LTC6603 [Linear]

Dual Adjustable Lowpass Filter; 可调式双低通滤波器
LTC6603
型号: LTC6603
厂家: Linear    Linear
描述:

Dual Adjustable Lowpass Filter
可调式双低通滤波器

文件: 总24页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6603  
Dual Adjustable  
Lowpass Filter  
FEATURES  
DESCRIPTION  
The LTC®6603 is a dual, matched, programmable lowpass  
filter for communications receivers and transmitters. The  
selectivity of the LTC6603, combined with its linear phase,  
phase matching and dynamic range, make it suitable for  
filtering in many communications systems. With 1.5°  
phase matching between channels, the LTC6603 can be  
used in applications requiring pairs of matched filters,  
such as transceiver I and Q channels. Furthermore, the  
differential inputs and outputs provide a simple interface  
for most communications systems.  
n
Guaranteed Phase and Gain Matching Specs  
n
Programmable BW Up to 2.5MHz  
n
Programmable Gain (0dB/6dB/12dB/24dB)  
n
9th Order Linear Phase Response  
n
Differential, Rail-to-Rail Inputs and Outputs  
n
Low Noise: –145dBm/Hz (Input Referred)  
n
Low Distortion: –75dBc at 200kHz  
n
Simple Pin Programming or SPI Interface  
n
Set the Max Speed/Power with an External R  
n
Operates from 2.7V to 3.6V  
n
Input Range from 0V to 5.5V  
The sampled data filter does not require an external clock  
yet its cutoff frequency can be set with a single external  
resistor with an accuracy of 3.5% or better. The external  
resistor programs an internal oscillator whose frequency  
is divided prior to being applied to the filter networks.  
This allows up to three cutoff frequencies that can be  
obtained for each external resistor value, allowing the  
cutoff frequency to be programmed over a range of more  
than six octaves. Alternatively, the cutoff frequency can  
be set with an external clock. The filter gain can also be  
programmed to 1, 2, 4 or 16.  
n
4mm × 4mm QFN Package  
APPLICATIONS  
n
Small/Low Cost Basestations:  
IDEN, PHS, TD-SCDMA, CDMA2000, WCDMA,  
UMTS  
n
Low Cost Repeaters, Radio Links, and Modems  
n
802.11x Receivers  
JTRS  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
The LTC6603 features a low power shutdown mode that  
can be programmed through the serial interface and is  
available in a 24-pin 4mm × 4mm QFN package.  
TYPICAL APPLICATION  
2.5MHz I and Q Lowpass Filter and Dual ADC  
5V  
3V  
LTC2297  
100nH*  
49.9Ω  
Phase Matching  
0.1μF  
0.1μF  
180pF  
180pF  
10pF  
10pF  
60  
I OUTPUT  
14-BIT  
ADC  
V
= 3V, BW = 156.25kHz  
S
f = 125kHz, T = 25°C  
V+  
V+  
V+  
D
A
IN  
A
50 1000 UNITS  
100nH*  
49.9Ω  
+INA  
–INA  
+INB  
–INB  
+OUTA  
–OUTA  
+OUTB  
–OUTB  
CLKIO  
I
IN  
40  
30  
20  
10  
0
100nH*  
49.9Ω  
Q
IN  
LTC6603  
R
180pF  
180pF  
10pF  
10pF  
BIAS  
0.1μF  
0.1μF  
Q OUTPUT  
100nH*  
14-BIT  
ADC  
30.9k  
V
SER  
OCM  
49.9Ω  
V
CM  
3V  
3V  
CAP  
CLKCNTL  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
2.2μF  
GAIN1  
GAIN0  
SDO  
SDI  
MISMATCH (DEG)  
6603 TA01b  
GND  
GND  
LPFO  
LPF1  
*COILCRAFT 0603HP  
BASEBAND  
GAIN CONTROL  
6603 TA01a  
6603f  
1
LTC6603  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V+ to GND................................................................6V  
IN  
V+ , V+ to GND.........................................................4V  
A
D
V+ to V+ .............................................. –0.3V to +0.3V  
A
D
24 23 22 21 20 19  
Filter Inputs to GND ....................... –0.3V to V+ + 0.3V  
IN  
V+  
IN  
1
2
3
4
5
6
18 –OUTA  
Pins 3, 4 to GND ............................. –0.3V to V+ + 0.3V  
A
V+  
A
SER  
17  
16  
Pins 5, 6, 9-11,  
V
V+  
D
OCM  
BIAS  
25  
15, 17, 21, 22 to GND.................–0.3V to V+ + 0.3V  
R
15 CLKIO  
GND  
D
CLKCNTL  
14  
13 +OUTB  
Maximum Input Current....................................... 10mA  
Output Short Circuit Duration........................... Indefinite  
Operating Temperature Range (Note 2)  
LPF1(CS)  
7
8
9 10 11 12  
LTC6603CUF .......................................–40°C TO 85°C  
LTC6603IUF ........................................–40°C TO 85°C  
Specified Temperature Range (Note 3)  
LTC6603CUF ...........................................0°C TO 70°C  
LTC6603IUF ........................................–40°C TO 85°C  
Storage Temperature Range................... –65°C to 150°C  
UF PACKAGE  
24-LEAD (4mm × 4mm) PLASTIC QFN  
T
= 150°C, θ = 37°C/W, θ = 4.3°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 25) IS GND. MUST BE SOLDERED TO THE PCB.  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6603CUF#PBF  
LTC6603IUF#PBF  
TAPE AND REEL  
PART MARKING*  
6603  
PACKAGE DESCRIPTION  
24-Lead (4mm × 4mm) Plastic QFN 0°C to 70°C  
24-Lead (4mm × 4mm) Plastic QFN –40°C to 85°C  
SPECIFIED TEMPERATURE RANGE  
LTC6603CUF#TRPBF  
LTC6603IUF#TRPBF  
6603  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. V+A = V+D = V+IN = 3V, VICM = VOCM = 1.5V, Gain = 0dB, lowpass cutoff =  
2.5MHz, internal clocking with RBIAS = 30.9k unless otherwise noted.  
PARAMETER  
CONDITIONS  
External Clock = 80MHz, Filter Cutoff (f )= 156.25kHz, V = 3.6V Pin 3 Open  
MIN  
TYP  
MAX  
UNITS  
Filter Gain Either  
Channel  
C
IN  
P-P,  
DC Gain, Gain Set = 0dB  
l
l
l
l
l
f
f
f
f
= 62.5kHz (0.4 • f ), Relative to DC Gain  
0.25  
–0.5  
0.4  
0.4  
–0.3  
0.6  
–0.4  
–32  
0.55  
–0.1  
0.8  
–0.2  
–29.5  
dB  
dB  
dB  
dB  
dB  
IN  
IN  
IN  
IN  
C
= 125kHz (0.8 • f ), Relative to DC Gain  
C
= 156.25kHz (f ), Relative to DC Gain  
C
= 234.375kHz (1.5 • f ), Relative to DC Gain  
–0.6  
C
Matching of Filter  
Gain  
External Clock = 80MHz, Filter Cutoff (f )= 156.25kHz, V = 3.6V Pin 3 Open  
C IN P-P,  
l
l
l
l
DC Gain, Gain Set = 0dB  
0.03  
0.03  
0.03  
0.03  
0.1  
0.1  
dB  
dB  
dB  
dB  
f
f
f
= 62.5kHz (0.4 • f )  
IN  
IN  
IN  
C
= 125kHz (0.8 • f )  
0.1  
C
= 156.25kHz (f )  
0.15  
C
6603f  
2
LTC6603  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+A = V+D = V+IN = 3V, VICM = VOCM = 1.5V, Gain = 0dB, lowpass cutoff =  
2.5MHz, internal clocking with RBIAS = 30.9k unless otherwise noted.  
PARAMETER  
CONDITIONS  
External Clock = 80MHz, Filter Cutoff (f )= 156.25kHz, V = 3.6V Pin 3 Open  
MIN  
TYP  
MAX  
UNITS  
Filter Phase Either  
Channel  
C
IN  
P-P,  
l
l
l
f
f
f
= 62.5kHz (0.4 • f )  
158  
–44  
–152  
161  
–39  
–146  
163  
–36  
–142  
deg  
deg  
deg  
IN  
IN  
IN  
C
C
= 125kHz (0.8 • f )  
= 156.25kHz (f )  
C
Matching of Filter  
Phase  
External Clock = 80MHz, Filter Cutoff (f )= 156.25kHz, V = 3.6V Pin 3 Open  
C IN P-P,  
l
l
l
f
f
f
= 62.5kHz (0.4 • f )  
0.2  
0.4  
0.5  
1.5  
3
4
deg  
deg  
deg  
IN  
IN  
IN  
C
C
= 125kHz (0.8 • f )  
= 156.25kHz (f )  
C
Filter Gain Either  
Channel  
External Clock = 80MHz, Filter Cutoff (f )= 2.5MHz, V = 3.6V Pin 3 Open  
C IN P-P,  
l
l
l
l
l
DC Gain, Gain Set = 0dB  
0
0.5  
–0.8  
0.4  
1.2  
–0.1  
1.5  
dB  
dB  
dB  
dB  
dB  
f
f
f
f
= 1MHz (0.4 • f ), Relative to DC Gain  
–2  
IN  
IN  
IN  
IN  
C
= 2MHz (0.8 • f ), Relative to DC Gain  
–0.7  
–1.1  
C
= 2.5MHz (f ), Relative to DC Gain  
0.1  
1
C
= 4MHz (1.5 • f ), Relative to DC Gain  
–43  
–32.6  
C
Matching of Filter  
Gain  
External Clock = 80MHz, Filter Cutoff (f )= 2.5MHz, V = 3.6V Pin 3 Open  
C
IN  
P-P,  
l
l
f
f
= 2MHz (0.8 • f )  
0.05  
0.2  
0.2  
0.4  
dB  
dB  
IN  
IN  
C
= 2.5MHz (f )  
C
Filter Phase  
Either Channel  
External Clock = 80MHz, Filter Cutoff (f )= 2.5MHz, V = 3.6V Pin 3 Open  
C IN P-P,  
l
l
l
f
f
f
= 1MHz (0.4 • f )  
150  
–45  
–152  
155  
–39  
–141  
159  
–28  
–126  
deg  
deg  
deg  
IN  
IN  
IN  
C
C
= 2MHz (0.8 • f )  
= 2.5MHz (f )  
C
Matching of Filter  
Phase  
External Clock = 80MHz, Filter Cutoff (f )= 2.5MHz, V = 3.6V Pin 3 Open  
C IN P-P,  
l
l
l
f
f
f
= 1MHz (0.4 • f )  
2.5  
4
4
deg  
deg  
deg  
IN  
IN  
IN  
C
C
= 2MHz (0.8 • f )  
= 2.5MHz (f )  
C
Filter Cutoff Accuracy CLKCNTL = 3V (Note 4)  
l
l
l
when Self Clocked  
R
BIAS  
R
BIAS  
R
BIAS  
= 200k  
= 54.9k  
= 30.9k  
3
3
3.5  
%
%
%
DC Gain  
Filter Cutoff (f ) = 2.5MHz, 0.6V to 2.4V Each Output, Pin 3 Open  
C
l
l
l
l
Gain Setting = 0dB  
Gain Setting = 6dB  
Gain Setting = 12dB  
Gain Setting = 24dB  
0
0.5  
6
11.8  
23.2  
1.2  
6.6  
12.5  
24  
dB  
dB  
dB  
dB  
5.6  
11.2  
22.5  
DC Gain Matching  
Noise At 200kHz  
Integrated Noise  
Filter Cutoff (f ) = 2.5MHz, 0.6V to 2.4V Each Output, Pin 3 Open  
C
l
l
l
l
Gain Setting = 0dB  
Gain Setting = 6dB  
Gain Setting = 12dB  
Gain Setting = 24dB  
0.1  
0.05  
0.05  
0.1  
0.2  
0.1  
0.15  
0.2  
dB  
dB  
dB  
dB  
Voltage Noise Referred to the Input  
Gain = 0dB  
–124  
–129  
–135  
–145  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Gain = 6dB  
Gain = 12dB  
Gain = 24dB  
Noise Bandwidth = 5MHz, Referred to the Input  
Gain = 0dB  
Gain = 6dB  
Gain = 12dB  
Gain = 24dB  
–53  
–59  
–65  
–76  
dBm  
dBm  
dBm  
dBm  
THD  
V
= 2V , f = 200kHz, Gain Setting = 24dB  
–75  
dB  
IN  
P-P IN  
Input Impedance  
Gain = 24dB, R  
= 30.9k, Filter Cutoff (f ) = 2.5MHz  
BIAS C  
Differential  
1.6  
5
kꢀ  
kꢀ  
Common Mode  
6603f  
3
LTC6603  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+A = V+D = V+IN = 3V, VICM = VOCM = 1.5V, Gain = 0dB, lowpass cutoff =  
2.5MHz, internal clocking with RBIAS = 30.9k unless otherwise noted.  
PARAMETER  
Differential  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Referred Differential Offset Voltage at Either Output  
Lowest Cutoff Frequency, Gain Setting = 24dB  
Highest Cutoff Frequency, Gain Setting = 24dB  
Lowest Cutoff Frequency, Gain Setting = 0dB  
Highest Cutoff Frequency, Gain Setting = 0dB  
OS  
l
l
l
l
8
mV  
mV  
mV  
mV  
14  
40  
60  
CMRR Differential  
f = 625kHz  
C
l
l
Common Mode Input from 0 to 3V, V+ = 3V  
60  
60  
90  
90  
dB  
dB  
IN  
Common Mode Input from 0 to 5V, V+ = 5V  
IN  
l
l
V
V
Pin Voltage  
Pin Input  
V+ = V+ = 3V, Pin 3 Open  
1.3  
2.5  
1.45  
3.4  
1.5  
4.5  
V
OCM  
A
D
V+ = V+ = 3V, Pin 3 Open  
kꢀ  
OCM  
Impedance  
A
D
l
V
OSCM  
Common Mode Offset Voltage, V  
= 1.5V, Supplies = 3V  
100  
185  
mV  
OCM  
V
= V  
– V  
OSCM  
OUT-CM OCM  
l
l
Output Swing  
Source 1mA, Relative to V+  
Sink 1mA, Relative to GND  
200  
150  
500  
400  
mV  
mV  
A
l
l
Short-Circuit Current Sourcing  
Sinking  
7
11  
25  
30  
mA  
mA  
Supply Current  
Internal Clock (R  
= 30.9k); Sum of the Currents into V+ , V+ , and V+ All  
BIAS D A IN  
Supplies Set to 3V  
f = 156.25kHz  
l
l
l
88  
121  
162  
96  
130  
175  
mA  
mA  
mA  
C
f = 625kHz  
C
f = 2.5MHz  
C
Supply Current,  
Shutdown Mode  
Sum of the Currents into V+ , V+ , and V+ ; All Supplies Set to 3V  
D
A
IN  
l
Shutdown Via Serial Interface  
170  
235  
μA  
l
l
Supply Voltage  
V+ , V+ Relative to GND  
IN  
2.7  
2.7  
3.6  
5.5  
V
V
D
A
V+ Relative to GND  
l
l
PSRR  
V+ = V+ = V+ , All from 2.7V to 3.6V  
40  
65  
50  
85  
dB  
dB  
D
A
IN  
V+ = V+ = 3V, V+ from 4.5V to 5.5V  
D
A
IN  
R
R
Resistor Range CLKCNTL = 3V  
BIAS  
BIAS  
l
l
Clock Frequency Error < 3.5%  
Clock Frequency Error < 3%  
30.9  
54.9  
54.9  
200  
kꢀ  
kꢀ  
Pin Voltage  
30.9k < R  
< 200k  
1.17  
40  
V
BIAS  
Clock Frequency Drift  
Over Temperature  
R
= 30.9k  
ppm/ºC  
BIAS  
CLKCNTL Pin Open  
l
l
l
l
Clock Frequency Drift V+ , V+ from 2.7V to 3.6V, R = 30.9k  
BIAS  
0.2  
50  
0.5  
55  
%/V  
%
V
A
D
Over Supply  
CLKCNTL Pin Open  
Output Clock Duty  
Cycle  
R
BIAS  
= 30.9k  
45  
CLKIO Pin High Level CLKCNTL = 0V (Note 5)  
Input Voltage  
V+ – 0.3  
D
CLKIO Pin Low Level CLKCNTL = 0V (Note 5)  
Input Voltage  
0.3  
10  
V
CLKIO Pin Input  
Current  
CLKCNTL = 0V  
l
l
CLKIO = 0V (Note 6)  
–1  
μA  
μA  
CLKIO = V+  
D
CLKIO Pin High Level V+ = V+ = 3V, CLKCNTL = 3V  
A
D
Output Voltage  
I
I
= –1mA  
2.95  
2.9  
V
V
OH  
OH  
= –4mA  
6603f  
4
LTC6603  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+A = V+D = V+IN = 3V, VICM = VOCM = 1.5V, Gain = 0dB, lowpass cutoff =  
2.5MHz, internal clocking with RBIAS = 30.9k unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLKIO Pin Low Level V+ = V+ = 3V, CLKCNTL = 3V  
A
D
Output Voltage  
I
I
= 1mA  
0.05  
0.1  
V
V
OL  
OL  
= 4mA  
CLKIO Pin Rise Time V+ = V+ = CLKCNTL = 3V, C  
= 5pF  
= 5pF  
0.3  
0.3  
ns  
ns  
V
A
D
LOAD  
LOAD  
CLKIO Pin Fall Time  
V+ = V+ = CLKCNTL = 3V, C  
A
D
l
l
SER High Level  
Input Voltage  
Pin 17  
V+ – 0.3  
D
SER Low Level  
Input Voltage  
Pin 17  
0.3  
2
V
l
l
SER Input Current  
Pin 17 = 0V (Note 6)  
Pin 17 = V+  
–10  
μA  
μA  
D
l
CLKCNTL High Level Pin 5  
Input Voltage  
V+ – 0.5  
D
V
CLKCNTL Low Level Pin 5  
Input Voltage  
0.5  
25  
V
l
l
CLKCNTL Input  
Current  
CLKCNTL = 0V (Note 6)  
CLKCNTL = V+  
–25  
–15  
15  
μA  
μA  
D
Pin Programmable Control Mode Specifications. Specifications apply to pins 6, 9, 21 and 22 in pin programmable control mode.  
SYMBOL  
V+ = 2.7V to 3.6V  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
D
l
l
l
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
Pins 6, 9, 21, 22  
2
V
V
IH  
IL  
Pins 6, 9, 21, 22  
0.8  
1
I
IN  
Pins 6, 9, 21, 22 (Note 6)  
–1  
μA  
Serial Port DC and Timing Specifications. Specifications apply to pins 6, 9-11, and 21 in serial programming mode.  
SYMBOL  
V+ = 2.7V to 3.6V  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
D
l
l
l
l
l
l
l
l
l
l
l
l
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
Digital Output High Voltage  
Digital Output Low Voltage  
SDI Valid to SCLK Setup  
SDI Valid to SCLK Hold  
SCLK Low  
Pins 6, 9, 10  
2
V
V
IH  
IL  
V
Pins 6, 9, 10  
0.8  
1
I
IN  
Pins 6, 9, 10 (Note 6)  
Pins 11, 21 Sourcing 500μA  
Pins 11, 21 Sinking 500μA  
–1  
μA  
V
V
V
– 0.3  
OH  
OL  
SUPPLY  
V
0.3  
V
t (Note 5)  
1
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t (Note 5)  
2
t
3
t
4
t
5
100  
100  
60  
SCLK High  
CS Pulse Width  
t (Note 5)  
6
LSB SCLK to CS  
60  
t (Note 5)  
7
CS Low to SCLK  
30  
t
8
SDO Output Delay  
C = 15pF  
L
125  
t (Note 5)  
9
SCLK Low to CS Low  
0
ns  
6603f  
5
LTC6603  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This test measures the internal oscillator accuracy (deviation from  
the f equation). Variations in the internal oscillator cause variations in  
the filter cutoff frequency. See the “Applications Information” section.  
CLK  
Note 5: Guaranteed by design, not subject to test.  
Note 2: LTC6603C and LTC6603I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 6: To conform to the logic IC standard, current out of a pin is  
arbitrarily given a negative value.  
Note 3: LTC6603C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6603C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LTC6603I is guaranteed to meet the  
specified performance limits from –40°C to 85°C.  
TYPICAL PERFORMANCE CHARACTERISTICS  
DC Gain Matching  
DC Gain Matching  
Phase Matching  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
V
= 3V, BW = 156.25kHz  
V = 3V, BW = 2.5MHz  
S
V
= 3V, BW = 2.5MHz  
S
S
GAIN SETTING = 0dB, T = 25°C  
A
f = 2MHz, T = 25°C  
A
GAIN SETTING = 0dB, T = 25°C  
A
1000 UNITS  
1000 UNITS  
1000 UNITS  
0
–0.060.040.02  
0
0.02 0.04 0.06 0.08 0.1  
–2.5–2–1.5–1–0.5 0 0.5 1 1.5 2 2.5 3 3.5 4  
–0.2 –0.15 –0.1 –0.05  
0
0.05 0.1 0.15 0.2  
MISMATCH (dB)  
MISMATCH (DEG)  
MISMATCH (dB)  
6603 G02  
6603 G03  
6603 G01  
Gain and Group Delay  
vs Frequency  
Phase Matching  
60  
50  
40  
35  
30  
20  
10  
0
30  
20  
800  
760  
720  
680  
640  
600  
560  
520  
480  
440  
400  
V
= 3V, BW = 156.25kHz  
S
GAIN = 24dB  
f = 125kHz, T = 25°C  
A
1000 UNITS  
10  
0
GAIN = 0dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
GAIN = 12dB  
GAIN = 6dB  
GROUP DELAY  
R
= 30.9k, V = 3V  
S
BIAS  
LPF1 = 1, BW = 2.5MHz  
= 25°C  
T
A
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
10k  
100k  
1M  
10M  
MISMATCH (DEG)  
FREQUENCY (Hz)  
6603 G04  
6603 G05  
6603f  
6
LTC6603  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain and Group Delay  
vs Frequency  
Gain and Group Delay  
vs Frequency  
Distortion vs Input Frequency  
30  
20  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
30  
20  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
–50  
–60  
–70  
–80  
–90  
R
= 30.9k, V = 3V  
S
BIAS  
GAIN = 12dB  
GAIN = 6dB  
GAIN = 24dB  
GAIN = 24dB  
LPF1 = 1, BW = 2.5MHz  
= 2V , T = 25°C  
V
OUT  
P-P  
A
10  
10  
HD3, GAIN = 24dB  
HD3, GAIN = 0dB  
0
0
GAIN = 0dB  
GAIN = 12dB  
GAIN = 6dB  
GAIN = 0dB  
GROUP DELAY  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
GROUP DELAY  
9.0  
HD2, GAIN = 0dB  
8.5  
HD2, GAIN = 24dB  
R
= 30.9k, V = 3V  
S
R
= 30.9k, V = 3V  
S
BIAS  
BIAS  
8.0  
LPF1 = LPF0 = 0,  
BW = 156.25kHz  
LPF1 = 0, LPF0 = 1,  
BW = 625kHz  
7.5  
T
A
= 25°C  
T
A
= 25°C  
7.0  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
100  
500  
900  
1300  
1700  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT FREQUENCY (kHz)  
6603 G07  
6603 G06  
6603 G08  
Distortion vs Input Frequency  
Distortion vs Input Frequency  
Distortion vs Input Frequency  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
R
= 30.9k, V = 3V  
S
R
= 54.9k, V = 3V  
S
BIAS  
BIAS  
HD3, GAIN = 0dB  
LPF1 = 0, LPF0 = 1, BW = 625kHz  
= 2V , T = 25°C  
LPF1 = 1, BW = 1.41MHz  
= 25°C  
V
OUT  
HD3, GAIN = 24dB  
T
P-P  
A
A
HD3, GAIN = 0dB  
HD3, GAIN = 0dB  
HD2, GAIN = 24dB  
HD2, GAIN = 0dB  
HD3, GAIN = 24dB  
HD2, GAIN = 0dB  
HD2, GAIN = 24dB  
HD2, GAIN = 24dB  
HD2, GAIN = 0dB  
R
= 30.9k, V = 3V  
S
BIAS  
LPF1 = LPF0 = 0, BW = 156.25kHz  
= 2V , T = 25°C  
HD3, GAIN = 24dB  
V
OUT  
P-P  
A
100  
300  
500  
700  
900  
1100  
10  
30  
50  
70  
90 110 130 150  
20  
120  
220  
320  
420  
520  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
6603 G09  
6603 G11  
6603 G10  
Filter Cutoff Accuracy  
vs Supply Voltage  
Filter Cutoff Accuracy  
vs Temperature  
Distortion vs Output Voltage  
–60  
–70  
1.0  
0.8  
0.2  
0.1  
LPF1 = LPF0 = 0, BW = 156.25kHz  
R
= 30.9k, V = 3V, LPF1 = 0, LPF0 = 1,  
V = 3V  
S
BIAS  
S
BW = 2.5MHz, GAIN = 24dB, T = 25°C  
A
R
= 30.9k  
BIAS  
0.0  
0.6  
HD3, f = 1MHz  
HD2, f = 1MHz  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
LPF1 = 0, LPF0 = 1,  
BW = 625kHz  
0.4  
BW = 156.25kHz  
BW = 625kHz  
0.2  
–80  
0.0  
LPF1 = 1, BW = 2.5MHz  
–0.2  
–0.4  
–0.6  
–0.8  
HD3, f = 200kHz  
–90  
BW = 2.5MHz  
R
A
= 30.9k  
BIAS  
HD2, f = 200kHz  
T
= 25°C  
–100  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
OUTPUT VOLTAGE (V  
–50 –30 –10 10  
30  
50  
70  
90  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
)
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
P-P  
6603 G11  
6603 G14  
6603 G13  
6603f  
7
LTC6603  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 3V, R  
= 30.9k  
BIAS  
GAIN = 0dB  
GAIN = 6dB  
GAIN = 24dB  
GAIN = 12dB  
S
LPF1 = 0, LPF0 = 1,  
BW = 625kHz, T = 25°C  
A
GAIN = 24dB  
GAIN = 6dB  
GAIN = 0dB  
GAIN = 12dB  
GAIN = 12dB  
GAIN = 24dB  
80  
GAIN = 0dB  
GAIN = 6dB  
70  
60  
50  
V
= 3V, R  
= 30.9k  
BIAS  
V
= 3V, R  
= 30.9k  
BIAS  
S
S
40  
LPF1 = 1, BW = 2.5MHz  
= 25°C  
LPF1 = LPF0 = 0, BW = 156.25kHz,  
= 25°C  
T
A
T
A
30  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6603 G16  
6603 G17  
6603 G15  
Common Mode Rejection  
Common Mode Rejection  
Common Mode Rejection  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
110  
100  
90  
CMR = ΔV  
/ΔV  
OUT-DIFF  
V
= 3V, R  
= 30.9k  
IN-CM  
BIAS  
GAIN = 12dB  
S
LPF1 = 0, LPF1 = 1, BW = 625kHz,  
T
= 25°C  
GAIN = 0dB  
A
GAIN = 0dB  
GAIN = 6dB  
GAIN = 6dB  
GAIN = 24dB  
GAIN = 0dB  
GAIN = 6dB  
GAIN = 12dB  
GAIN = 24dB  
80  
GAIN = 12dB  
GAIN = 24dB  
70  
CMR = ΔV  
S
LPF1 = LPF0 = 0, BW = 156.25kHz,  
T = 25°C  
A
/ΔV  
OUT-DIFF  
IN-CM  
V
= 3V, R  
= 30.9k  
V
= 3V, R  
= 30.9k  
BIAS  
60  
BIAS  
S
LPF1 = 1, BW = 2.5MHz,  
= 25°C  
T
A
CMR = ΔV  
/ΔV  
IN-CM  
OUT-DIFF  
50  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6603 G18  
6603 G20  
6603 G19  
OIP3 vs Average Signal  
Frequency  
OIP3 vs Average Signal  
Frequency  
OIP3 vs Average Signal  
Frequency  
41  
40  
39  
38  
37  
36  
35  
34  
46  
44  
42  
40  
38  
36  
43  
42  
41  
40  
39  
38  
37  
36  
35  
GAIN = 0dB  
GAIN = 12dB  
GAIN = 0dB  
GAIN = 6dB  
GAIN = 6dB  
GAIN = 12dB  
GAIN = 12dB  
GAIN = 6dB  
GAIN = 24dB  
GAIN = 24dB  
GAIN = 24dB  
GAIN = 0dB  
V
= 3V, R  
= 30.9k, T = 25°C  
V
= 3V, R  
= 30.9k, T = 25°C  
V
= 3V, R  
= 30.9k, T = 25°C  
BIAS A  
BIAS  
A
BIAS A  
S
S
S
LPF1 = 0, LPF0 = 1, BW = 625kHz  
= 6dBm PER TONE FOR 2-TONE TEST  
LPF1 = 0, LPF0 = 1, BW = 625kHz  
V = 6dBm PER TONE FOR 2-TONE TEST  
OUT  
LPF1 = 0, LPF0 = 1, BW = 156.25kHz  
= 6dBm PER TONE FOR 2-TONE TEST  
V
V
OUT  
OUT  
Δf = 10kHz  
100 500  
AVERAGE FREQUENCY OF TWO TONES (kHz)  
Δf = 10kHz  
100  
AVERAGE FREQUENCY OF TWO TONES (kHz)  
Δf = 10kHz  
20 40  
AVERAGE FREQUENCY OF TWO TONES (kHz)  
900 1300 1700 2100 2500  
0
200  
300  
400  
500  
600  
60  
80 100 120 140 160  
6603 G21  
6603 G22  
6603 G23  
6603f  
8
LTC6603  
TYPICAL PERFORMANCE CHARACTERISTICS  
OIP3 vs Temperature  
Output Impedance vs Frequency  
Supply Current vs Supply Voltage  
10  
1
42  
41  
40  
39  
38  
37  
36  
35  
200  
180  
160  
140  
120  
100  
80  
V
= 3V, R  
= 30.9k  
BIAS  
V
S
= 3V, R  
= 30.9k, T = 25°C  
BIAS A  
T
= 25°C  
BIAS  
S
A
PASSBAND GAIN = 24dB  
= 6dBm PER TONE FOR 2-TONE TEST  
Δf = 10kHz  
R
= 30.9k  
V
OUT  
LPF1 = 0, LPF0 = 1,  
BW = 625kHz  
BW = 2.5MHz  
LPF1 = LPF0 = 0,  
BW = 156.25kHz  
BW = 625kHz,  
FREQUENCY = 200kHz  
0.1  
BW = 625kHz  
BW = 156.25kHz,  
FREQUENCY = 60kHz  
BW = 156.25kHz  
LPF1 = 1, BW = 2.5MHz  
0.01  
0.001  
BW = 2.5MHz, FREQUENCY = 1MHz  
60  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–50 –30 –10 10  
30  
50  
70  
90  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
6603 G25  
6603 G23  
6603 G26  
Supply Current vs Temperature  
Clock Output Operating at 80MHz  
RBIAS Pin Voltage vs IRBIAS  
1.25  
1.20  
1.15  
1.10  
180  
160  
140  
120  
100  
80  
5
4
T
= 25°C  
= 3V  
T
= 25°C  
BIAS  
R
T
= 30.9k, V = 3V  
S
A
S
A
BIAS  
A
V
R
= 30.9k  
= 25°C  
BW = 2.5MHz  
3
2
BW = 625kHz  
1
0
BW = 156.25kHz  
–1  
–2  
60  
0
5
10  
I
15  
(μA)  
20  
25  
–50 –30 –10 10  
30  
50  
70  
90  
–14 –12 –10 –8 –6 –4 –2  
TIME (ns)  
0
2
TEMPERATURE (°C)  
RBIAS  
6603 G29  
6603 G27  
6603 G28  
Input Referred Noise Density  
Input Referred Noise Density  
Input Referred Noise Density  
1000  
100  
10  
1000  
100  
10  
1000  
GAIN = 0dB  
GAIN = 0dB  
GAIN = 6dB  
GAIN = 6dB  
GAIN = 0dB  
GAIN = 6dB  
GAIN = 12dB  
GAIN = 12dB  
100  
10  
1
GAIN = 12dB  
GAIN = 24dB  
GAIN = 24dB  
GAIN = 24dB  
1
V
= 3V, R  
= 30.9k  
BIAS  
V
= 3V, R  
= 30.9k  
BIAS  
S
S
V
= 3V, R  
= 30.9k  
BIAS  
S
LPF1 = 0, LPF0 = 0,  
BW = 156.25kHz  
LPF1 = 0, LPF0 = 1,  
BW = 625kHz  
LPF1 = 1, BW = 2.5MHz  
= 25°C  
T
A
T
= 25°C  
T
= 25°C  
A
A
0.1  
1
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6603 G30  
6603 G32  
6603 G31  
6603f  
9
LTC6603  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Input Referred Noise  
Integral Input Referred Noise  
Integral Input Referred Noise  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
V
= 3V, R  
= 30.9k  
BIAS  
V
= 3V, R  
= 30.9k  
V
= 3V, R  
= 30.9k  
BIAS  
BIAS  
S
S
S
LPF1 = 1,BW = 2.5MHz  
= 25°C  
LPF1 = 0, LPF0 = 1, BW = 625kHz  
= 25°C  
LPF1 = LPF0 = 0, BW = 156.25kHz  
T = 25°C  
A
T
A
T
A
GAIN = 0dB  
GAIN = 6dB  
GAIN = 12dB  
GAIN = 0dB  
GAIN = 6dB  
GAIN = 12dB  
GAIN = 6dB  
GAIN = 0dB  
GAIN = 24dB  
GAIN = 24dB  
GAIN = 12dB  
GAIN = 24dB  
1
1
1
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
10k  
100k  
INTEGRATION BW (Hz)  
1M  
INTEGRATION BW (Hz)  
INTEGRATION BW (Hz)  
6603 G33  
6603 G34  
6603 G35  
PIN FUNCTIONS  
V+ (Pin 1): Input Voltage Supply (2.7V ≤ V ≤ 5.5V). This  
For best performance, use a precision metal film resis-  
tor with a value between 30.9k and 200k and limit the  
capacitance on this pin to less than 10pF. This resistor is  
necessary even if an external clock is used.  
IN  
supply must be kept free from noise and ripple. It should  
be bypassed directly to a ground plane with a 0.1μF ca-  
pacitor unless it is tied to V+ (Pin 2). The bypass should  
A
be as close as possible to the IC, but is not as critical as  
CLKCNTL (Pin 5): Clock Control Input. This three-state  
input selects the function of CLKIO (Pin 15). Tying the  
CLKCNTL pin to ground allows the CLKIO pin to be driven  
by an external clock (CLKIO is the master clock input).  
If the CLKCNTL pin is floated, the internal oscillator is  
enabled, but the master clock is not present at the CLKIO  
pin (CLKIO is a no-connect). If the CLKCNTL pin is tied  
the bypassing of V+ and V+ (Pin16).  
A
D
V+ (Pin 2): Analog Voltage Supply (2.7V ≤ V ≤ 3.6V). This  
A
supplymustbekeptfreefromnoiseandripple.Itshouldbe  
bypassed directly to a ground plane with a 0.1μF capacitor.  
The bypass should be as close as possible to the IC.  
V
(Pin 3): Output common mode voltage reference. If  
OCM  
to V+ (Pin 16), the internal oscillator is enabled and the  
D
floated, aninternalresistivedividersetsthevoltageonthis  
pin to half the supply voltage (typically 1.5V), maximiz-  
ing the dynamic range of the filter. If this pin is floated, it  
must be bypassed with a quality 1μF capacitor to ground.  
This pin has a typical input impedance of 3.4k and may  
be overdriven. Driving this pin to a voltage other than the  
default value will reduce the signal range the filter can  
handle before clipping.  
master clock is present at the CLKIO pin (CLKIO is the  
master clock output). To detect a floating CLKCNTL pin,  
the LTC6603 attempts to pull the pin toward mid-supply.  
Thisisrealizedwithtwointernal1Acurrentsources,one  
tied to V+ and CLKCNTL and the other one tied to ground  
D
and CLKCNTL. Therefore, driving the CLKCNTL pin high  
requires sourcing approximately 15μA. Likewise, driving  
the CLKCNTL pin low requires sinking 15μA. When the  
CLKCNTL pin is floated, it should be bypassed by a 1nF  
capacitor to ground or be surrounded by a ground shield  
to prevent excessive coupling from other PCB traces.  
R
(Pin4):OscillatorFrequency-SettingResistorInput.  
BIAS  
The value of the resistor connected between this pin and  
ground determines the frequency of the master oscillator,  
andsetsthebiascurrentsforthelternetworks.Thevoltage  
on this pin is held by the LTC6603 to approximately 1.17V.  
6603f  
10  
LTC6603  
PIN FUNCTIONS  
V+ (Pin 16): Digital Voltage Supply (2.7V ≤ V ≤ 3.6V).  
LPF1(CS) (Pin 6): TTL Level Input. When in pin program-  
mable control mode, this pin is the MSB of the lowpass  
cutoff frequency control code; in serial control mode, this  
pin is the chip select input (active low).  
D
This supply must be kept free from noise and ripple. It  
shouldbebypasseddirectlytoagroundplanewitha0.1μF  
capacitor. The bypass should be as close as possible to  
the IC.  
+INB, –INB (Pins 7, 8): Channel B differential inputs.  
The input range and input resistance are described in the  
Applications Information section. Input voltages which  
SER (Pin 17): Interface Selection Input. When tied to V+  
D
(Pin 16) or floated, the interface is in pin programmable  
control mode, i.e. the filter gain and cutoff frequencies  
are programmed by the GAIN1, GAIN0, LPF1 and LPF0  
pins. When SER is tied to ground, the filter gain, the filter  
cutoff frequency and shutdown mode are programmed  
by the serial interface.  
exceed V+ (Pin 1) should be avoided.  
IN  
LPF0(SCLK)(Pin9):TTLLevelInput.Wheninpinprogram-  
mable control mode, this pin is the LSB of the lowpass  
cutoff frequency control code; in serial control mode, this  
pin is the clock of the serial interface.  
–OUTA, +OUTA (Pins 18, 19): Channel A differential filter  
outputs. These pins can drive 1k and/or 50pF loads. For  
larger capacitive loads, an external 100ꢀ series resistor  
is recommended for each output. The common mode  
voltage of the filter outputs is the same as the voltage at  
SDI (Pin 10): TTL Level Input. When in pin programmable  
control mode, this pin is left floating; in serial control  
mode, this pin is the serial data input.  
SDO(Pin11):TTLLevelInput. Wheninpinprogrammable  
control mode, this pin is left floating; in serial control  
mode, this pin is the serial data output.  
V
(Pin 3).  
OCM  
CAP (Pin 20): Connect a 0.1μF bypass capacitor to this  
pin. Pin 20 is a buffered version of Pin 3.  
–OUTB, +OUTB (Pins 12, 13): Channel B differential filter  
outputs. These pins can drive 1k and/or 50pF loads. For  
larger capacitive loads, an external 100ꢀ series resistor  
is recommended for each output. The common mode  
voltage of the filter outputs is the same as the voltage at  
GAIN0(D0) (Pin 21): TTL Level Input. When in pin pro-  
grammable control mode, this pin is the LSB of the gain  
control code; in serial control mode, this pin is the LSB  
of the serial control register, an output.  
V
OCM  
(Pin 3).  
GAIN1(Pin22):TTLLevelInput.Wheninpinprogrammable  
control mode, this pin is the MSB of the gain control code;  
in serial control mode, this pin is a no-connect.  
GND (Pin 14): Ground. Should be tied to a ground plane  
for best performance.  
CLKIO (Pin 15): When CLKCNTL (Pin 5) is tied to ground,  
CLKIOisthemasterclockinput.WhenCLKCNTLisoated,  
CLKIO is pulled to ground by a weak pulldown. When  
–INA, +INA (Pins 23, 24): Channel A differential inputs.  
The input range and input resistance are described in the  
Applications Information section. Input voltages which  
CLKCNTL is tied to V+ (Pin 16), CLKIO is the master  
D
exceed V+ (Pin 1) should be avoided.  
IN  
clock output. When configured as a clock output, this pin  
can drive 1k and/or 5pF loads (heavier loads will cause  
inaccuracies).  
Exposed Pad (Pin 25): Ground. The Exposed Pad must  
be soldered to PCB.  
6603f  
11  
LTC6603  
BLOCK DIAGRAM  
+INA  
–INA  
23  
GAIN1  
22  
GAIN0(D0)  
21  
CAP  
20  
+OUTA  
19  
24  
V+  
1
18  
17  
–OUTA  
IN  
CHANNEL A  
GAIN  
LPF  
V+  
SER  
2
3
A
CONTROL  
BIAS  
CLK  
V+  
A
TO PIN 20  
V
OCM  
16 V+  
D
CLOCK  
GENERATOR  
CONTROL  
LOGIC  
BIAS/OSC  
GND  
R
4
5
6
15  
CLKIO  
BIAS  
BIAS  
GAIN  
CONTROL  
CLK  
CLKCNTL  
14 GND  
LPF  
CHANNEL B  
+OUTB  
LPF1(CS)  
13  
7
8
9
10  
11  
12  
+INB  
–INB  
LPF0(SCLK)  
SDI  
SDO  
–OUTB  
6603 BD  
TIMING DIAGRAM  
Timing Diagram of the Serial Interface  
t
4
t
1
t
6
t
2
t
t
7
3
SCLK  
t
9
D3  
D2  
D1  
D0  
D7 • • • • D4  
D3  
SDI  
t
5
CS  
t
8
D4  
D3  
D2  
D1  
D0  
D7 • • • • D4  
D3  
SDO  
PREVIOUS BYTE  
CURRENT BYTE  
6603 TD  
6603f  
12  
LTC6603  
APPLICATIONS INFORMATION  
Theory of Operation (Refer to Block Diagram)  
pull-up to V+ . None of the logic inputs have an internal  
D
pull-up or pull-down.  
The LTC6603 features two matched filter channels, each  
containing gain control and lowpass filter networks that  
are controlled by a single control block and clocked by  
a single clock generator. The gain and cutoff frequency  
can be separately programmed. The two channels are  
not independent, i.e. if the gain is set to 24dB then both  
channels have a gain of 24dB. The filter can be clocked  
with an external clock source, or using the internal oscil-  
Serial Interface  
ConnectingSERtogroundallowstheltertobecontrolled  
through the SPI serial interface. When CS is low, the serial  
data on SDI is shifted into an 8-bit shift-register on the  
rising edge of the clock (SCLK), with the MSB transferred  
first (see Figure 3). Serial data on SDO is shifted out on  
the clock’s falling edge. A high CS will load the 8 bits of  
the shift-register into an 8-bit D-latch, which is the serial  
control register. The clock is disabled internally when  
CS is pulled high. Note: SCLK must be low before CS is  
pulled low to avoid an extra internal clock pulse. SDO is  
always active in serial mode (never tri-stated) and cannot  
be “wire-or’ed” to other SPI outputs. In addition, SDO is  
not forced to zero when CS is pulled high.  
lator. A resistor connected to the R  
pin sets the bias  
BIAS  
currents for the filter networks and the internal oscillator  
frequency(unlessdrivenbyanexternalclock).Alteringthe  
clock frequency changes the filter bandwidth. This allows  
the filters to be “tuned” to many different bandwidths.  
Pin Programmable Interface  
As shown in Figure 1, connecting SER to V+ allows the  
D
filter to be directly controlled through the pin program-  
mable control lines GAIN1, GAIN0, LPF1 and LPF0. The  
GAIN0(D0)pinisbidirectional(inputinpinprogrammable  
controlmode,outputinserialmode).Inpinprogrammable  
An LTC6603 may be daisy chained with other LTC6603s  
or other devices having serial interfaces. Daisy chain-  
ing is accomplished by connecting the SDO of the lead  
chip to the SDI of the next chip, while SCLK and CS  
remain common to all chips in the daisy chain. The se-  
rial data is clocked to all the chips then the CS signal  
is pulled high to update all of them simultaneously.  
Figure 4 shows an example of two LTC6603s in a daisy  
chained SPI configuration.  
controlmode,thevoltageatGAIN0(D0)cannotexceedV+ ;  
D
otherwise,largecurrentscanbeinjectedtoV+ throughthe  
D
parasitic diodes (see Figure 2). Connecting a 10k resistor  
at the GAIN0(D0) pin (see Figure 1) is recommended for  
current limiting, to less than 10mA. SER has an internal  
3.3V  
3.3V  
LTC6603  
0.1μF  
LTC6603  
0.1μF  
V+  
V+  
V+  
V+  
V+  
V+  
IN  
IN  
A
A
D
D
+
V
+
V
+
+
+INA  
+OUTA  
–OUTA  
+INA  
+OUTA  
–OUTA  
V
V
OUT  
OUT  
IN  
IN  
–INA  
–INA  
SER  
SER  
LPF1  
LPF0  
LPF1(CS)  
LPF0(SCLK)  
LPF1(CS)  
LPF0(SCLK)  
μP  
GAIN1  
GAIN0  
GAIN1  
GAIN1  
GAIN0(D0)  
GND  
GAIN0(D0)  
GND  
10k  
LOWPASS CUTOFF = 2.5MHz (f  
GAIN = 4  
= 80MHz)  
GAIN, BANDWIDTHS ARE SET BY MICROPROCESSOR.  
10k RESISTORS ON GAIN0(OUT) PROTECTS THE  
CLK  
DEVICE WHEN V  
> V+  
GAIN0  
D
6603 F01  
Figure 1. Filter in Pin Programmable Control Mode  
6603f  
13  
LTC6603  
APPLICATIONS INFORMATION  
SHUTDOWN  
NO  
FUNCTION  
4-BIT GAIN, BW  
CONTROL CODE  
OUT  
V+  
D
8-BIT LATCH  
CS  
GAIN0(D0)  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7  
8-BIT  
SDI  
SHIFT-REGISTER  
(INTERNAL  
NODE)  
SDO  
6603 F02  
SCLK  
6603 F03  
Figure 2. Bidirectional Design of GAIN0(OUT) Pin  
Figure 3. Diagram of Serial Interface (MSB First Out)  
3.3V  
3.3V  
LTC6603  
0.1μF  
LTC6603  
#2  
0.1μF  
V+  
V+  
V+  
#1  
V+  
V+  
V+  
IN  
IN  
A
A
D
D
+
+OUTA  
–OUTA  
+
+OUTA  
–OUTA  
+
V
+
V
+INA  
+INA  
V
V
IN1  
OUT1  
IN2  
OUT2  
–INA  
–INA  
SER  
SER  
CSX  
SCLK  
SDI  
LPF1(CS)  
LPF0(SCLK)  
SDI  
LPF1(CS)  
LPF0(SCLK)  
SDI  
μP  
GAIN0(D0)  
SDO  
GAIN0(D0)  
SDO  
OUT1  
OUT2  
SDO  
GND  
GND  
SCLK  
SDI  
CS  
D15  
D11  
D10  
D9  
D8  
D7  
D3  
D2  
D1  
D0  
SHUTDOWN FOR #2  
SHUTDOWN FOR #1  
GAIN, BW CONTROL WORD FOR #1  
GAIN, BW CONTROL WORD FOR #2  
6603 F04  
Figure 4. Two Devices in a Daisy Chain  
Serial Control Register Definition  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OUT  
GAIN0  
GAIN1  
LPF0  
LPF1  
NO FUNCTION NO FUNCTION  
SHDN  
6603f  
14  
LTC6603  
APPLICATIONS INFORMATION  
GAIN1 and GAIN0 are the gain control bits (register bits  
D6 and D7 when in serial mode). Their function is shown  
in Table 1. In serial mode, register bit D1 can be set to  
“1” to put the device into a low power shutdown mode.  
Register bit D0 is a general purpose output (Pin 21) when  
in serial mode.  
be accurately varied from 24.14kHz to 2.5MHz. Table 2  
summarizes the cutoff frequencies that can be obtained  
with an external resistor (R  
) value of 30.9k. Note that  
BIAS  
the cutoff frequencies scale with the clock frequency. For  
example, if LPF1 and LPF0 are both equal to zero, and  
R
is increased from 30.9k to 200k, f  
will decrease  
BIAS  
CLK  
from 80MHz to 12.36MHz and the cutoff frequency will  
be reduced from 156.25kHz to 24.14kHz. The cutoff  
frequencies that can be obtained with external resistor  
values of 54.9k and 200k are shown in Table 3 and Table 4,  
respectively. When the LTC6603 is programmed for the  
cutoff frequencies lower than the maximum, the power is  
automatically reduced. The power savings at the middle  
bandwidth setting (LPF1 = ‘0’, LPF0 = ‘1’), is about 23%,  
while the power savings at the lowest bandwidth setting  
(LPF1 = ‘0’, LPF0 = ‘0’) is about 60%.  
Table 1. Gain Control  
PASSBAND GAIN  
GAIN 1  
GAIN 0  
(dB)  
0
0
1
1
0
1
0
1
0
6
12  
24  
Self-Clocking Operation  
Table 2. Cutoff Frequency Control, RBIAS = 30.9k, fCLK = 80MHz  
TheLTC6603featuresauniqueinternaloscillatorwhichsets  
the filter cutoff frequency using a single external resistor  
LPF1  
LPF0  
LOWPASS BW(kHz)  
0
0
1
1
0
1
0
1
156.25  
625  
connected to the R  
pin. The clock frequency is deter-  
BIAS  
mined by the following simple formula (see Figure 5):  
2500  
2500  
f
= 247.2MHz • 10k/R  
CLK  
BIAS  
Note: R  
≤ 200k  
BIAS  
Table 3. Cutoff Frequency Control, RBIAS = 54.9k, fCLK = 45MHz  
The design is optimized for V+ , V+ = 3V, f = 45MHz,  
A
D
CLK  
LPF1  
LPF0  
LOWPASS BW(kHz)  
where the filter cutoff frequency error is typically <3%  
0
0
1
1
0
1
0
1
87.94  
351.78  
1407  
when a 0.1% external 54.9k resistor is used (any resis-  
tor (R  
) tolerance, will shift the clock frequency). With  
BIAS  
different resistor values and cutoff frequency control set-  
tings (LPF1 and LPF0), the lowpass cutoff frequency can  
1407  
Table 4. Cutoff Frequency Control, RBIAS = 200k, fCLK = 12.36MHz  
200  
175  
150  
125  
100  
75  
LPF1  
LPF0  
LOWPASS BW(kHz)  
24.14  
0
0
1
1
0
1
0
1
96.56  
386.25  
386.25  
50  
25  
10  
20  
30  
40  
50  
60  
70  
80  
DESIRED CLOCK FREQUENCY (MHz)  
6603 F05  
Figure 5. RBIAS vs Desired Clock Frequency  
6603f  
15  
LTC6603  
APPLICATIONS INFORMATION  
The following graphs show a few of the possible lowpass  
filters.  
Alternative Methods of Setting the Clock Frequency of  
the LTC6603  
The oscillator may be programmed by any method that  
Gain and Group Delay vs Frequency  
(2.5MHz Lowpass Response)  
sinks a current out of the R  
pin. The circuit in Figure 6  
BIAS  
setstheclockfrequencybyusingaprogrammablecurrent  
source and in the expression for f , the resistor R  
1.2  
CLK  
BIAS  
. Because the  
0
GAIN  
is replaced by the ratio of 1.17V/I  
CONTROL  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–20  
–40  
voltage of the R  
pin is approximately 1.17V 5%, the  
BIAS  
Figure 6 circuit is less accurate than if a resistor controls  
the clock frequency.  
–60  
GROUP DELAY  
In this circuit, the LTC2621 (a 12-bit DAC) is daisy chained  
with the LTC6603. Because the sinking current from the  
–80  
R
BIAS  
pin is  
–100  
–120  
VRBIAS k  
2N R1  
100k  
1M  
FREQUENCY (Hz)  
10M  
6603 G17  
the equivalent R  
is  
BIAS  
2N R1  
Gain and Group Delay vs Frequency  
(650kHz Lowpass Response)  
k
,
4
0
–20  
–40  
–60  
–80  
where k is the binary DAC input code and N is the resolu-  
tion. Figure 7 shows some of the frequency responses  
that can be obtained using this circuit.  
GAIN  
3
2
Figure 8 shows the LTC6603’s oscillator configured as  
a VCO. A voltage source is connected in series with the  
GROUP DELAY  
R
resistor. The clock frequency, f , will vary with  
BIAS  
CLK  
1
V
. Again, this circuit decouples the relationship  
CONTROL  
between the current out of the R  
of the R  
The clock frequency, however, will increase monotonically  
with decreasing V  
pin and the voltage  
BIAS  
0
pin; the frequency accuracy will be degraded.  
BIAS  
100k  
1M  
FREQUENCY (Hz)  
6603 G18  
.
CONTROL  
The oscillator is sensitive to transients on the positive  
supply. The IC should be soldered to the PC board and  
the PCB layout should include a 0.1μF ceramic capacitor  
Operation Using an External Clock  
The LTC6603 may be clocked by an external oscillator  
for tighter bandwidth control by pulling CLKCNTL (Pin 5)  
to ground and driving a clock into CLKIO (Pin 15). If an  
between V+ (Pin 2) and ground, as close as possible to  
A
the IC to minimize inductance. The PCB layout should also  
external clock is used, the R  
resistor is still necessary.  
include an additional 0.1μF ceramic capacitor between  
BIAS  
The value of R  
must be no larger than the value that  
V+ (Pin 16) and ground. Avoid parasitic capacitance on  
BIAS  
D
BIAS  
would be required for using the internal oscillator. For  
example,a100kresistorwouldprogramtheinternaloscil-  
latorfor24.705MHz, soanexternaloscillatorfrequencyof  
R
(Pin 4) and avoid routing noisy signals near R  
.
BIAS  
Use a ground plane connected to Pin 14 and the Exposed  
Pad (Pin 25).  
24.705MHz would require an R  
resistance of no more  
BIAS  
6603f  
16  
LTC6603  
APPLICATIONS INFORMATION  
5V  
3V  
–INB  
+INB  
+INA  
–INA  
V+  
5V  
V+  
IN  
I RANGE = 6μA TO 38.4μA  
R23  
50k  
R24  
50k  
R25  
50k  
R26  
50k  
USE NARROW SHORT  
TRACES FOR MINIMUM  
CAPACITANCE.  
C7  
100nF  
C2  
2.2μF  
C3  
2.2μF  
C4  
100nF  
C1  
100nF  
LTC6078  
2
V+  
–IN  
1
2
Q1  
OUT  
V–  
3
RK7002AT116CT  
V
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
OCM  
+IN  
V+  
V+  
+INA  
–INA  
GAIN1  
IN  
A
C18  
50pF  
C19  
50pF  
V
OCM  
R
GAIN0(D0)  
BIAS  
R1  
CLKCNTL  
LPF1(CS)  
+INB  
–INB  
LPF0(SCLK)  
SDI  
V
CAP  
OCM  
30.5k  
+OUTA  
–OUTA  
+OUTA  
–OUTA  
SER  
V+  
D
CLK IO  
GND  
5V  
LTC6603  
LTC6078  
V+  
C16  
50pF  
C15  
10nF  
7
10  
11  
12  
–IN  
+IN  
OUT  
C17  
50pF  
SDO  
–OUTB  
V–  
+OUTB  
–OUTB  
+OUTB  
5V  
R4  
100k  
6603 F06  
C8  
100nF  
SPI INTERFACE  
SDI  
1
2
3
4
5
10  
V
REF  
V
SDO  
SDI  
SCK  
CLR  
CS/LD  
LDAC  
CC  
7
SCLK  
LTC2621-1  
GND  
V
OUT  
CS  
5V  
C9  
1μF  
CLR LOW WILL SET DAC TO MID-SCALE (WITH A –1 VERSION).  
HAS ~100ms TC AT START-UP TO RESET TO ZERO SCALE.  
DATA FORMAT  
DATA IS SHIFTED FROM MOSI (MASTER OUT, SLAVE IN) THRU LTC6603 INTO THE LTC2621.  
THE TOTAL PACKET IS 32 BITS. IT STARTS WITH A CONTROL BYTE (0011 XXXX) THEN MSB OF THE DAC,  
WITH DUMMY BITS AT THE END, 16 BITS (24 BITS TOTAL). THEN 8 BITS TO THE FILTER.  
D6 & D7 = GAIN, D4 & D5 = LPF, D1 = SHDN. D0 = GEN. PURPOSE OUTPUT.  
Figure 6. Current Controlled Clock Frequency  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
R
BIAS  
R
BIAS  
+
V
CONTROL  
V
= 3V  
S
A
T
= 25°C  
f
= 247.2MHz • (10k/R  
) • (1 – V /1.17V)  
CONTROL  
1k  
10k  
100k  
1M  
10M  
CLK  
BIAS  
FREQUENCY (Hz)  
6603 F08  
6603 F07  
Figure 7. Frequency Response Controlled by LTC2621-1  
Figure 8. Voltage Controlled Clock Frequency  
6603f  
17  
LTC6603  
APPLICATIONS INFORMATION  
than 100k. If the value of R  
is too large, the filters will  
control bits LPF1 and LPF0. The differential input imped-  
ance is a function of the clock frequency and the control  
bits LPF1, LPF0, GAIN1 and GAIN0. Table 5 shows the  
typical input impedances for a clock frequency of 80MHz.  
BIAS  
not receive a large enough bias current, possibly causing  
errors due to insufficient settling. Be sure to obey the  
absolute maximum specifications when driving a clock  
into CLKIO (Pin 15).  
These input impedances are all proportional to 1/f , so  
CLK  
if the clock frequency were reduced by half to 40MHz,  
the impedances would be doubled. The typical variation  
in dynamic input impedance for a given clock frequency  
is –20% to +35%.  
Input Common Mode and Differential Voltage Range  
The input signal range extends from zero to the V+  
IN  
supply voltage. This input supply can be tied to V+ and  
A
V+ , or driven up to 5.5V for increased input signal range.  
D
Table 5. Differential, Common Mode Input Impedances,  
Figure 9 shows the distortion of the filter versus common  
fCLK = 80MHz  
mode input voltage with a 2V differential input signal  
Differential  
Common Mode  
P-P  
Input Impedance Input Impedance  
(V+ = 5V).  
IN  
GAIN1 GAIN0 LPF1 LPF0  
(k)  
38  
(k)  
40  
20  
5
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
–60  
16  
HD3, f = 1MHz  
2.5  
2.5  
20  
5
–70  
–80  
–90  
40  
20  
5
9.5  
2.5  
2.5  
10  
HD3, f = 200kHz  
5
R
= 30.9k, V = 3V, V+ = 5.5V  
S IN  
BIAS  
LPF1 = 1, BW = 2.5MHz, GAIN = 24dB  
= V , T = 25°C  
40  
20  
5
V
OUT  
P-P  
A
5.4  
1.9  
1.9  
5.2  
2.8  
1.6  
1.6  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE INPUT VOLTAGE (V)  
6603 F09  
5
Figure 9. Distortion vs Common Mode Input Voltage (5V)  
40  
20  
5
For best performance, the inputs should be driven dif-  
ferentially. For single ended signals, connect the unused  
5
input to V  
(Pin 3) or to a quiet DC reference voltage.  
OCM  
To achieve the best distortion performance, the input  
signal should be centered around the DC voltage of the  
unused input.  
Output Common Mode and Differential Voltage Range  
The output voltage is a fully differential signal with a  
common mode level equal to the voltage at V . Any of  
OCM  
Refer to the Typical Performance Characteristics section  
to estimate the distortion for a given input level.  
the filter outputs may be used as single-ended outputs,  
although this will degrade the performance. The output  
Dynamic Input Impedance  
voltage range is typically 0.5V to V+ – 0.5V (V+ = 2.7V  
A
A
to 3.6V).  
The common mode output voltage can be adjusted by  
overdriving the voltage present on V . To maximize  
The unique input sampling structure of the LTC6603  
has a dynamic input impedance which depends on the  
configuration and the clock frequency. This dynamic  
input impedance has both a differential component and  
a common mode component. The common mode input  
impedance is a function of the clock frequency and the  
OCM  
the undistorted peak-to-peak signal swing of the filter,  
the V  
voltage should be set to V+ /2. Note that the  
OCM  
A
output common mode voltages of the two channels are  
6603f  
18  
LTC6603  
APPLICATIONS INFORMATION  
not independent as they are both set by the V  
pin.  
Connecting resistors between each input and V+ will  
OCM  
IN  
Figure 10 illustrates the distortion versus output common  
pull the input common mode voltage up, increasing the  
mode voltage for a 2V differential input voltage and a  
inputsignalswing. Theresistance, R  
, necessaryto  
P-P  
PULL-UP  
common mode input voltage that is equal to mid-supply.  
set the input common mode voltage, V , to any desired  
ICM  
level can be calculated by  
–60  
R
= 30.9k, V = 3V,  
S
BIAS  
GAIN = 24dB, T = 25°C  
A
VSUPPLY  
SIGNAL FREQUENCY = 200kHz  
RPULLUP =RCM  
1  
–65  
–70  
–75  
–80  
HD3, LPF1 = 0, LPF0 = 1  
V
ICM  
where  
HD2, LPF1 = 0,  
LPF0 = 1  
R
R
R
= 40k•80MHz/f  
= 20k•80MHz/f  
for LPF1=0, LPF0=0  
for LPF1=0, LPF0=1  
CM  
CM  
CM  
CLK  
HD2, LPF1 = 1  
HD3, LPF1 = 1  
CLK  
= 5k•80MHz/f  
for LPF1=1  
CLK  
For example, if the lowpass cutoff frequency is set to  
2.5MHz, 5k resistors connected between each input and  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
COMMON MODE OUTPUT VOLTAGE (V)  
6603 F10  
V+ will set the input common mode voltage to mid-  
IN  
supply.  
Figure 10. Distortion vs Common Mode Output Voltage  
Circuit A of Figure 12 is for a fixed CLK and LPF0, LPF1  
setting.IftheclockvariesortheLPF0,LPF1settingchanges  
then Circuit B of Figure 12 should be used.  
Interfacing to the LTC6603  
TheinputandoutputcommonmodevoltagesoftheLTC6603  
are independent. The input common mode voltage is set  
by the signal source if DC coupled, as shown in Figure 11.  
If the inputs are AC coupled, as shown in Figure 12  
(CircuitA),theinputcommonmodevoltagewillbepulledto  
Duetothesampleddatanatureofthelter, ananti-aliasing  
filter at the inputs is recommended.  
The output common mode voltage is equal to the voltage  
of the V  
pin. The V  
pin is biased to one half of the  
OCM  
OCM  
groundbyanequivalentresistanceofR ,showninTable5.  
CM  
supply voltage by an internal resistive divider (see Block  
Diagram).Toalterthecommonmodeoutputvoltage,V  
This does not affect the filter’s performance as long as  
OCM  
the input amplitude is less than 0.5V . At low filter gain  
P-P  
can be driven with an external voltage source or resistor  
network. If external resistors are used, it is important to  
note that the internal 2k resistors can vary 30% (their  
ratio varies only 1%). The filter outputs can also be AC  
coupled.  
settings, a larger input voltage swing may be desired.  
V
SUPPLY  
LTC6603  
0.1μF  
V+  
V+  
V+  
IN  
A
TheLTC6603canbeinterfacedtoanA/Dconverterbypull-  
ingCLKCNTL(Pin5)toV+ .ThisconfiguresCLKIO(Pin15)  
D
D
+OUTA  
–OUTA  
V
V
+
+INA  
–INA  
as a clock output, which can be used to drive the clock  
input of the A/D converter. This allows the A/D converter  
to be synchronized with the filter sampling clock, avoiding  
“beat frequencies” and simplifying the board layout. Any  
routing attached to the CLKIO pin should be as short as  
possible, in order to minimize reflections.  
OUT  
OUT  
V
OCM  
+
+
V
+
IN  
1μF  
V
IN  
GND  
DC COUPLED INPUT  
V
V
(COMMON MODE) = (V + + V –)/2  
IN  
IN IN  
(COMMON MODE) = (V + + V –)/2 = V  
/2  
OUT  
OUT  
OUT  
SUPPLY  
Similarly,theLTC6603canbeinterfacedtoanotherLTC6603  
inamaster/slaveconfigurationasshowninFigure13.This  
6603 F11  
Figure 11. DC Coupled Inputs  
6603f  
19  
LTC6603  
APPLICATIONS INFORMATION  
CIRCUIT A  
V
V
SUPPLY  
SUPPLY  
LTC6603  
0.1μF  
V+  
V+  
V+  
IN  
A
R
R
PULL-UP  
PULL-UP  
D
+OUTA  
–OUTA  
+INA  
–INA  
V
V
+
OUT  
OUT  
0.1μF  
+
+
+
V
V
IN  
0.1μF  
OCM  
V
IN  
1μF  
GND  
AC COUPLED INPUT  
V
IN  
(COMMON MODE) = V  
(COMMON MODE) = V  
/2  
OUT  
SUPPLY  
CIRCUIT B  
V+  
IN  
0.1μF  
V+  
A
V
SUPPLY  
LTC6603  
0.1μF  
1.87k  
V+  
1.87k  
IN  
A
V+  
V+  
0.1μF  
D
+OUTA  
–OUTA  
+INA  
–INA  
V
V
+
OUT  
OUT  
0.1μF  
V
OCM  
+
+
V
V
IN  
+
1.87k  
1.87k  
IN  
1μF  
GND  
AC COUPLED INPUT  
(COMMON MODE) =  
RCM • V +IN  
2 RCM +1.87k  
V
IN  
6603 F12  
Figure 12. AC Coupled Inputs  
3.3V  
3.3V  
LTC6603  
MASTER  
LTC6603  
SLAVE  
0.1μF  
0.1μF  
V+  
V+  
V+  
V+  
V+  
V+  
IN  
A
IN  
A
D
D
+
+
+
+
+INA  
–INA  
+OUTA  
–OUTA  
+INA  
–INA  
+OUTA  
–OUTA  
V
V
OUT2  
V
V
OUT1  
IN1  
IN2  
CLKCNTL  
CLKIO  
GND  
CLKCNTL  
CLKIO  
GND  
6603 F13  
Figure 13. Two Devices in a Master/Slave Clocking Configuration  
6603f  
20  
LTC6603  
APPLICATIONS INFORMATION  
results in four matched filter channels, all synchronized to  
the same clock. The master has its CLKCNTL pin pulled  
tiples of the sampling frequency. The ratio of the LTC6603  
input sampling frequency to the clock frequency, f , is  
CLK  
to V+ , configuring its CLKIO pin as an output, while the  
determined by the state of control bits LPF1 and LPF0.  
Table 6 shows the possible input sampling frequencies for  
aclockfrequencyof80MHz.Theinputsamplingfrequency  
is proportional to the clock frequency. For example, if the  
clock frequency is lowered from 80MHz to 40MHz, the  
input sampling frequency will be lowered by half. Input  
signalswithfrequenciesneartheinputsamplingfrequency  
will be aliased to the passband of the filter and appear at  
the output unattenuated.  
D
slavehasitsCLKCNTLpinpulledtoground,configuringits  
CLKIOpinasaninput.Notethatinordertosynchronizethe  
two filters, the clock frequency must not be buffered. This  
requires that the filters be close together on the PC board.  
If the clock is buffered, the filters would have matching  
bandwidths, but would not be synchronized.  
Output Drive  
Thelteroutputscandrive1kand/or50pFloadsconnected  
to AC ground with a 0.5V to 2.5V signal (corresponding  
Table 6. Input Sampling Frequency (fCLK = 80MHz)  
LPF1  
LPF0  
Input Sampling Frequency (MHz)  
to a 4V differential signal). For differential loads (loads  
P-P  
0
0
1
1
0
1
0
1
20  
40  
connected between +OUTA and –OUTA or +OUTB and  
–OUTB) the outputs can produce a 4V signal across 2k  
P-P  
160  
160  
and/or25pF.Forsmallersignalamplitudes,theoutputscan  
drive correspondingly larger loads. For larger capacitive  
loads, an external 50ꢀ series resistor is recommended  
for each output.  
A simple LC anti-aliasing filter is recommended at the  
filter inputs to attenuate frequencies near the input sam-  
pling frequency that will be aliased to the passband. For  
example, if the clock frequency is set to 80MHz and the  
cutoff frequency of the filter is set to its maximum (LPF1  
= ‘1’), the lowest frequency that would be aliased to the  
Clock Feedthrough  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output. The clock feedthrough is measured with +INA and  
passband would be f – f  
, i.e. 160MHz – 2.5MHz  
CLK CUTOFF  
= 157.5MHz. The LTC6603 filter inputs should be driven  
by a low impedance output (<100ꢀ).  
–INA (or +INB, –INB) tied to V  
and depends on the PC  
OCM  
board layout and the power supply decoupling. The clock  
feedthrough can be reduced with a simple RC post filter.  
Wideband Noise  
Decoupling Capacitors  
The wideband noise of the filter is the RMS value of the  
device’soutputnoisespectraldensity.Thewidebandnoise  
is nearly independent of the value of the clock frequency  
andexcludestheclockfeedthrough. Mostofthewideband  
noise is concentrated in the filter passband and cannot be  
removed with post filtering.  
The LTC6603 uses sampling techniques, therefore its  
performance is sensitive to supply noise. 0.1μF ceramic  
decouplingcapacitorsmustbeconnectedfromV+ (Pin2)  
A
andV+ (Pin16)togroundwithleadsasshortaspossible.  
D
A ground plane should be used. Noisy signals should be  
isolated from the filter’s input pins. In addition, a 0.1μF  
decoupling capacitor at Pin 20 is recommended since this  
pin receives clocked current injection.  
Power Supply Current  
The power supply current depends on the state of the  
lowpass cutoff frequency controls (LPF1, LPF0) and the  
Aliasing  
value of R  
. When the LTC6603 is programmed for  
BIAS  
the middle cutoff frequency (LPF1 = ‘0’, LPF0 = ‘1’), the  
supply current is reduced by about 23% relative to the  
supply current for the higher bandwidth setting. Pro-  
Aliasingisaninherentphenomenonofsampleddatalters.  
Significant aliasing only occurs when the frequency of the  
input signal approaches the sampling frequency or mul-  
6603f  
21  
LTC6603  
APPLICATIONS INFORMATION  
gramming the LTC6603 for the lowest cutoff frequency  
(LPF1 = ‘0’, LFP0 = ‘0’) reduces the supply current by  
about 60%. Power supply current vs. cutoff frequency  
for various bandwidth settings is shown in the “Typical  
Performance Characteristics” section. The LTC6603 can  
be programmed through the serial interface to enter into  
a low power shutdown mode. The power supply current  
during shutdown is less than 235μA.  
To extend the filter’s operational frequency range, the  
master clock is divided down before reaching the filter.  
LPF1 and LPF0 set the division ratio of the lowpass clock.  
Figure 14 shows the possible cutoff frequencies versus  
f
, LPF1 and LPF0. Overlapping frequency ranges allow  
CLK  
more than one possible choice of bandwidth settings for  
some cutoff frequencies. Figure 15 shows supply current  
as a function of the filter cutoff frequency, LPF1 and LPF0.  
Note that the higher bandwidth setting always gives the  
minimum supply current for a given cutoff frequency. The  
input referred integrated noise voltage for a passband  
gain of 24dB is shown in Table 7. Note that the noise is  
higher for the higher bandwidth settings. This creates a  
tradeoff between supply current and noise. For a given  
cutoff frequency, using the highest possible bandwidth  
setting gives the minimum supply current at the expense  
of higher noise.  
Supply Current vs. Noise Tradeoff  
The passband of the LTC6603 is determined by the master  
clock frequency (which is set by R  
when the internal  
BIAS  
oscillator is used), LPF1 and LPF0. The LTC6603 is op-  
timized for use with R having a value between 200k  
BIAS  
and 30.9k to set the internal oscillation frequency from  
12.36MHz to 80MHz. The lowpass corner frequency is  
proportional to the clock frequency (internal or external).  
180  
100  
T
= 25°C  
V = 3V  
S
A
160  
140  
120  
100  
80  
CLKCNTL PIN FLOATING  
GAIN = 0dB  
LPF1 = 0  
LPF0 = 0  
LPF1 = 0  
LPF0 = 1  
LPF1 = 1  
LPF1 = 1  
LPF1 = 0  
LPF0 = 0  
60  
40  
LPF1 = 0  
LPF0 = 1  
20  
0
10  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FILTER CUTOFF FREQUENCY (Hz)  
FILTER CUTOFF FREQUENCY (Hz)  
6603 F15  
6603 F14  
Figure 14. fCLK vs Filter Cutoff Frequencies  
Figure 15. Supply Current vs Filter Cutoff Frequency  
Table 7. Total Input Referred Integrated Noise Voltage (Passband Gain = 24dB)  
LPF1  
LPF0  
Noise Voltage  
–81dBm  
0
0
1
0
1
X
–80dBm  
–76dBm  
6603f  
22  
LTC6603  
TYPICAL APPLICATIONS  
LTC6603 SPI Clock Control  
LTC6603 Parallel Clock Control  
3V  
3V  
1
2
16  
V+  
1
2
16  
V+  
0.1  
0.1μF  
V+  
V+  
A
V+  
V+  
IN  
D
IN  
A
D
24  
23  
7
19  
18  
13  
12  
15  
24  
23  
7
19  
18  
13  
12  
15  
+INA  
–INA  
+INB  
–INB  
+OUTA  
–OUTA  
+OUTB  
–OUTB  
CLKIO  
+INA  
–INA  
+INB  
–INB  
+OUTA  
–OUTA  
+OUTB  
–OUTB  
CLKIO  
DAC V  
RANGE 0V TO 2.5V  
OUT  
(USING THE LTC2630 INTERNAL REFERENCE)  
8
8
LTC6603  
LTC6603  
V
C
V
B
R2  
1
6
4
4
R
R
CS  
V
BIAS  
BIAS  
OUT  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
2
3
5
4
R3  
R2  
R1  
3
17  
3
17  
5
SCLK  
SDI  
GND  
V+  
0.1μF  
R1  
3V  
V
SER  
V
SER  
OCM  
OCM  
DIODES INC  
DMN2004DWK  
20  
5
20  
LTC2630  
8-BIT DAC  
CAP  
CLKCNTL  
CAP  
CLKCNTL  
3V  
3V  
22  
21  
11  
10  
V
OCM  
GAIN1  
SDO  
SDI  
22  
21  
11  
10  
GAIN1  
SDO  
SDI  
GAIN0(D0)  
GAIN0(D0)  
14  
25  
9
6
GND  
GND  
LPF0(SCLK)  
14  
25  
9
6
GND  
GND  
LPF0(SCLK)  
LPF1(CS)  
CLK1  
CLK0  
LPF1  
LPF1(CS)  
LPF0  
CS1  
SCK  
SDI  
CS2  
GAIN1  
GAIN0  
6603 TA03  
6603 TA02  
IF R1 = 51.1k and R2 = 78.7k THEN  
VC  
R1+R2  
R1R2 VB R2  
fCLK = 2.472 1012  
THE f  
RANGE IS 12.36MHz to 80MHz  
CLK  
CLK1  
CLK0  
12  
12  
0
0
1
1
0
1
0
1
R
BIAS1  
R
BIAS2  
R
BIAS3  
R
BIAS4  
f
f
f
f
CLK1  
CLK2  
CLK3  
CLK4  
5.282 • 10  
5.282 • 10  
f – f  
CLKHI CLKLO  
V
RANGE 0V to 2.5V, V = 1.17V  
B
C
R1 =  
, R2 =  
1.137f  
+ f  
CLKHI CLKLO  
IF V = 0V THEN f = f  
C
C
CLK CLKHI  
CLK CLKLO  
IF V = 2.5V THEN f = f  
R
R
> R  
OR R  
BIAS2 BIAS3  
BIAS1  
DESIGN PROCEDURE  
1. CHOOSE f , f  
BIAS1 BIAS2  
3. CALCULATE R2, R3 AND R  
2472  
=
AND f  
BIAS  
CLK1 CLK2  
2. CALCULATE R , R  
CLK3  
f
CLK  
AND R  
BIAS3  
R
IN k  
BIAS4  
BIAS  
f
in MHz  
CLK  
R
R
• R  
BIAS2  
R
R
• R  
BIAS3  
R1 • R2 • R3  
R1 • (R2 + R3) + R2 • R3  
BIAS1  
BIAS1  
BIAS1  
BIAS1  
R1 = R  
R2 =  
R3 =  
R
=
BIAS4  
BIAS1  
– R  
BIAS2  
– R  
BIAS3  
PACKAGE DESCRIPTION  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1697)  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.75 ± 0.05  
4.00 ± 0.10  
(4 SIDES)  
0.35 × 45° CHAMFER  
TYP  
23 24  
0.70 ±0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ± 0.10  
1
2
4.50 ± 0.05  
3.10 ± 0.05  
2.45 ± 0.05  
(4 SIDES)  
2.45 ± 0.10  
(4-SIDES)  
PACKAGE  
OUTLINE  
(UF24) QFN 0105  
0.200 REF  
0.25 ± 0.05  
0.25 ±0.05  
0.50 BSC  
0.00 – 0.05  
0.50 BSC  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6603f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC6603  
TYPICAL APPLICATION  
Direct Conversion Demodulator and I and Q Baseband Filter, fCUTOFF =1.92MHz (UTMS WCDMA)  
5V  
3V  
56nH*  
49.9Ω  
3.9pF  
RF IN  
0.1μF  
0.1μF  
56nH*  
10pF  
1
2
16  
V+  
100pF  
I
10pF  
10pF  
OUT  
V+  
IN  
V+  
A
D
4
3
2
1
10pF  
100pF  
10pF  
56nH*  
56nH*  
49.9Ω  
49.9Ω  
24  
23  
7
19  
18  
13  
12  
15  
GND GND RF GND  
+INA  
–INA  
+INB  
–INB  
+OUTA  
–OUTA  
+OUTB  
–OUTB  
CLKIO  
56nH*  
16  
15  
5
6
EN  
I
I
+
+
OUT  
OUT  
OUT  
OUT  
V
V
V
CC  
CC  
CC  
LTC5575  
14  
13  
8
7
8
5V  
Q
Q
LTC6603  
56nH*  
4
R
10pF  
BIAS  
100pF  
0.1μF  
0.1μF  
1μF  
0.1μF  
1000pF  
40.2k  
10pF  
10pF  
Q
OUT  
GND LO GND V  
3
17  
CC  
10 11 12  
V
SER  
OCM  
10pF  
56nH*  
9
100pF  
10pF  
56nH*  
49.9Ω  
20  
5
3V  
CAP  
CLKCNTL  
5.6pF  
1000pF  
22  
21  
11  
10  
LO IN  
GAIN1  
SDO  
SDI  
GAIN0(D0)  
14  
25  
9
6
GND  
GND  
LPFO(SCLK)  
3V  
LPF1(CS)  
GAIN1 GAIN0  
BASEBAND  
GAIN CONTROL  
*COILCRAFT 0603HP  
6603 TA04  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC®1565-31  
LTC1566-1  
LTC1567  
650kHz Linear Phase Lowpass Filter  
Low Noise, 2.3MHz Lowpass Filter  
Continuous Time, SO8 Package, Fully Differential  
Continuous Time, SO8 Package  
Very Low Noise, High Frequency Filter Building Block  
Very Low Noise, 4th Order Building Block  
1.4nV/√Hz Op Amp, MSOP Package, Differential Outputs  
Lowpass and Bandpass Filter Designs Up to 10MHz, Differential Outputs  
f ≤ 64kHz, One Resistor Sets f , SO-8 Differential Inputs  
LTC1568  
LTC1569-6  
LTC1569-7  
LT1994  
Low Power 10-Pole Delay Equalized Elliptic Lowpass  
10-Pole Delay Equalized Elliptic Lowpass  
C
C
f ≤ 256kHz, One Resistor Sets f , SO-8 Differential Inputs  
C
C
Low Distortion, Low Noise Differential Amplifier/ADC Driver  
3GHz Low Noise, Rail-to-Rail Input Differential ADC Driver  
Adjustable, Low Power, V = 2.375V to 12.6V  
S
LTC6406  
Low Noise: 1.6nV/√Hz, Low Power: 18μA  
LT6600-2.5  
LT6600-5  
Very Low Noise, Fully Differential Amplifier and 2.5MHz Filter 86dB S/N with 3V Supply, SO-8 Package  
Very Low Noise, Fully Differential Amplifier and 5MHz Filter 82dB S/N with 3V Supply, SO-8 Package  
LT6600-10  
LT6600-15  
LT6600-20  
LTC6601  
Very Low Noise, Fully Differential Amplifier and 10MHz Filter 82dB S/N with 3V Supply, SO-8 Package  
Very Low Noise, Fully Differential Amplifier and 15MHz Filter 76dB S/N with 3V Supply, SO-8 Package  
Very Low Noise, Fully Differential Amplifier and 20MHz Filter 76dB S/N with 3V Supply, SO-8 Package  
Pin-Configurable Second Order Filter/Driver  
f 7MHz to 27MHz Fully Differential 4mm × 4mm QFN Package  
C
LTC6602  
Dual Baseband Bandpass Filter for UHF RFID  
Fully Differential 4mm × 4mm QFN Package  
LTC6604-2.5  
LTC6604-5  
LTC6604-10  
LTC6604-15  
Dual Very Low Noise, Differential Amp and 2.5MHz Filter  
Dual Very Low Noise, Differential Amp and 5MHz Filter  
Dual Very Low Noise, Differential Amp and 10MHz Filter  
Dual Very Low Noise, Differential Amp and 15MHz Filter  
86dB S/N with 3V Supply, 4mm × 7mm QFN Package  
82dB S/N with 3V Supply, 4mm × 7mm QFN Package  
82dB S/N with 3V Supply, 4mm × 7mm QFN Package  
76dB S/N with 3V Supply, 4mm × 7mm QFN Package  
6603f  
LT 0908 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY