LTC6601IUF-2PBF [Linear]

Low Power, Low Distortion, 5MHz to 27MHz, Pin Confi gurable Filter/ADC Driver; 低功耗,低失真, 5MHz至27MHz的,引脚可配置的配过滤器/ ADC驱动器
LTC6601IUF-2PBF
型号: LTC6601IUF-2PBF
厂家: Linear    Linear
描述:

Low Power, Low Distortion, 5MHz to 27MHz, Pin Confi gurable Filter/ADC Driver
低功耗,低失真, 5MHz至27MHz的,引脚可配置的配过滤器/ ADC驱动器

驱动器 过滤器
文件: 总40页 (文件大小:477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6601-2  
Low Power, Low Distortion,  
5MHz to 27MHz, Pin Configurable  
Filter/ADC Driver  
FEATURES  
DESCRIPTION  
The LTC®6601-2 is a low power, low distortion, very  
easy-to-use fully differential 2nd order active broadband  
RC filter and driver. On-chip resistors, capacitors, and  
amplifier bandwidth are trimmed to provide consistent  
and repeatable filter characteristics.  
n
Pin Configurable Gain and Filter Response  
Up to 27MHz  
n
Low Power: 16mA at 3V  
n
Low Distortion (2V  
)
P-P  
1MHz: –96dBc 2nd, –112dBc 3rd  
10MHz: –65dBc 2nd, –78dBc 3rd  
Theltercharacteristicsarepin-strapconfigurable. Cutoff  
frequencies range from 5MHz to 27MHz. Gain is pin-strap  
programmable between –17dB and +17dB.  
n
n
n
n
n
n
n
Few External Components Required  
Resistors Trimmed to 0.5% Accuracy Typical  
Capacitors Trimmed to 0.5% Accuracy Typical  
Adjustable Output Common Mode Voltage  
Rail-to-Rail Output Swing  
Power Configurability and Low Power Shutdown  
Tiny 0.75mm 20-Lead (4mm × 4mm) QFN Package  
A three-state BIAS pin is provided to adjust amplifier  
power consumption. Select between low power (50%  
power reduction), high performance and standby modes  
with the BIAS pin.  
The LTC6601 family comes in two options which trade  
off distortion and noise. The LTC6601-2 offers the lowest  
distortion at high frequencies. The LTC6601-1 is config-  
ured for lowest noise. Both are available in pin-compatible  
packages.  
APPLICATIONS  
n
Differential A/D Converter Driver  
n
Antialiasing/Reconstruction Filter  
n
Single-Ended to Differential Conversion/Amplification  
The LTC6601-2 is available in a compact 4mm × 4mm  
20-pin leadless QFN package.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6271719.  
n
Low Voltage, Low Noise, Differential Signal  
Processing  
Common Mode Voltage Translation  
n
n
Portable Instrumentation  
TYPICAL APPLICATION  
Distortion Comparison Between LTC6601-1 and LTC6602-2  
15MHz Filter, Single-Ended Input, Low Power Mode  
25MHz Filter, Single-Ended Input, Low Power Mode  
–40  
–50  
–50  
–60  
–70  
–80  
–90  
–60  
–70  
–80  
–90  
–100  
–100  
–110  
–120  
LTC6601-1 HD2  
LTC6601-2 HD2  
LTC6601-1 HD3  
LTC6601-2 HD3  
LTC6601-1 HD2  
LTC6601-2 HD2  
–110  
LTC6601-1 HD3  
LTC6601-2 HD3  
–120  
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
FREQUENCY (MHz)  
66012 TA01b  
66012 TA01a  
66012f  
1
LTC6601-2  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
+
Total Supply Voltage (V to V )...............................5.5V  
TOP VIEW  
+
Input Voltage (Any Pin) (Note 2)..V + 0.3V to V –0.3V  
Input Current (V , BIAS).................................. 10mA  
20 19 18 17 16  
OCM  
Input Current (Pins 1, 5) (Note 2)........................ 20mA  
Input Current (Pins 2, 4) (Note 2)........................ 30mA  
Input Current (Pins 6, 20) (Note 2)...................... 15mA  
Input Current (Pins 7, 8, 9, 10, 16, 17, 18, 19)  
(Note 2)................................................................ 10mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4)....–40°C to 85°C  
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
+
IN2  
IN1  
OUT  
1
2
3
4
5
15  
14  
13  
12  
11  
+
+
V
BIAS  
V
21  
8
IN1  
V
OCM  
+
IN2  
OUT  
6
7
9 10  
UF PACKAGE  
20-LEAD (4mm s 4mm) PLASTIC QFN  
T
= 150°C, θ = 37°C/W, θ = 4.3°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 21) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC6601CUF-2#PBF  
LTC6601IUF-2#PBF  
LTC6601CUF-2#TRPBF  
LTC6601IUF-2#TRPBF  
66012  
66012  
20-Lead (4mm × 4mm) Plastic QFN  
20-Lead (4mm × 4mm) Plastic QFN  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
DC ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VINCM = VOCM = mid-supply, BIAS tied to V+ or floating,  
ILOAD = 0, RBAL = 100k. The filter is configured for a gain of 1 unless otherwise noted. VS is defined as (V+ – V). VOUTCM is defined as  
(VOUT+ + VOUT)/2. VINCM is defined as (VINP + VINM)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF is defined as (VINP – VINM). See  
Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
(Note 6)  
Amplifier Differential Offset Voltage (Input  
Referred)  
V = 2.7V to 5.25V, BIAS = Floating  
0.25  
0.25  
2
1.25  
mV  
mV  
OSDIFF  
S
+
BIAS = V  
Ampifier Differential Offset Voltage Drift  
(Input Referred)  
V = 2.7V to 5.25V  
S
1
μV/°C  
ΔV  
/ΔT  
OSDIFF  
(Note 6)  
+
R
IN  
(Note 14)  
Input Resistance, BIAS = V  
Single Ended Input Resistance, Pin 2 or Pin 4 V = 3V  
Differential Input Resistance  
133  
200  
Ω
Ω
S
V = 3V  
S
66012f  
2
LTC6601-2  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VINCM = VOCM = mid-supply, BIAS tied to V+ or floating,  
ILOAD = 0, RBAL = 100k. The filter is configured for a gain of 1 unless otherwise noted. VS is defined as (V+ – V). VOUTCM is defined as  
(VOUT+ + VOUT)/2. VINCM is defined as (VINP + VINM)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF is defined as (VINP – VINM). See  
Figure 1.  
SYMBOL  
ΔR (Note 14)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Input Resistance Match, BIAS = V  
Single Ended Input Resistance, Pin 2 or Pin 4 V = 3V  
IN  
l
0.25  
Ω
S
l
l
I (Note 7)  
B
Internal Amplifier Input Bias  
V = 2.7V to 5V  
S
BIAS = Floating  
–25  
–50  
–12.5  
–25  
0
0
μA  
μA  
+
BIAS = V  
l
l
I
OS  
(Note 7)  
Internal Amplifier Input Offset  
V = 2.7V to 5V  
S
BIAS = Floating  
1
1
5
10  
μA  
μA  
+
BIAS = V  
V
(Note 8)  
Input Signal Common Mode Range  
INCM  
(V + V )/2  
INP  
INM  
+
l
l
BIAS = V , V  
= 2.5V  
= 1.5V  
V = 5V  
0
0
4.7  
1.7  
V
V
OCM  
OCM  
S
+
BIAS = V , V  
V = 3V  
S
l
l
BIAS Pin Floating, V  
BIAS Pin Floating, V  
= 2.5V  
= 1.5V  
V = 5V  
S
0
0
4.8  
1.8  
V
V
OCM  
OCM  
S
V = 3V  
CMRRI  
(Notes 9, 14)  
Input Common Mode Rejection Ratio  
(Amplifier Input Referred) ΔV /ΔV  
INCM  
INCM  
OSDIFF  
ΔV  
= 2.5V  
V = 5V  
74  
70  
dB  
dB  
S
CMRRO  
(Notes 9, 14)  
Output Common Mode Rejection Ratio  
(Amplifier Input Referred) ΔV /ΔV  
OCM  
OCM  
OSDIFF  
ΔV  
= 1V  
V = 5V  
S
PSRR (Note 10)  
Power Supply Rejection Ratio  
(Amplifier Input Referred) ΔV /ΔV  
S
OSDIFF  
l
l
BIAS Pin Floating  
V = 2.7V to 5V  
58  
58  
94  
81  
dB  
dB  
S
+
BIAS = V  
V = 2.7V to 5V  
S
PSRRCM (Note 10) Common Mode Power Supply Rejection Ratio  
(ΔV /ΔV  
l
)
V = 2.7V to 5V  
40  
51  
1
dB  
V/V  
%
S
OSCM  
S
g
cm  
Common Mode Gain (ΔV  
OCM  
/ΔV  
OUTCM  
)
OCM  
V = 5V  
S
ΔV  
= 2V  
Common Mode Gain Error = 100 • (g – 1)  
cm  
l
ΔV  
OCM  
= 2V  
V = 5V  
S
0.3  
1.0  
BAL  
Output Balance (ΔV  
Single-Ended Input  
Differential Input  
/ΔV  
OUTCM  
)
ΔV  
S
V = 5V  
S
= 2V  
OUTDIFF  
OUTDIFF  
l
l
–58  
–62  
–40  
–40  
dB  
dB  
V = 5V  
l
l
V
OSCM  
Common Mode Offset Voltage  
(V – V  
V = 2.7V to 5V  
S
BIAS = Floating  
15  
15  
30  
30  
mV  
mV  
S
+
)
V = 2.7V to 5V  
BIAS = V  
OUTCM  
OCM  
l
l
Common Mode Offset Voltage Drift  
(V – V  
V = 2.7V to 5V  
S
BIAS = Floating  
20  
20  
μV/°C  
μV/°C  
ΔV /ΔT  
OSCM  
S
+
)
V = 2.7V to 5V  
BIAS = V  
OUTCM  
OCM  
V
(Note 8) Output Signal Common Mode Range  
OUTCMR  
l
l
l
l
(Voltage Range for the V  
Pin)  
V = 3V  
BIAS Pin Floating  
BIAS Pin Floating  
1.1  
1.1  
1.1  
1.1  
1.8  
4
1.7  
4
V
V
V
V
OCM  
S
V = 5V  
S
+
V = 3V  
BIAS = V  
S
+
V = 5V  
BIAS = V  
S
l
l
R
Input Resistance, V  
Pin  
V = 3V  
5
7
9
kꢀ  
V
INVOCM  
OCM  
S
V
Voltage at the V  
PIn  
V = 3V  
S
1.475  
1.5  
1.525  
MID  
OCM  
66012f  
3
LTC6601-2  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VINCM = VOCM = mid-supply, BIAS tied to V+ or floating,  
ILOAD = 0, RBAL = 100k. The filter is configured for a gain of 1 unless otherwise noted. VS is defined as (V+ – V). VOUTCM is defined as  
(VOUT+ + VOUT)/2. VINCM is defined as (VINP + VINM)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF is defined as (VINP – VINM). See  
Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 3V, I = 0mA, BIAS Pin Floating  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
V
Output Voltage, High, Either Output Pin  
(Note 11)  
240  
290  
470  
370  
430  
650  
450  
525  
850  
675  
775  
1100  
mV  
mV  
mV  
mV  
mV  
mV  
OUT  
S
L
V = 3V, I = 5mA, BIAS Pin Floating  
S
L
V = 3V, I = 20mA, BIAS Pin Floating  
S
L
V = 5V, I = 0mA, BIAS Pin Floating  
S
L
V = 5V, I = 5mA, BIAS Pin Floating  
S
L
V = 5V, I = 20mA, BIAS Pin Floating  
S
L
+
+
+
+
+
+
l
l
l
l
l
l
V = 3V, I = 0mA  
BIAS = V  
245  
285  
415  
350  
390  
550  
450  
525  
750  
625  
700  
1000  
mV  
mV  
mV  
mV  
mV  
mV  
S
L
V = 3V, I = 5mA BIAS = V  
S
L
V = 3V, I = 20mA BIAS = V  
S
L
V = 5V, I = 0mA  
BIAS = V  
V = 5V, I = 5mA BIAS = V  
S
L
S
L
V = 5V, I = 20mA BIAS = V  
S
L
l
l
l
l
l
l
Output Voltage, Low, Either Output Pin  
(Note 11)  
V = 3V, I = 0mA, BIAS Pin Floating  
110  
120  
170  
150  
170  
225  
200  
225  
300  
270  
300  
400  
mV  
mV  
mV  
mV  
mV  
mV  
S
L
V = 3V, I = 5mA, BIAS Pin Floating  
S
L
V = 3V, I = 20mA, BIAS Pin Floating  
S
L
V = 5V, I = 0mA, BIAS Pin Floating  
S
L
V = 5V, I = 5mA, BIAS Pin Floating  
S
L
V = 5V, I = 20mA, BIAS Pin Floating  
S
L
+
+
+
+
+
+
l
l
l
l
l
l
V = 3V, I = 0mA  
BIAS = V  
BIAS = V  
120  
135  
195  
175  
200  
270  
225  
250  
350  
325  
360  
475  
mV  
mV  
mV  
mV  
mV  
mV  
S
L
V = 3V, I = 5mA  
S
L
V = 3V, I = 20mA BIAS = V  
S
L
V = 5V, I = 0mA  
BIAS = V  
BIAS = V  
S
L
V = 5V, I = 5mA  
S
L
V = 5V, I = 20mA BIAS = V  
S
L
l
l
I
SC  
Output Short-Circuit Current,  
Either Output Pin (Note 12)  
V = 3V  
S
45  
60  
65  
90  
mA  
mA  
S
V = 5V  
l
V
S
Supply Voltage Range  
2.7  
5.25  
V
l
l
l
I
Supply Current, BIAS Pin Floating  
V = 2.7V  
15.8  
16  
23  
mA  
mA  
mA  
S
S
V = 3V  
23.5  
24.5  
S
V = 5V  
16.7  
S
+
l
l
l
Supply Current, BIAS Pin Tied to V  
V = 2.7V  
32  
32.2  
33  
41  
41.5  
43  
mA  
mA  
mA  
S
V = 3V  
S
V = 5V  
S
l
l
l
I
Supply Current, BIAS Pin Tied to V  
V = 2.7V  
0.4  
0.45  
0.65  
1
1.1  
1.8  
mA  
mA  
mA  
SHDN  
S
V = 3V  
S
V = 5V  
S
l
l
l
l
l
V
V
V
BIAS Input Pin Range for Shutdown  
(Note 13) BIAS Input for Low Power Operation  
BIAS Input for High Performance Operation  
BIAS Input Resistance  
V = 2.7V to 5V  
S
V
V + 0.4  
V
V
BIASSD  
BIASLP  
BIASHP  
V = 2.7V to 5V  
S
V + 1.0  
V + 1.5  
+
V = 2.7V to 5V  
S
V + 2.3  
V
V
R
V = 2.7V to 5V  
S
100  
150  
200  
kꢀ  
V
BIAS  
BIAS  
V
BIAS Float Voltage  
V = 2.7V to 5V  
S
V + 1.05 V + V + 1.25  
1.15  
t
t
Turn-On Time  
Turn-Off Time  
V = 3V, V  
= 0.25V to 3V  
= 3V to 0.25V  
400  
400  
ns  
ns  
ON  
S
SHDN  
V = 3V, V  
OFF  
S
SHDN  
66012f  
4
LTC6601-2  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, VINCM = VOCM = mid-supply, VBIAS is tied to V+ or  
+
floating, unless otherwise noted. (See Figure 2 for the AC test configuration.) VS is defined as (V+ – V). VOUTCM is defined as (VOUT  
+
VOUT)/2. VICM is defined as (VINP + VINM)/2. VOUTDIFF is defined as (VOUT+ – VOUT). VINDIFF is defined as (VINP – VINM).  
SYMBOL  
PARAMETER  
CONDITIONS  
ΔV 0.25V, f  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
l
l
GAIN  
Filter Gain, See Figure 2,  
BIAS Pin Floating (Remaining AC  
Measurements Relative to 1MHz)  
–0.25  
0.05  
0
0.02  
0.11  
–0.34  
–2.50  
–6.55  
0.25  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
=
= DC (Note 14)  
TEST  
IN  
V
V
V
V
V
V
V
= 600mV , f  
= 1MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
P-P TEST  
P-P TEST  
–0.08  
–0.01  
–0.54  
–3.00  
–7.55  
0.12  
0.23  
–0.14  
–2.00  
–5.55  
= 600mV , f  
= 2MHz  
= 5MHz  
= 10MHz  
= 14.45MHz  
= 20MHz  
= 50MHz  
= 600mV , f  
P-P TEST  
= 600mV , f  
P-P TEST  
= 600mV , f  
P-P TEST  
= 600mV , f  
P-P TEST  
–23.55 –21.55 –19.55  
= 600mV , f  
P-P TEST  
l
l
l
l
l
l
l
l
PHASE  
Filter Phase, See Figure 2,  
BIAS Pin Floating  
0
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
ΔV  
=
0.25V, f  
= DC  
TEST  
IN  
–6.0  
–12.5  
–31.8  
–70.1  
–103.5  
–5.5  
–4.8  
–10.1  
–26.8  
–60.1  
–91.5  
V
V
V
V
V
V
V
= 600mV , f  
= 1MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
–11.3  
–29.3  
–65.2  
–97.5  
= 600mV , f  
= 2MHz  
= 5MHz  
= 10MHz  
= 14.45MHz  
= 20MHz  
= 50MHz  
= 600mV , f  
= 600mV , f  
= 600mV , f  
–130.7 –125.1 –120.7  
–173.6  
= 600mV , f  
= 600mV , f  
NOISE  
SNR  
Output Noise, See Figure 2,  
BIAS Pin Floating  
BW = 100MHz  
BW = 20MHz  
154  
135  
μV  
μV  
RMS  
RMS  
BIAS Pin Floating  
BW = 100MHz  
BW = 20MHz  
73  
74  
dB  
dB  
Distortion  
V
IN  
= 2V , 10MHz, BIAS Pin Floating  
HD2, Single-Ended Input  
HD3, Single-Ended Input  
HD2, Differential Input  
HD3, Differential Input  
–60  
–79  
–65  
–77  
dBc  
dBc  
dBc  
dBc  
P-P  
f TC  
Cutoff Frequency Temperature Coefficient  
Filter Gain, See Figure 2,  
–120  
ppm/°C  
O
l
l
l
l
l
l
l
l
GAIN  
–0.25  
0.05  
0
0.02  
0.11  
–0.34  
–2.35  
–6.24  
0.25  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ΔV  
=
0.25V, f  
= DC (Note 14)  
TEST  
IN  
+
BIAS Pin Tied to V ,  
V
V
V
V
V
V
V
= 600mV , f  
= 1MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
AC Gain Measurements Relative to 1MHz  
–0.08  
–0.01  
–0.54  
–2.75  
–7.14  
0.12  
0.23  
–0.14  
–1.95  
–5.34  
= 600mV , f  
= 2MHz  
= 5MHz  
= 10MHz  
= 14.45MHz  
= 20MHz  
= 50MHz  
= 600mV , f  
= 600mV , f  
= 600mV , f  
= 600mV , f  
–23.70 –21.70 –19.70  
= 600mV , f  
l
l
l
l
l
l
l
l
PHASE  
Filter Phase, See Figure 2,  
0
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
ΔV  
=
0.25V, f  
= DC  
TEST  
IN  
+
BIAS Pin Tied to V  
–6.0  
–12.2  
–31.2  
–68.8  
–101.5  
–5.4  
–11  
–4.8  
–9.8  
–26.2  
–58.8  
–89.5  
V
V
V
V
V
V
V
= 600mV , f  
= 1MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
P-P TEST  
= 600mV , f  
= 2MHz  
= 5MHz  
= 10MHz  
= 14.45MHz  
= 20MHz  
= 50MHz  
–28.7  
–63.8  
–95.5  
= 600mV , f  
= 600mV , f  
= 600mV , f  
–128.4 –123.4 –118.4  
–169.3  
= 600mV , f  
= 600mV , f  
NOISE  
SNR  
Wide Band Output Noise, 14.45MHz Cutoff,  
BW = 100MHz  
BW = 20MHz  
108  
97  
μV  
μV  
RMS  
RMS  
+
BIAS Pin Tied to V  
+
BIAS Pin Tied to V  
BW = 100MHz  
BW = 20MHz  
76  
77  
dB  
dB  
+
DISTORTION V = 2V , 10MHz, BIAS Pin Tied to V  
HD2, Single-Ended Input  
HD3, Single-Ended Input  
HD2, Differential Input  
HD3, Differential Input  
–67.5  
–90  
–70  
–90  
dBc  
dBc  
dBc  
dBc  
IN  
P-P  
f TC  
O
Cutoff Frequency Temperature Coefficient  
–120  
ppm/°C  
66012f  
5
LTC6601-2  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect  
device reliability and lifetime.  
the mid-supply common mode input case by more than 1%, and the  
common mode offset (V ) has not deviated from the mid-supply  
common mode offset by more than 20mV.  
OCMOS  
The voltage range for the output common mode range is tested using the  
test circuit of Figure 1 by measuring the differential DC gain with V  
=
Note 2: All pins are protected by steering diodes to either supply. If any  
pin is driven beyond the part’s supply voltage, the excess input current  
(current in excess of what it takes to drive that pin to the supply rail)  
should be limited to less than 10mA.  
OCM  
mid-supply, and again with a voltage set on the V  
pin at the Electrical  
OCM  
Characteristics table limits, checking the differential gain has not deviated  
from the mid-supply common mode input case by more than 1%, and that  
the common mode offset (V  
from the mid-supply case.  
Note 9: Input CMRR is defined as the ratio of the change in the input  
common mode voltage at the amplifier input to the change in differential  
input referred voltage offset. Output CMRR is defined as the ratio of the  
change in the voltage at the V  
referred voltage offset.  
Note 10: Power supply rejection (PSRR) is defined as the ratio of the  
change in supply voltage to the change in differential input referred voltage  
offset. Common mode power supply rejection (PSRRCM) is defined as the  
ratio of the change in supply voltage to the change in the common mode  
) has not deviated by more than 20mV  
OCMOS  
Note 3: A heat sink may be required to keep the junction temperature  
below the Absolute Maximum Rating when the output is shorted  
indefinitely. Long-term application of output currents in excess of the  
Absolute Maximum Ratings may impair the life of the device.  
Note 4: The LTC6601C/LTC6601I are guaranteed functional over the  
operating temperature range –40°C to 85°C.  
Note 5: The LTC6601C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6601C is designed, characterized, and expected  
to meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LTC6601I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 6: Output referred voltage offset is a function of the low frequency  
gain of the LTC6601. To determine output referred voltage offset, or output  
voltage offset drift, multiply this specification by the noise gain (1 + GAIN).  
See Applications Information for more details.  
pin to the change in differential input  
OCM  
offset, V  
/V  
.
OUTCM OCM  
Note 11: Output swings are measured as differences between the output  
and the respective power supply rail.  
Note 12: Extended operation with the output shorted may cause junction  
temperatures to exceed the 150°C limit and is not recommended.  
Note 7: Input bias current is defined as the average of the currents  
flowing into the noninverting and inverting inputs of the internal amplifier  
and is calculated from measurements made at the pins of the IC. Input  
offset current is defined as the difference of the currents flowing into the  
noninverting and inverting inputs of the internal amplifier and is calculated  
from measurements made at the pins of the IC.  
Note 13: Floating the BIAS pin will reliably place the part into the half-  
power mode. The pin does not have to be driven. Care should be taken,  
however, to prevent external leakage currents in or out of this pin from  
pulling the pin into an undesired state.  
Note 14: The variable contact resistance of the high speed test equipment  
limits the accuracy of this test. These parameters only show a typical  
value, or conservative minimum and maximum value.  
Note 8: Input common mode range is tested using the test circuit of  
Figure 1 by measuring the differential DC gain with V  
= mid-supply, and  
ICM  
with V  
at the input common mode range limits listed in the Electrical  
ICM  
Characteristics table, verifying the differential gain has not deviated from  
66012f  
6
LTC6601-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
High Performance Supply Current  
vs Temperature and  
Shutdown Supply Current  
vs Temperature and  
Supply Voltage  
Low Power Supply Current  
vs Temperature and  
Supply Voltage  
Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
35  
34  
33  
32  
31  
30  
V
= V  
= MID-SUPPLY  
OCM  
V
= V  
= MID-SUPPLY  
V
= V  
= MID-SUPPLY  
OCM  
INCM  
INCM  
OCM  
INCM  
+
BIAS PIN TIED TO V  
BIAS PIN FLOATING  
BIAS PIN TIED TO V  
5V  
5V  
5V  
3V  
2.7V  
3V  
2.7V  
3V  
2.7V  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
66012 G03  
66012 G01  
66012 G02  
Shutdown Supply Current  
vs Supply Voltage and Temperature  
Supply Current vs Bias Pin  
Voltage and Temperature  
Low Power Mode Supply Current  
vs Supply Voltage and Temperature  
50  
40  
30  
20  
10  
0
1
0.1  
100  
10  
V
V
= V  
= MID-SUPPLY  
OCM  
INCM  
S
= 3V  
125°C  
125°C  
–40°C  
25°C  
1
–40°C  
25°C  
0.1  
0.01  
0.001  
–40°C  
25°C  
125°C  
0.01  
0.001  
V
= V  
= MID-SUPPLY  
OCM  
V
= V  
= MID-SUPPLY  
OCM  
INCM  
INCM  
BIAS PIN TIED TO V  
BIAS PIN FLOATING  
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
5
0
1
2
3
4
5
BIAS PIN VOLTAGE WITH RESPECT TO V (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
66012 G04  
66012 G05  
66012 G06  
High Performance Supply Current  
vs Supply Voltage and Temperature  
High Performance Mode  
Differential VOS vs Temperature  
Low Power Mode Differential VOS  
vs Temperature  
100  
10  
1.00  
0.75  
1.00  
0.75  
V
V
= 3V  
INCM  
BIAS PIN TIED TO V  
V
V
= 3V  
S
INCM  
BIAS PIN FLOATING  
S
= V  
= MID-SUPPLY  
= V  
= MID-SUPPLY  
OCM  
OCM  
125°C  
+
5 REPRESENTATIVE UNITS  
5 REPRESENTATIVE UNITS  
0.50  
0.50  
–40°C  
0.25  
0.25  
1
0.00  
0.00  
0.1  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
25°C  
0.01  
0.001  
V
= V  
= MID-SUPPLY  
OCM  
INCM  
+
BIAS PIN TIED TO V  
0
1
2
3
4
5
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
66012 G07  
66012 G08  
66012 G09  
66012f  
7
LTC6601-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
High Performance Common Mode  
VOS vs Temperature  
Low Power Common Mode VOS  
vs Temperature  
Internal Amplifier Input Bias  
Current vs Temperature  
–5  
–10  
–15  
–20  
–25  
–30  
10  
5
15  
10  
5
LOW POWER MODE  
(BIAS PIN FLOATING)  
0
0
HIGH PERFORMANCE MODE  
+
(BIAS PIN TIED TO V )  
–5  
–10  
–15  
–5  
V
V
= 3V  
INCM  
BIAS PIN TIED TO V  
V
V
= 3V  
INCM  
BIAS PIN FLOATING  
S
S
= V  
= MID-SUPPLY  
OCM  
= V  
= MID-SUPPLY  
OCM  
+
V
V
= 3V  
INCM  
S
= V  
= MID-SUPPLY  
OCM  
0
5 REPRESENTATIVE UNITS  
5 REPRESENTATIVE UNITS  
–10  
–50 –25  
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
66012 G12  
66012 G10  
66012 G11  
BIAS Pin Float Voltage  
vs Temperature  
Filter Input Resistance  
vs Temperature  
BIAS Pin Input Resistance  
vs Temperature  
1.20  
1.15  
1.10  
1.05  
1.00  
1.0050  
1.0025  
1.0000  
0.9975  
0.9950  
200  
175  
150  
125  
100  
V
V
= 3V  
S
INCM  
NOMINAL  
NOMINAL  
V
V
= 3V  
INCM  
V
V
= 3V  
INCM  
S
S
= V = MID-SUPPLY  
= V  
= MID-SUPPLY  
OCM  
= V  
= MID-SUPPLY  
OCM  
OCM  
R
R
= 200Ω DIFFERENTIAL  
= 133.3Ω SINGLE-ENDED  
SEE FIGURE 1 FOR CONFIGURATION  
SINGLE-ENDED  
DIFFERENTIAL  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
66012 G14  
66012 G15  
66012 G13  
High Performance Mode  
Frequency Response of 12  
Possible Filter Configurations  
Low Power Mode Frequency  
Response of 12 Possible Filter  
Configurations  
Low Frequency Gain  
vs Temperature  
1.010  
1.005  
1.000  
0.995  
0.990  
V
V
= 3V  
INCM  
S
= V  
= MID-SUPPLY  
OCM  
10  
0
10  
0
5 REPRESENTATIVE UNITS  
–10  
–20  
–30  
–10  
–20  
–30  
V
V
= 3V  
INCM  
BIAS PIN TIED TO V  
V
V
= 3V  
S
INCM  
BIAS PIN FLOATING  
S
= V  
= MID-SUPPLY  
= V  
= MID-SUPPLY  
OCM  
OCM  
+
–50 –25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
0.1  
1
10  
100  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
66012 G16  
66012 G17  
66012 G18  
66012f  
8
LTC6601-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
High Performance Mode Gain  
and Phase Repeatability of 10  
Random Units  
Low Power Mode Gain and Phase  
Repeatability of 10 Random Units  
0.20  
0.15  
0.10  
0.05  
0
4
0.20  
0.15  
0.10  
0.05  
0
4
V
V
= 3V  
INCM  
V
V
= 3V  
S
INCM  
S
= V  
= MID-SUPPLY  
= V  
= MID-SUPPLY  
OCM  
OCM  
3
3
+
BIAS PIN TIED TO V  
SEE FIGURE 1  
BIAS PIN FLOATING  
SEE FIGURE 1  
2
2
J
J  
AVERAGE  
J
J  
AVERAGE  
MAX  
MAX  
1
1
MAX – AVERAGE  
MAX – AVERAGE  
0
0
MIN – AVERAGE  
MIN – AVERAGE  
–0.05  
–0.10  
–0.15  
–0.20  
–1  
–2  
–3  
–4  
–0.05  
–0.10  
–0.15  
–0.20  
–1  
–2  
–3  
J
J  
MIN  
AVERAGE  
J
MIN  
J  
AVERAGE  
–4  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
66012 G19  
66012 G20  
Low Power Mode Gain Error of  
10 Random Units Normalized to  
1MHz  
High Performance Mode Gain Error  
of 10 Random Units Normalized to  
1MHz  
High Performance Mode Phase  
Error of 10 Random Units  
3
2
8
6
3
2
V
V
= 3V  
ICM  
BIAS PIN FLOATING  
V
V
= 3V  
ICM  
BIAS PIN TIED TO V+  
V
V
T
= V  
= MID-SUPPLY  
OCM  
S
ICM  
S
A
S
= V  
= MID-SUPPLY  
OCM  
= V  
= MID-SUPPLY  
= 3V  
OCM  
= 25°C  
10 RANDOM UNITS PLOTTED  
10 RANDOM UNITS PLOTTED  
4
T
= 25°C  
T
= 25°C  
A
A
+SPECIFICATION  
1
1
2
+SPECIFICATION  
+SPECIFICATION  
0
0
0
–2  
–4  
–6  
–8  
–1  
–2  
–3  
–1  
–2  
–3  
–SPECIFICATION  
–SPECIFICATION  
–SPECIFICATION  
BIAS PIN TIED TO V+  
10 RANDOM UNITS PLOTTED  
1
10  
100  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
66012 G22  
66012 G23  
66012 G21  
Low Power Mode Phase Error of  
10 Random Units  
Turn On and Turn Off Transient  
Response  
Pulse Response  
5
4
1.6  
2
8
6
V
= 5V  
V
V
= V  
= MID-SUPPLY  
V = 3V  
S
S
ICM  
S
A
OCM  
BIAS PIN  
= 3V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
3
1
0
4
2
+SPECIFICATION  
2
1
0
0
–1  
–2  
–3  
–4  
–5  
–2  
–4  
–6  
–8  
–SPECIFICATION  
–1  
–2  
V
OUTDIFF  
1
BIAS PIN FLOATING  
10 RANDOM UNITS PLOTTED  
0
2
3
4
5
6
0
1
2
3
4
5
6
7
8
1
10  
100  
TIME (μs)  
TIME (μs)  
FREQUENCY (MHz)  
66012 G25  
66012 G26  
66012 G24  
66012f  
9
LTC6601-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distortion vs Frequency  
Differential Output Noise  
Distortion vs Frequency  
100  
10  
1
1000  
100  
10  
–60  
–70  
–50  
–60  
V
V
V
= 5V  
V
= 3V  
V
V
V
= 5V  
S
HD2  
S
S
HD2  
SPECTRAL DENSITY,  
= 2V INPUT  
P-P  
= 2V INPUT  
IN  
ICM  
P-P  
IN  
ICM  
+
= V  
= MID-SUPPLY  
BIAS TIED TO V  
OCM  
= V  
OCM  
BIAS PIN TIED TO V+  
= MID-SUPPLY  
–80  
–70 BIAS PIN FLOATING  
SPECTRAL DENSITY,  
BIAS PIN FLOATING  
–90  
–80  
–90  
HD3  
HD3  
–100  
–110  
–120  
–130  
INTEGRATED NOISE,  
+
BIAS TIED TO V  
–100  
–110  
–120  
INTEGRATED NOISE,  
BIAS PIN FLOATING  
SINGLE ENDED INPUT  
DIFFERENTIAL INPUT  
SINGLE ENDED INPUT  
DIFFERENTIAL INPUT  
0.1  
1
0.001  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
66012 G27  
66012 G28  
66012 G29  
Gain Error Relative to 1MHz  
vs Temperature  
Passband Gain and Phase  
vs Temperature  
% Change of fO vs Temperature  
3
2
0.5  
0
0.5  
0
0
V
V
= 3V  
ICM  
S
= V  
= MID-SUPPLY  
OCM  
–15  
BIAS PIN TIED TO V+  
TEMPERATURES PLOTTED:  
–45°C, –10°C, 25°C,  
70°C, 95°C, 125°C  
GAIN  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–30  
–45  
–60  
–75  
–90  
–105  
1
PHASE  
–0.5  
–1.0  
–1.5  
–2.0  
+SPECIFICATION  
0
–1  
–2  
–3  
V
V
= 3V  
ICM  
BIAS PIN TIED TO V+  
–SPECIFICATION  
S
= V  
= MID-SUPPLY  
OCM  
TEMPERATURES PLOTTED:  
–45°C, –10°C, 25°C, 70°C, 95°C, 125°C  
1
10  
100  
–50 –25  
0
25  
50  
75 100 125  
1
10  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
66012 G32  
66012 G30  
66012 G31  
Phase Error vs Temperature  
Normalized 100Ω Resistor Trim  
Normalized 125Ω Resistor Trim  
15  
10  
5
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
AVERAGE = 100ꢀ  
STD. DEV = 0.19ꢀ  
V
V
= 3V  
ICM  
AVERAGE = 125ꢀ  
STD. DEV = 0.22ꢀ  
S
= V  
= MID-SUPPLY  
OCM  
BIAS PIN TIED TO V+  
TEMPERATURES PLOTTED:  
–45°C, –10°C, 25°C,  
70°C, 95°C, 125°C  
+SPECIFICATION  
0
–5  
–10  
–15  
–SPECIFICATION  
1
10  
100  
0.993  
0.997  
1.001  
1.005  
1.009  
0.99  
0.994 0.998 1.002 1.006  
NORMALIZED RESISTANCE  
1.01  
FREQUENCY (MHz)  
NORMALIZED RESISTANCE  
66012 G33  
66012 G34  
66012 G35  
66012f  
10  
LTC6601-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Normalized Feedback 400Ω  
Resistor Trim  
Normalized Input 400Ω  
Resistor Trim  
Normalized 200Ω Resistor Trim  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
AVERAGE = 200ꢀ  
STD. DEV = 0.37ꢀ  
AVERAGE = 400.01ꢀ  
STD. DEV = 0.87ꢀ  
AVERAGE = 400.01ꢀ  
STD. DEV = 1.0ꢀ  
0.99  
0.994 0.998 1.002 1.006  
NORMALIZED RESISTANCE  
1.01  
0.99  
0.994 0.998 1.002 1.006  
NORMALIZED RESISTANCE  
1.01  
0.99  
0.994 0.998 1.002 1.006  
NORMALIZED RESISTANCE  
1.01  
66012 G36  
66012 G38  
66012 G37  
Normalized 33.3pF  
Capacitor Trim  
Normalized 48.2pF  
Capacitor Trim  
Normalized 21.1pF Capacitor Trim  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
AVERAGE = 33.3pF  
STD. DEV = 0.09pF  
AVERAGE = 21.1pF  
STD. DEV = 0.07pF  
AVERAGE = 48.2pF  
STD. DEV = 0.08pF  
0.988 0.993 0.999 1.005 1.010 1.016  
0.984 0.990 0.997 1.003 1.009 1.015  
0.992 0.995 0.998 1.001 1.004 1.007 1.010  
NORMALIZED CAPACITANCE  
NORMALIZED CAPACITANCE  
NORMALIZED CAPACITANCE  
66012 G40  
66012 G39  
66012 G41  
Normalized 10.55pF  
Capacitor Trim  
Normalized 16.1pF  
Capacitor Trim  
Normalized 81.5pF  
Capacitor Trim  
350  
300  
250  
200  
150  
100  
50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
AVERAGE = 16.1pF  
STD. DEV = 0.05pF  
AVERAGE = 81.5pF  
STD. DEV = 0.1pF  
AVERAGE = 10.55pF  
STD. DEV = 0.03pF  
0
0
0.988 0.992 0.995 0.999 1.003 1.006 1.010 1.014  
0.993 0.996 0.999 1.002 1.004 1.007 1.010  
0.987 0.991 0.996 1.000 1.005 1.009 1.014  
NORMALIZED CAPACITANCE  
NORMALIZED CAPACITANCE  
NORMALIZED CAPACITANCE  
66012 G44  
66012 G42  
66012 G43  
66012f  
11  
LTC6601-2  
PIN FUNCTIONS (Refer to the Block Diagram)  
+
+
+
IN1 , IN2 , IN4 (Pins2, 1, 20):Inputtoatrimmed100ꢀ,  
C3, C4 (Pins 9, 10): Input to a trimmed 10.55pF, 21.1pF  
200ꢀ,400resistorwhichfeedsanoninvertingsumming  
node.Canacceptaninputsignal,beoatedortiedtoOUT .  
capacitor which feeds the amplifier inverting summing  
+
node. Typically, either float or tie to OUT . For best per-  
Forbestperformance, straycapacitanceshouldbekeptas  
low as possible by keeping printed circuit connections as  
short and direct as possible. If necessary, strip back the  
surrounding ground plane away from these pins.  
formance,itishighlyrecommendedthatstraycapacitance  
be kept to as low as possible by keeping printed circuit  
connections as short and direct as possible, and if nec-  
essary, stripping back nearby surrounding ground plane  
away from these pins.  
BIAS (Pin 3): Input to a three-state comparator whose  
three states allow the user to tailor amplifier power. The  
pin impedance appears as a 150k resistor whose default  
+
OUT , OUT (Pins 11, 15): Output Pins. Besides driving  
the internal feedback network, each pin can drive an ad-  
ditional 50ꢀ to ground with typical short-circuit current  
limitingof 65mA. Capacitiveloadingofthesepinsshould  
be minimized by resistively decoupling the outputs from  
the load with at least 25ꢀ.  
open-circuitpotentialis1.15VwithrespecttotheV power  
supply. IfBIASisdriventowithin0.4VoftheV supply, the  
amplifier is placed into a low power shutdown, consum-  
ing typically 450μA. When BIAS is floated, the amplifier  
operates in its low power active state. Forcing the pin 2.3V  
V
(Pin 12): Output Common Mode Reference Voltage.  
OCM  
ThevoltageonV  
above V places the part into the high performance active  
setstheoutputcommonmodevoltage  
OCM  
state. See Applications Information for more detail.  
level (which is defined as the average of the voltages on  
+
IN1 , IN2 , IN4 (Pins 4, 5, 6): Input to a trimmed 100ꢀ,  
200ꢀ, 400ꢀ resistor which feeds an inverting summing  
node. Can accept an input signal, be floated or tied to  
the OUT and OUT pins). The V  
pin is the midpoint  
OCM  
of an internal resistive voltage divider between the sup-  
plies, developing a (default) mid-supply voltage potential  
+
OUT . For best performance, it is highly recommended  
to maximize output signal swing. The V  
pin can be  
OCM  
that stray capacitance be kept to as low as possible by  
keeping printed circuit connections as short and direct  
as possible, and if necessary, stripping back nearby sur-  
rounding ground plane away from these pins.  
overdriven by an external voltage reference capable of  
driving the input impedance presented by the V pin.  
OCM  
The V  
pin has an input resistance of approximately 7k  
OCM  
to a mid-supply potential. It should be bypassed with a  
highqualityceramicbypasscapacitor(forinstanceofX7R  
dielectric) of at least 0.01ꢁF, (unless using symmetrical  
split supplies, then connect directly to a low impedance,  
lownoisegroundplane)tominimizecommonmodenoise  
from being converted to differential noise by impedance  
mismatches both externally and internally to the IC.  
C1, C2 (Pins 7, 8): Input to a trimmed 16.1pF, 33.3pF  
capacitor which feeds a noninverting summing node.  
Typically, either float or tie to OUT . If either of these  
pins is tied to a low impedance source other than OUT ,  
a resistance of at least 25ꢀ should be placed in series.  
For best performance, it is highly recommended that stray  
capacitancebekepttoaslowaspossiblebykeepingprinted  
circuit connections as short and direct as possible, and  
if necessary, stripping back nearby surrounding ground  
plane away from these pins.  
66012f  
12  
LTC6601-2  
PIN FUNCTIONS (Refer to the Block Diagram)  
+
C5, C6 (Pins 19, 18): Input to a trimmed 16.1pF, 33.3pF  
V , V (Pins 14, 13): Power Supply Pins. It is critical that  
close attention be paid to supply bypassing. For single  
supplyapplications(Pin13grounded), itisrecommended  
that a high quality 0.1ꢁF surface mount ceramic bypass  
capacitor (X7R dielectric for instance) be placed between  
Pins 14 and 13, with direct short connections. Pin 13  
should be tied directly to a low impedance ground plane  
with minimal routing. For dual (split) power supplies, it  
is recommended that at least two additional high quality  
capacitor which feeds an inverting summing node. Typi-  
+
cally, either float or tie to OUT . If either of these pins are  
+
tied to a low impedance source other than OUT , a re-  
sistance of at least 25ꢀ should be placed in series. For  
best performance, it is highly recommended that stray  
capacitancebekepttoaslowaspossiblebykeepingprinted  
circuit connections as short and direct as possible, and if  
necessary, stripping back nearby surrounding reference  
plane away from these pins.  
+
0.1ꢁF ceramic capacitors are used to bypass V to ground  
and V to ground, again with minimal routing. For driving  
large loads (< 200ꢀ), additional bypass capacitance may  
beaddedforoptimalperformance.Keepinmindthatsmall  
geometry (e.g., 0603) surface mount ceramic capacitors  
have a much lower ESL than do leaded capacitors, and  
perform best in high speed applications.  
Exposed Pad (Pin 21): Always tie the underlying Exposed  
Pad to V (Pin 13). If split supplies are used, do not tie  
the pad to ground. Tie it to V .  
C7, C8 (Pins 17, 16): Input to a trimmed 10.55pF, 21.1pF  
capacitor which feeds the amplifier noninverting sum-  
ming node. Typically, either float or tie to OUT . For best  
performance, stray capacitance should be kept as low as  
possible by keeping printed circuit connections as short  
and direct as possible.If necessary, strip back the sur-  
rounding ground plane away from these pins.  
66012f  
13  
LTC6601-2  
BLOCK DIAGRAM  
20  
IN4  
19  
C5  
18  
C6  
17  
C7  
16  
C8  
+
16.1pF  
33.3pF  
400Ω  
81.5pF  
400Ω  
+
200Ω  
IN2  
10.55pF  
1
2
OUT  
15  
14  
13  
12  
21.1pF  
48.2pF  
+
100Ω  
IN1  
+
V
V
V
+ 2.3V  
860Ω  
180k  
125Ω  
125Ω  
60k  
+
BIAS  
BIAS  
3
860Ω  
14k  
14k  
180k  
48.2pF  
21.1pF  
10.55pF  
V
OCM  
100Ω  
200Ω  
IN1  
4
5
+
OUT  
11  
400Ω  
IN2  
81.5pF  
33.3pF  
C2  
400Ω  
16.1pF  
IN4  
C1  
C3  
C4  
10  
6
7
8
9
66012 BD  
66012f  
14  
LTC6601-2  
TEST CIRCUITS  
20  
19  
18  
17 16  
LTC6601-2  
I
L
1
2
25Ω  
V
OUT  
15  
14  
+
+
V
R
R
BAL  
V
INP  
0.1μF  
0.1μF  
+
BIAS  
3
V
V
OUT(CM)  
13  
12  
11  
0.1μF  
V
INM  
+
V
BAL  
OCM  
0.01μF  
I
L
4
5
+
25Ω  
V
OUT  
6
7
8
9
10  
66012 F01  
Figure 1. DC Test Circuit  
20  
19  
18  
17 16  
LTC6601-2  
5V  
6
9 10 11 12  
LT6411  
1μF  
1
2
100Ω  
1μF  
V
OUT  
13  
15  
14  
V
14  
15  
16  
8
IN  
COILCRAFT  
TTWB-4-B  
V
INP  
5
+
V
0.1μF  
0.1μF  
1
2
3 7 17  
+
50Ω  
BIAS  
1μF  
3
V
13  
12  
11  
0.1μF  
–5V  
V
OCM  
0.01μF  
V
INM  
4
5
1μF  
+
100Ω  
V
OUT  
6
7
8
9
10  
66012 F02  
Figure 2. AC Test Circuit (Frequency Response Testing)  
66012f  
15  
LTC6601-2  
APPLICATIONS INFORMATION  
FUNCTIONAL DESCRIPTION  
Figure 3 shows the basic filter architecture. The Laplace  
transfer function from V to V is given by the  
INDIFF  
OUTDIFF  
The LTC6601 is designed to make the implementation of  
high frequency fully-differential filtering functions very  
easy.Averylownoiseamplifierissurroundedby8precision  
matched resistors and 12 precision matched capacitors  
so that a myriad of filter transfer functions limited only by  
possiblecombinationsandimaginationcanbeconfigured  
by hard wiring pins. The amplifier itself is a wide band, low  
noiseandlowdistortionfully-differentialamplifierwithac-  
curateoutputphasebalancing.Itisoptimizedfordrivinglow  
voltage, single-supply, differential input, analog-to-digital  
converters (ADCs). The LTC6601’s outputs are capable  
of swinging rail-to-rail on supplies as low as 2.7V, which  
makestheamplifieridealforconvertinggroundreferenced,  
following generalized equation for a 2nd order lowpass  
filter:  
VOUTDIFF  
Gain  
=
s2  
V
s
INDIFF  
1+  
+
2
2πfO Q  
2πf  
(
)
O
BothGainandQofthelterarebasedoncomponentratios,  
which match and track extremely well over temperature.  
The corner frequency of the filter is a function of an RC  
product. This RC product is trimmed to 1% (typical) and  
is not expected to drift by more than 1% from nominal  
over the entire temperature range –40°C to 85°C. As a  
result, fully differential filters with tight magnitude, phase  
tolerance and repeatability are achieved.  
single-ended signals into V  
referenced differential  
OCM  
signals. Unlike traditional op amps which have a single  
output, the LTC6601 has two outputs to process signals  
differentially. This allows for two times the signal swing  
in low voltage systems when compared to single-ended  
output amplifiers. The balanced differential nature of the  
amplifier and matched surrounding components provide  
even-order harmonic distortion cancellation, and less  
susceptibility to common mode noise (like power supply  
noise). The LTC6601 can be used as a single-ended input  
to differential output amplifier, or as a differential input to  
differential output amplifier.  
Although Figure 3 implies a differential input, the LTC6601  
easily accepts single-ended inputs to either input, and will  
faithfully replicate the signal at the output in differential  
form.  
The LTC6601’s output common mode voltage, defined as  
the average of the two output voltages, is independent of  
theinputcommonmodevoltage, andisadjustedbyapply-  
ing a voltage on the V  
pin. If the pin is left open, there  
OCM  
is an internal resistive voltage divider, which develops a  
R2  
1
C2  
C1  
f
=
O
2P R2 • R3 • C1C2  
C2 R3  
1
Q =  
R1  
R3  
R3 C2  
R2 C1  
C1 R2  
1+ 1+ GAIN  
R2  
R1  
GAIN =  
+
+
V
V
OUT(DIFF)  
IN(DIFF)  
R1  
fO  
6089 • 3568 • Q4 1788 • Q2 + 447 + 1.287 • 105 • 2 • Q2 1  
(
)
(
)
f3dB  
=
C1  
C2  
R2  
507.6 • Q  
R3  
4
4
2
2
0.2236 • fO  
2.109 • 105  
9.8911012 • f3dB 5.486 • 109 fO + 120 • 5.526 • 109 • f3dB + 3.082 • 106 fO  
(
)
(
)
Q =  
2
2
2
4
16 • fO • 8.29 • 109 • f3dB + 4.127 • 109 fO 6.638 • 1010 • f3dB  
(
)
(
)
66012 F03  
Figure 3. Basic Filter Topology and Equations  
66012f  
16  
LTC6601-2  
APPLICATIONS INFORMATION  
+
(seetheElectricalCharacteristicstable), andcanbedriven  
by an external source keeping in mind its equivalent input  
impedance and equivalent input voltage. If the BIAS pin is  
floated, care should be taken to control external leakage  
currents to this pin to under 1ꢁA to prevent putting the  
LTC6601 an undesired state.  
potential halfway between the V and V pins. Whenever  
this pin is not hard tied to a low impedance ground plane,  
a high quality ceramic capacitor should be used to bypass  
theV  
pintoalowimpedancegroundplane(seeLayout  
OCM  
Considerations). The LTC6601’s internal common mode  
feedback path forces accurate output phase balancing to  
reduce even order harmonics, and centers each individual  
If BIAS is tied to the positive supply, the LTC6601 dif-  
ferential filter will be in a fully active state configured for  
highestperformance(lowestnoiseandlowestdistortion).  
If the BIAS pin is floated or left unconnected, the LTC6601  
filter will be in a fully active state, with amplifier currents  
reduced and performance scaled back to preserve power  
consumption. If the BIAS pin is tied to the most negative  
output about the potential set by the V  
pin.  
OCM  
VOUT+ + VOUT  
VOUTCM = VOCM  
=
2
+
The outputs (OUT and OUT ) of the LTC6601 are capable  
of swinging rail-to-rail. They can source or sink up to ap-  
proximately 75mA of current. Load capacitances should  
be decoupled with at least 25ꢀ of series resistance from  
each output.  
supply (V ), the LTC6601 will be placed into a low power  
shutdown mode with amplifier outputs disabled. In this  
state, the LTC6601 draws approximately 450μA.  
Inlowpowershutdown,allinternalbiasingcurrentsources  
The LTC6601 Electrical Characteristics table specifies an  
inputreferredoffset.Thisspecificationactuallylumpsvolt-  
+
areshutoff, andtheoutputpins, OUT andOUT , willeach  
appear as open collectors with a non-linear capacitor in  
parallel and steering diodes to either supply. The turn-on  
and turn-off time constant between states are on the order  
of 0.4ꢁs. Using this function to wire-OR outputs together  
is not recommended.  
age offsets due to offset bias currents (I ), and amplifier  
OS  
voltageoffsetintoonespecification.Toreferthisspecifica-  
tion to the output, you simply multiply the specification  
by the noise gain the LTC6601 is configured in:  
V
= 1 + Gain  
OSODIFF  
General Design and Usage  
where Gain is the closed loop gain in the particular filter  
application:  
As levels of integration have increased and correspond-  
ingly, system supply voltages decreased, there has been  
a need for ADCs to process signals differentially in order  
to maintain good signal-to-noise ratios. These ADCs are  
typically supplied from a single supply voltage which  
can be as low as 3V (2.7V min), and will have an optimal  
commonmodeinputrangenearmid-supply.TheLTC6601  
makes interfacing to these ADCs easy, by providing anti-  
alias filtering, single-ended to differential conversion and  
common mode level shifting (translation). Figure 3 shows  
a general application of this. The low frequency gain to  
R2  
Gain =  
R1  
COMPONENT INPUT PIN PROTECTION  
+
All of the LTC6601 pins with the exception of V and V are  
protected with steering diodes to either power supply. In  
the event that a pin is driven beyond the supply rails, the  
excesscurrentshouldbelimitedtounder10mAtoprevent  
damage to the IC.  
V
from V is simply:  
OUTDIFF  
IN  
BIAS Pin  
R2  
R1  
+
+
VOUTDIFF = VOUT – VOUT  
• V  
INDIFF  
The LTC6601 has a BIAS pin (Pin 3) whose function is to  
tailor both performance and power of the LTC6601. The  
pinhasaTheveninequivalentimpedanceofapproximately  
150kꢀ to a voltage source whose potential is 1.15V above  
Thedifferentialoutputvoltage(V  
–V  
)iscompletely  
OUT  
OUT  
independent of input and output common mode voltages,  
or the voltage at the common mode pin. This makes the  
66012f  
the V supply. This pin has fixed logic levels relative to V  
17  
LTC6601-2  
APPLICATIONS INFORMATION  
LTC6601 ideally suited for pre-amplification, level shift-  
ing and conversion of single-ended signals to differential  
output signals for driving differential input ADCs.  
Input and Output Common Mode Voltage Range  
The input common mode voltage is defined as the average  
of the two inputs:  
V
INP + V  
INM  
INPUT IMPEDANCE  
V
=
INCM  
2
Calculating the low frequency input impedance of the  
LTC6601 depends on how the inputs are driven (whether  
they are driven from a single-ended or a differential  
source).  
The lower limit of the input common mode range is dic-  
tated by the ESD protection diodes at the input. While it  
is possible for the inputs to swing below V , the diodes  
will conduct if the inputs are taken a diode drop below V .  
Figure 4 shows a simplified low frequency equivalent  
The upper limit of the input common mode range varies  
circuit of the LTC6601. For balanced input sources (V  
INP  
as a function of the filter configuration (GAIN), V  
po-  
OCM  
= –V ), the low frequency input impedance is given by  
INM  
tential, and whether or not the inputs are single-ended or  
differential. While it is possible to exceed the upper limit  
of the common mode range, doing so will degrade filter  
linearity. Referring to Figure 4, for linear operation, the  
summing junction where R1, R2 and R3 merge together  
should be prevented from swinging to within 1.4V of the  
the equation:  
R
= R  
= R1  
INP  
INM  
The differential input impedance is simply:  
= 2 • R1  
R
INDIFF  
+
V power supply.  
For single-ended inputs (V  
= 0), the input impedance  
INM  
actually increases over the balanced differential case due  
For the general case, the upper input common mode volt-  
age limit should be constrained to:  
to the fact the summing node (at the junction of R1, R2  
and R3) moves in phase with V to bootstrap the input  
INP  
R1  
R1+R2  
R2  
R1+R2  
VOCM  
+ V  
INCM  
V+ 1.4V  
impedance. Referring to Figure 4 with V  
impedance looking into either input is:  
= 0, the input  
INM  
R1  
Or equivalently:  
RINP =RINM  
1
1– •  
2
R2  
R1  
R2  
R1  
R2  
V
1+  
V+ 1.4V −  
• VOCM  
(
)
INCM  
R1+R2  
Thespecificationsforinputcommonmoderange(V  
)
INCMR  
are based on these constraints with R1 = R2 = 100Ω, and  
= mid-supply. Substituting the numbers for a single  
R2  
R
INP  
V
R1  
R1  
OCM  
V
+
+
OUT  
3V power supply, (V = 3V, V = 0V) with V  
=1.5V, and  
OCM  
R3  
V
INP  
+
R1 = R2 = 100Ω, into the above equation, the input com-  
mon mode range (V ) is between the two limits:  
V
OUTDIFF  
R3  
INCMR  
V
INM  
+
0V ≤ V  
≤ 1.7V  
+
INCM  
+
V
OUT  
R2  
R
INM  
V
OCM  
which is as is specified for a 3V supply.  
0.1μF  
66012 F04  
Figure 4. Input Impedance  
66012f  
18  
LTC6601-2  
APPLICATIONS INFORMATION  
Likewise, substituting the numbers for a single 5V power  
common mode voltage, it can be directly tied to the V  
OCM  
+
supply, (V = 5V, V = 0V) with V  
= 2.5V, and R1 = R2  
pin, but must be capable of driving the input impedance of  
the V pin (R ). This impedance can be assumed  
OCM  
= 100Ω, into the above equation, the input common mode  
OCM  
VOCM  
range (V  
) is between the two limits:  
to be connected to a mid-supply potential. If an external  
reference drives the V pin, it should still be bypassed  
INCMR  
OCM  
0V ≤ V  
≤ 4.7V  
INCM  
with a high quality 0.01ꢁF or higher capacitor to a low  
impedance ground plane to filter any thermal noise and  
to prevent common mode signals on this pin from being  
inadvertently converted to differential signals.  
The output common mode voltage is defined as the aver-  
age of the two outputs:  
VOUT+ + VOUT  
VOUTCM = VOCM  
The V  
=
2
Noise Considerations  
pin sets this average by an internal common  
mode feedback loop which internally forces V + =  
When comparing the LTC6601 noise to other amplifiers,  
be sure to compare similar specifications. Competing  
devices often specify noise referred to the inputs of the  
amplifier.TheinputreferredvoltagenoiseoftheLTC6601-2  
is 4.7nV/√Hz.  
OCM  
OUT  
–V –. The output common mode range extends from  
OUT  
+
1.1 V above V to 1V below V . The V  
pin sits in the  
OCM  
middle of a voltage divider which sets the default mid-  
supply open circuit potential.  
In addition to the noise generated by the amplifier, the  
surrounding feedback resistors also contribute noise. A  
noise model is shown in Figure 5. The output spot noise  
generated by both the amplifier and the feedback compo-  
nents is governed by the equation:  
In single supply applications, where the LTC6601 is used  
to interface to an ADC, the optimal common mode input  
to the ADC is often determined by the ADC’s reference. If  
the ADC makes a reference available for setting the input  
2
2
2
2
R2  
R1  
R2  
R1  
R2  
R1  
R2  
R1  
2
2
eno = e • 1+  
+ 2• I R22 +R32 • 1+  
+ 2• e  
+ 2 enR3 • 1+  
+ 2enR2  
ni  
n
nR1  
Substituting the equation for Johnson noise of a resistor (e = 4kTR), and simplifying:  
nR  
2
2
2
R2  
R1  
R2  
R1  
R2  
R1  
R2  
R1  
2
eno = e • 1+  
+ 2• I R22 +R32 • 1+  
+ 8 k • T R2 1+  
+R3 1+  
ni  
n
66012f  
19  
LTC6601-2  
APPLICATIONS INFORMATION  
2
e
nR2  
R2  
*
2
e
nR1  
+
2
R1  
I
I
n
2
2
2
e
e
e
ni  
nR3  
*
R3  
+
*
*
2
e
no  
nR3  
R3  
2
e
nR1  
*
R1  
2
n
*
2
e
nR2  
R2  
66012 F05  
*
Figure 5. Differential Noise Model of the LTC6601  
+
Table 1 lists the amplifier input referred noise for the  
LTC6601-2.Tables2to10listthenoisereferredtotheinput  
pinsoftheICforcommonconfigurationsoftheLTC6601-2.  
To determine the spot noise at the output, simply multiply  
the noise by the Gain = R2/R1. To estimate the integrated  
noise at the output, multiply the noise by the gain, and the  
square root of the noise bandwidth. The noise bandwidth  
depends on the filter configuration. For Figure 2, the noise  
bandwidth is 100MHz, or approximately 7 times the filter  
bandwidth. Improvements in SNR can be made by adding  
an additional RC filter at the output to band limit wide band  
noise before feeding ADCs. See the section “Interfacing  
the LTC6601 to ADC Converters” for more detail.  
ceramic capacitor be used to bypass pin V to ground  
and V to ground, again with minimal routing. For driv-  
ing large differential loads (<200ꢀ), additional bypass  
capacitance may be needed between V and V for opti-  
mal performance. Note that small geometry (e.g., 0603)  
surface mount ceramic capacitors have a much higher  
self resonant frequency than capacitors with leads, and  
perform best in high speed applications.  
+
The V  
pin should be bypassed to ground with a high  
OCM  
quality ceramic capacitor whose value exceeds 0.01ꢁF,  
withdirect,shortconnections.Insplitsupplyapplications,  
the V  
pin can be either bypassed to ground or directly  
OCM  
hardwired to ground. Be careful not to violate the output  
common mode range specifications for the V pin.  
Table 1. Amplifier (Input Referred) Noise Characteristics for the  
OCM  
LTC6601-2  
Stray parasitic capacitances to unused component pins  
that set up the filter’s characteristics, should be kept to an  
absoluteminimum.Thispreventsdeviationsfromtheideal  
frequencyresponse. Anideallayouttechniquewouldbeto  
remove the solder pads for the unused component pins,  
and strip away the ground plane underneath these pins to  
lowercapacitancetoanabsoluteminimum.Floatingunused  
component pins which set up the filter characteristics will  
not reduce the reliability of the LTC6601.  
+
BIAS PIN PULLED TO V  
BIAS PIN FLOATING  
e
i
e
i
n
ni  
n
ni  
nV/√Hz  
pA/√Hz  
nV/√Hz  
pA/√Hz  
4.7  
3
5.2  
2.1  
LAYOUT CONSIDERATIONS  
Because the LTC6601 is a very high speed amplifier, it is  
sensitive to both stray capacitance and stray inductance.  
It is critical that close attention be paid to supply bypass-  
ing. For single supply applications, it is recommended  
that a high quality 0.1ꢁF surface mount ceramic bypass  
capacitor be placed between Pins 14 and 13 with direct  
short connections. Pin 13 and the Exposed Pad, Pin 21,  
should be tied directly to a low impedance ground plane  
with minimal routing. For dual (split) power supplies, it  
is recommended that an additional high quality, 0.1ꢁF  
Attheoutput,alwayskeepinmindthedifferentialnatureof  
theLTC6601, andthatitiscriticalthattheloadimpedances  
seenbybothoutputs(strayorintended), shouldbeasbal-  
anced and symmetric as possible. This will help preserve  
the natural balance of the LTC6601, which minimizes the  
generation of even order harmonics and preserves the  
rejection of common mode signals and noise.  
66012f  
20  
LTC6601-2  
APPLICATIONS INFORMATION  
INTERFACING THE LTC6601 TO ADC CONVERTERS  
often be much greater than that of the LTC6601, so hav-  
ing this discrete RC filter will give the additional benefit  
of band limiting broadband output noise.  
TheLTC6601’srail-to-raildifferentialoutputandadjustable  
output common mode voltage make the LTC6601 ideal  
for interfacing to low voltage, single supply, differential  
input ADCs. The sampling process of ADCs creates a  
sampling transient that is caused by the switching-in  
of the ADC sampling capacitor. The switching-in of this  
samplingcapacitormomentarilyshortstheoutputofthe  
amplifier as charge is transferred between amplifier and  
sampling capacitor. The amplifier must recover and settle  
from this load transient before this acquisition period has  
ended, for a valid representation of the input signal. The  
LTC6601 will settle much more quickly from these peri-  
odic load impulses than it does from a 2V input step, but  
it is a good idea to add an RC network after the outputs  
of the LTC6601 to decouple the sampling transient of the  
ADC (See Figure 6). The capacitance of the decoupling  
network serves to provide the bulk of the charge during  
the sampling process, while the two resistors of the filter  
network are used to dampen and attenuate any transient  
induced by the ADC. The ADC’s sampling bandwidth will  
The selection of the RC time constant is trial and error  
for a given ADC, but the following guidelines are recom-  
mended. Choose an RC pole frequency greater than the  
cutoff frequency of the LTC6601. 80MHz RC filters are  
good for filtering broadband noise. Lower frequency RC  
filters improve SNR at the expense of settling time. The  
resistorsinthedecouplingnetworkshouldbeatleast25ꢀ.  
Too much resistance in the decoupling network leaves  
insufficient settling time and will create a voltage divider  
between the dynamic input impedance of the ADC and the  
decoupling resistors. Using insufficient resistance might  
prevent proper dampening of the load transient caused by  
the sampling process, and prolong the time required for  
settling. In 16-bit applications, this will typically require  
a minimum of 11 RC time constants. It is recommended  
that the capacitor is chosen with low dielectric absorption  
(such as a C0G multilayer ceramic capacitor).  
20  
19  
18  
17 16  
LTC6601-2  
C1  
1
2
R
V
OUT  
15  
14  
+
CONTROL  
V
IN  
3V  
0.1μF  
D15  
+
+
A
A
IN  
IN  
1μF  
BIAS  
3
D0  
C2  
C1  
13  
12  
3.3V  
1μF  
V
GND  
CM  
1μF  
V
1μF  
OCM  
10nF  
2.2μF  
4
5
+
R
V
OUT  
11  
66012 F06  
t = R • (C1 + 2 • C2)  
6
7
8
9
10  
Figure 6. Interfacing the LTC6601 to A/D Converters  
66012f  
21  
LTC6601-2  
APPLICATIONS INFORMATION  
A GALLERY OF BASIC FILTER TOPOLOGIES  
these topologies range from 1V/V to 7V/V. The Qs listed  
are within the range of 0.54 and 1.72. The f s listed are  
O
Tables2through10list(sortedbyGain)ahundredpossible  
filter topologies that can be easily implemented with the  
LTC6601. The tables also list the LTC6601-2 approximate  
in the range of 6.96MHz and 22.71MHz, and the –3dB  
frequencies listed range from 5.5MHz to 27.5MHz. For  
all filters listed, R3 = 125ꢀ. Figures 7 to 10 show how to  
pin-strap each filter configuration.  
midband (1MHz) spot noise e referred to the input re-  
in  
+
sistor, R1 (with the BIAS pin pulled to V ). The gains for  
Table 2. Gain of 7 Filter Configurations  
GAIN  
e
in  
V/V  
7.0  
7.0  
7.0  
7.0  
dB  
f (MHz)  
f
(MHz)  
–3dB  
Q
R1 (Ω)  
57.14  
57.14  
57.14  
57.14  
R2 (Ω)  
400.00  
400.00  
400.00  
400.00  
C1 (pF)  
48.2  
C2 (pF)  
97.6  
(nV/√Hz)  
O
16.902  
16.902  
16.902  
16.902  
10.38  
9.57  
8.96  
8.12  
7.43  
0.539  
0.771  
1.175  
0.656  
6.1  
10.36  
12.10  
7.49  
48.2  
114.8  
130.9  
130.9  
6.1  
48.2  
6.1  
58.75  
6.1  
Table 3. Gain of 6 Filter Configurations  
GAIN  
e
in  
V/V  
6.0  
6.0  
6.0  
6.0  
6.0  
dB  
f (MHz)  
f
(MHz)  
Q
R1 (Ω)  
66.67  
66.67  
66.67  
66.67  
66.67  
R2 (Ω)  
400.00  
400.00  
400.00  
400.00  
400.00  
C1 (pF)  
48.2  
C (pF)  
(nV/√Hz)  
O
–3dB  
2
15.563  
15.563  
15.563  
15.563  
15.563  
10.38  
9.57  
8.67  
8.12  
7.47  
10.03  
12.52  
7.67  
0.684  
1.071  
0.634  
0.870  
0.592  
97.6  
114.8  
114.8  
130.9  
130.9  
6.2  
48.2  
6.2  
58.75  
58.75  
69.3  
6.2  
9.59  
6.2  
6.07  
6.2  
Table 4. Gain of 5 Filter Configurations  
GAIN  
e
in  
V/V  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
dB  
f (MHz)  
f
(MHz)  
–3dB  
Q
R1 (Ω)  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
R2 (Ω)  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
nV/√Hz  
o
13.979  
13.979  
13.979  
13.979  
13.979  
13.979  
13.979  
13.979  
11.36  
10.38  
9.40  
8.67  
8.12  
7.98  
7.47  
6.96  
9.67  
12.78  
7.67  
0.614  
0.936  
0.594  
0.849  
1.290  
0.591  
0.779  
0.579  
6.5  
48.2  
97.6  
6.5  
58.75  
58.75  
58.75  
69.3  
97.6  
6.5  
10.07  
11.25  
6.46  
114.8  
130.9  
114.8  
130.9  
130.9  
6.5  
6.5  
6.5  
8.16  
69.3  
6.5  
5.50  
79.85  
6.5  
66012f  
22  
LTC6601-2  
APPLICATIONS INFORMATION  
Table 5. Gain of 4 Filter Configurations  
GAIN  
e
in  
V/V  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
dB  
f (MHz)  
f
MHz  
–3dB  
Q
R1 (Ω)  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
R2 (Ω)  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
nV/√Hz  
O
12.041  
12.041  
12.041  
12.041  
12.041  
12.041  
12.041  
12.041  
12.041  
11.36  
10.38  
9.40  
8.67  
8.65  
7.98  
7.43  
7.47  
6.96  
13.05  
0.834  
1.480  
0.799  
1.284  
0.575  
0.794  
0.596  
1.141  
0.775  
6.8  
14.80  
10.47  
12.00  
6.76  
48.2  
97.6  
6.8  
58.75  
58.75  
69.3  
97.6  
6.8  
114.8  
97.6  
6.8  
6.8  
8.84  
69.3  
114.8  
114.8  
130.9  
130.9  
6.8  
6.09  
79.85  
69.3  
6.8  
10.00  
7.57  
6.8  
79.85  
6.8  
Table 6. Gain of 3 Filter Configurations  
GAIN  
e
in  
V/V  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
dB  
f (MHz)  
f
(MHz)  
–3dB  
Q
R1 (Ω)  
66.67  
R2 (Ω)  
200.00  
200.00  
200.00  
200.00  
200.00  
400.00  
200.00  
200.00  
400.00  
200.00  
400.00  
400.00  
400.00  
400.00  
400.00  
400.00  
200.00  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
(nV/√Hz)  
O
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
9.542  
16.06  
14.68  
13.53  
13.29  
12.26  
11.36  
11.48  
11.29  
10.29  
10.57  
9.40  
12.36  
0.568  
0.763  
1.091  
0.554  
0.715  
1.300  
0.928  
0.552  
0.763  
0.674  
1.224  
0.788  
0.601  
1.212  
0.825  
1.172  
0.544  
7.1  
15.74  
17.83  
9.88  
66.67  
48.2  
97.6  
7.1  
66.67  
48.2  
114.8  
97.6  
7.1  
66.67  
58.75  
58.75  
48.2  
7.1  
12.39  
15.77  
14.07  
8.34  
66.67  
114.8  
81.5  
7.1  
133.33  
66.67  
7.4  
58.75  
69.3  
130.9  
114.8  
81.5  
7.1  
66.67  
7.1  
11.04  
10.06  
12.85  
9.54  
133.33  
66.67  
58.75  
69.3  
7.4  
130.9  
97.6  
7.1  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
66.67  
58.75  
69.3  
7.4  
8.65  
97.6  
7.4  
8.06  
6.69  
79.85  
69.3  
97.6  
7.4  
7.98  
10.88  
8.48  
114.8  
114.8  
130.9  
130.9  
7.4  
7.43  
79.85  
79.85  
79.85  
7.4  
6.96  
9.40  
7.4  
9.85  
7.13  
7.1  
66012f  
23  
LTC6601-2  
APPLICATIONS INFORMATION  
Table 7. Gain of 2 Filter Configurations  
GAIN  
e
in  
V/V  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
dB  
f (MHz)  
f
(MHz)  
–3dB  
Q
R1 (Ω)  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
200.00  
100.00  
100.00  
200.00  
100.00  
200.00  
200.00  
200.00  
200.00  
R2 (Ω)  
200.00  
200.00  
200.00  
200.00  
200.00  
200.00  
200.00  
400.00  
200.00  
200.00  
400.00  
200.00  
400.00  
400.00  
400.00  
400.00  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
(nV/√Hz)  
O
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
6.021  
16.06  
14.55  
14.68  
13.29  
12.24  
12.26  
11.29  
10.29  
10.51  
10.57  
9.47  
18.95  
0.868  
0.626  
1.323  
0.840  
0.640  
1.200  
0.835  
1.197  
0.660  
1.102  
0.796  
0.819  
0.616  
1.254  
0.864  
1.341  
8.1  
12.69  
20.46  
15.34  
10.96  
16.66  
12.98  
13.97  
9.76  
58.75  
48.2  
81.5  
8.1  
97.6  
8.1  
58.75  
69.3  
97.6  
8.1  
97.6  
8.1  
58.75  
69.3  
114.8  
114.8  
81.5  
8.1  
8.1  
58.75  
79.85  
69.3  
8.5  
114.8  
130.9  
81.5  
8.1  
13.97  
10.52  
11.17  
7.55  
8.1  
69.3  
8.5  
9.85  
79.85  
79.85  
69.3  
130.9  
81.5  
8.1  
8.82  
8.5  
8.65  
11.91  
9.48  
97.6  
8.5  
8.06  
79.85  
79.85  
97.6  
8.5  
7.43  
10.40  
114.8  
8.5  
Table 8. Gain of 1.667 Filter Configurations  
GAIN  
e
in  
V/V  
dB  
f (MHz)  
O
f
MHz  
–3dB  
Q
R1 (Ω)  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
80.00  
R2 (Ω)  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
nV/√Hz  
1.667  
1.667  
1.667  
1.667  
1.667  
1.667  
1.667  
1.667  
1.667  
4.437  
4.437  
4.437  
4.437  
4.437  
4.437  
4.437  
4.437  
4.437  
19.67  
17.97  
16.57  
16.28  
15.01  
14.33  
13.82  
12.94  
12.06  
19.35  
22.12  
23.16  
15.60  
17.80  
18.58  
13.19  
14.77  
11.32  
0.696  
0.934  
1.336  
0.679  
0.875  
1.046  
0.676  
0.826  
0.666  
8.5  
48.2  
97.6  
8.5  
48.2  
114.8  
97.6  
8.5  
58.75  
58.75  
58.75  
69.3  
8.5  
114.8  
126  
8.5  
8.5  
114.8  
130.9  
130.9  
8.5  
69.3  
8.5  
79.85  
8.5  
66012f  
24  
LTC6601-2  
APPLICATIONS INFORMATION  
Table 9. Gain of 1.333 Filter Configurations  
GAIN  
e
in  
V/V  
dB  
f (MHz)  
O
f
MHz  
–3dB  
Q
R1 (Ω)  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
100.00  
R2 (Ω)  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
133.33  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
nV/√Hz  
1.333  
1.333  
1.333  
1.333  
1.333  
1.333  
1.333  
1.333  
1.333  
1.333  
1.333  
2.499  
2.499  
2.499  
2.499  
2.499  
2.499  
2.499  
2.499  
2.499  
2.499  
2.499  
19.67  
17.82  
17.97  
16.28  
14.99  
15.01  
14.06  
13.82  
12.88  
12.94  
12.06  
22.73  
0.841  
0.633  
1.185  
0.818  
0.646  
1.097  
1.506  
0.814  
0.663  
1.025  
0.801  
9.4  
15.77  
24.34  
18.44  
13.58  
19.82  
20.12  
15.61  
12.03  
16.64  
13.45  
58.75  
48.2  
81.5  
9.4  
97.6  
9.4  
58.75  
69.3  
97.6  
9.4  
97.6  
9.4  
58.75  
58.75  
69.3  
114.8  
130.9  
114.8  
114.8  
130.9  
130.9  
9.4  
9.4  
9.4  
79.85  
69.3  
9.4  
9.4  
79.85  
9.4  
Table 10. Gain of 1 Filter Configurations  
GAIN  
e
in  
V/V  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
dB  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
f (MHz)  
f
MHz  
–3dB  
Q
R1 (Ω)  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
200.0  
100.0  
100.0  
200.0  
100.0  
200.0  
200.0  
200.0  
200.0  
200.0  
400.0  
400.0  
400.0  
R2 (Ω)  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
200.0  
100.0  
100.0  
200.0  
100.0  
200.0  
200.0  
200.0  
200.0  
200.0  
400.0  
400.0  
400.0  
C1 (pF)  
48.2  
C2 (pF)  
81.5  
nV/√Hz  
10.7  
10.7  
10.7  
10.7  
10.7  
10.7  
10.7  
10.7  
10.7  
11  
O
22.71  
20.75  
20.57  
19.14  
18.80  
17.31  
17.33  
16.23  
15.96  
14.55  
14.87  
14.95  
13.39  
13.92  
12.48  
12.24  
11.40  
11.29  
10.51  
9.47  
25.40  
27.23  
17.86  
27.50  
20.62  
15.35  
22.15  
22.58  
17.45  
19.09  
13.57  
18.59  
14.90  
15.04  
11.38  
16.25  
13.27  
16.47  
14.17  
13.26  
10.86  
11.57  
0.804  
1.079  
0.623  
1.543  
0.784  
0.634  
1.011  
1.312  
0.781  
1.079  
0.650  
0.954  
0.798  
0.769  
0.650  
1.115  
0.850  
1.715  
1.167  
1.350  
0.935  
1.535  
48.2  
97.6  
58.75  
48.2  
81.5  
114.8  
97.6  
58.75  
69.3  
97.6  
58.75  
58.75  
69.3  
114.8  
130.9  
114.8  
81.5  
58.75  
79.85  
69.3  
114.8  
130.9  
81.5  
10.7  
10.7  
11  
69.3  
79.85  
79.85  
69.3  
130.9  
81.5  
10.7  
11  
97.6  
11  
79.85  
69.3  
97.6  
11  
114.8  
114.8  
81.5  
11  
79.85  
69.3  
11  
11.8  
11.8  
11.8  
8.82  
79.85  
79.85  
81.5  
8.06  
97.6  
66012f  
25  
LTC6601-2  
APPLICATIONS INFORMATION  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
1
2
15  
11  
+
+
R1  
57.14Ω  
R1  
66.66Ω  
4
5
4
5
11  
6
7
8
9
10  
16  
6
7
8
9
10  
16  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
R1  
80Ω  
R1  
100Ω  
4
5
4
5
6
7
8
9
10  
16  
6
7
8
9
10  
16  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
R1  
133.33Ω  
R1  
200Ω  
4
5
4
5
6
7
8
9
10  
6
7
8
9
10  
20  
19  
18  
17  
16  
LTC6601-2  
1
15  
11  
+
2
R1  
400Ω  
4
5
66012 F07  
6
7
8
9
10  
Figure 7. Pin-Strap Hookup for a Particular R1  
66012f  
26  
LTC6601-2  
APPLICATIONS INFORMATION  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
1
2
15  
11  
+
+
R2  
100Ω  
R2  
133Ω  
4
5
4
5
11  
6
7
8
9
10  
16  
6
7
8
9
10  
16  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
R2  
200Ω  
R2  
400Ω  
4
5
4
5
66012 F08  
6
7
8
9
10  
6
7
8
9
10  
Figure 8. Pin-Strap Hookup for a Particular R2  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
C1  
48.2pF  
C1  
58.75pF  
4
5
4
5
6
7
8
9
10  
16  
6
7
8
9
10  
16  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
C1  
69.3pF  
C1  
79.85pF  
4
5
4
5
6
7
8
9
10  
6
7
8
9
10  
66012 F09  
Figure 9. Pin-Strap Hookup for a Particular C1  
66012f  
27  
LTC6601-2  
APPLICATIONS INFORMATION  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
1
2
15  
11  
+
+
C2  
81.5pF  
C2  
114.8pF  
4
5
4
5
11  
6
7
8
9
10  
16  
6
7
8
9
10  
16  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
C2  
97.6pF  
C2  
130.9pF  
4
5
4
5
6
7
8
9
10  
6
7
8
9
10  
66012 F10  
Figure 10. Pin-Strap Hookup for a Particular C2  
66012f  
28  
LTC6601-2  
APPLICATIONS INFORMATION  
Example Filter Configurations of Basic 2nd Order  
Filters  
Figure 11 shows some simplified component hookups of  
a selection of filters taken from Tables 7, 9 and 10. For  
simplicity, V  
pin bypass and power supply bypass  
OCM  
are not shown.  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
V
V
V
V
V
V
V
V
V
V
V
V
IN  
IN  
IN  
OUT(DIFF)  
OUT(DIFF)  
OUT(DIFF)  
IN  
IN  
IN  
OUT(DIFF)  
4
5
4
5
6
7
8
9
10  
16  
6
7
8
9
10  
16  
GAIN = 0dB  
= 13.92MHz  
GAIN = 0dB  
f = 22.71MHz  
O
Q = 0.804  
f
O
Q = 0.769  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
OUT(DIFF)  
4
5
4
5
6
7
8
9
10  
16  
6
7
8
9
10  
16  
GAIN = 6dB  
= 9.85MHz  
GAIN = 6dB  
f = 16.06MHz  
O
Q = 0.868  
f
O
Q = 0.819  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
OUT(DIFF)  
4
5
4
5
6
7
8
9
10  
6
7
8
9
10  
66012 F11  
GAIN = 2.5dB  
= 12.06MHz  
GAIN = 2.5dB  
f = 19.67MHz  
O
Q = 0.841  
f
O
Q = 0.801  
Figure 11. Basic 2nd Order Filter Configurations  
66012f  
29  
LTC6601-2  
APPLICATIONS INFORMATION  
Figure 12 shows some simplified component hookups  
of a selection of filters taken from Tables 4, 5, and 6. For  
simplicity, V  
pin bypass and power supply bypass  
OCM  
are not shown.  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
V
V
V
V
V
V
V
V
V
V
V
V
IN  
IN  
IN  
OUT(DIFF)  
OUT(DIFF)  
OUT(DIFF)  
IN  
IN  
IN  
OUT(DIFF)  
4
5
4
5
6
7
8
9
10  
16  
6
7
8
9
10  
16  
GAIN = 12dB  
= 6.96MHz  
GAIN = 12dB  
f = 11.36MHz  
O
Q = 0.834  
f
O
Q = 0.775  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
OUT(DIFF)  
4
5
4
5
6
7
8
9
10  
16  
6
7
8
9
10  
16  
GAIN = 14dB  
= 6.96MHz  
GAIN = 14dB  
f = 11.36MHz  
O
Q = 0.614  
f
O
Q = 0.579  
20  
19  
18  
17  
20  
19  
18  
17  
LTC6601-2  
LTC6601-2  
1
2
15  
11  
1
2
15  
11  
+
+
OUT(DIFF)  
4
5
4
5
6
7
8
9
10  
6
7
8
9
10  
66012 F12  
GAIN = 9.54dB  
= 9.85MHz  
GAIN = 9.54dB  
f = 16.06MHz  
O
Q = 0.568  
f
O
Q = 0.544  
Figure 12. Basic 2nd Order Filter Configurations  
66012f  
30  
LTC6601-2  
APPLICATIONS INFORMATION  
COMPLEX FILTER CONFIGURATIONS  
Figures 14 to 17 show additional circuits highlighting the  
use of R4 or C3 in the modified second order cicuit to  
A Modified 2nd Order Lowpass Filter Topology  
set the f  
frequency to 13MHz, 19MHz, 22.7MHz and  
3dB  
24.6MHz respectively.  
The basic filter topology of Figure 3 can be modified as  
shown in Figure 13. The Figure 13 circuit includes an  
impedance path between the two summing nodes (the  
circuit nodes common to resistors R1, R2 and R3). A  
resistor and/or a capacitor connection between the sum-  
ming nodes provide even more flexibility, and enhance  
The design procedure for a specified f  
as follows:  
frequency is  
3dB  
1 Using the chosen C1, C2 and C3 values calculate the  
f value.  
O
the filter design options (the f and Q equations shown  
2. Using f of step 1 and the specified f  
calculate the  
3dB  
O
O
in Figure 13 reduce to equations of Figure 3 if C3 is zero  
Q value.  
and R4 is infinite).  
3. Calculate the R4 value using the Q value of step 3.  
4. Calculate the required external resistor R value for  
The modified second order filter topology provides for  
setting the Q value (with R4) without changing the f  
EXT  
O
the R4 value in step 3. Example, in Figure 14 the Q  
value and increasing the passband gain to greater than  
one without changing the Q value (in the Q equation of  
Figure 13 the value of Q does not change if the value of  
the [1 + GAIN + 2(R2/R4)] denominator factor does not  
change). Using R4 to set the Q value allows the option  
value for f = 5MHz is 0.54, the required R4 resistor  
3dB  
is 350ꢀ, the R4A and R4B resistors are the internal  
100ꢀ and the R resistor is 150ꢀ [R = R4 – (R4A  
EXT  
EXT  
+ R4B)].  
Note: The modified second order filter topology requires  
the use of at least two of the three input resistor pairs (two  
of the three 400ꢀ, 200ꢀ and 100ꢀ pairs).  
to design the –3dB frequency (f ). If the Q value varies  
3dB  
and the f value is constant then the f  
ies in a second order lowpass function (refer to the f  
frequency var-  
O
3dB  
3dB  
equation of Figure 13).  
66012f  
31  
LTC6601-2  
APPLICATIONS INFORMATION  
R2  
C2  
C1  
R1  
R3  
R4A  
+
C3A  
+
V
R
IN(DIFF)  
EXT  
V
49.9Ω  
C3B  
OUT(DIFF)  
R4B  
C1  
C2  
R1  
R3  
R2  
66012 F13  
R4 = R4A + R4B + R  
EXT  
C3 = C3A/2 (C3A = C3B)  
fO  
6089 • 3568 • Q4 1788 • Q2 + 447 + 1.287 • 105 • 2 • Q2 1  
(
)
(
)
f3dB  
=
507.6 • Q  
4
2
0.2236 • fO  
2.109 • 105  
9.891• 1012 • f3dB4 5.486 • 109 fO + 120 • 5.526 • 109 • f3dB2 + 3.082 • 106 fO  
(
)
(
)
Q =  
2
2
4
16 • fO • 8.29 • 109 • f3dB2 + 4.127 • 109 fO 6.638 • 1010 • f3dB  
(
)
(
)
1.25 • 104 • C1• Q • R2  
R4 =  
C2 + 2 • C3ꢄ  
559 • C1• R2 •  
50 • Q • C1• 125 • GAIN + R2 + 125 C2 • R2  
(
)
(
)
C1  
GAIN  
R2 • R3 • C1• C2 + 2 • C3  
VOUT(DIFF)  
(
)
= –  
V
R1• R2 • 2 R3 + R4 + R3 • R4 + R2 • R3 • R4  
(
)
IN(DIFF)  
(
)
1
S2  
+
• S +  
R1R2 R3 R4 • C2 + 2 • C3  
R2 • R3 • C1• C2 + 2 • C3  
(
)
(
)
VOUT(DIFF)  
R2  
R1  
GAIN = –  
= –  
V
IN(DIFF)  
R3ꢄ  
R2ꢅ  
C2  
C1  
C3ꢄ  
C1ꢅ  
+ 2 •  
1
fO  
=
Q =  
R2R3 C2  
R4R2 C1  
2 • • R2 R3 • C1• C2 + 2 • C3  
(
)
1+ 1+|GAIN|+2•  
Figure 13. Modified Filter Topology and Equations  
66012f  
32  
LTC6601-2  
APPLICATIONS INFORMATION  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
1
2
15  
11  
+
+
V
V
IN(DIFF)  
= 400Ω  
IN(DIFF)  
= 200Ω  
200Ω  
V
V
OUT(DIFF)  
OUT(DIFF)  
Z
Z
IN(DIFF)  
IN(DIFF)  
4
5
4
5
11  
6
7
8
9
10  
6
7
8
9
10  
66012 F14a  
GAIN = 1  
= 11.28MHz  
GAIN = 2  
f = 11.28MHz  
O
Q = 0.835  
f
O
Q = 0.835  
f
f
= 10MHz  
= 13MHz  
f
f
= 10MHz  
= 13MHz  
–1dB  
–3dB  
–1dB  
–3dB  
Gain Magnitude vs Frequency (Gain = 1)  
Passband Phase and Group Delay  
30  
0
5
0
PHASE  
–30  
–60  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–90  
–120  
50  
40  
30  
20  
10  
0
GROUP DELAY  
0
100k  
4M  
8M  
12M  
16M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
66012 F14c  
66012 F14b  
Figure 14. Modified Filter Configuration Using a Resistor Between Summing Nodes (f–3dB = 13MHz)  
66012f  
33  
LTC6601-2  
APPLICATIONS INFORMATION  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
LTC6601-2  
LTC6601-2  
1
2
15  
1
2
15  
11  
+
+
V
Z
IN(DIFF)  
IN(DIFF)  
V
IN(DIFF)  
IN(DIFF)  
V
V
OUT(DIFF)  
200Ω  
= 200Ω  
OUT(DIFF)  
Z
= 400Ω  
4
5
4
5
11  
6
7
8
9
10  
6
7
8
9
10  
66012 F15a  
GAIN = 1  
= 16MHz  
GAIN = 2  
f = 16MHz  
O
Q = 0.868  
f
O
Q = 0.868  
f
f
= 15.4MHz  
= 19MHz  
f
f
= 15.4MHz  
= 19MHz  
–1dB  
–3dB  
–1dB  
–3dB  
Gain Magnitude vs Frequency (Gain = 1)  
Passband Phase and Group Delay  
5
30  
0
PHASE  
0
–5  
–30  
–60  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–90  
–120  
50  
40  
30  
20  
10  
0
GROUP DELAY  
0
100k  
1M  
10M  
100M  
100k  
4M  
8M  
12M  
16M  
20M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
66012 F15b  
66012 F15c  
Figure 15. Modified Filter Configuration Using a Resistor Between Summing Nodes (f–3dB = 19MHz)  
66012f  
34  
LTC6601-2  
APPLICATIONS INFORMATION  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
33.2Ω  
LTC6601-2  
LTC6601-2  
1
2
15  
1
2
15  
+
+
V
Z
V
Z
IN(DIFF)  
IN(DIFF)  
IN(DIFF)  
IN(DIFF)  
V
V
= 266Ω  
= 200Ω  
OUT(DIFF)  
OUT(DIFF)  
4
5
4
5
33.2Ω  
11  
11  
6
7
8
9
10  
6
7
8
9
10  
66012 F16a  
GAIN = 1  
= 19.7MHz  
GAIN = 1.33  
f = 19.7MHz  
O
f
O
Q = 0.84  
Q = 0.84  
f
f
= 19MHz  
= 22.7MHz  
f
f
= 19MHz  
= 22.7MHz  
–1dB  
–3dB  
–1dB  
–3dB  
Gain Magnitude vs Frequency (Gain = 1)  
Passband Phase and Group Delay  
5
30  
0
PHASE  
0
–5  
–30  
–60  
–90  
–120  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
50  
40  
30  
20  
10  
0
GROUP DELAY  
0
100k  
1M  
10M  
100M  
100k  
4.6M  
9.2M 13.8M 18.4M  
FREQUENCY (Hz)  
23M  
FREQUENCY (Hz)  
66012 F16b  
66012 F16c  
Figure 16. Modified Filter Configuration Using a Resistor Between Summing Nodes (f–3dB = 22.7MHz)  
66012f  
35  
LTC6601-2  
APPLICATIONS INFORMATION  
Passband Gain vs Frequency  
1.0  
0.5  
20  
19  
18  
17  
16  
LTC6601-2  
1
2
15  
0.0  
+
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
V
IN(DIFF)  
IN(DIFF)  
49.9Ω  
V
OUT(DIFF)  
Z
= 200Ω  
4
5
11  
6
7
8
9
10  
100k  
1M  
10M  
40M  
66012 F17a  
GAIN = 1  
= 20.7MHz  
FREQUENCY (Hz)  
f
O
66012 F17b  
Q = 0.88  
f
f
= 20.5MHz  
= 24.6MHz  
–1dB  
–3dB  
Gain Magnitude vs Frequency (Gain = 1)  
Passband Phase and Group Delay  
5
30  
0
PHASE  
0
–5  
–30  
–60  
–90  
–120  
–10  
–15  
–20  
–25  
–30  
–35  
50  
40  
30  
20  
10  
0
GROUP DELAY  
0
100k  
1M  
10M  
100M  
100k  
5.2M 10.4M 15.6M 20.8M  
FREQUENCY (Hz)  
26M  
FREQUENCY (Hz)  
66012 F17c  
66012 F17d  
Figure 17. Modified Filter Configuration Using a Capacitor Between Summing Nodes (f–3dB = 24.6MHz)  
66012f  
36  
LTC6601-2  
APPLICATIONS INFORMATION  
DC1251A Demonstration Board  
additional filtering (a lowpass filter up to a 5th order can  
be implemented with a DC1251A demonstration circuit).  
The DC1251A has SMA connectors for the differential  
input and output of the LTC6601. An on board 106MHz  
lowpass RC filters the LTC6601 output.  
TheDC1251AdemonstrationcircuitcontainsanLTC6601-2  
(DC1251A-B). On a DC1251A the LTC6601 programming  
pins can be connected through 0603 resistor jumpers. In  
addition, optionalsurfacemountcapacitorsandinductors  
at the LTC6601 input and/or output can be installed for  
DC1251A Top Silk Screen  
66012f  
37  
LTC6601-2  
APPLICATIONS INFORMATION  
66012f  
38  
LTC6601-2  
PACKAGE DESCRIPTION  
UF Package  
20-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1710)  
0.70 p0.05  
4.50 p 0.05  
3.10 p 0.05  
2.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH  
R = 0.30 TYP  
R = 0.115  
TYP  
0.75 p 0.05  
4.00 p 0.10  
(4 SIDES)  
19 20  
0.38 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.45 p 0.10  
(4-SIDES)  
(UF20) QFN 10-04  
0.200 REF  
0.25 p 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-1)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
66012f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
39  
LTC6601-2  
TYPICAL APPLICATION  
5th Order, 20MHz, Lowpass Filter  
20  
19  
18  
17  
16  
LTC6601-2  
33.2Ω  
1
2
15  
220nH*  
220nH*  
+
82pF  
82pF  
V
Z
IN(DIFF)  
IN(DIFF)  
= 266Ω  
82pF  
270pF  
V
OUT(DIFF)  
4
5
33.2Ω  
11  
*COILCRAFT  
0603CS  
6
7
8
9
10  
66012 TA02a  
Gain Magnitude vs Frequency  
Passband Gain vs Frequency  
1.0  
10  
0.5  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
100k  
1M  
10M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
66012 TA02c  
66012 TA02b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Up to 10MHz Filters, SNR = 92dB, THD = –84dBc at 2MHz  
LT®1568  
Very Low Noise, High Frequency, Active RC,  
Filter Building Block  
LT1993-2/LT1993-4/  
LT1993-10  
800MHz/900MHz/700MHz Low Distortion, Low Noise  
Differential Amplifier/ADC Driver  
A = 2V/V / A = 4V/V / A = 10V/V, NF = 12.3dB/14.5dB/12.7dB,  
V V V  
OIP3 = 38dBm/40dBm/40dBm at 70MHz  
LT1994  
Low Noise, Low Distortion Fully differential Input/Output  
Amplifier/Driver  
Low Distortion, 2V , 1MHz: –94dBc, 13mA, Low Noise: 3nV/√Hz  
P-P  
LT6402-6/LT6402-12/ 300MHz Low Distortion, Low Noise Differential Amplifier/  
A = 6dB/A = 12dB/A = 20dB, NF = 18.6dB/15dB/12.4dB,  
V V V  
LT6402-20  
LTC6404-1  
LTC6404-2  
LTC6404-4  
ADC Driver  
OIP3 = 49dBm/43dBm/51dBm at 20MHz  
Fully Differential Amplifier, GBW = 500MHz  
Fully Differential Amplifier, GBW = 900MHz  
Fully Differential Amplifier, GBW = 1700MHz  
Very Low Distortion, (2V , 10MHz): –91dBc  
P-P  
Very Low Distortion, (2V , 10MHz): –96dBc  
P-P  
Very Low Distortion, (2V , 10MHz): –101dBc  
P-P  
LT6600-2.5/LT6600-5/ Very Low Noise, Fully Differential Amplifier and Filter  
LT6600-10/LT6600-20  
2.5MHz/5MHz/10MHz/20MHz Integrated Filter, 3V Supply,  
SO-8 Package  
LTC6601-1  
LTC6602  
Low Noise, Pin-Configurable Filter  
Dual, Matched Bandpass Filter  
5MHz to 27MHz Bandwidth, Second Order Differential Filter  
Programmable Gain and Bandwidth for RFID Applications  
(40kHz to 1MHz)  
LTC6603  
Dual, Matched Lowpass Filter  
Dual, Matched Lowpass Filter  
Dual, Matched Lowpass Filter  
Programmable Gain and Bandwidth (25kHz to 2.5MHz)  
2.5MHz, 5MHz, 10MHz and 15MHz  
LT6604-X  
LTC6605-X  
7MHz, 10MHz and 14MHz  
66012f  
LT 0309 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY