LTC6800HMS8#TR [Linear]

LTC6800 - Rail-to-Rail, Input and Output, Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C;
LTC6800HMS8#TR
型号: LTC6800HMS8#TR
厂家: Linear    Linear
描述:

LTC6800 - Rail-to-Rail, Input and Output, Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C

放大器 光电二极管
文件: 总14页 (文件大小:1239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6800  
Rail-to-Rail,  
Input and Output,  
Instrumentation Amplifier  
FeaTures  
DescripTion  
The LTC®6800 is a precision instrumentation amplifier.  
TheCMRRistypically116dBwithasingle5Vsupplyandis  
independentofgain.Theinputoffsetvoltageisguaranteed  
below100µVwithatemperaturedriftoflessthan250nV/°C.  
The LTC6800 is easy to use; the gain is adjustable with  
two external resistors, like a traditional op amp.  
n
116dB CMRR Independent of Gain  
n
Maximum Offset Voltage: 100µV  
n
Maximum Offset Voltage Drift: 250nV/°C  
n
–40°C to 125°C Operation  
n
Rail-to-Rail Input Range  
n
Rail-to-Rail Output Swing  
n
Supply Operation: 2.7V to 5.5V  
The LTC6800 uses charge balanced sampled data tech-  
niques to convert a differential input voltage into a single  
ended signal that is in turn amplified by a zero-drift  
operational amplifier.  
n
Available in MS8 and 3mm × 3mm × 0.8mm  
DFN Packages  
applicaTions  
The differential inputs operate from rail-to-rail and the  
single ended output swings from rail-to-rail. The LTC6800  
is available in an MS8 surface mount package. For space  
limited applications, the LTC6800 is available in a 3mm ×  
3mm × 0.8mm dual fine pitch leadless package (DFN).  
n
Thermocouple Amplifiers  
n
Electronic Scales  
n
Medical Instrumentation  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
Typical Input Referred Offset vs Input  
Common Mode Voltage (VS = 3V)  
High Side Power Supply Current Sense  
15  
1.5mΩ  
V
V
A
= 3V  
REF  
= 25°C  
S
V
REGULATOR  
= 0V  
10  
5
T
2
8
OUT  
7
100mV/A  
OF LOAD  
CURRENT  
3 +LTC6800  
0
6
10k  
0.1µF  
G = 1000  
5
4
G = 100  
–5  
–10  
–15  
I
LOAD  
LOAD  
G = 10  
150Ω  
G = 1  
2.5  
6800 TA01  
0
1
1.5  
2
3
0.5  
INPUT COMMON MODE VOLTAGE (V)  
6800 TA02  
6800fb  
LTC6800  
(Note 1)  
absoluTe MaxiMuM raTings  
+
Total Supply Voltage (V to V ) ...............................5.5V  
Input Current........................................................ 10mA  
Storage Temperature Range  
DD Package ....................................... –65°C to 125°C  
MS8 Package..................................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
|V – V |............................................................5.5V  
+
IN  
REF  
|V – V | ...........................................................5.5V  
IN  
REF  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range  
(Note 7).................................................. –40°C to 125°C  
pin conFiguraTion  
TOP VIEW  
+
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
V
TOP VIEW  
+
OUT  
RG  
REF  
NC  
–IN  
+IN  
1
2
3
4
8 V  
9
7 OUT  
6 RG  
5 REF  
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm s 3mm) PLASTIC DFN  
T
= 150°C, θ = 200°C/W  
JA  
JMAX  
T
= 125°C, θ = 160°C/W  
JA  
JMAX  
UNDERSIDE METAL INTERNALLY CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
orDer inForMaTion  
LEAD FREE FINISH  
LTC6800HDD#PBF  
LTC6800HMS8#PBF  
TAPE AND REEL  
PART MARKING*  
LAEP  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC6800HDD#TRPBF  
LTC6800HMS8#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
LTADE  
8-Lead Plastic MSOP  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6800fb  
LTC6800  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, REF = 200mV. Output voltage swing is referenced  
to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
= 200mV  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
100  
µV  
CM  
l
l
T = –40°C to 85°C  
250  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
–1  
A
l
Common Mode Rejection Ratio  
(Notes 4, 5)  
A
= 1, V = 0V to 3V  
85  
113  
dB  
V
CM  
Integrated Input Bias Current (Note 3)  
Integrated Input Offset Current (Note 3)  
Input Noise Voltage  
V
V
= 1.2V  
= 1.2V  
4
1
10  
3
nA  
nA  
CM  
CM  
DC to 10Hz  
2.5  
116  
µV  
P-P  
l
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V = 2.7V to 5.5V  
110  
dB  
S
l
l
R = 2k to V  
R = 10k to V  
2.85  
2.95  
2.94  
2.98  
V
V
L
L
l
l
Output Voltage Swing Low  
Gain Error  
20  
0.1  
100  
1.2  
mV  
%
A
A
= 1  
= 1  
V
V
Gain Nonlinearity  
ppm  
mA  
Supply Current  
No Load  
Internal Op Amp Gain Bandwidth  
Slew Rate  
200  
0.2  
3
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
V+ = 5V, V= 0V, REF = 200mV. Output voltage swing is referenced to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
= 200mV  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
100  
µV  
CM  
l
l
T = –40°C to 85°C  
250  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
–1  
A
l
Common Mode Rejection Ratio  
(Notes 4, 5)  
A
= 1, V = 0V to 5V  
85  
116  
dB  
V
CM  
Integrated Input Bias Current (Note 3)  
Integrated Input Offset Current (Note 3)  
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V
V
= 1.2V  
= 1.2V  
4
1
10  
3
nA  
nA  
dB  
CM  
CM  
l
V = 2.7V to 5.5V  
110  
116  
S
l
l
R = 2k to V  
R = 10k to V  
4.85  
4.95  
4.94  
4.98  
V
V
L
L
l
l
Output Voltage Swing Low  
Gain Error  
20  
0.1  
100  
1.3  
mV  
%
A
A
= 1  
= 1  
V
V
Gain Nonlinearity  
ppm  
mA  
Supply Current  
No Load  
Internal Op Amp Gain Bandwidth  
Slew Rate  
200  
0.2  
3
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic  
test systems. V is measured to a limit determined by test equipment  
OS  
capability.  
6800fb  
LTC6800  
elecTrical characTerisTics  
Note 3: If the total source resistance is less than 10k, no DC errors result  
from the input bias currents or the mismatch of the input bias currents or  
the mismatch of the resistances connected to –IN and +IN.  
Note 6: The power supply rejection ratio (PSRR) measurement accuracy  
depends on the proximity of the power supply bypass capacitor to the  
device under test. Because of this, the PSRR is 100% tested to relaxed  
limits at final test. However, their values are guaranteed by design to meet  
the data sheet limits.  
Note 7: The LTC6800H is guaranteed functional over the operating  
temperature range of –40°C to 125°C. Specifications over the –40°C to  
Note 4: The CMRR with a voltage gain, A , larger than 10 is 120dB (typ).  
V
Note 5: At temperatures above 70°C, the common mode rejection ratio  
lowers when the common mode input voltage is within 100mV of the  
supply rails.  
125°C range (denoted by  
l) are assured by design and characterization  
but are not tested or QA sampled at these temperatures.  
Typical perForMance characTerisTics  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
20  
15  
15  
10  
5
15  
10  
5
V
V
= 3V  
REF  
V
V
T
= 5V  
REF  
= 25°C  
V
V
T
= 3V  
REF  
= 25°C  
S
S
S
= 0V  
= 0V  
= 0V  
G = 10  
A
A
10  
G = 1000  
5
0
0
0
G = 1000  
G = 10  
T
= 70°C  
A
G = 100  
G = 1  
–5  
G = 100  
G = 1  
–5  
–10  
–15  
–5  
–10  
–15  
T
= 25°C  
T
A
–10  
–15  
–20  
G = 10  
= –55°C  
1.5  
A
0
2
3
4
5
0
0.5  
1.0  
2.0  
2.5  
3.0  
1
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G03  
2053 G02  
6800 G01  
Input Offset Voltage vs Input  
Common Mode Voltage,  
85°C ≤ TA ≤ 125°C  
Input Offset Voltage vs Input  
Common Mode Voltage,  
85°C ≤ TA ≤ 125°C  
Input Offset Voltage vs Input  
Common Mode Voltage  
20  
60  
40  
60  
40  
V
V
= 5V  
REF  
V
V
= 3V  
REF  
V
V
= 5V  
S
= 0V  
REF  
S
S
= 0V  
= 0V  
15  
10  
G = 10  
G = 10  
G = 10  
20  
20  
5
0
0
0
T
= 85°C  
A
T
= 85°C  
T
= 70°C  
A
A
–5  
–20  
–40  
–60  
–20  
–40  
–60  
T
= 25°C  
A
–10  
–15  
–20  
T
= 125°C  
A
T
= 125°C  
2
A
T
= –55°C  
4
A
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
3
5
0.5  
0
3
4
5
1
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G04  
6800 G05  
6800 G06  
6800fb  
LTC6800  
Typical perForMance characTerisTics  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN < 100pF)  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN < 100pF)  
Additional Input Offset Due to  
Input RS Mismatch vs Input  
Common Mode (CIN < 100pF)  
50  
40  
30  
20  
60  
40  
V
V
C
= 3V  
S
V
V
= 5V  
V
V
R
C
= 3V  
S
S
= 0V  
REF  
= 0V  
= R  
R = 20k  
S
= 0V  
REF  
REF  
+
+
= R  
+
R
= 0k, R = 15k  
< 100pF  
IN  
R
C
S
= R = R  
IN  
IN  
S
30  
G = 10  
= 25°C  
< 100pF  
< 100pF  
IN  
IN  
T
G = 10  
G = 10  
= 25°C  
A
20  
+
R
= 0k, R = 10k  
R
= 15k  
10  
20  
S
T
= 25°C  
T
A
R
S
= 5k  
A
+
10  
R
+
= 0k, R = 5k  
R
S
= 10k  
R
S
= 0k  
0
0
0
R
S
= 5k  
–10  
–20  
–30  
–40  
–50  
R
S
= 10k  
R
+
= 5k, R = 0k  
= 10k, R = 0k  
+
–10  
–20  
–30  
R
–20  
–40  
–60  
R
= 15k  
R
R
R
S
S
S
+
+
+
SMALL C  
R
S
= 20k  
SMALL C  
R
SMALL C  
R
IN  
IN  
IN  
+
R
R
= 15k, R = 0k  
2.0 2.5  
S
S
0
1.0  
1.5  
3.0  
0.5  
0
2
3
4
5
0
1.0  
1.5  
2.0  
2.5  
3.0  
1
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G09  
6800 G08  
6800 G07  
Additional Input Offset Due to  
Input RS Mismatch vs Input  
Common Mode (CIN < 100pF)  
Additional Input Offset Due to  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN > 1µF)  
Input RS vs Input Common Mode  
(CIN > 1µF)  
40  
30  
40  
30  
70  
50  
+
V
V
= 3V  
V
V
C
= 5V  
REF  
S
R
= 0k, R = 20k  
IN  
S
IN  
+
= 0V  
R
S
= 10k  
= 0V  
REF  
+
R
= 15k  
R
= R = R  
S
< 100pF  
S
R
= 0k, R = 15k  
IN  
IN  
IN  
+
C
> 1µF  
IN  
G = 10  
20  
20  
R
+
= 0k, R = 10k  
IN  
R
S
= 5k  
R
= 10k  
S
IN  
G = 10  
T
= 25°C  
30  
A
T = 25°C  
A
R
= 10k, R = 0k  
IN  
IN  
10  
10  
R
S
= 1k  
= 500Ω  
R
= 5k  
S
10  
0
0
R
S
–10  
–30  
–50  
–70  
+
R
= 15k, R = 0k  
IN  
IN  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
V
= 5V  
+
S
R
IN  
= 20k, R = 0k  
+
IN  
R
S
R
R
V
= 0V  
S
REF  
+
R
C
= R = R  
+
+
+
S
BIG C  
R
SMALL C  
BIG C  
R
> 1µF  
IN  
IN  
IN  
IN  
G = 10  
T
= 25°C  
R
S
A
S
0
2
3
4
5
0
1.0  
1.5  
2.0  
2.5  
3.0  
1
0.5  
0
2
3
4
5
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G11  
6800 G10  
6800 G12  
Additional Input Offset Due to  
Input RS Mismatch vs Input  
Common Mode (CIN > 1µF)  
Additional Input Offset Due to  
Input RS Mismatch vs Input  
Common Mode (CIN > 1µF)  
Offset Voltage vs Temperature  
80  
60  
200  
150  
100  
50  
200  
150  
100  
50  
V
V
T
= 5V  
V
V
T
= 3V  
S
S
= 0V  
= 0V  
REF  
REF  
+
= 25°C  
= 25°C  
+
A
A
R
= 0Ω, R = 1k  
R
= 0Ω, R = 1k  
G = 10  
G = 10  
40  
+
+
R
= 0Ω, R = 500Ω  
R
= 0Ω, R = 500Ω  
+
R
= 0Ω, R = 100Ω  
20  
+
R
= 0Ω, R = 100Ω  
0
0
0
+
+
V
= 3V  
S
V = 5V  
S
R
= 100Ω, R = 0Ω  
R
= 100Ω, R = 0Ω  
–50  
–20  
–40  
–60  
–80  
–50  
–100  
–150  
–200  
+
+
R
= 500Ω, R = 0Ω  
R
= 500Ω, R = 0Ω  
+
+
R
R
–100  
–150  
–200  
+
+
+
+
R
= 1k, R = 0Ω  
R
= 1k, R = 0Ω  
BIG  
C
BIG  
C
IN  
IN  
R
R
0
1.0  
1.5  
2.0  
2.5  
3.0  
1
2
4
0.5  
0
5
–50 –25  
0
25  
50  
75 100 125  
3
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
6800 G13  
6800 G15  
6800 G14  
6800fb  
LTC6800  
Typical perForMance characTerisTics  
VOS vs VREF  
Gain Nonlinearity, G = 10  
Gain Nonlinearity, G = 1  
10  
8
10  
8
30  
20  
+
V
= V = REF  
V
V
=
S
REF  
G = 10  
2.ꢀV  
= 0V  
V
V
=
2.ꢀV  
= 0V  
IN  
IN  
S
G = 10  
= 25°C  
REF  
G = 1  
= 10k  
= 2ꢀ°C  
T
A
6
6
R
T
R
T
= 10k  
= 2ꢀ°C  
L
L
4
4
A
A
10  
2
2
0
0
0
V
= 5V  
S
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
V
= 3V  
S
–10  
–20  
–30  
–2.4  
–0.4  
0.6  
–2.4  
–0.4  
0.6 1.1  
–1.4  
1.6  
2.6  
0
2
3
4
–1.9 –1.4 –0.9  
0.1  
1.6  
1
OUTPUT VOLTAGE (V)  
V
(V)  
OUTPUT VOLTAGE (V)  
REF  
6800 G16  
6800 G18  
6800 G17  
Input Voltage Noise Density  
vs Frequency  
Input Referred Noise  
in 10Hz Bandwidth  
CMRR vs Frequency  
130  
120  
110  
100  
90  
300  
250  
200  
150  
100  
50  
3
2
V
V
T
= 3V, 5V  
G = 10  
S
= 1V  
T
= 25°C  
IN  
P-P  
A
= 25°C  
A
+
R
= R = 1k  
1
V
= 5V  
= 3V  
S
+
R
= R = 10k  
0
V
S
+
+
R = 10k, R = 0Ω  
R = 0Ω, R = 10k  
–1  
–2  
–3  
+
R
+
80  
R
70  
0
1
10  
100  
1000  
1
10  
100  
FREQUENCY (Hz)  
1000  
10000  
–5  
–3  
–1  
1
3
5
FREQUENCY (Hz)  
TIME (s)  
6800 G19  
6800 G20  
6800 G21  
Output Voltage Swing  
vs Output Current  
Input Referred Noise  
in 10Hz Bandwidth  
Supply Current vs Supply Voltage  
3
2
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
T
= 25°C  
V
= 5V, SOURCING  
A
S
T
= 125°C  
A
1
V
= 3V, SOURCING  
T
= 85°C  
S
A
0
–1  
–2  
–3  
T
= 0°C  
A
T
= –55°C  
A
V
= 3V, SINKING  
S
V
= 5V, SINKING  
S
–5  
–3  
–1  
1
3
5
5.5  
6
2.5  
3.5  
4.5  
0.01  
1
10  
0.1  
TIME (s)  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
6800 G23  
6800 G22  
6800 G24  
6800fb  
LTC6800  
Typical perForMance characTerisTics  
Low Gain Settling Time  
vs Settling Accuracy  
Internal Clock Frequency  
vs Supply Voltage  
Settling Time vs Gain  
35  
30  
25  
20  
15  
10  
5
8
7
6
5
4
3
2
1
0
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
V
= 5V  
OUT  
V
= 5V  
OUT  
S
S
dV  
dV  
= 1V  
= 1V  
0.1% ACCURACY  
= 25°C  
G < 100  
= 25°C  
T
T
A
A
T
= 125°C  
A
T
= 85°C  
A
T
= 25°C  
A
T
= –55°C  
A
0
0.01  
SETTLING ACCURACY (%)  
0.0001  
0.001  
0.1  
1
10  
100  
GAIN (V/V)  
1000  
10000  
2.5  
3.5  
4.5  
5.5  
6
SUPPLY VOLTAGE (V)  
6800 G26  
6800 G25  
6800 G27  
pin FuncTions  
NC (Pin 1): Not Connected.  
–IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
RG (Pin 6): Inverting Input of Internal Op Amp. See  
Figure 1.  
OUT (Pin 7): Amplifier Output. See Figure 1.  
+
V (Pin 8): Positive Supply.  
V (Pin 4): Negative Supply.  
REF (Pin 5): Voltage Reference (V ) for Amplifier  
REF  
Output.  
6800fb  
LTC6800  
block DiagraM  
8
+
V
+IN  
–IN  
3
2
+
OUT  
C
C
7
S
H
REF  
RG  
V
5
6
4
6800 BD  
applicaTions inForMaTion  
Theory of Operation  
Where V and V are the voltages of the +IN and –IN  
+
IN IN  
pins, respectively, V  
is the voltage at the REF pin and  
REF  
The LTC6800 uses an internal capacitor (C ) to sample  
S
+
V is the positive supply voltage.  
a differential input signal riding on a DC common mode  
voltage(seetheBlockDiagram). Thiscapacitor’schargeis  
For example, with a 3V single supply and a 0V to 100mV  
transferred to a second internal hold capacitor (C ) trans-  
differential input voltage, V  
1.6V.  
must be between 0V and  
H
REF  
lating the common mode of the input differential signal to  
that of the REF pin. The resulting signal is amplified by a  
zero-drift op amp in the noninverting configuration. The  
RG pin is the negative input of this op amp and allows  
external programmability of the DC gain. Simple filtering  
can be realized by using an external capacitor across the  
feedback resistor.  
Settling Time  
The sampling rate is 3kHz and the input sampling period  
during which C is charged to the input differential voltage  
S
V
is approximately 150µs. First assume that on each  
IN  
input sampling period, C is charged fully to V . Since  
S
IN  
C = C (= 1000pF), a change in the input will settle to  
S
H
Input Voltage Range  
N bits of accuracy at the op amp noninverting input after  
N clock cycles or 333µs(N). The settling time at the OUT  
pin is also affected by the settling of the internal op amp.  
Sincethegainbandwidthoftheinternalopampistypically  
200kHz, the settling time is dominated by the switched  
capacitor front end for gains below 100 (see the Typical  
Performance Characteristics section).  
The input common mode voltage range of the LTC6800  
is rail-to-rail. However, the following equation limits the  
size of the differential input voltage:  
+
V ≤ (V – V ) + V ≤ V – 1.3  
+
IN  
IN  
REF  
6800fb  
LTC6800  
applicaTions inForMaTion  
UNITY GAIN  
UNITY GAIN  
NONUNITY GAIN  
NONUNITY GAIN  
5V  
5V  
8
5V  
8
5V  
8
8
3
2
3
2
3
2
3
2
V
V
+
V
V
+
V
V
+
V
V
+
+IN  
–IN  
+IN  
–IN  
+IN  
–IN  
+IN  
–IN  
+
+
+
+
7
7
7
7
V
V
V
V
OUT  
V
V
V
V
IN  
OUT  
OUT  
OUT  
IN  
IN  
IN  
6
6
6
6
R2  
R2  
5
5
5
5
4
4
4
4
R1  
R1  
V
V
REF  
REF  
V
REF  
0V < V < 5V  
0V < V < 5V AND |V – V | < 5.5V  
0V < V < 5V AND |V – V | < 5.5V  
0V < V < 5V AND |V – V | < 5.5V  
–IN –IN REF  
+IN  
–IN  
–IN  
REF  
–IN  
–IN  
REF  
0V < V < 5V  
0V < V < 5V AND |V – V | < 5.5V  
0V < V < 5V AND |V – V | < 5.5V  
0V < V < 5V AND |V – V | < 5.5V  
–IN  
+IN  
+IN  
REF  
+IN  
+IN  
REF  
+IN +IN REF  
0V < V < 3.7V  
0V < V + V  
< 3.7V  
0V < V + V  
< 3.7V  
0V < V + V  
< 3.7V  
IN  
IN  
REF  
IN  
REF  
R2  
IN  
REF  
R2  
V
= V  
OUT  
IN  
V
= V + V  
IN  
V
= 1 +  
V
+ V  
V
= 1 +  
(V + V  
)
REF  
OUT  
REF  
OUT  
IN  
REF  
OUT  
IN  
6800 F01  
R1  
R1  
Figure 1  
Input Current  
Whenever the differential input V changes, C must be  
In the Typical Performance Characteristics section of this  
data sheet, there are curves showing the additional error  
from nonzero source resistance in the inputs. If there are  
no large capacitors across the inputs, the amplifier is  
less sensitive to source resistance and source resistance  
mismatch. When large capacitors are placed across the  
inputs, the input charging currents previously described  
result in larger DC errors, especially with source resistor  
mismatches.  
IN  
H
charged up to the new input voltage via C . This results  
S
in an input charging current during each input sampling  
period. Eventually, C and C will reach V and, ideally,  
H
S
IN  
the input current would go to zero for DC inputs.  
In reality, there are additional parasitic capacitors which  
disturb the charge on C every cycle even if V is a DC  
S
IN  
voltage. For example, the parasitic bottom plate capacitor  
on C must be charged from the voltage on the REF pin  
Power Supply Bypassing  
S
to the voltage on the –IN pin every cycle. The resulting  
input charging current decays exponentially during each  
TheLTC6800usesasampleddatatechniqueand,therefore,  
contains some clocked digital circuitry. It is, therefore,  
sensitive to supply bypassing. A 0.1µF ceramic capacitor  
must be connected between Pin 8 (V ) and Pin 4 (V ) with  
leads as short as possible.  
input sampling period with a time constant equal to R C .  
S S  
If the voltage disturbance due to these currents settles  
before the end of the sampling period, there will be no  
errors due to source resistance or the source resistance  
+
mismatch between –IN and +IN. With R less than 10k,  
S
no DC errors occur due to this input current.  
6800fb  
LTC6800  
Typical applicaTions  
Precision ÷2  
5V  
0.1µF  
3
2
8
V
+
IN  
7
LTC6800  
V
OUT  
6
5
4
V
2
IN  
1k  
V
=
OUT  
0.1µF  
6800 TA03  
Precision Doubler (General Purpose)  
2.5V  
0.1µF  
3
8
5
V
+
IN  
7
LTC6800  
V
OUT  
2
6
4
V
= 2V  
IN  
OUT  
0.1µF  
0.1µF  
6800 TA04  
–2.5V  
Precision Inversion (General Purpose)  
2.5V  
0.1µF  
3
8
+
7
LTC6800  
V
OUT  
2
6
V
5
IN  
4
V
= –V  
IN  
OUT  
0.1µF  
6800 TA05  
–2.5V  
6800fb  
ꢀ0  
LTC6800  
package DescripTion  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 p0.05  
3.5 p0.05  
2.10 p0.05 (2 SIDES)  
1.65 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50  
BSC  
2.38 p0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 p 0.10  
TYP  
5
8
3.00 p0.10  
(4 SIDES)  
1.65 p 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.38 p0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
6800fb  
ꢀꢀ  
LTC6800  
package DescripTion  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 6 5  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
0.889 p 0.127  
(.035 p .005)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
5.23  
(.206)  
MIN  
1
2
3
4
3.20 – 3.45  
(.126 – .136)  
0.53 p 0.152  
(.021 p .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
SEATING  
PLANE  
TYP  
0.22 – 0.38  
0.1016 p 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
NOTE:  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6800fb  
ꢀꢁ  
LTC6800  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
7/10  
Corrected text in the Absolute Maximum Ratings section  
Updated Pin 6 and Pin 7 text in the Pin Functions section  
Replaced Figure 1  
2
7
9
6800fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢀꢂ  
LTC6800  
Typical applicaTion  
Differential Bridge Amplifier  
3V  
0.1µF  
R < 10k  
8
2
7
OUT  
LTC6800  
3
6
+
R2 10k  
5
4
0.1µF  
R1  
10Ω  
R2  
R1  
GAIN = 1 +  
6800 TA06  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1100  
Precision Zero-Drift Instrumentation Amplifier  
Fixed Gains of 10 or 100, 10µV Offset, 50pA Input Bias Current  
LT®1101  
Precision, Micropower, Single Supply Instrumentation  
Amplifier  
Fixed Gains of 10 or 100, I < 105µA  
S
LT1167  
Single Resistor, Gain-Programmable, Precision  
Instrumentation Amplifier  
Single-Gain Set Resistor: G = 1 to 10,000, Low Noise: 7.5nV√Hz  
LT1168  
Low Power, Single Resistor, Gain-Programmable,  
Precision Instrumentation Amplifier  
I
= 530µA  
SUPPLY  
LTC1043  
LT1789-1  
Dual Precision Instrumentation Switched-Capacitor  
Building Block  
Rail-to-Rail Input, 120dB CMRR  
I = 80µA Maximum  
SUPPLY  
Single Supply, Rail-to-Rail Output, Micropower  
Instrumentation Amplifier  
LTC2050  
LTC2051  
LTC2052  
LTC2053  
Zero-Drift Operational Amplifier  
SOT-23 Package, 3µV Max V , 30nV/°C Max Drift  
OS  
Dual Zero-Drift Operational Amplifier  
Quad Zero-Drift Operational Amplifier  
MS8 Package, 3µV Max V , 30nV/°C Max Drift  
OS  
GN-16 Package, 3µV Max V , 30nV/°C Max Drift  
OS  
Single Supply, Zero-Drift, Rail-to-Rail Input and Output  
Instrumentation Amplifier  
MS8 Package, 10µV Max V , 50nV/°C Max Drift  
OS  
6800fb  
LT 0710 REV B • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢀꢃ  
LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY