LTC6801 [Linear]

Independent Multicell Battery Stack Fault Monitor; 独立的多节电池组故障监视器
LTC6801
型号: LTC6801
厂家: Linear    Linear
描述:

Independent Multicell Battery Stack Fault Monitor
独立的多节电池组故障监视器

电池 监视器
文件: 总28页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LTC6801  
Independent Multicell  
Battery Stack Fault Monitor  
FEATURES  
DESCRIPTION  
The LTC®6801 is a multicell battery monitoring IC incor-  
porating a 12-bit ADC, a precision independent voltage  
reference, sampled comparator, and a high voltage input  
multiplexer.TheLTC6801canmonitorasmanyas12series  
connectedbatterycellsforovervoltage,undervoltage,and  
overtemperature conditions, indicating whether the cells  
are within specified parameters. The LTC6801 generates  
a clock output when no fault conditions exist. Differential  
clocking provides high noise immunity and ensures that  
battery stack fault conditions cannot be hidden by frozen  
bits or short circuit conditions.  
n
Monitors Up to 12 Li-Ion Cells in Series (60V Max)  
n
Stackable Architecture Enables >1000V Systems  
n
Adjustable Overvoltage and Undervoltage  
Detection  
n
Self Test Features Guarantee Accuracy  
n
Robust Fault Detection Using Differential Signals  
n
Simple Pin-Strapped Configuration Allows Battery  
Monitoring without a Microcontroller  
n
15ms to Monitor All Cells in a System  
n
Programmable Response Time  
n
Two Temperature Monitor Inputs  
n
Low Power Idle Mode  
36-Lead SSOP Package  
Each LTC6801 can operate with a battery stack voltage up  
to 60V and multiple LTC6801 devices can be stacked to  
monitor each individual cell in a long battery string. When  
multiple devices are stacked, the status signal of each  
LTC6801 can be daisy-chained, without opto-couplers or  
isolators, providing a single status output for the entire  
battery string.  
n
APPLICATIONS  
n
Redundant Battery Monitor  
n
Hybrid Electric Vehicles  
n
Battery Backup Systems  
Power Systems Using Multiple Battery Cells  
n
The LTC6801 is configurable by external pin strapping.  
Adjustable overvoltage and undervoltage thresholds sup-  
port various Li-Ion chemistries. Selectable measurement  
times allow users to save power.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
BLOCK DIAGRAM  
0V Detection Level Error  
NEXT HIGHER  
CELL PACK  
LTC6801  
+
1
2
3
V
1.0  
+
V
= 43.2V  
0.8 OV = 4.120V  
C12  
C11  
0.6  
0.4  
0.2  
0
5 TYPICAL UNITS  
CONTROL  
LOGIC  
12  
ADC  
MUX  
C2  
C1  
–0.2  
ENABLE  
INPUT  
12  
13  
14  
ISOLATION  
–0.4  
–0.6  
–0.8  
–1.0  
20  
“CELLS GOOD”  
CLOCK SIGNAL  
INPUT ENABLES  
THE LTC6801  
V
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
22  
NEXT LOWER  
CELL PACK  
6801 TA01b  
REFERENCE  
STATUS  
OUTPUT  
CLOCK SIGNAL  
OUTPUT INDICATES  
SYSTEM “OK”  
V
V
V
TEMP1  
15  
TEMP2  
16  
REF  
17  
6801 TA01a  
NTC  
NTC  
6801p  
1
LTC6801  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Total Supply Voltage (V to V ).................................60V  
+
1
2
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
V
C12  
C11  
C10  
C9  
Input Voltage (Relative to V )  
C1............................................................ –0.3V to 9V  
3
+
+
C12...........................................V –0.3V to V + 0.3V  
All Other Pins (Not C Inputs) ................... –0.3V to 7V  
Voltage Between Inputs  
4
5
6
C8  
Cn to Cn-1* ............................................. –0.3V to 9V  
C12 to C8............................................... –0.3V to 25V  
C8 to C4................................................. –0.3V to 25V  
7
CC0  
C7  
8
SLT  
C6  
9
SLTOK  
DC  
C5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
C4  
C4 to V ................................................. –0.3V to 25V  
EOUT  
EOUT  
SIN  
C3  
Operating Temperature Range.................. –40°C to 85°C  
Specified Temperature Range .................. –40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range................... –65°C to 150°C  
C2  
C1  
SIN  
V
SOUT  
SOUT  
EIN  
V
V
TEMP1  
TEMP2  
*n = 2 to 12  
V
REF  
EIN  
V
REG  
G PACKAGE  
36-LEAD PLASTIC SSOP  
= 150°C, θ = 70°C/W  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6801IG#PBF  
LTC6801IG#TRPBF  
LTC6801IG  
36-Lead Plastic SSOP  
–40°C to 85°C  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6801p  
2
LTC6801  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, V+ = 43.2V, V= 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC Specifications  
+
+
+
+
V
Measurement Error  
V
CELL  
V
CELL  
V
CELL  
V
CELL  
> 0.8V, 10V < V < 50V  
–0.5  
–1  
–1.5  
–2  
0.5  
1
1.5  
2
%
%
%
%
ERR  
l
l
> 0.8V, 10V < V < 50V  
≤ 0.8V, 10V < V < 50V  
≤ 0.8V, 10V < V < 50V  
V
V
Cell Voltage Range  
Full Scale Voltage Range  
5
V
CELL  
Common Mode Voltage Range Measured  
V
Specifications Met  
ERR  
CM  
l
l
l
Relative to V  
Range of Inputs Cn, n = 3 to 11  
Range of Input C2  
1.8  
1.2  
0
5 • n  
10  
5
V
V
V
Range of Input C1  
l
l
l
l
V
V
Overvoltage (OV) Detection Level  
Undervoltage (UV) Detection Level  
Temperature Input Detection Level Error  
Programmed for 4.128V, Increasing V  
,
4.079  
2.087  
–18  
4.120  
2.108  
4.161  
2.129  
12  
V
OV  
CELL  
+
10V < V < 50V  
Programmed for 2.112V, Decreasing V  
,
V
UV  
CELL  
+
10V < V < 50V  
+
V
TV  
10V < V < 50V  
mV  
%
(Relative to V /2)  
REF  
+
HYS  
UV/OV Detection Hysteresis Error  
(Relative to Selected Value)  
10V < V < 50V  
–25  
25  
V
Reference Pin Voltage  
V
REF  
Pin Loaded With 100k to V  
3.043  
3.038  
3.058  
3.058  
3.073  
3.078  
V
V
REF  
l
Reference Voltage Temperature Coefficient  
Reference Voltage Hysteresis  
Reference Voltage Long Term Drift  
Regulator Pin Voltage  
5
ppm/˚C  
ppm  
50  
60  
ppm/√khr  
l
l
V
V
10 < V < 50, No Load  
4.5  
4.1  
5
4.8  
5.5  
V
V
REG  
S
10 < V < 50, I  
= 4mA  
LOAD  
S
l
l
Regulator Pin Short Circuit Current Limit  
5
9
mA  
V
+
Supply Voltage, V Relative to V  
V
Specifications Met  
10  
50  
10  
S
ERR  
I
B
Input Bias Current  
In/Out of Pins C1 Thru C12  
When Measuring Cells During Self Test  
When Measuring Cells  
When Idle  
100  
1
μA  
μA  
nA  
l
–10  
+
I
M
Supply Current, Monitor Mode  
Current Into the V Pin While Monitoring  
for UV and OV Conditions, F  
Continuous Monitoring  
Monitor Every 130ms  
Monitor Every 500ms  
= 10kHz  
ENA  
l
l
500  
20  
700  
200  
90  
1000  
40  
μA  
μA  
μA  
+
I
Supply Current, Idle  
Current into the V Pin When Idle, F  
= 0  
30  
μA  
QS  
ENA  
LTC6801 Timing Specifications  
l
l
l
l
T
Measurement Cycle Time  
Valid EIN/EIN Frequency  
Valid EIN/EIN Period = 1/ F  
Valid EIN/EIN Duty Cycle  
DC = CC1 = CC0 = V  
13.5  
2
15.5  
17.5  
50  
ms  
kHz  
μs  
CYCLE  
ENA  
REG  
F
T
20  
40  
500  
60  
ENA  
ENA  
DC  
F
= 50kHz  
ENA  
%
ENA  
LTC6801 Single Ended Digital I/O Specifications (SLT, SLTOK Pins)  
l
l
l
l
l
V
V
V
V
V
Digital Input Voltage High  
SLT Pin  
2
V
V
V
V
IH  
Digital Input Voltage Low  
SLT Pin  
0.5  
0.3  
IL  
Digital Output Voltage Low, Open Drain  
Digital Output Voltage High  
Digital Output Voltage Low  
SLT Pin, 10k to V  
SLTOK Pin, 10k to V  
SLTOK Pin, 10k to V  
ODL  
OH  
OL  
REG  
V
– 0.3  
REG  
0.3  
V
REG  
6801p  
3
LTC6801  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C, V+ = 43.2V, V= 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
I
Pull-Up Current  
SLT Pin  
2.5  
5
10  
μA  
PU-ST  
LTC6801 Differential Digital Input Specifications (SIN/SIN, EIN/EIN Pins) (See Figure 1)  
l
l
l
l
V
V
V
V
V
V
Minimum Differential Input Voltage High  
Minimum Differential Input Voltage Low  
Valid Input Voltage Low  
Differential Voltage Applied Between SIN  
1.7  
V
V
IDH  
IDL  
and SIN or EIN and EIN  
–1.7  
1.2  
6
Low Side of Differential Signal, Ref. to V  
High Side of Differential Signal, Ref. to V  
0
V
IL  
Valid Input Voltage High  
2.5  
V
IH  
Differential Input Hysteresis  
Open Circuit Voltage  
1
V
DHYS  
OPEN  
l
l
l
2
2.5  
150  
300  
3
V
R
R
Input Resistance, Common Mode  
Input Resistance, Differential  
100  
200  
kΩ  
kΩ  
INCM  
Between SIN to SIN, EIN to EIN  
INDIFF  
LTC6801 Differential Digital Output Specifications (SOUT/SOUT, EOUT/EOUT Pins)  
l
l
V
V
Digital Output Voltage High  
Digital Output Voltage Low  
Output Pins Loaded With 100k to V  
Output Pins Loaded With 100k to V  
V
REG  
– 0.3  
V
V
ODH  
ODL  
0.3  
REG  
LTC6801 Three-Level Digital Input Specifications (OV0, OV1, UV0, UV1, HYST, DC, CC0 and CC1 Pins)  
l
l
l
l
l
V
V
V
Three-Level Digital Input Voltage High  
Three-Level Digital Input Voltage Mid  
Three-Level Digital Input Voltage Low  
Pull-Up Current  
V
– 0.3  
– 0.3  
V
V
3IH  
3IM  
3IL  
REG  
V
V
REF  
+ 0.3  
REF  
0.3  
2
V
I
PU  
I
PD  
Pins DC, CC0, CC1, UV0 and UV1  
Pins HYST, OV0 and OV1  
0.5  
0.5  
1
1
μA  
μA  
Pull-Down Current  
2
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
EIN  
V
IDH  
MAX, V  
MIN, V  
(VALID HIGH WHEN  
EIN – EIN ≥ V  
IH  
IH  
T
ENA  
)
IDH  
EIN  
MAX, V  
IL  
V
IDL  
(VALID LOW WHEN EIN – EIN ≤ V  
)
IDL  
V
= 0V  
6801 F01  
Figure 1. Differential Input Specifications  
6801p  
4
LTC6801  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current, Monitor Mode  
Supply Current, Monitor Mode  
Supply Current, Idle Mode  
250  
200  
150  
100  
50  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
40  
35  
30  
25  
20  
15  
10  
5
CC1 = CC0 = V  
REG  
DC PIN TIED TO V  
REG  
f
= 10kHz  
f
= 10kHz  
ENA  
ENA  
85°C  
25°C  
25°C  
85°C  
DC PIN = V  
REF  
–40°C  
–40°C  
DC PIN = V  
85°C  
25°C  
–40°C  
0
0
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
60  
+
+
+
V
(V)  
V
(V)  
V
(V)  
6801 G02  
6801 G01  
6801 G03  
Supply Current, Monitor Mode  
Supply Current, Monitor Mode  
Supply Current, Idle Mode  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
250  
200  
150  
100  
50  
40  
35  
30  
25  
20  
15  
10  
5
DC PIN TIED TO V  
ENA  
CC1 = CC0 = V  
REG  
REG  
f
= 10kHz  
f
= 10kHz  
ENA  
+
V
= 60V  
+
V
= 60V  
+
V
= 35V  
+
DC PIN = V  
REF  
V
= 10V  
+
V
= 35V  
+
V
= 10V  
DC PIN = V  
+
+
+
V
V
V
= 60V  
= 35V  
= 10V  
0
0
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6801 G04  
6801 G05  
6801 G06  
UV Detection Level Error  
0V Detection Level Error  
Supply Current  
1.0  
0.8  
1.0  
0.8  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
+
+
+
V
= 43.2V  
V
= 43.2V  
V
= 43.2V  
UV = 2.108V  
OV = 4.120V  
CONTINUOUS MEAS MODE  
0.6  
0.6  
5 TYPICAL UNITS  
5 TYPICAL UNITS  
85°C  
0.4  
0.4  
0.2  
0.2  
25°C  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40°C  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
1
10  
(kHz)  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
f
ENA  
6801 G07  
6801 G08  
6801 G09  
6801p  
5
LTC6801  
TYPICAL PERFORMANCE CHARACTERISTICS  
Cell Input Bias Current when  
Measuring  
UV/OV Detection Level Error  
Measurement Cycle Time  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
R
IN SERIES WITH Cn AND Cn-1  
CONTINUOUS MEAS MODE  
CELL INPUT = 3.6V  
S
10nF FROM Cn, Cn-1 TO V  
CC1 = CC0 = V  
REG  
85°C  
25°C  
+
–40°C  
V
= 10V  
+
V
= 60V  
0
2
4
6
8
10  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
EXTERNAL SERIES RESISTANCE, R (kΩ)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
S
6801 G11  
6801 G12  
6801 G10  
Cell Voltage Measurement  
Hysteresis  
Cell Input Bias Current, Idle Mode  
VREF Line Regulation  
50  
40  
30  
20  
10  
0
12  
10  
8
3.070  
3.065  
3.060  
3.055  
3.050  
CELL INPUT = 3.6V  
UV THRESHOLD = 2.108V  
OV THRESHOLD = 4.120V  
NO LOAD  
HYST = V  
REG  
25°C  
6
–40°C  
85°C  
4
UNDERVOLTAGE  
DETECTED  
C12  
C1  
2
0
C2 TO C11  
V
, V  
TEMP1 TEMP2  
OVERVOLTAGE DETECTED  
–10  
–2  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
0
1
2
3
4
5
10  
20  
30  
40  
50  
60  
+
TEMPERATURE (°C)  
CELL VOLTAGE (V)  
V (V)  
6801 G13  
6801 G14  
6801 G15  
VREF Output Voltage  
VREG Line Regulation  
VREF Load Regulation  
3.070  
3.065  
3.060  
3.055  
3.050  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
NO LOAD  
IDLE MODE  
NO LOAD  
3.070  
3.065  
3.060  
3.055  
3.050  
85°C  
25°C  
5 TYPICAL UNITS  
–40°C  
–40°C  
25°C  
85°C  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
10  
20  
30  
40  
50  
60  
0
50  
100  
150  
(μA)  
200  
250  
300  
+
TEMPERATURE (°C)  
V (V)  
6801 G16  
6801 G17  
I
LOAD  
6801 G20  
6801p  
6
LTC6801  
TYPICAL PERFORMANCE CHARACTERISTICS  
VREG Load Regulation  
VREG Output Voltage  
VREG Line Regulation  
5.5  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
IDLE MODE  
IDLE MODE  
5.5  
IDLE MODE  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4mA LOAD TO V  
5.0  
4.5  
4.0  
NO LOAD  
4mA LOAD  
85°C  
85°C  
25°C  
–40°C  
25°C  
+
+
+
V
V
V
= 60V  
= 35V  
= 10V  
–40°C  
+
+
V
V
= 60V  
= 10V  
0
2
4
6
8
10  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
10  
20  
30  
40  
50  
60  
I
(mA)  
TEMPERATURE (°C)  
LOAD  
+
6801 G19  
6801 G21  
V
(V)  
6801 G18  
UV/OV Detection Level Thermal  
Hysteresis  
UV/OV Detection Level Thermal  
Hysteresis  
Status Output Operating at 10kHz  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
100k LOAD TO V  
T
= 85°C TO 25°C  
T = –40°C TO 25°C  
A
A
SOUT  
2V/DIV  
SOUT  
6
6
4
4
6801 G22  
2
20μs/DIV  
2
0
0
–100 –50  
0
50  
100  
150  
200  
–100 –50  
0
50  
100  
150  
200  
CHANGE IN DETECTION LEVEL (ppm)  
CHANGE IN DETECTION LEVEL (ppm)  
6801 G23  
6801 G24  
6801p  
7
LTC6801  
PIN FUNCTIONS  
V (Pin 1): Tied to the most positive potential in the bat-  
tery stack. For example, the same potential as C12 when  
measuring a stack of 12 cells, or the same potential as  
C7 when measuring a stack of 7 cells.  
+
SOUT, SOUT (Pin 21, Pin 22): Differential Status Output.  
Swings V to V . This output will toggle at the same fre-  
REG  
quencyasEIN/EINwhenavalidsignalisdetectedatSIN/SIN  
and the battery stack being monitored is within specified  
parameters, otherwise SOUT is low and SOUT high.  
C12, C11, … C1 (Pin 2 to Pin 13): Cell Voltage Inputs.  
Up to 12 cells can be monitored. The lowest potential is  
SIN, SIN (Pin 23, Pin 24): Differential status input from  
the IC above. To indicate that the stack is good, SIN must  
be the same frequency and phase as EIN. See applications  
circuits for interfacing SIN to the SOUT above.  
tied to V . The next lowest potential is tied to C1 and so  
forth. Due to internal overvoltage protection, each C input  
must be tied to a potential equal to or greater than the next  
lowernumberedCinput.SeetheguresintheApplications  
Informationsectionformoredetailsonconnectingbatteries  
to the LTC6801. See Electrical Characteristics table for  
voltage range and input bias current requirements.  
EOUT, EOUT (Pin 25, Pin 26): A Buffered Version of  
EIN/EIN. Swings V to V . Must be capacitively coupled  
REG  
to the EIN/EIN inputs of the next higher voltage LTC6801  
in a stack, or looped to SIN/SIN of the same chip (pins  
23, 24).  
V (Pin 14): Tied to the most negative cell potential (bot-  
tom of monitored cell stack).  
DC (Pin 27): Duty Cycle Three-Level Input. This pin may  
V
, V  
(Pin 15, Pin 16): Temperature Sensor  
be tied to V , V  
or V . The DC pin selects the duty  
TEMP1  
TEMP2  
REG REF  
Inputs. The ADC will measure the voltages on V  
cycle of the monitoring function and has an internal pull-  
TEMP1  
and V  
referenced to the V  
relative to V . The ADC measurements are  
up to V . See Table 3.  
TEMP2  
REG  
pin voltage. Therefore a simple  
REF  
SLTOK(Pin28):SelfTestLogicOutput.SLTOKisheldHIGH  
thermistorandresistorcombinationconnectedtotheV  
REF  
(V  
voltage) upon reset or successful completion of a  
REG  
pin can be used to monitor temperature. These pins have  
self test cycle. A LOW output level (V voltage) indicates  
a fixed undervoltage threshold equal to one half V . A  
REF  
the last self test cycle failed.  
filtering capacitor to V is recommended. Temperature  
SLT (Pin 29): Self Test Open Collector Input/Output. SLT  
initiates a self test cycle when it is pulled low externally.  
Whenahightolowtransitionisdetected,thenextscheduled  
measurement cycle will be a self test cycle. SLT indicates a  
self test cycle is in progress when pulled low internally. A  
self test is automatically initiated after 1024 measurement  
sensor input pins may be tied to V to disable.  
REF  
V
(Pin 17): Reference Output, Nominally 3.072V. Re-  
REF  
quires a 1μF bypass capacitor to V . The V  
pin can  
REF  
drive a 100k resistive load connected to V . V  
must  
REF  
be buffered with an LT6003 amplifier, or similar device to  
drive heavier loads. V becomes high impedance when  
REF  
cycles. This pin has an internal pull-up to V  
.
REG  
the IC is disabled or idle between monitoring events.  
CC0, CC1 (Pin 30, Pin 31): Cell Count Three-Level Inputs.  
V
(Pin 18): Regulator Output, Nominally 5V. Requires  
REG  
These pins may be tied to V , V or V . CC1 and CC0  
REG REF  
a 1μF bypass capacitor to V . The V  
pin is capable of  
REG  
select the number of cells attached to the device and each  
pin has an internal pull-up to V . See Table 5.  
supplying up to 4mA to an external load and is continu-  
ally enabled.  
REG  
HYST(Pin32):HysteresisThree-LevelInput.Thispinmay  
EIN, EIN (Pin 19, Pin 20): Differential Enable Input. A  
clocksignalgreaterthan2kHzwillenabletheLTC6801.For  
operationwithasingle-endedenablesignal(upto10kHz),  
be tied to V , V  
or V . HYST selects the amount of  
REG REF  
hysteresis applied to the undervoltage and overvoltage  
threshold settings and has an internal pull-down to V .  
drive EIN and connect a 1nF capacitor from EIN to V .  
See Table 4.  
6801p  
8
LTC6801  
PIN FUNCTIONS  
UV0, UV1 (Pin 33, Pin 34): Undervoltage Three-Level  
Table 3. Duty Cycle Select  
DC  
Inputs. These pins may be tied to V , V  
or V . UV1  
REG REF  
NOMINAL CYCLE TIME*  
and UV0 select the undervoltage threshold and each pin  
V
REG  
15ms  
has an internal pull-up to V . See Table 2.  
REG  
V
Approximately 130ms  
Approximately 500ms  
REF  
OV0, OV1 (Pin 35, Pin 36): Overvoltage Three-Level  
V
Inputs. These pins may be tied to V , V  
or V . OV1  
*Cycle time based on LTC6801 measuring 12 cells and 2 temperatures.  
REG REF  
and OV0 select the overvoltage threshold and each pin  
has an internal pull-down to V . See Table 1.  
Table 4. Hysteresis Select  
HYST  
UV HYSTERESIS*  
500mV  
OV HYSTERESIS  
200mV  
Table 1. Overvoltage Inputs  
V
REG  
OV1  
OV0  
OVERVOLTAGE THRESHOLD (V)  
V
250mV  
100mV  
V
V
4.503  
4.407  
4.311  
4.216  
4.120  
4.024  
3.928  
3.832  
3.737  
REF  
REG  
REG  
V
0mV  
0mV  
V
V
V
REG  
REG  
REF  
*UV hysteresis is disabled when the undervoltage threshold is set to 0.766V.  
V
V
V
V
V
REG  
REF  
REF  
V
Table 5. Cell Count Select  
REF  
V
CC1  
CC0  
CELL COUNT  
REF  
V
V
12  
11  
10  
9
V
V
V
V
REG  
REG  
REG  
REG  
REG  
V
V
V
REF  
V
REF  
V
V
V
V
V
V
REG  
REF  
REF  
V
8
REF  
Table 2. Undervoltage Inputs  
UV1 UV0  
V
7
REF  
UNDERVOLTAGE THRESHOLD (V)  
V
V
V
V
REG  
6
V
REG  
V
REG  
V
REG  
V
2.874  
2.683  
2.491  
2.299  
2.108  
1.916  
1.725  
1.533  
0.766  
REG  
V
5
V
REF  
REF  
V
4
V
V
V
V
V
REG  
REF  
REF  
V
REF  
V
REF  
V
V
V
V
REG  
V
REF  
V
6801p  
9
LTC6801  
BLOCK DIAGRAM  
TheLTC6801measuresbetween4and12cellvoltagesand  
2 temperature inputs. If all measurements are within an  
acceptablewindow,theLTC6801willproduceadifferential  
clock output signal (SOUT, SOUT). If any of the channels  
exceed user set upper and lower thresholds, a logic low  
signal is produced at SOUT.  
+
V
V
REG  
REGULATOR  
C12  
C11  
HYST  
CC1  
C10  
12  
CC0  
+
ADC  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
DC  
DIGITAL  
COMPARATORS  
UV/OV  
FLAGS AND  
CONTROL  
LOGIC  
SLT  
REFERENCE  
SLTOK  
MUX  
EIN  
+
+
SELF TEST  
REFERENCE  
(REF2)  
EIN  
EOUT  
EOUT  
SIN  
+
“GOOD”  
SIN  
V
SOUT  
DECODER  
UV0  
SOUT  
V
V
V
REF  
TEMP1  
TEMP2  
OV0  
OV1  
UV1  
6801 BD  
6801p  
10  
LTC6801  
BLOCK DIAGRAM OF ENABLE IN/OUT AND STATUS IN/OUT  
EOUT  
EOUT  
V
REG  
300k  
SIN  
+
V
THE FREQUENCY MATCH  
DETECT OUTPUT GOES  
HIGH WHEN SIN AND EIN  
ARE THE SAME FREQUENCY  
300k  
REG  
FREQUENCY  
MATCH  
DETECT  
300k  
SIN  
300k  
THE SIGNAL IS  
HIGH WHEN  
ALL READINGS  
ARE “GOOD”  
SOUT  
SOUT IS ACTIVE WHEN  
1) EIN IS ACTIVE  
2) SIN AND EIN ARE THE SAME FREQUENCY  
3) ALL READINGS ARE “GOOD”  
SOUT  
V
REG  
300k  
300k  
EIN  
+
THE CLK DETECT  
OUTPUT GOES  
HIGH WHEN EIN IS  
2kHz TO 50kHz  
V
REG  
CLK  
DETECT  
300k  
300k  
EIN  
6801 BDa  
6801p  
11  
LTC6801  
APPLICATIONS INFORMATION  
OVERVIEW  
INDEPENDENT OPERATION  
The LTC6801 is designed as an easy to implement, low-  
cost battery stack monitor that provides a simple indica-  
tion of correct battery stack operation without requiring  
a microcontroller interface. For battery stack monitoring  
with cell voltage read back and discharge circuitry, refer  
to the LTC6802 battery stack monitor data sheet.  
Figure 3 shows how three groups of 12 cells can be  
monitored independently.  
REGULATED OUTPUTS  
AregulatedvoltageisprovidedattheV pin,biasedfrom  
REG  
the battery stack. The V  
pin can supply up to 4mA at  
REG  
The LTC6801 contains a 12-bit ADC, a precision voltage  
reference, sampled comparator, high voltage multiplexer  
and timer/sequencer. During normal operation, the se-  
quencer multiplexes the ADC inputs between each of the  
channel input pins in turn, performing a single compari-  
son to the undervoltage and overvoltage thresholds. The  
5V and may be used to power small external circuits. The  
regulated output remains at 5V continually, as long as the  
total stack voltage is between 10V and 50V.  
A low current, precision reference voltage is provided at  
the V pin, which can drive loads of greater than 100k.  
REF  
The V  
output is high impedance when the LTC6801  
REF  
V
inputs are also monitored for an undervoltage at a  
TEMP  
is idle.  
fixed threshold of V /2.  
REF  
Both the V  
and V pins must be bypassed to V with  
REG  
REF  
Thepresenceofastatusoutputclockindicatesthesystem  
is “OK”. Becase the status output is dynamic, it cannot  
get stuck in the “OK” state.  
a 1μF capacitor.  
CONTROL INPUTS  
STACKED OPERATION  
The LTC6801 thresholds are controlled by the UV1, UV0,  
OV1 and OV0 pins. These pins are designed to be tied  
Each LTC6801 monitors a group of up to 12 series con-  
nected cells. Groups of cells can be connected in series  
or parallel to form a large battery pack. The LTC6801s can  
be daisychained with simple capacitive or transformer  
coupling. This allows every cell in a large battery pack  
to be monitored with a single signal. Figure 2 illustrates  
monitoring of 36 series connected cells.  
directly to V , V or V in order to set the comparison  
REG REF  
thresholds for all channels simultaneously. The pins are  
not designed to be variable. In particular, changes made  
to the pins while the chip is not in idle mode may result  
in unpredictable behavior. See Tables 1 and 2 for setting  
and threshold information.  
To cancel systematic duty cycle distortion through the  
clock buffers, it is recommended that the clock lines are  
cross-coupled (EOUT goes to EIN etc.) as they route up  
and down the stack as shown in Figure 2.  
6801p  
12  
LTC6801  
APPLICATIONS INFORMATION  
ENABLE INPUTS  
The maximum delay between when a bad cell voltage  
occurs and when it is detected depends on the measure-  
ment duty cycle setting. The SOUT clock turns on or off  
at the end of each measurement cycle. Figure 4 shows  
themaximumdetectiondelayincontinuousmonitormode  
In order to support stacked operation, the LTC6801 is  
enabled through a differential signal chain encompassing  
the EIN/EIN, EOUT/EOUT, and SIN/SIN pins.  
The LTC6801 will be enabled if a differential square wave  
with a frequency between 2kHz and 50kHz is applied at  
EIN/EIN. Otherwise, the LTC6801 will default to a low  
power idle mode.  
(DC pin tied to V ).  
REG  
FAULT PROTECTION  
Overview  
IfthedifferentialsignalatSIN/SINisnotequalinfrequency  
tothedifferentialsignaloutputatEOUT/EOUT,theLTC6801  
will be enabled but SOUT will be held at 0V and SOUT will  
Care should always be taken when using high energy  
sources such as batteries. There are countless ways that  
systems can be [mis-]configured during the assembly  
and service procedures that can impact a battery’s long  
term performance. Table 6 shows various situations to  
consider when planning protection circuitry.  
be held at V  
.
REG  
For the simplest operation in a single chip configuration,  
EOUTshouldbeconnecteddirectlytoSINandEOUTshould  
be connected directly to SIN, and a square wave with a  
frequency between 2kHz and 50kHz should be applied  
differentially to EIN and EIN. For enable clock frequencies  
up to 10kHz, a single-ended square wave with a 5V swing  
may be used at EIN while a 1nF capacitor is connected  
Battery Interconnection Integrity  
Please note: The last condition shown in the FMEA table  
couldcausecatastrophicICfailures.Inthiscase,thebattery  
string integrity is lost within a cell group monitored by an  
LTC6801. This condition could place excessive stress on  
certaincellinputsignalclamp-diodesandprobablyleadto  
IC failure. If this scenario seems at all likely in a particular  
application, Schottky diodes should be added in parallel  
with the cells as shown in Figure 5 to form a redundant  
load current path and a means of limiting stress on the  
IC inputs. The diodes used in this situation need current  
ratings sufficient to open a protective fuse in the battery  
tap signal (otherwise they would have to carry the normal  
range of cell currents).  
from EIN to V .  
STATUS OUTPUT  
If the chip is properly enabled (EIN/EIN, SIN/SIN are the  
same frequency), all cells are within the undervoltage  
and overvoltage thresholds, and the voltage at V  
TEMP1  
and V  
is over one half V , the differential output  
TEMP2  
REF  
at SOUT/SOUT will toggle at the same frequency and in  
phase with the signal at EIN/EIN. Otherwise, SOUT will be  
low and SOUT will be high.  
6801p  
13  
LTC6801  
APPLICATIONS INFORMATION  
TOP OF  
STACK  
TOP OF  
STACK  
PROGRAMMED CONDITIONS:  
CONTINUOUS MONITOR MODE  
OV = 4.120V  
+
+
V
OV1  
V
OV1  
LTC6801  
LTC6801  
UV = 2.108V  
C12  
C11  
C10  
C9  
C8  
C7  
C12  
C11  
C10  
C9  
C8  
C7  
OV0  
UV1  
UV0  
HYST  
CC1  
OV0  
UV1  
UV0  
HYST  
CC1  
HYST = 250mV (UV), 100mV (OV)  
CC = 12  
CC0  
SLT  
CC0  
SLT  
C6  
C6  
C5  
C4  
SLTOK  
DC  
C5  
C4  
SLTOK  
DC  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
SIN  
V
SIN  
V
V
SOUT  
V
SOUT  
TEMP1  
TEMP1  
V
SOUT  
V
SOUT  
TEMP2  
TEMP2  
V
V
EIN  
EIN  
V
V
EIN  
EIN  
REF  
REF  
REG  
REG  
+
+
V
OV1  
V
OV1  
LTC6801  
LTC6801  
C12  
C11  
C10  
C9  
C8  
C7  
C12  
C11  
C10  
C9  
C8  
C7  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
C6  
SLT  
C6  
SLT  
C5  
C4  
SLTOK  
DC  
C5  
C4  
SLTOK  
DC  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
SIN  
V
SIN  
V
V
SOUT  
V
SOUT  
TEMP1  
TEMP1  
V
SOUT  
V
SOUT  
TEMP2  
TEMP2  
V
V
EIN  
EIN  
V
V
EIN  
EIN  
REF  
REF  
REG  
REG  
+
+
V
OV1  
V
OV1  
LTC6801  
LTC6801  
C12  
C11  
C10  
C9  
C8  
C7  
C12  
C11  
C10  
C9  
C8  
C7  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
C6  
SLT  
C6  
SLT  
C5  
C4  
SLTOK  
DC  
C5  
C4  
SLTOK  
DC  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
ALL CLOCKS  
OUT WHEN ALL  
CELLS GOOD  
SIN  
SOUT  
SOUT  
V
V
SIN  
SOUT  
SOUT  
V
V
CLOCK OUT  
WHEN ALL  
CELLS GOOD  
TEMP1  
TEMP1  
V
V
TEMP2  
TEMP2  
V
V
EIN  
EIN  
USER SUPPLIED  
CLOCK IN  
V
V
EIN  
EIN  
USER SUPPLIED  
CLOCK IN  
REF  
REF  
REG  
REG  
6801 F02  
6801 F03  
BOTTOM  
OF STACK  
BOTTOM  
OF STACK  
Figure 2. Serial Connection of Status Lines for Multiple 6801s  
on the Same PCB (Simplified Schematic, Not All Components  
Shown)  
Figure 3. Independent Status Lines for Multiple 6801s on the  
Same PCB (Simplified Schematic, Not All Components Shown)  
6801p  
14  
LTC6801  
APPLICATIONS INFORMATION  
6801p  
15  
LTC6801  
APPLICATIONS INFORMATION  
Table 6. Failure Mechanism Effect Analysis (FMEA)  
SCENARIO  
EFFECT  
DESIGN MITIGATION  
+
Cell input open-circuit (random)  
Power-up sequence at IC inputs  
Clamp diodes at each pin to V & V (within IC)  
provide alternate PowerPath.  
Cell input open-circuit (random)  
Differential input voltage overstress  
Zener diodes across each cell voltage input pair  
(within IC) limit stress.  
+
+
Top cell input connection loss (V )  
Power will come from highest connected cell  
input  
Clamp diodes at each pin to V and V (within  
IC) provide alternate PowerPath. Error condition  
will be indicated by all upstream and downstream  
units (no clock on SOUT/ SOUT).  
+
Bottom cell input connection loss (V )  
Power will come from lowest connected cell input Clamp diodes at each pin to V and V (within  
IC) provide alternate PowerPath. Error condition  
will be indicated by all upstream and downstream  
units (no clock on SOUT/ SOUT).  
+
Power input disconnection  
(amongst stacked units)  
Loss of supply connections  
Clamp diodes at each pin to V and V (within  
IC) provide alternate PowerPath. Error condition  
will be indicated by all upstream and downstream  
units (no clock on SOUT/ SOUT).  
Status link disconnection  
(between stacked units)  
Break of “daisy chain” communication  
(no stress to ICs)  
Daisy chain will be broken and error condition  
will be indicated by all upstream and downstream  
units (no clock on SOUT/ SOUT).  
Short between any two configuration inputs  
Power supplies connected to pins will be shorted If V or V  
is shorted to V , supply will  
REF  
REG  
be removed from internal circuitry and error  
condition will be indicated by all upstream and  
downstream units (no clock on SOUT/ SOUT). If  
V
is shorted to V , a self test error will be  
REG  
REF  
flagged.  
Open connection on configuration input  
Control input will be pulled towards positive or  
negative potential depending on pin  
Control input will be pulled to a more stringent  
condition (larger number of channels, higher UV  
threshold, lower OV threshold, shorter duty cycle,  
etc. ensuring either more stringent monitoring or  
error condition will be indicated by all upstream  
and downstream units (no clock on SOUT/  
SOUT).  
Cell-pack integrity, break between stacked units  
Cell-pack integrity, break within stacked unit  
Daisy-chain voltage reversal up to full stack  
potential  
Full stack potential may appear across status/  
enable isolation devices, but will not be seen by  
the IC. isolation capacitors should therefore be  
rated to withstand the full stack potential.  
Cell input reverse overstress  
Add parallel schottky diodes across each cell for  
current path redundancy. Diode and connections  
must handle full operating current of stack, will  
limit stress on IC  
6801p  
16  
LTC6801  
APPLICATIONS INFORMATION  
+
LTC6801  
V
PROTECT  
AGAINST  
BREAKS  
HERE  
C12  
C11  
C10  
C9  
EOUT  
EOUT  
SIN  
6801 F05  
Figure 5. Using Diodes to Form a Redundant  
Load Path (One Cell Connection Shown)  
SIN  
ZCLAMP  
SOUT  
SOUT  
EIN  
Internal Protection Structure  
The LTC6801 incorporates a number of protective struc-  
tures, including parasitic diodes, Zener-like overvoltage  
suppressors, and other internal features that provide  
protection against ESD and certain overstress conditions  
that could arise in practice. Figure 6 shows a simplified  
internal schematic that indicates the significant protective  
structures and their connectivity. The various diodes indi-  
catetheapproximatecurrentversusvoltagecharacteristics  
that are intrinsic to the part, which is useful in analyzing  
responses to certain external stresses, such as during a  
hot-start scenario.  
C8  
EIN  
V
V
TEMP1  
C7  
TEMP2  
V
REF  
C6  
ZCLAMP  
V
REG  
C5  
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
SLT  
C4  
C3  
SELF TEST CIRCUITRY  
TheLTC6801hasinternalcircuitrythatperformsaperiodic  
self test of all measurement functions. The LTC6801 self  
test circuitry is intended to prevent undetectable failure  
modes. Accuracy and functionality of the voltage refer-  
ence and comparator are verified, as well as functionality  
of the high voltage multiplexer and ADC decimation filter.  
Additionally, open connections on the cell input pins C1  
to C11 are detected (Open connections on V or C12/V  
will cause an undervoltage failure during the normal  
measurement cycle).  
C2  
ZCLAMP  
C1  
SLTOK  
DC  
V
6801 F06  
+
Figure 6. Internal Protection Structures  
6801p  
17  
LTC6801  
APPLICATIONS INFORMATION  
Self Test Pins  
The self test guarantees that V  
is within 5% of the  
REF  
specified nominal value. Also, this test guarantees the  
analog portion of the ADC is working.  
The SLT pin is used to initiate a self test. It is configured  
as an open collector input/output. The pin should be nor-  
mally tied to V  
with a resistor greater than or equal to  
REG  
High Voltage Multiplexer Verification  
100k or floated. The pin may be pulled low at any time to  
initiate a self test cycle.  
The most dangerous failure mode of the high voltage  
multiplexer would be a stuck bit condition in the address  
decoder. Such a fault would cause some channels to be  
measured repeatedly while other channels are skipped.  
A skipped channel could mean a bad cell reading is not  
detectable. Othermultiplexerfailures,likethesimultaneous  
selectionofmultiplechannels, orshortsinthesignalpath,  
would result in an undervoltage or overvoltage condition  
on at least one of the channels.  
The device will automatically initiate a self test if SLT has  
notbeenexternallyactivatedfor1024measurementcycles,  
and pull down the SLT pin internally to indicate that it is  
in self test mode.  
The SLTOK pin is a simple logic output. If the previous self  
test failed the output is held low, otherwise the output will  
be high. The SLTOK pin is high upon power-up. The SLTOK  
output can be connected to a microcontroller through an  
isolation path.  
The LTC6801 incorporates circuitry to ensure that  
all requested channels are measured during each  
measurement cycle and none are skipped. If a channel is  
skipped, an error is flagged during the self test cycle.  
The LTC6801 status output will remain active while the  
SLTOK pin is low. The LTC6801 will continue to monitor  
cells if the self test fails. If the next self test passes, the  
SLTOK output returns high.  
ADC Decimation Filter Verification  
The ADC decimation filter test verifies that the digital cir-  
cuits in the ADC are working, i.e. there are no stuck bits  
in the ADC output register. During each self test cycle,  
the LTC6801 feeds two test waveforms into the ADC. The  
internallygeneratedwaveformsweredesignedtogenerate  
complementary zebra patterns (alternating 0’s and 1’s) at  
the ADC output. If either of the waveforms generates an  
incorrect output value, an error is flagged during the self  
test cycle.  
Reference and Comparator Verification  
A secondary internal bandgap voltage reference (REF2)  
is included in the LTC6801 to aid in verification of the  
reference and comparator. During the self test cycle, the  
comparator and main reference are used to measure the  
REF2 voltage.  
To verify the comparator functionality, the upper and  
lower thresholds are first set in a close window around  
the expected REF2 voltage and the comparator output is  
verified. Then the upper threshold is set below the REF2  
voltageandthecomparatoroutputisverifiedagain.Lastly,  
the lower threshold is set above the REF2 voltage and the  
comparator output is verified a third time.  
Open Cell Connection Detection  
The open connection detection algorithm ensures that an  
open circuit is not misinterpreted as a valid cell reading.  
6801p  
18  
LTC6801  
APPLICATIONS INFORMATION  
self test, this current will cause the cell input to settle to  
a voltage low enough to trigger an undervoltage condition  
during the normal measurement cycle.  
In the absence of external noise filtering, the input resis-  
tance of the ADC will cause open wires to produce a near  
zero reading. This reading will cause an undervoltage  
failure during the normal measurement cycle.  
Note, an open cell connection may not be detected when  
the UV = 0.766V setting is used. For all other UV settings,  
an open cell connection will result in either a self test error  
or no SOUT clock.  
Some applications may include external noise filtering to  
improve the quality of the voltage comparisons. When  
an RC network is used to filter noise, an open wire may  
not produce a zero reading because the comparator input  
resistance is too large to discharge the capacitors on the  
input pin. Charge may build up on the open pin during  
successive measurement cycles to the extent that it could  
indicate a valid cell voltage reading.  
Using The LTC6801 with Other Battery Monitors  
WhenusedincombinationwithanLTC6802-1,itispossible  
tochecktheLTC6801selftestresultviatheLTC6802-1and  
its isolated SPI. As shown in Figure 7, the SLTOK output  
is tied to the GPIO2 pin on the LTC6802-1. SLTOK will  
remain high as long as it is passing the self test. A self test  
will occur automatically every 1024 measurement cycles  
(17 seconds to 9 minutes, depending on measurement  
duty cycle). A self test can be initiated by a falling edge  
on SLT, via the LTC6802-1 GPIO1 line. A self test will start  
after the current measurement cycle is complete, and the  
SLTOK status will be valid when the self test completes.  
The worst case delay before SLTOK is valid in continuous  
monitormodeisapproximately15msforthecurrentcycle  
to complete plus 17ms for the self test to complete.  
During each self test cycle, the LTC6801 will sink 100μA  
to V from each side of the cell being measured. The  
undervoltage threshold is not checked during the self test  
because the 100μA pull-down current would cause false  
failures in some cases. If an input is open, this current will  
discharge any filtering capacitors and cause the input to  
float down to approximately 0.7V below the next lower cell  
input. In most cases, the cell voltage of the cell above the  
open input will exceed the overvoltage threshold and flag  
a self test error. During the normal measurement cycle,  
the LTC6801 will sink 1μA to V from each side of the cell  
being measured. If the cell voltages are low enough that  
an open wire is not detected as an overvoltage during  
The6802-1canmeasuretheLTC6801reference,whichwill  
independently test the analog circuitry of the LTC6802.  
CSBO  
SDOI  
SCKO  
CSBI  
SDO  
SDI  
+
V
SCKI  
+
V
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
SLT  
SLTOK  
DC  
C12  
S12  
C11  
S11  
C10  
S10  
C9  
V
C12  
C11  
C10  
C9  
MODE  
IN  
CMPD6263  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
GPIO2  
GPIO1  
WDTB  
MMB  
TOS  
OUT  
1M  
LTC6802-1  
LTC6801  
V
REG  
S9  
V
REF  
1μF  
C8  
V
V
C8  
TEMP2  
TEMP1  
NC  
S8  
C3  
C2  
C1  
C3  
C2  
C1  
EOUT  
EOUT  
SIN  
C7  
C7  
V
S7  
C6  
S1  
C1  
S2  
C2  
S3  
C3  
C6  
V
V
V
V
V
SIN  
S6  
SOUT  
SOUT  
EIN  
EIN  
6801 F07  
TEMP1  
TEMP2  
REF  
C5  
C5  
S5  
V
REF  
C4  
C4  
S4  
REG  
1μF  
C3  
C2  
C1  
Figure 7. Interconnection of an LTC6802-1 and LTC6801 for Self Test.  
6801p  
19  
LTC6801  
APPLICATIONS INFORMATION  
CELL-VOLTAGE FILTERING  
tying both CC1 and CC0 to the V  
pin, the highest cell  
REF  
+
potential (in this case C8) must be connected to the V  
pin for proper operation. Unused cell connection pins (in  
this case C9 to C12) may be left floating or may also be  
tied to the highest cell potential.  
The LTC6801 employs a sampling system to perform its  
analog-to-digital conversions and provides a conversion  
resultthatisessentiallyanaverageoverthe0.5msconver-  
sionwindow.Ifthereissignificantnoiseatfrequenciesnear  
500kHztheremaybealiasinginthedelta-sigmamodulator.  
A lowpass filter with 30dB attenuation at 500kHz may be  
beneficial. Since the delta-sigma integration bandwidth is  
about 1kHz, the filter corner need not be lower than this  
to assure accurate conversions.  
+
V
OV1  
OV0  
C12  
C11  
C10  
C9  
UV1  
UV0  
HYST  
CC1  
CC0  
SLT  
SLTOK  
DC  
C8  
LTC6801  
C7  
C6  
C5  
Series resistors of 1k may be inserted in the input paths  
without introducing measurement error. Shunt capacitors  
C4  
C3  
EOUT  
EOUT  
SIN  
1μF  
500k  
NTC  
B = 4567  
500k  
C2  
NTC  
C1  
may be added from the cell inputs to V , creating RC filter-  
B = 4567  
V
V
V
V
V
SIN  
1μF  
SOUT  
SOUT  
EIN  
ing as shown in Figure 8. The combination of 1k and 10nF  
is recommended as a robust, cost effective noise filter.  
TEMP1  
TEMP2  
REF  
EIN  
100k  
100k  
REG  
6801 F09  
MEASURING VARIOUS CELL COUNTS  
Figure 9. Driving Thermistors Directly from VREF  
.
The LTC6801 is designed to measure up to 12 cells de-  
pending on the state of the CC pins (See Table 5). When  
using an LTC6801 configured for measuring less than  
12 cells, for instance choosing to measure 8 cells by  
Two Independent Probes With a +60°C Trip Point  
+
V
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
SLT  
C12  
C11  
C10  
C9  
C8  
LTC6801  
1k  
C7  
C3  
C6  
C5  
SLTOK  
DC  
C4  
C3  
EOUT  
EOUT  
SIN  
1k  
1k  
10nF  
10nF  
0.5μF  
C2  
C1  
10k  
NTC  
B = 3380  
10k  
C2  
NTC  
C1  
B = 3380  
0.5μF  
V
SIN  
V
SOUT  
SOUT  
EIN  
TEMP1  
V
V
V
TEMP2  
REF  
EIN  
2.2k  
2.2k  
REG  
6801 F10  
10nF  
+
V
6801 F08  
LT6003  
Figure 8. Adding RC Filtering to the Cell inputs  
Figure 10. Buffering VREF for Higher-Current Sensors.  
Two Independent Probes With a +70°C Trip Point  
6801p  
20  
LTC6801  
APPLICATIONS INFORMATION  
READING EXTERNAL TEMPERATURE PROBES  
The LTC6801 includes two channels of ADC input, V  
+
V
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
CC0  
SLT  
SLTOK  
DC  
C12  
C11  
C10  
C9  
TEMP1  
and V  
, that are intended to monitor thermistors  
TEMP2  
C8  
(tempco about –4%/°C generally) or diodes (–2.2mV/°C  
typical) located within the cell array. Sensors can be  
LTC6801  
C7  
C6  
C5  
C4  
powered directly from V  
30μA typical).  
as shown in Figure 9 (up to  
REF  
C3  
EOUT  
EOUT  
SIN  
500k  
NTC  
1μF  
C2  
1150k  
C1  
B = 4567  
1μF  
V
SIN  
Thetemperaturemeasurementinputs(V  
,V  
)of  
TEMP1 TEMP2  
V
V
V
V
SOUT  
SOUT  
EIN  
TEMP1  
TEMP2  
REF  
the LTC6801 are comparator input channels with a voltage  
100k  
NTC  
B = 4250  
EIN  
6801 F11  
100k  
REG  
threshold of one-half V . Input voltages above half V  
REF  
REF  
REF  
are considered good. Voltages below the one-half V  
threshold are considered a fault condition. The inputs  
may be used in combination with resistors, thermistors,  
or diodes to sense both an upper and lower temperature  
limit. Figure 9, Figure 10 and Figure 11 illustrate some  
Figure 11. Sensing Both Upper and Lower Temperature  
Thresholds. This Example Monitors a –20°C to +60°C Window  
Detector. The Thermistors Should Be in Close Proximity  
For circuits that include filtering capacitance, note that  
possibilities.ToignoretheseinputssimplyconnectV  
TEMP1  
only the fastest DC setting (V  
connection) will keep  
and V  
to V . A filtering capacitor to V is recom-  
mendedtominimizetheerrorcausedbytheapproximately  
REG  
TEMP2  
REF  
V
steady and allow the V  
voltages to settle. To use  
REF  
REF  
TEMP  
the lower power DC settings, V must be buffered (see  
700k input impedance of the ADC.  
Figure 10), so that a low impedance is presented to the  
For sensors that require higher drive currents, a buffer  
amplifier may be used as shown in Figure 10. Power for  
ADC, with a time constant of no more than about 1ms.  
the sensor is actually sourced indirectly from the V  
pin  
REG  
ADVANTAGES OF DELTA-SIGMA ADCs  
in this case. Probe loads up to about 1mA maximum are  
supported in this configuration. Since V is shut down  
REF  
The LTC6801 employs a delta-sigma analog to digital  
converter for voltage measurement. The architecture of  
delta-sigma converters can vary considerably, but the  
common characteristic is that the input is sampled many  
times over the course of a conversion and then filtered or  
averaged to produce the digital output code.  
while the LTC6801 is idle between measurement cycles,  
the thermistor drive is also shut off and thus power dis-  
sipation is minimized. Since V  
remains always-on, the  
REG  
buffer op amp (LT6003 shown) is selected for its ultralow  
current consumption (10μA).  
6801p  
21  
LTC6801  
APPLICATIONS INFORMATION  
For a given sample rate, a delta-sigma converter can  
achieve excellent noise rejection while settling completely  
in a single conversion. This is particularly important for  
noisyautomotivesystems.Otheradvantagesofdelta-sigma  
converters are that they are inherently monotonic, mean-  
ing they have no missing codes, and they have excellent  
DC specifications.  
USING TRANSFORMERS FOR GALVANIC ISOLATION  
As shown in Figure 12, small gate-drive signal transform-  
ers can be used to interconnect devices and transport the  
enableandsensesignalssafelyacrossanisolationbarrier.  
Drivingatransformerwithasquarewaverequirestransient  
currentsofseveralmAandfrequencyofoperationat20kHz  
or higher. Since the output pins of the LTC6801 are current  
limitedat<1mA, asmallexternalgatepair(NC7WZ17dual  
buffer) is used to provide the needed drive current. 330Ω  
resistors are placed in series with each buffer output to  
optimize current flow into the transformer primary and a  
coupling capacitor provides prevention of current flow in  
static conditions. The secondary side is wired in a cen-  
ter-tapped configuration to terminate the common mode  
voltage and thus suppress noise pickup. The differential  
signalisterminatedinto1500Ωtooptimizethepeaksignal  
The LTC6801’s ADC has a second order delta-sigma  
modulator followed by a SINC2, finite impulse response  
(FIR) digital filter, with a lowpass bandwidth of 1kHz. The  
front-end sample rate is 512ksps, which greatly reduces  
input filtering requirements. A simple 16kHz, 1 pole filter  
composed of a 1k resistor and a 10nF capacitor at each  
input will provide adequate filtering for most applications.  
ThesecomponentvalueswillnotdegradetheDCaccuracy  
of the ADC.  
swing for the IC input (to about 4V ). Internal biasing  
P-P  
Each conversion consists of two phases – an autozero  
phase and a measurement phase. The ADC is autozeroed  
at each conversion, greatly improving CMRR.  
features of the IC inputs maintain an optimal DC common  
mode level at the transformer secondary.  
6801p  
22  
LTC6801  
APPLICATIONS INFORMATION  
TO NEXT  
CIRCUIT  
NC7WZ17  
100nF  
+
100k  
100k  
ENC2  
+
V
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
+
V
GND  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
LTC6801  
ENC2  
10nF  
+
CC0  
S2  
SLT  
1.5k  
SLTOK  
DC  
S2  
EOUT  
EOUT  
SIN  
P0544NL  
NC7WZ17  
100nF  
100Ω  
100Ω  
V
V
V
V
V
SIN  
SOUT  
SOUT  
EIN  
TEMP1  
TEMP2  
REF  
+
V
GND  
1μF  
EIN  
REG  
1.5k  
10nF  
P0544NL  
+
V
OV1  
NC7WZ17  
100nF  
C12  
C11  
C10  
C9  
OV0  
UV1  
UV0  
HYST  
CC1  
LTC6801  
+
100Ω  
100Ω  
ENC1  
+
V
GND  
ENC1  
C8  
10nF  
C7  
CC0  
C6  
SLT  
C5  
SLTOK  
DC  
+
S1  
C4  
C3  
EOUT  
EOUT  
SIN  
1.5k  
S1  
C2  
C1  
V
V
V
V
V
SIN  
P0544NL  
+
SOUT  
SOUT  
EIN  
S_HOST  
S_HOST  
TEMP1  
TEMP2  
REF  
1μF  
+
EN_HOST  
EN_HOST  
EIN  
REG  
6801 F12  
Figure 12. Using Transformers for Galvanic Isolation  
6801p  
23  
LTC6801  
APPLICATIONS INFORMATION  
INTERCOMMUNICATION USING DATA ISOLATORS  
DEMO BOARD CIRCUIT  
As shown in Figure 13, an inexpensive and compact  
2-channeldataisolatorisusedtocommunicatetheenable  
andthesenseclockingsignalsbetweendevices.Thewiring  
carries isolator power and return plus two single-ended  
logicsignalsthatarecompletelyisolatedattheupperdevice  
interface, so the signals are effectively differential from a  
common mode ingress perspective. The isolator provides  
excellent rejection of noise between battery groups, but  
consumes a few mA when operating, so a conventional  
opto-coupler and a few discretes provide a power-down  
scheme for periods where no monitoring is needed. Since  
An LTC6801 demonstration circuit is shown in Figure 14.  
The circuit includes a 10kHz oscillator (U2) for the enable  
excitation and an LED (D15, driven by Q1) to indicate the  
stateofthestatusoutputs,plusanassortmentofimportant  
protection components to ensure robust operation and  
hot-plugging of cell connections.  
Seriesresistors(R14toR21)provideacontrolledcoupling  
capacitor (C14 to C17) current in the inter-IC connections  
during startup or other abrupt potential changes, and as-  
sociated clamp diodes (D13 and D14 quad array devices)  
redirect charge/surge current around the IC.  
therequiredcurrentwouldloaddownV  
ifuseddirectly,  
REG  
Input filters to each cell (R1, C1 to R12, C12) also use  
6.2V Zener diodes (D1 to D12) to prevent overstress to  
the internal ESD clamps.  
the NPN transistor is used to form a quasi-regulated 4.3V  
supply drawing from the full battery group potential, also  
moving significant thermal loading outside the IC. The  
PMOS FET is a low resistance switch controlled by the  
opto-coupler output. Since the opto-coupler is used to  
switch only a small current, the LED need only be driven  
with~500μA.Poweringdownthebottom-of-stackisolator  
on the host μP side automatically powers down the entire  
isolator chain.  
+
The V input filter (R13, C13) has the same time constant  
+
as the ADC input filters so that the V and C12 pins tend  
to track during start-up or transients, minimizing stress  
and ADC error.  
6801p  
24  
LTC6801  
APPLICATIONS INFORMATION  
+
V
OV1  
OV0  
UV1  
UV0  
HYST  
CC1  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
LTC6801  
CC0  
TO NEXT  
CIRCUIT  
SLT  
SLTOK  
DC  
COM2  
100Ω  
1μF  
ENABLE2  
SENSE2  
VISO2  
EOUT  
EOUT  
SIN  
1nF  
Si8421  
V
SIN  
1μF  
100Ω  
V
SOUT  
SOUT  
EIN  
V
V
DD2  
TEMP1  
DD1  
1μF  
V
V
V
TEMP2  
REF  
A1  
B1  
B2  
EIN  
REG  
A2  
GND1  
GND2  
1nF  
6.8k  
SI2351DS  
CZT5551  
33k  
MOC207-M  
+
V
OV1  
C12  
C11  
C10  
C9  
OV0  
UV1  
UV0  
HYST  
CC1  
LTC6801  
C8  
C7  
CC0  
C6  
SLT  
C5  
SLTOK  
DC  
COM1  
C4  
100Ω  
1μF  
ENABLE1  
SENSE1  
VISO1  
C3  
EOUT  
EOUT  
SIN  
C2  
C1  
1nF  
Si8421  
V
SIN  
1μF  
100Ω  
V
SOUT  
SOUT  
EIN  
V
V
V
CCHOST  
TEMP1  
DD1  
DD2  
1μF  
V
V
V
TEMP2  
REF  
SENSEHOST  
A1  
B1  
ENABLEHOST  
COMHOST  
EIN  
REG  
A2  
GND1  
B2  
GND2  
1nF  
6.8k  
SI2351DS  
CZT5551  
33k  
MOC207-M  
6801 F13  
Figure 13. IC to IC Communication Using Data Isolators  
6801p  
25  
LTC6801  
APPLICATIONS INFORMATION  
1
3
2
6801p  
26  
LTC6801  
PACKAGE DESCRIPTION  
G Package  
36-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
12.50 – 13.10*  
(.492 – .516)  
1.25 p 0.12  
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19  
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 p 0.03  
0.65 BSC  
5
7
8
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
6
9 10 11 12 13 14 15 16 17 18  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0o – 8o  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
(.0035 – .010)  
0.55 – 0.95  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
G36 SSOP 0204  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
6801p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC6801  
TYPICAL APPLICATION  
5V  
FILTERED STATUS  
V
REG  
(LOW = OK)  
1.5k  
10k  
LED_GREEN  
CMHD457  
SOUT  
2N7002  
1M  
10nF  
6801 F15  
Figure 15. Alarm Qualification Filter/Status Indicator  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC6802-1  
Multi-Cell Battery Stack Monitor with a Stackable  
Serial Interface  
Complete Battery Monitoring IC with 0.25% Cell Measurement Accuracy.  
Level-Shifting Serial Interface Allows Multiple LTC6802-1 Devices to be Daisy-  
Chained without Opto-Couplers or Isolators  
LTC6802-2  
Multi-Cell Battery Stack Monitor with an Individually Functionally Equivalent to LTC6802-1: Parallel Connection Between  
Addressable Serial Interface Microcontroller and Multiple LTC6802-2 Devices  
6801p  
LT 1209 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY