LTC660CS8#PBF [Linear]

LTC660 - 100mA CMOS Voltage Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC660CS8#PBF
型号: LTC660CS8#PBF
厂家: Linear    Linear
描述:

LTC660 - 100mA CMOS Voltage Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

转换器
文件: 总12页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC660  
100mA CMOS  
Voltage Converter  
U
FEATURES  
DESCRIPTION  
The LTC®660 is a monolithic CMOS switched-capacitor  
voltage converter. It performs supply voltage conversion  
from positive to negative from an input range of 1.5V to  
5.5V, resulting in complementary output voltages of  
1.5V to 5.5V. It also performs a doubling at an input  
voltage range of 2.5V to 5.5V, resulting in a doubled  
output voltage of 5V to 11V. Only two external capacitors  
are needed for the charge pump and charge reservoir  
functions.  
Simple Conversion of 5V to 5V Supply  
Output Drive: 100mA  
ROUT: 6.5(0.65V Loss at 100mA)  
BOOST Pin (Pin 1) for Higher Switching Frequency  
Inverting and Doubling Modes  
Minimum Open Circuit Voltage Conversion  
Efficiency: 99%  
Typical Power Conversion Efficiency  
with a 100mA Load: 88%  
Easy to Use  
The converter has an internal oscillator that can be  
overdriven by an external clock or slowed down when  
connected to a capacitor. The oscillator runs at a 10kHz  
frequency when unloaded. A higher frequency outside the  
audio band can also be obtained if the BOOST pin is tied  
to V+.  
U
APPLICATIONS  
Conversion of 5V to ±5V Supplies  
Inexpensive Negative Supplies  
Data Acquisition Systems  
High Current Upgrade to LTC1044 or LTC7660  
TheLTC660containsaninternaloscillator, divide-by-two,  
voltage level shifter and four power MOSFETs.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Output Voltage vs  
Generating 5V from 5V  
Load Current for V+ = 5V  
–5.0  
1
2
3
4
8
7
6
5
+
5V INPUT  
BOOST  
V
T
= 25°C  
OUT  
A
R
= 6.5Ω  
+
CAP  
OSC  
LV  
–4.8  
–4.6  
–4.4  
–4.2  
–4.0  
+
LTC660  
C1  
150µF  
GND  
–5V  
OUTPUT  
CAP  
V
OUT  
C2  
150µF  
+
660 TA01  
0
20  
40  
60  
80  
100  
LOAD CURRENT (mA)  
660 TA02  
1
LTC660  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
ORDER PART  
TOP VIEW  
Supply Voltage (V+).................................................. 6V  
Input Voltage on Pins 1, 6, 7  
NUMBER  
+
BOOST  
V
1
2
3
4
8
7
6
5
+
(Note 2) ............................ 0.3V < VIN < (V+ + 0.3V)  
Output Short-Circuit Duration to GND  
CAP  
OSC  
LV  
LTC660CN8  
LTC660CS8  
GND  
CAP  
V
OUT  
(Note 5) ............................................................. 1 sec  
Power Dissipation.............................................. 500mW  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
S8 PART MARKING  
660  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
TJMAX = 100°C, θJA = 100°C/W (N)  
TJMAX = 100°C, θJA = 150°C/W (S)  
Consult Factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
V+ = 5V, C1 and C2 = 150µF, Boost = Open, COSC = 0pF, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage  
R = 1k  
L
Inverter, LV = Open  
Inverter, LV = GND  
3
1.5  
2.5  
5.5  
5.5  
5.5  
V
V
V
Doubler, LV = V  
OUT  
I
I
Supply Current  
No Load  
Boost = Open  
Boost = V  
0.08  
0.23  
0.5  
3
mA  
mA  
S
+
Output Current  
V
More Negative Than 4V  
OUT  
100  
mA  
OUT  
R
Output Resistance  
Oscillator Frequency  
I = 100mA (Note 3)  
L
6.5  
10  
OUT  
f
Boost = Open  
Boost = V (Note 4)  
10  
80  
kHz  
kHz  
OSC  
+
+
Power Efficiency  
R = 1k Connected Between V and V  
96  
92  
98  
96  
88  
%
%
%
L
OUT  
R = 500Connected Between V  
and GND  
L
OUT  
I = 100mA to GND  
L
Voltage Conversion Efficiency  
No Load  
99  
99.96  
%
Oscillator Sink or Source Current Boost = Open  
±1.1  
±5.0  
µA  
µA  
+
Boost = V  
The  
denotes specifications which apply over the full operating  
Note 4: f  
is tested with C  
= 100pF to minimize the effects of test  
OSC  
OSC  
temperature range; all other limits and typicals are at T = 25°C.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Connecting any input terminal to voltages greater than V or less  
than ground may cause destructive latch-up. It is recommended that no  
inputs from source operating from external supplies be applied prior to  
power-up of the LTC660.  
fixture capacitance loading. The 0pF frequency is correlated to this 100pF  
test point, and is intended to simulate the capacitance at Pin 7 when the  
device is plugged into a test socket and no external capacitor is used.  
A
+
Note 5: OUT may be shorted to GND for 1 sec without damage, but  
+
shorting OUT to V may damage the device and should be avoided. Also,  
+
for temperatures above 85°C, OUT must not be shorted to GND or V ,  
even instantaneously, or device damage may result.  
Note 3: The output resistance is a combination of internal switch  
resistance and external capacitor ESR. To maximize output voltage and  
efficiency, keep external capacitor ESR < 0.2.  
2
LTC660  
W
U
(Using Test Circuit in Figure 1)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Resistance  
Supply Current  
vs Oscillator Frequency  
Supply Current vs Supply Voltage  
vs Oscillator Frequency  
100  
90  
1000  
100  
10  
300  
250  
200  
150  
100  
50  
T
V
= 25°C  
= 5V  
T
V
= 25°C  
= 5V  
T
A
= 25°C  
A
A
+
+
BOOST = OPEN  
80  
70  
60  
50  
C1 = C2 = 150µF  
C1 = C2 = 1500µF  
+
BOOST = V  
40  
30  
20  
10  
0
C1 = C2 = 22µF  
BOOST = OPEN  
1
0
4
4.5  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1.5  
2
2.5  
3
3.5  
5
5.5  
SUPPLY VOLTAGE (V)  
OSCILLATOR FREQUENCY (kHz)  
OSCILLATOR FREQUENCY (kHz)  
LTC660 • G02  
LTC660 • TPC03  
LTC660 • G01  
Output Voltage and Efficiency  
vs Load Current, V+ = 5V  
Output Resistance  
vs Supply Voltage  
Output Resistance vs Temperature  
–3.0  
–3.4  
–3.8  
–4.2  
–4.6  
–5.0  
100  
96  
25  
20  
15  
18  
16  
14  
12  
10  
8
T
= 25°C  
BOOST = OPEN  
T = 25°C  
A
BOOST = OPEN  
A
BOOST = OPEN  
LTC660  
EFFICIENCY  
92  
88  
+
V
= 1.5V  
84  
80  
+
V
= 3V  
V
10  
5
76  
72  
6
LTC660  
OUTPUT VOLTAGE  
+
= 5V  
4
68  
64  
2
0
60  
0
–60 –40 –20  
0
20 40 60 80 100 120 140  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
LTC660 • TPC05  
LTC660 • TPC06  
LTC690 • TPC04  
Output Voltage Drop  
vs Load Current  
1.0  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
T
= 25°C  
T
= 25°C  
T
A
= 25°C  
A
A
+
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
BOOST = OPEN  
+
BOOST = V  
+
BOOST = OPEN  
95  
90  
85  
80  
75  
70  
65  
60  
V
= 5.5V  
V
= 5.5V  
+
V
= 2.5V  
+
+
+
V = 1.5V  
V
V
= 4.5V  
= 3.5V  
+
V
= 4.5V  
+
V
= 3.5V  
+
+
V
V
= 3.5V  
= 4.5V  
+
V
= 2.5V  
+
V
= 5.5V  
+
+
+
V
= 1.5V  
V
= 1.5V  
V = 2.5V  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
LTC660 • TPC07  
LTC660 • TPC09  
LTC660 • TPC08  
3
LTC660  
TYPICAL PERFORMANCE CHARACTERISTICS (Using Test Circuit in Figure 1)  
W
U
Output Voltage Drop  
vs Load Current  
Output Voltage  
Efficiency vs Oscillator Frequency  
vs Oscillator Frequency  
100  
95  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
T
= 25°C  
A
I
L
= 1mA  
+
BOOST = V  
90  
I
= 10mA  
85  
L
I
= 10mA  
I = 80mA  
L
L
+
+
V
V
= 2.5V  
= 5.5V  
80  
75  
I
= 1mA  
L
I
= 80mA  
L
+
V
= 1.5V  
70  
65  
60  
55  
50  
+
+
V
V
= 3.5V  
= 4.5V  
T
=25°C  
= 5V  
T
V
= 25°C  
= 5V  
A
V
A
+
+
BOOST = OPEN  
BOOST = OPEN  
0.1  
1
10  
100  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0.1  
1
10 100  
OSCILLATOR FREQUENCY (kHz)  
OSCILLATOR FREQUENCY (kHz)  
LTC660 • TPC12  
LTC660 • TPC10  
LTC660 • TPC11  
Oscillator Frequency  
vs Supply Voltage  
Oscillator Frequency  
Oscillator Frequency  
vs Supply Voltage  
vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12  
10  
12  
10  
T
= 25°C  
T
A
= 25°C  
A
+
BOOST = V  
OSC = OPEN  
BOOST = OPEN  
OSC = OPEN  
8
6
8
6
4
2
0
4
2
0
+
V
= 5V  
BOOST = OPEN  
OSC = OPEN  
–60 –40 –20  
0
20 40 60 80 100 120 140  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
LTC660 • TPC15  
LTC660 • TPC13  
LTC660 • TPC14  
Oscillator Frequency  
Oscillator Frequency  
vs Temperature  
100  
vs External Capacitance  
100  
10  
90  
80  
70  
60  
50  
40  
30  
+
BOOST = V  
1
BOOST = OPEN  
0.1  
00.1  
+
20  
10  
0
V
= 5V  
BOOST = V  
OSC = OPEN  
+
–60 –40 –20  
0
20 40 60 80 100 120 140  
1
10  
100  
1000  
10000  
CAPACITANCE (pF)  
TEMPERATURE (°C)  
LTC660 • TPC17  
LTC660 • TPC16  
4
LTC660  
U
U
U
PIN FUNCTIONS  
PIN  
NAME  
INVERTER  
DOUBLER  
1
BOOST  
Internal Oscillator Frequency Control Pin.  
Same  
BOOST = Open, f  
= 10kHz typ;  
= 80kHz typ; when OSC is driven  
OSC  
+
BOOST = V , f  
OSC  
externally BOOST has no effect.  
+
2
3
4
5
6
CAP  
Positive Terminal for Charge Pump Capacitor  
Power Supply Ground Input  
Same  
GND  
Positive Voltage Input  
Same  
CAP  
Negative Terminal for Charge Pump Capacitor  
Negative Voltage Output  
V
Power Supply Ground Input  
OUT  
LV  
Tie LV to GND when the input voltage is less than 3V.  
LV may be connected to GND or left open for input  
voltages above 3V. Connect LV to GND when  
overdriving OSC.  
LV must be tied to V  
for all input voltages.  
OUT  
7
8
OSC  
An external capacitor can be connected to this pin to  
slow the oscillator frequency. Keep stray capacitance  
to a minimum. An external oscillator can be applied  
to this pin to overdrive the internal oscillator.  
Same except standard logic levels will not be able to  
overdrive OSC pin.  
+
V
Positive Voltage Input  
Positive Voltage Output  
TEST CIRCUIT  
I
+
S
1
2
3
8
7
6
+
V
V
5V  
EXTERNAL  
OSCILLATOR  
+
LTC660  
C1  
150µF  
C
OSC  
4
5
R
L
I
L
V
OUT  
C1  
+
LTC660 • F01  
150µF  
Figure 1. Test Circuit  
5
LTC660  
U
W U U  
APPLICATIONS INFORMATION  
+
Theory of Operation  
V
(8)  
SW1  
SW2  
To understand the theory of operation for the LTC660, a  
review of a basic switched-capacitor building block is  
helpful. In Figure 2, when the switch is in the left position,  
capacitor C1 will charge to voltage V1. The total charge on  
C1 will be q1 = C1V1. The switch then moves to the right,  
discharging C1 to voltage V2. After this discharging time,  
the charge on C1 is q2 = C1V2. Note that charge has been  
transferred from the source V1 to the output V2. The  
amount of charge transferred is:  
+
CAP  
(2)  
BOOST  
φ
φ
4.5×  
(1)  
+
C1  
OSC  
+2  
OSC  
(7)  
V
OUT  
(5)  
CAP  
(4)  
C2  
+
LV  
(6)  
GND  
(3)  
CLOSED WHEN  
LTC660 • F04  
+
V
> 3.0V  
q = q1 – q2 = C1 (V1 – V2)  
Figure 4. LTC660 Switched-Capacitor Voltage Converter  
Block Diagram  
If the switch is cycled “f” times per second, the charge  
transfer per unit time (i.e., current) is:  
Thissimplifiedcircuitdoesnotincludefiniteon-resistance  
of the switches and output voltage ripple, however, it does  
give an intuitive feel for how the device works. For ex-  
ample, if you examine power conversion efficiency as a  
function of frequency this simple theory will explain how  
the LTC660 behaves. The loss and hence the efficiency is  
set by the output impedance. As frequency is decreased,  
the output impedance will eventually be dominated by the  
1/fC1 term and voltage losses will rise decreasing the  
efficiency. As the frequency increases the quiescent cur-  
rent increases. At high frequency this current loss be-  
comes significant and the power efficiency starts to de-  
crease.  
I = f • q = f • C1 (V1 – V2)  
Rewriting in terms of voltage and impedance equivalence,  
V1V2 V1V2  
I =  
=
1/ fC1  
R
EQUIV  
A new variable REQUIV has been defined such that  
REQUIV=1/fC1.Thus,theequivalentcircuitfortheswitched-  
capacitor network is as shown in Figure 3.  
Figure 4 shows that the LTC660 has the same switching  
action as the basic switched-capacitor building block.  
V1  
V2  
The LTC660 oscillator frequency is designed to run where  
the voltage loss is a minimum. With the external 150µF  
capacitors the effective output impedance is determined  
by the internal switch resistances and the capacitor ESRs.  
C1  
C2  
R
L
660 F02  
Figure 2. Switched-Capacitor Building Block  
LV (Pin 6)  
The internal logic of the LTC660 runs between V+ and LV  
(Pin6).For V+ 3V,aninternalswitchshortsLVtoground  
(Pin 3). For V+ < 3V, the LV pin should be tied to ground.  
ForV+ 3V,theLVpincanbetiedtogroundorleftfloating.  
R
EQUIV  
V1  
V2  
C2  
R
L
OSC (Pin 7) and BOOST (Pin 1)  
1
R
=
EQUIV  
660 F03  
fC1  
The switching frequency can be raised, lowered or driven  
from an external source. Figure 5 shows a functional  
diagram of the oscillator circuit.  
Figure 3. Switched-Capacitor Equivalent Circuit  
6
LTC660  
U
W U U  
APPLICATIONS INFORMATION  
+
+
V
V
REQUIRED FOR TTL LOGIC  
1
2
3
4
8
7
100k  
NC  
7.0I  
I
OSC INPUT  
+
LTC660  
6
BOOST  
(1)  
C1  
5
+
–(V )  
C2  
+
OSC  
(7)  
SCHMITT  
TRIGGER  
LTC660 • F06  
Figure 6. External Clocking  
18pF  
7.0I  
I
LV  
(6)  
Capacitor Selection  
LTC660 • F05  
While the exact values of C1 and C2 are noncritical, good  
quality, low ESR capacitors are necessary to minimize  
voltagelossesathighcurrents.ForC1theeffectoftheESR  
of the capacitor will be multiplied by four, due to the fact  
the switch currents are approximately two times higher  
than the output current and losses will occur on both the  
charge and discharge cycle. This means using a capacitor  
with 1of ESR for C1 will have the same effect as  
increasing the output impedance of the LTC660 by 4.  
Thisrepresentsasignificantincreaseinthevoltagelosses.  
For C2 the effect of ESR is less dramatic. A C2 with 1of  
ESR will increase the output impedance by 1. The size  
of C2 and the load current will determine the output  
voltage ripple. It is alternately charged and discharged at  
a current approximately equal to the output current. This  
will cause a step function to occur in the output voltage at  
the switch transitions. For example, for a switching fre-  
quency of 5kHz (one-half the nominal 10kHz oscillator  
frequency) and C2 = 150µF with an ESR of 0.2, ripple is  
approximately 90mV with a 100mA load current.  
Figure 5. Oscillator  
By connecting the BOOST pin (Pin 1) toV+, the charge and  
discharge current is increased and, hence, the frequency  
is increased by approximately four and a half times.  
Increasing the frequency will decrease output impedance  
and ripple for high load currents.  
Loading Pin 7 with more capacitance will lower the fre-  
quency. Using the BOOST (Pin 1) in conjunction with  
external capacitance on Pin 7 allows user selection of the  
frequency over a wide range.  
DrivingtheLTC660fromanexternalfrequencysourcecan  
be easily achieved by driving Pin 7 and leaving the BOOST  
pin open, as shown in Figure 6. The output current from  
Pin 7 is small, typically 1.1µA to 8µA, so a logic gate is  
capable of driving this current. (A CMOS logic gate can be  
usedtodrivetheOSCpin.)For5Vapplications, aTTLlogic  
gate can be used by simply adding an external pull-up  
resistor (see Figure 6).  
7
LTC660  
U
TYPICAL APPLICATIONS N  
Negative Voltage Converter  
Voltage Doubling  
Figure 7 shows a typical connection which will provide a  
negative supply from an available positive supply. This  
circuit operates over full temperature and power supply  
ranges without the need of any external diodes. The LV pin  
(Pin 6) is shown grounded, but for V+ 3V, it may be  
floated, since LV is internally switched to ground (Pin 3)  
for V+ 3V.  
Figure 8 shows the LTC660 operating in the voltage  
doubling mode. The external Schottky (1N5817) diode is  
for start-up only. The output voltage is 2 • VIN without a  
load. The diode has no effect on the output voltage.  
1N5817*  
1
2
3
4
8
7
6
5
+
V
= 2V  
IN  
BOOST  
V
OUT  
1
2
3
4
8
7
6
5
V
+
IN  
1.5V TO 5.5V  
BOOST  
V
+
C2  
+
CAP  
OSC  
LV  
+
+
150µF  
C1  
150µF  
CAP  
OSC  
LV  
LTC660  
+
LTC660  
GND  
V
C1  
150µF  
IN  
GND  
2.5V  
CAP  
V
TO 5.5V  
OUT  
CAP  
V
OUT  
V
OUT  
= –V  
IN  
C2  
150µF  
* SCHOTTKY DIODE IS FOR START-UP ONLY  
LTC660 • F08  
+
LTC660 • F07  
Figure 8. Voltage Doubler  
Figure 7. Voltage Inverter  
Ultraprecision Voltage Divider  
The output voltage (Pin 5) characteristics of the circuit are  
those of a nearly ideal voltage source in series with a 6.5Ω  
resistor. The 6.5output impedance is composed of two  
terms: 1) the equivalent switched-capacitor resistance  
(see Theory of Operation), and 2) a term related to the on-  
resistance of the MOS switches.  
An ultraprecision voltage divider is shown in Figure 9. To  
achieve the 0.002% accuracy indicated, the load current  
should be kept below 100nA. However, with a slight loss  
in accuracy, the load current can be increased.  
+
1
2
3
4
8
7
6
5
V
3V TO 11V  
At an oscillator frequency of 10kHz and C1 = 150µF, the  
first term is:  
+
LTC660  
C1  
150µF  
1
+
V
± 0.002%  
REQUIV  
=
=
2
+
fOSC/2 C1  
T
T T  
(
)
MIN  
A MAX  
C2  
150µF  
I
100nA  
L
1
LTC660 • F09  
= 1.3Ω.  
5 • 103 • 150 • 10–6  
Figure 9. Ultraprecision Voltage Divider  
Notice that the equation for REQUIV is not a capacitive  
reactance equation (XC = 1/ωC) and does not contain a  
2π term.  
Battery Splitter  
The exact expression for output impedance is complex,  
butthedominanteffectofthecapacitorisclearlyshownon  
the typical curves of output impedance and power effi-  
ciency versus frequency. For C1 = C2 = 150µF, the output  
impedance goes from 6.5at fOSC = 10kHz to 110at  
fOSC = 100Hz. As the 1/fC term becomes large compared  
to the switch on-resistance term, the output resistance is  
determined by 1/fC only.  
A common need in many systems is to obtain positive and  
negative supplies from a single battery or single power  
supplysystem. Wherecurrentrequirementsaresmall, the  
circuit shown in Figure 10 is a simple solution. It provides  
symmetrical positive or negative output voltages, both  
equaltoone-halftheinputvoltage.Theoutputvoltagesare  
both referenced to Pin 3 (Output Common).  
8
LTC660  
U
TYPICAL APPLICATIONS N  
Paralleling for Lower Output Resistance  
V
B
(9V)  
1
2
3
8
7
6
+V /2 (4.5V)  
B
Additional flexibility of the LTC660 is shown in Figures 11  
and 12. Figure 11 shows two LTC660s connected in  
parallel to provide a lower effective output resistance. If,  
however, the output resistance is dominated by 1/fC1,  
increasing the capacitor size (C1) or increasing the fre-  
quency will be of more benefit than the paralleling circuit  
shown.  
+
LTC660  
C1  
150µF  
4
5
–V /2 (–4.5V)  
B
C2  
150µF  
+
OUTPUT COMMON  
3V V 11V  
B
LTC1046 • TA10  
Stacking for Higher Voltage  
Figure 10. Battery Splitter  
Figure12makesuseofstackingtwoLTC660stoprovide  
even higher voltages. In Figure 12, a negative voltage  
doubler or tripler can be achieved depending upon how  
Pin 8 of the second LTC660 is connected, as shown  
schematically by the switch.  
+
V
1
2
3
4
8
7
6
5
1
2
8
7
6
5
+
+
LTC660  
3
LTC660  
C1  
150µF  
C1  
150µF  
4
+
V
= –V  
OUT  
C2  
150µF  
1/4 CD4077  
+
OPTIONAL SYNCHRONIZATION  
CIRCUIT TO MINIMIZE RIPPLE  
LTC660 • F11  
Figure 11. Paralleling for 200mA Load Current  
+
+
FOR V  
= –3V  
FOR V  
= –2V  
OUT  
OUT  
+
V
1
2
3
4
8
1
2
3
4
8
7
6
5
150µF  
+
7
6
5
LTC660  
1
LTC660  
2
+
150µF  
+
V
–V  
OUT  
150µF  
150µF  
+
+
LTC660 • F12  
Figure 12. Stacking for High Voltage  
9
LTC660  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
10  
LTC660  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC660  
U
TYPICAL APPLICATIONS N  
Voltage Inverter  
1
8
V
+
IN  
1.5V TO 5.5V  
BOOST  
V
2
3
4
7
6
5
+
CAP  
OSC  
LV  
+
LTC660  
C1  
150µF  
GND  
CAP  
V
OUT  
V
OUT  
= –V  
IN  
C2  
150µF  
+
LTC660 • F07  
Voltage Doubler  
1N5817*  
1
8
+
V
= 2V  
IN  
BOOST  
V
OUT  
+
2
3
4
7
6
5
C2  
150µF  
+
CAP  
OSC  
LV  
+
C1  
150µF  
LTC660  
GND  
V
IN  
2.5V  
CAP  
V
OUT  
TO 5.5V  
* SCHOTTKY DIODE IS FOR START-UP ONLY  
LTC660 • F08  
RELATED PARTS  
PART NUMBER  
Unregulated Output Voltage  
LTC660  
OUTPUT CURRENT  
MAXIMUM V  
COMMENTS  
IN  
100mA  
50mA  
20mA  
20mA  
20mA  
6V  
6V  
Highest Current  
Lowest Cost  
LTC1046  
LTC1044  
9.5V  
13V  
20V  
LTC1044A  
LTC1144  
Highest Voltage  
Regulated Output Voltage  
LT1054  
100mA  
30mA  
10mA  
16V  
6V  
Adjustable Output  
12V Fixed Output  
LTC1262  
LTC1261  
9V  
4V, 4.5V and Adjustable  
Outputs  
All devices are available in plastic 8-lead SO and PDIP packages  
LT/GP 0598 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1995  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY