH  
R2  
350Ω  
C5  
1000pF  
C6  
0.1µF  
643015 F02  
V
= 5V  
CC  
OPTIONAL STABILITY  
NETWORK  
BALUN_A = ADT2-1T FOR 50MHz TO 300MHz  
BALUN_A = ADT2-1P FOR 300MHz TO 400MHz  
BALUN_A = ADTL2-18 FOR 400MHz TO 1300MHz  
ALL ARE MINI-CIRCUITS CD542 FOOTPRINT  
Figure 2. Balanced Amplifier Circuit, 50Ω Input and 50Ω Output  
643015f  
13  
LTC6430-15  
applicaTions inForMaTion  
Driving the LTC2158, 14-Bit, 310Msps ADC with  
1.25GHz of Bandwidth  
by internal clock jitter and high input signal amplitude.  
Table 3 shows noise and linearity performance. Example  
outputs at 380MHz and 1000MHz are shown in Figure 5,  
Figure 6, Figure 7, Figure 8 and Figure 9.  
Boasting high linearity, low associated noise and wide  
bandwidth, the LTC6430-15 is well suited to drive high  
speed, high resolution ADCs with over a GHz of input  
bandwidth.To demonstrateitsperformance,theLTC6430-  
15 was used to drive an LTC2158 14-bit, 310Msps ADC  
with 1.25GHz of input bandwidth in an undersampling  
application. Typically, a filter is used between the ADC  
driver amplifier and ADC input to minimize the noise  
contribution from the amplifier. However, with the typical  
SNR of higher sample rate ADCs, the LTC6430-15 can  
drive them without any intervening filter, and with very  
little penalty in SNR. This system approach has the added  
benefit of allowing over two octaves of usable frequency  
range. The LTC6430-15 driving the LTC2158, as shown  
in the circuit in Figure 3, with band limiting provided  
only by the 1.25GHz input BW of the ADC, still produces  
64.4dB SNR, and offers IM performance that varies little  
from 300MHz to 1GHz. At the lower end of this frequency  
range, the IM contribution of the ADC and amplifier are  
comparable, and the third-order IM products may be ad-  
ditive, or may see cancelation. At 1GHz input, the ADC is  
dominant in terms of IM and noise contribution, limited  
AsafinaldisplayoftheutilityofthisLTC6430-15/LTC2158  
combination with real world signals, Figure 9 shows a  
wideband code division multiple access (WCDMA) signal  
wasintroducedtotheLTC6430-15/LTC2158combination  
at 830MHz. The output indicates an ACPR near 60dB cal-  
culated from the adjacent power on the upper side where  
the filter stop band suppresses the contribution from  
the generator. Please note that the adjacent channels on  
the lower side are not suppressed as they are within the  
passband of the filter.  
The LTC6430-15 can directly drive the high speed ADC  
inputsandsettlesquickly.Mostfeedbackamplifiersrequire  
protection from the sampling disturbances, the mixing  
products that result from direct sampling. This is in part  
due to the fact that unless the ADC input driving circuitry  
offers settling in less than one-half clock cycle, the ADC  
may not exhibit the expected linearity. If the ADC samples  
the recovery process of an amplifier it will be seen as  
distortion. If an amplifier exhibits envelope detection in  
Table 3. LTC6430-15 and LTC2158 Combined Performance  
IM3  
(Low, Hi)  
(dBFS)  
HD3  
(3rd Harmonic)  
(dBc)  
Frequency  
(MHz)  
Sample Rate  
(Msps)  
SFDR  
(dB)  
SNR  
(dB)  
380  
533  
656  
690  
842  
1000  
310  
(–98, –105)  
–80.2  
–82.2  
68.7  
79.3  
61.8  
59.4  
307.2  
291.8  
307.2  
307.2  
307.2  
(–94, –92)  
(–93, –92)  
–80.8  
–78  
70.5  
66.7  
69.3  
58.2  
57.1  
56.0  
(–83,–83)  
–89.7  
643015f  
14  
LTC6430-15  
applicaTions inForMaTion  
V
5V  
CM  
49.9Ω  
560nH  
0402AF  
60pF  
1nF  
GUANELLA  
BALUN  
V
= 5V  
CC  
1nF  
150Ω  
350Ω  
100nH  
0402CS  
LTC6430-15  
LTC2158  
MA/COM  
ETC1-1-13  
643015 F03  
200ps  
Figure 3. Wideband ADC Driver, LTC6430-15 Directly Driving the LTC2158 ADC  
V
5V  
CM  
49.9Ω  
560nH  
0402AF  
60pF  
1nF  
V
= 5V  
CC  
1nF  
MINI-CIRCUITS  
ADTL2-18  
2:1 BALUN  
350Ω  
100nH  
0402CS  
LTC6430-15  
LTC2158  
643015 F04  
200ps  
Figure 4. Wideband ADC Driver, LTC6430-15 Directly Driving the LTC2158 ADC—Alternative Using Mini Circuits 2:1 Balun  
the presence of multi GHz mixing products, it will distort.  
A band limiting filter would provide suppression from  
those products beyond the capability of the amplifier, as  
well as limit the noise bandwidth, however the settling of  
the filter can be an issue. The LTC2158, at 310Msps only  
allows 1.5ns settling time for any driver that is disturbed  
by these transients.  
mission line distances shown in the schematic are part  
of the design, and are devised such that there are no  
impedance discontinuities, and therefore no reflections,  
in the distances between 75ps to 200ps from the ADC.  
End termination can be immediately prior to, or preferably  
after the ADC, and the amplifier should either be within  
the 75ps inner boundary, or outside the 200ps distance.  
Similarly, any shunt capacitor or resonator, including the  
large pads required by some inductors with more than a  
small fraction of 1pF, incorporated into a filter, should not  
be in this range of distances from the ADC where reflec-  
tions will impair performance. Transformers with large  
643015f  
This approach of removing the filter between the ADC  
and driver amplifier offers many advantages. It opens  
the opportunity to precede the amplifier with switchable  
bandpass filters, without any need to change the critical  
network between the drive amplifier and ADC. The trans-  
15  
LTC6430-15  
applicaTions inForMaTion  
pads should be avoided within these distances.  
place the termination resistors on the back of the PCB. If  
the input signal path is buried or on the back of the PCB,  
termination resistors should be placed on the top of the  
PCB to properly terminate after the ADC.  
A 100nH shunt inductor at the ADC input approximates  
the complex conjugate of the ADC sampling circuit, and in  
doingso,improvespowertransferandsuppressesthelow  
frequencydifferenceproductsproducedbydirectsampling  
ADCs. If the entire frequency range from 300MHz to 1GHz  
wereofinterest,a100nHinductorattheinputisacceptable,  
but if interest is only in higher frequencies, performance  
would be better if the input inductor is reduced in value.  
If lower frequencies are of interest, a higher value up to  
some 200nH may be practical, but beyond that range the  
SRF of the inductor becomes an issue. As this inductor  
is placed at different distances either before or after the  
ADC inputs, the optimal value may change. In all cases, it  
should be within 50ps of the ADC inputs. End termination  
may be more than 200ps distant if after the ADC. If the  
end termination were perfect, it could be at any distance  
after the ADC. To terminate the input path after the ADC,  
Although the ADC is isolated by a driver amplifier, care  
must be taken when filtering at the amplifier input. Much  
likeMESFETs,highfrequencymixingproductsarehandled  
well by the LTC6430. However, if there is no band limiting  
after the LTC6430, these mixing products, reduced by  
reverse isolation but subsequently reflected from a filter  
prior to the LTC6430 and reamplified, can cause distor-  
tion. In such cases, the network will then be sensitive to  
transmission line lengths and impedance characteristics  
of the filter prior to the LTC6430. Diplexers or absorptive  
filters can produce more robust results. An absorptive  
filter or diplexer-like structure after the amplifier reduces  
the sensitivity to the network prior to the amplifier, but the  
same constraints previously outlined apply to the filter.  
Figure 5. ADC Output: 1-Tone Test at 380MHz with 310Msps Sampling Rate Undersampled in the Third Nyquist Zone  
643015f  
16  
LTC6430-15  
applicaTions inForMaTion  
Figure 6. ADC Output: 2-Tone Test at 380MHz with 310Msps Sampling Rate Undersampled in the Third Nyquist Zone  
Figure 7. ADC Output: 1-Tone Test at 1000MHz with 307.2Msps Sampling Rate Undersampled in the Seventh Nyquist Zone  
643015f  
17  
LTC6430-15  
applicaTions inForMaTion  
Figure 8. ADC Output: 2-Tone Test at 1000MHz with 307.2Msps Sampling Rate Undersampled in the Seventh Nyquist Zone  
Figure 9. ADC Output: WCDMA Test at 830MHz IF Using 30MHz Wide Diplexer Prior to the LTC6430-15  
643015f  
18  
LTC6430-15  
applicaTions inForMaTion  
50MHz to 1000MHz CATV Push-Pull Amplifier:  
75Ω Input and 75Ω Output  
C1  
0.047µF  
L1  
560nH  
C3  
0.047µF  
PORT  
T1  
T2  
1.33:1  
INPUT  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
+OUT  
GND  
1:1.33  
100Ω  
DIFFERENTIAL  
100Ω  
RF  
IN  
T_DIODE  
DNC  
DIFFERENTIAL  
PORT  
OUTPUT  
75Ω,  
CONNECTOR  
LTC6430-15  
C4  
0.047µF  
GND  
BALUN_A  
BALUN_A  
RF  
OUT  
–OUT  
75Ω,  
CONNECTOR  
C2  
0.047µF  
L2  
560nH  
C5  
1000pF  
C6  
0.1µF  
BALUN_A = TC1.33-282+ FOR 50MHz TO 1000MHz  
MINI-CIRCUITS 1:1.33 BALUN  
643015 F10  
V
= 5V  
CC  
Figure 10. CATV Amplifier: 75Ω Input and 75Ω Output  
Wide bandwidth, excellent linearity and low output noise  
makes the LTC6430-15 an exceptional candidate for CATV  
amplifier applications.  
selectingachoke.AnSMTwirewoundferritecoreinductor  
was chosen for its low series resistance, high self reso-  
nant frequency (SRF) and compact size. An input stability  
network is not required for this application as the balun  
presents a low impedance to the LTC6430-15’s input at  
low frequencies. Our resulting push-pull CATV amplifier  
circuit is simple, compact, completely SMT and extremely  
power efficient.  
As expected, the LTC6430-15 works well in a push-pull  
circuit to cover the entire 40MHz to 1000MHz CATV band.  
Using readily available SMT baluns, the LTC6430-15 of-  
fers high linearity and low noise across the whole CATV  
band. Remarkably, this performance is achieved with  
only 800mW of power at 5V. Its low power dissipation  
greatly reduces the heat sinking requirements relative to  
traditional “block” CATV amplifiers.  
The LTC6430-15 push-pull circuit has 14.1dB of gain with  
0.4dB of flatness across the entire 50MHz to 1000MHz  
band. It sports an OIP3 of 46dBm and a noise figure of  
only 4.5dB. The CTB and CSO measurements have not  
been taken as of this writing.  
The native LTC6430-15 device is well matched to 100Ω  
differential impedance at both the input and the output.  
Therefore, we can employ 1:1.33 surface mount (SMT)  
baluns to transform its native 100Ω impedance to the  
standard 75Ω CATV impedance, while retaining all the  
exceptionalcharacteristicsoftheLTC6430-15.Inaddition,  
the balun’s excellent phase balance and the 2nd order  
linearity of the LTC6430-15 combine to further suppress  
2nd order products across the entire CATV band. As with  
any wide bandwidth application, care must be taken when  
These characteristics make the LTC6430-15 an ideal  
amplifier for head-end cable modem applications or CATV  
distribution amplifiers. The circuit is shown in Figure 10,  
with 75Ω “F” connectors at both input and output. The  
evaluation board may be loaded with either 75Ω “F” con-  
nectors, or 75Ω BNC connectors, depending on the users  
preference. Please note that the use of substandard con-  
nectors can limit usable bandwidth of the circuit.  
643015f  
19  
LTC6430-15  
applicaTions inForMaTion  
50MHz to 1000MHz CATV Push-Pull Amplifier:  
75Ω Input and 75Ω Output  
Figure 11. CATV Circuit, Input and  
Output Return Loss vs Frequency  
Figure 12. CATV Amplifier Circuit,  
Figure 13. CATV Amplifier Circuit,  
Noise Figure vs Frequency  
Gain (S21) vs Frequency  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
–5  
10  
8
V
= 5V, T = 25°C  
S21  
CC  
INCLUDES BALUN LOSS  
–10  
–15  
–20  
–25  
–30  
S22  
S11  
6
4
4
3
2
1
2
0
0
0
200  
400  
600  
800  
1000 1200  
0
200  
400  
600  
800  
1000 1200  
0
200  
400  
600  
800  
1000 1200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 F12  
643015 F11  
643015 F13  
Figure 14. CATV Amplifier Circuit,  
OIP3 vs Frequency  
Figure 15. HD2 and HD3 Products  
vs Frequency  
54  
50  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
P
= 5V, T = 25°C  
OUT  
V
P
= 5V, T = 25°C  
OUT  
CC  
CC  
= 2dBm/TONE  
= 8dBm/TONE  
46  
42  
38  
34  
30  
HD2 AVG  
–100  
–110  
HD3 AVG  
400  
26  
0
200  
400  
600  
800  
1000  
0
200  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
643015 F14  
643015 F15  
643015f  
20  
LTC6430-15  
applicaTions inForMaTion  
50MHz to 1000MHz CATV Push-Pull Amplifier:  
75Ω Input and 75Ω Output  
5
4
3
2
1
REVISION HISTORY  
DESCRIPTION  
ECO REV  
APPROVED  
DATE  
__  
1
1ST PROTOTYPE  
JOHN C. 06-26-12  
D
C
B
A
D
C
B
A
L1=L2=560nH=COILCRAFT, PART#:0603LS-561XJLB  
VCC  
VCC  
C5  
1000pF  
C9  
C10  
1000pF  
0603  
0.1uF  
0603  
C1  
0.047uF  
C19  
OPT  
T4  
L1  
C7  
T3  
560nH  
MINI CIRCUIT  
TC1.33-282+  
0.047uF  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
MINI CIRCUIT  
TC1.33-282+  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
+OUT  
GND  
6
4
1
3
3
1
4
6
R3  
0
+IN  
T_DIODE  
DNC  
U1  
LTC6430IUF-15  
J1  
OPT  
CON-RF-75 OHM  
C8  
GND  
0.047uF  
OUT  
-OUT  
J2  
L2  
560nH  
CON-RF-75 OHM  
C2  
0.047uF  
C20  
OPT  
VCC  
VCC  
+5V  
E6  
C11  
0.1uF  
0603  
C12  
1000pF  
0603  
C6  
1000pF  
NOTE: UNLESS OTHERWISE SPECIFIED  
1. ALL RESISTORS ARE IN OHMS, 0402.  
ALL CAPACITORS ARE 0402.  
1630 McCarthy Blvd.  
Milpitas, CA 95035  
Phone: (408)432-1900  
Fax: (408)434-0507  
CUSTOMER NOTICE  
APPROVALS  
LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A  
CIRCUIT THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS;  
HOWEVER, IT REMAINS THE CUSTOMER'S RESPONSIBILITY TO  
VERIFY PROPER AND RELIABLE OPERATION IN THE ACTUAL  
APPLICATION. COMPONENT SUBSTITUTION AND PRINTED  
CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT  
PERFORMANCE OR RELIABILITY. CONTACT LINEAR  
www.linear.com  
TECHNOLOGY  
PCB DES.  
APP ENG.  
AK.  
LTC Confidential-For Customer Use Only  
TITLE: SCHEMATIC  
JOHN C.  
CATV AMPLIFIER  
SIZE  
N/A  
IC NO.  
REV.  
1
TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.  
LTC6430IUF-15  
DEMO CIRCUIT 2032A  
THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND  
SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS.  
SCALE = NONE  
DATE:  
Thursday, September 06, 2012  
SHEET  
1
OF  
1
5
4
3
2
1
Figure 16. LTC6430-15 CATV Circuit Schematic  
Figure 17. LTC6430-15 CATV Evaluation Board  
643015f  
21  
LTC6430-15  
applicaTions inForMaTion  
5
4
3
2
1
REVISION HISTORY  
DESCRIPTION  
ECO REV  
APPROVED  
DATE  
__  
OPTIONAL CIRCUIT  
C10  
2
PRODUCTION  
JOHN C. 12-13-11  
62pF  
C11  
C16  
T1  
SEE BOM  
T2  
1000pF  
1000pF  
J5  
R5  
SEE BOM  
348  
1
6
5
4
4
5
6
3
1
CAL IN  
C19  
1000pF  
C18  
SMA-R  
J18  
1000pF  
D
C
B
A
D
C
B
A
C12  
62pF  
J6  
3
C13  
1000pF  
C17  
GND  
CAL OUT  
1000pF  
R6  
E6  
SMA-R  
348  
GND  
VCC  
C7  
C8  
1000pF  
VCC  
62pF  
C1  
1000pF  
R2  
348  
R4  
R13  
R17  
L11  
L1  
C22  
C21  
1000pF  
OPT  
560nH 0.1uF  
*
*
0603  
*
1008  
U1  
0603  
0603  
T3  
*
C3  
J7  
*
J10  
1000pF  
T4  
*
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
DNC  
+OUT  
GND  
1
3
6
5
4
4
5
6
3
1
+OUT  
SMA-R  
+IN  
*
DNC  
DNC  
DNC  
DNC  
DNC  
C14  
C15  
1000pF  
SMA-R  
1000pF  
T_DIODE  
DNC  
J9  
OPT  
-IN  
J8  
*
C4  
GND  
1000pF  
-OUT  
-OUT  
R18  
SMA-R  
SMA-R  
R14  
*
*
C9  
L22  
L2  
0603  
0603  
62pF  
OPT  
1008  
560nH  
C2  
1000pF  
R3  
VCC  
J11  
+5V  
R1  
*
0603  
348  
C23  
C5  
1000pF  
E3  
VCC  
0.1uF  
+5V  
C20  
NOTE: UNLESS OTHERWISE SPECIFIED  
1. ALL RESISTORS ARE IN OHMS, 0402.  
ALL CAPACITORS ARE 0402.  
1000pF  
*
ASSY  
-A  
U1  
FREQ.  
T3, T4  
R3, R4 R13,R14,R17,R18  
ADT2-1T+ 0 OHM  
ADTL2-18 0 OHM  
J8  
J10  
OPT  
OPT  
LTC6430IUF-15  
LTC6430IUF-15  
LTC6431IUF-15  
100-300 MHz  
400-1000 MHz  
100-1200 MHz  
OPT  
OPT  
0 OHM  
STUFF  
STUFF  
OPT  
1630 McCarthy Blvd.  
Milpitas, CA 95035  
Phone: (408)432-1900  
Fax: (408)434-0507  
LTC Confidential-For Customer Use Only  
CUSTOMER NOTICE  
-B  
-C  
APPROVALS  
LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A  
CIRCUIT THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS;  
HOWEVER, IT REMAINS THE CUSTOMER'S RESPONSIBILITY TO  
VERIFY PROPER AND RELIABLE OPERATION IN THE ACTUAL  
APPLICATION. COMPONENT SUBSTITUTION AND PRINTED  
CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT  
PERFORMANCE OR RELIABILITY. CONTACT LINEAR  
www.linear.com  
OPT  
OPT  
STUFF  
TECHNOLOGY  
PCB DES.  
APP ENG.  
KIM T.  
TITLE: SCHEMATIC  
JOHN C.  
ASSY  
-A  
-B  
C2,C4  
1000pF, 0402  
1000pF, 0402  
OPT  
C5  
C9  
C14,C15  
1000pF, 0402  
OPT  
C23  
0.1uF  
0.1uF  
OPT  
L2  
R1  
IF AMP/ADC DRIVER  
1000pF, 0603  
1000pF, 0603  
OPT  
62pF  
62pF  
OPT  
560nH  
560nH  
OPT  
348  
348  
OPT  
SIZE  
IC NO.  
REV.  
TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.  
LTC643XIUF FAMILY  
DEMO CIRCUIT 1774A  
N/A  
DATE:  
1
-C  
OPT  
THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND  
SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS.  
SCALE = NONE  
Wednesday, July 11, 2012  
SHEET  
1
OF  
1
5
4
3
2
1
Figure 18. Demo Board 1774A Schematic  
643015f  
22  
LTC6430-15  
applicaTions inForMaTion  
Figure 19. Demo Board 1774A PCB  
643015f  
23  
LTC6430-15  
DiFFerenTial s paraMeTers 5V, ZDIFF = 100Ω, T = 25°C, De-Embedded to Package Pins,  
DD: Differential In to Differential Out  
FREQUENCY  
(MHz)  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
DD  
GTU  
STABILITY  
(K)  
DD  
DD  
(Ph)  
DD  
DD  
(Ph)  
DD  
DD  
(Ph)  
DD  
(Mag)  
–14.79  
–22.74  
–23.62  
–23.66  
–22.92  
–22.64  
–21.56  
–20.69  
–19.70  
–18.85  
–18.10  
–17.59  
–17.07  
–16.67  
–16.24  
–15.80  
–15.42  
–15.03  
–14.74  
–14.47  
–14.22  
–13.96  
–13.71  
–13.46  
–13.21  
–12.93  
–12.69  
–12.44  
–12.08  
–11.83  
–11.59  
–11.26  
–11.04  
–10.77  
–10.50  
–10.25  
–9.95  
(Mag)  
15.59  
15.16  
15.14  
15.13  
15.11  
15.09  
15.06  
15.04  
15.00  
14.98  
14.94  
14.91  
14.88  
14.82  
14.80  
14.75  
14.72  
14.67  
14.62  
14.59  
14.52  
14.50  
14.40  
14.36  
14.25  
14.12  
14.00  
13.83  
13.61  
13.48  
13.15  
13.04  
12.74  
12.52  
12.44  
12.13  
12.17  
11.95  
11.86  
(Mag)  
–18.75  
–18.67  
–18.74  
–18.81  
–18.85  
–18.93  
–18.97  
–19.05  
–19.12  
–19.21  
–19.28  
–19.37  
–19.46  
–19.57  
–19.67  
–19.82  
–19.95  
–20.06  
–20.21  
–20.36  
–20.49  
–20.64  
–20.82  
–20.97  
–21.14  
–21.31  
–21.46  
–21.67  
–21.85  
–22.08  
–22.27  
–22.43  
–22.77  
–22.94  
–23.20  
–23.47  
–23.67  
–23.98  
–24.24  
(Mag)  
–14.74  
–22.99  
–24.91  
–25.64  
–26.20  
–26.12  
–25.59  
–24.66  
–23.61  
–22.75  
–21.89  
–21.10  
–20.20  
–19.19  
–18.27  
–17.40  
–16.63  
–15.88  
–15.22  
–14.53  
–13.84  
–13.21  
–12.56  
–11.95  
–11.38  
–10.84  
–10.38  
–9.88  
(Ph)  
(Max)  
23.5  
83.5  
143  
–83.75  
–107.27  
–121.45  
–133.07  
–142.28  
–151.62  
–157.35  
–162.14  
–166.01  
–170.61  
–175.10  
–179.62  
176.30  
171.92  
168.04  
163.82  
160.15  
156.56  
153.02  
149.97  
147.29  
144.60  
142.54  
140.50  
138.25  
136.52  
134.85  
132.91  
130.90  
128.75  
126.05  
123.96  
121.35  
118.82  
116.06  
113.21  
110.44  
107.44  
103.84  
166.68  
170.23  
167.23  
163.30  
159.19  
154.85  
150.64  
146.31  
142.01  
137.67  
133.32  
128.98  
124.59  
120.28  
115.83  
111.55  
107.07  
102.65  
98.25  
9.35  
–66.63  
–48.57  
–37.10  
–33.28  
–29.50  
–31.14  
–33.23  
–32.63  
–32.94  
–33.85  
–36.24  
–40.64  
–45.87  
–50.45  
–55.85  
–60.20  
–65.14  
–70.73  
–76.33  
–82.33  
–88.47  
–94.61  
–100.71  
–106.83  
–113.18  
–119.34  
–125.57  
–131.85  
–138.66  
–145.10  
–151.89  
–158.77  
–165.44  
–172.29  
–178.95  
174.30  
167.79  
161.17  
154.86  
15.88  
15.21  
15.18  
15.16  
15.15  
15.13  
15.11  
15.09  
15.07  
15.06  
15.04  
15.02  
15.01  
14.97  
14.97  
14.94  
14.94  
14.92  
14.91  
14.90  
14.87  
14.89  
14.84  
14.84  
14.79  
14.72  
14.65  
14.56  
14.41  
14.35  
14.10  
14.05  
13.83  
13.67  
13.66  
13.41  
13.51  
13.37  
13.33  
0.99  
1.07  
1.08  
1.08  
1.08  
1.09  
1.09  
1.09  
1.10  
1.10  
1.10  
1.10  
1.10  
1.11  
1.11  
1.11  
1.12  
1.12  
1.12  
1.13  
1.13  
1.13  
1.14  
1.14  
1.14  
1.15  
1.16  
1.17  
1.18  
1.20  
1.23  
1.23  
1.28  
1.31  
1.33  
1.38  
1.38  
1.42  
–3.01  
–8.44  
203  
–12.91  
–17.06  
–21.05  
–25.11  
–29.05  
–32.90  
–36.89  
–40.59  
–44.51  
–48.37  
–52.05  
–56.02  
–59.92  
–63.56  
–67.32  
–71.16  
–74.78  
–78.43  
–82.16  
–85.95  
–89.58  
–93.14  
–96.91  
–100.58  
–104.18  
–107.65  
–111.59  
–114.99  
–118.70  
–122.54  
–125.55  
–129.50  
–132.67  
–136.37  
–139.65  
–143.03  
263  
323  
383  
443  
503  
563  
623  
683  
743  
803  
863  
923  
983  
1040  
1100  
1160  
1220  
1280  
1340  
1400  
1460  
1520  
1580  
1640  
1700  
1760  
1820  
1880  
1940  
2000  
2060  
2120  
2180  
2240  
2300  
93.56  
89.20  
84.43  
79.82  
75.06  
70.23  
65.45  
60.83  
55.62  
51.75  
–9.44  
46.46  
–9.05  
42.83  
–8.66  
38.17  
–8.39  
34.51  
–8.09  
30.70  
–7.86  
27.13  
–7.71  
23.32  
–7.50  
20.08  
–7.38  
–9.66  
15.44  
–7.21  
–9.43  
11.58  
–7.10  
1.45  
643015f  
24  
LTC6430-15  
Typical applicaTions  
50Ω Input/Output Balanced Amplifier  
C7  
60pF  
C1  
1000pF  
L1  
560nH  
R1  
350Ω  
C3  
1000pF  
PORT  
T1  
T2  
INPUT  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
+OUT  
GND  
1:2  
2:1  
100Ω  
RF  
IN  
50Ω, SMA  
100Ω  
DIFFERENTIAL  
C4  
T_DIODE  
DNC  
DIFFERENTIAL  
PORT  
OUTPUT  
LTC6430-15  
1000pF  
BALUN_A  
GND  
BALUN_A  
RF  
OUT  
50Ω, SMA  
C8  
60pF  
–OUT  
C2  
1000pF  
L2  
560nH  
R2  
350Ω  
C5  
1000pF  
C6  
0.1µF  
BALUN_A = ADT2-1T FOR 50MHz TO 300MHz  
BALUN_A = ADT2-1P FOR 300MHz TO 400MHz  
BALUN_A = ADTL2-18 FOR 400MHz TO 1300MHz  
ALL ARE MINI-CIRCUITS CD542 FOOTPRINT  
643015 TA02  
V
= 5V  
CC  
OPTIONAL STABILITY  
NETWORK  
16-Bit ADC Driver  
C1  
1000pF  
L1  
220nH  
C3  
1000pF  
PORT  
T1  
ETC1-1-13  
1:1 TRANSFORMER  
M/A-COM  
INPUT  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
+OUT  
GND  
1:2  
RF  
IN  
50Ω, SMA  
100Ω  
+IN  
–IN  
T_DIODE  
LOWPASS  
FILTER  
DIFFERENTIAL  
C4  
LTC6430-15  
DNC  
GND  
BALUN_A  
1000pF  
14- TO 16-BIT  
ADC  
–OUT  
C2  
1000pF  
L2  
220nH  
C5  
1000pF  
C6  
0.1µF  
BALUN_A = ADT2-1T FOR 50MHz TO 300MHz  
BALUN_A = ADT2-1P FOR 300MHz TO 400MHz  
BALUN_A = ADTL2-18 FOR 400MHz TO 1300MHz  
ALL ARE MINI-CIRCUITS CD542 FOOTPRINT  
V
= 5V  
643015 TA03  
CC  
643015f  
25  
LTC6430-15  
Typical applicaTions  
75Ω 50MHz to 1000MHz CATV Amplifier  
C1  
0.047µF  
L1  
560nH  
C3  
0.047µF  
PORT  
T1  
T2  
INPUT  
DNC  
+OUT  
GND  
1:1.33  
1.33:1  
DNC  
DNC  
DNC  
DNC  
DNC  
100Ω  
RF  
IN  
100Ω  
T_DIODE  
DNC  
DIFFERENTIAL  
75Ω,  
PORT  
OUTPUT  
DIFFERENTIAL  
LTC6430-15  
CONNECTOR  
C4  
0.047µF  
GND  
BALUN_A  
BALUN_A  
RF  
OUT  
–OUT  
75Ω,  
CONNECTOR  
C2  
0.047µF  
L2  
560nH  
C5  
1000pF  
C6  
0.1µF  
BALUN_A = TC1.33-282+  
FOR 50MHz TO 1000MHz  
643015 TA04  
V
= 5V  
CC  
MINI-CIRCUITS 1:1.33  
643015f  
26  
LTC6430-15  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-ꢀ697 Rev B)  
0.70 0.05  
4.50 0.05  
3.ꢀ0 0.05  
2.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN ꢀ NOTCH  
R = 0.20 TYP OR  
0.35 × 45° CHAMFER  
R = 0.ꢀꢀ5  
TYP  
0.75 0.05  
4.00 0.ꢀ0  
(4 SIDES)  
23 24  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
0.40 0.ꢀ0  
2
2.45 0.ꢀ0  
(4-SIDES)  
(UF24) QFN 0ꢀ05 REV B  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
643015f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC6430-15  
Typical applicaTion  
Wideband Balanced Amplifier  
5V  
V
= 5V  
CC  
R
F
1:2  
TRANSFORMER  
V
IN  
LTC6430-15  
R
R
S
50Ω  
2:1  
R
R = 100Ω  
SOURCE  
DIFFERENTIAL  
= 100Ω  
LOAD  
L
TRANSFORMER  
50Ω  
DIFFERENTIAL  
643015 TA05  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Fixed Gain IF Amplifiers/ADC Drivers  
LTC6431-15  
LTC6417  
50Ω Gain Block IF Amplifier  
Single-Ended Version of LTC6431-15, 15.5dB Gain, 47dBm OIP3 at  
240MHz into a 50Ω Load  
1.6GHz Low Noise High Linearity Differential Buffer/ OIP3 = 41dBm at 300MHz, Can Drive 50W Differential Output High  
ADC Driver Speed Voltage Clamping Protects Subsequent Circuitry  
LTC6400-8/LTC6400-14/ 1.8GHz Low Noise, Low Distortion Differential  
LTC6400-20/LTC6400-26 ADC Drivers  
–71dBc IM3 at 240MHz 2V Composite, I = 90mA, A = 8dB, 14dB,  
P-P S V  
20dB, 26dB  
LTC6401-8/LTC6401-14/ 1.3GHz Low Noise, Low Distortion Differential  
LTC6401-20/LTC6401-26 ADC Drivers  
–74dBc IM3 at 140MHz 2V Composite, I = 50mA, A = 8dB, 14dB,  
P-P  
S
V
20dB, 26dB  
LT6402-6/LT6402-12/  
LT6402-20  
300MHz Differential Amplifier/ADC Drivers  
–71dBc IM3 at 20MHz 2V Composite, A = 6dB, 12dB, 20dB  
P-P  
V
LTC6410-6  
1.4GHz Differential IF Amplifier with Configurable  
Input Impedance  
OIP3 = 36dBm at 70MHz, Flexible Interface to Mixer IF Port  
–72dBc IM2 at 300MHz 2V Composite, I = 42mA, eN = 2.8nV/√Hz,  
LTC6416  
2GHz, 16-Bit Differential ADC Buffer  
P-P  
S
A = 0dB, 300MHz } 0.1dB Bandwidth  
V
LTC6420-20  
Dual 1.8GHz Low Noise, Low Distortion Differential Dual Version of the LTC6400-20, A = 20dB  
V
ADC Drivers  
Variable Gain IF Amplifiers/ADC Drivers  
LT6412  
800MHz, 31dB Range Analog-Controlled VGA  
OIP3 = 35dBm at 240MHz, Continuously Adjustable Gain Control  
Baseband Differential Amplifiers  
LTC6409  
1.1nV/√Hz Single Supply Differential Amplifier/ADC 88dB SFDR at 100MHz, AC- or DC-Coupled Inputs  
Driver  
LTC6406  
3GHz Rail-to-Rail Input Differential Amplifier/  
ADC Driver  
–65dBc IM3 at 50MHz 2V Composite, Rail-to-Rail Inputs,  
P-P  
eN = 1.6nV/√Hz, 18mA  
LTC6404-1/LTC6404-2  
LTC6403-1  
Low Noise Rail-to-Rail Output Differential Amplifier/ 16-Bit SNR, SFDR at 10MHz, Rail-to-Rail Outputs, eN = 1.5nV/√Hz,  
ADC Driver LTC6404-1 Is Unity-Gain Stable, LTC6404-2 Is Gain-of-Two Stable  
Low Noise Rail-to-Rail Output Differential Amplifier/ 16-Bit SNR, SFDR at 3MHz, Rail-to-Rail Outputs, eN = 2.8nV/√Hz  
ADC Driver  
High Speed ADCs  
LTC2208/LTC2209  
LTC2259-16  
16-Bit, 13Msps/160Msps ADC  
74dBFS Noise Floor, SFDR > 89dB at 140MHz, 2.25V Input  
P-P  
16-Bit, 80Msps ADC, Ultralow Power  
72dBFS Noise Floor, SFDR > 82dB at 140MHz, 2.00V Input  
P-P  
LTC2160-14/LTC2161-14/ 14-bit, 25Msps/40Msps/60Msps ADC Low Power  
LTC2162-14  
76.2 dBFS Noise Floor, SFDR > 84dB at 140MHz, 2.00V Input  
P-P  
LTC2155-14/LTC2156-14/ 14-bit, 170Msps/210Msps/250Msps/310Msps  
LTC2157-14/LTC2158-14 ADC 2-Channel  
69dBFS Noise Floor, SFDR > 80dB at 140MHz, 1.50V Input,  
P-P  
>1GHz Input BW  
LTC2216  
16-Bit, 80Msps ADC  
79dBFS Noise Floor, SFDR > 91dB at 140MHz, 75V Input  
P-P  
643015f  
LT 1212 • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2012  

相关型号:

LTC6561DICE/DWF

Analog Circuit
ADI

LTC656TG

Optoelectronic
ETC

LTC656TP

Optoelectronic
ETC

LTC660

100mA CMOS Voltage Converter
Linear

LTC6601-1

Low Noise, 0.5% Tolerance, 5MHz to 28MHz, Pin Confi gurable Filter/ADC Driver
Linear

LTC6601-2

Low Power, Low Distortion, 5MHz to 27MHz, Pin Confi gurable Filter/ADC Driver
Linear

LTC6601CUF-1-PBF

Low Noise, 0.5% Tolerance, 5MHz to 28MHz, Pin Confi gurable Filter/ADC Driver
Linear

LTC6601CUF-1-TRPBF

Low Noise, 0.5% Tolerance, 5MHz to 28MHz, Pin Confi gurable Filter/ADC Driver
Linear

LTC6601CUF-2

Low Power, Low Distortion, 5MHz to 27MHz, Pin Confi gurable Filter/ADC Driver
Linear

LTC6601CUF-2#PBF

LTC6601-2 - Low Power, Low Distortion, Low Power, Low Distortion, 5MHz to 27MHz, Pin Configurable Filter/ADC Driver; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6601CUF-2#TRPBF

LTC6601-2 - Low Power, Low Distortion, Low Power, Low Distortion, 5MHz to 27MHz, Pin Configurable Filter/ADC Driver; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6601CUF-2PBF

Low Power, Low Distortion, 5MHz to 27MHz, Pin Confi gurable Filter/ADC Driver
Linear