LTC6910-X [Linear]

Precision, 100μA Gain Selectable Amplifier; 精密, 100μA增益可选放大器器
LTC6910-X
型号: LTC6910-X
厂家: Linear    Linear
描述:

Precision, 100μA Gain Selectable Amplifier
精密, 100μA增益可选放大器器

放大器
文件: 总28页 (文件大小:758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1991  
Precision, 100µA  
Gain Selectable Amplifier  
FEATURES  
DESCRIPTION  
The LT®1991 combines a precision operational amplifier  
with eight precision resistors to form a one-chip solution  
for accurately amplifying voltages. Gains from –13 to 14  
with a gain accuracy of 0.04% can be achieved using no  
externalcomponents.Thedeviceisparticularlywellsuited  
for use as a difference amplifier, where the excellent resis-  
tor matching results in a common mode rejection ratio of  
greater than 75dB.  
n
Pin Configurable as a Difference Amplifier,  
Inverting and Noninverting Amplifier  
Difference Amplifier  
n
Gain Range 1 to 13  
CMRR >75dB  
n
Noninverting Amplifier  
Gain Range 0.07 to 14  
n
Inverting Amplifier  
Gain Range –0.08 to –13  
The amplifier features a 50µV maximum input offset volt-  
age and a gain bandwidth product of 560kHz. The device  
operates from any supply voltage from 2.7V to 36V and  
draws only 100µA supply current on a 5V supply. The  
output swings to within 40mV of either supply rail.  
n
Gain Error <0.04%  
Gain Drift < 3ppm/°C  
n
n
Wide Supply Range: Single 2.7V to Split 18V  
n
Micropower: 100µA Supply Current  
n
Precision: 50µV Maximum Input Offset Voltage  
The resistors have excellent matching, 0.04% over tem-  
peratureforthe450kresistors. Thematchingtemperature  
coefficient is guaranteed less than 3ppm/°C. The resis-  
tors are extremely linear with voltage, resulting in a gain  
nonlinearity of less than 10ppm.  
n
560kHz Gain Bandwidth Product  
Rail-to-Rail Output  
n
n
Space Saving 10-Lead MSOP and DFN Packages  
APPLICATIONS  
The LT1991 is fully specified at 5V and 15V supplies  
and from –40°C to 125°C. The device is available in space  
saving 10-lead MSOP and low profile (0.8mm) 3mm ×  
3mm DFN packages.  
n
Handheld Instrumentation  
n
Medical Instrumentation  
n
Strain Gauge Amplifiers  
Differential to Single-Ended Conversion  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Rail-to-Rail Gain = 1 Difference Amplifier  
Distribution of Resistor Matching  
V
= V  
+ ∆V  
REF IN  
OUT  
5V  
40  
35  
30  
25  
20  
15  
10  
5
SWING 40mV TO  
EITHER RAIL  
450k RESISTORS  
LT1991A  
R
<0.1Ω  
OUT  
50k  
150k  
450k  
450k  
4pF  
+
V
M(IN)  
+
∆V  
IN  
450k  
150k  
50k  
V
LT1991  
P(IN)  
450k  
INPUT RANGE  
–0.5V TO 5.1V  
R
= 900kΩ  
IN  
0
4pF  
0
–0.04  
–0.02  
0.02  
0.04  
RESISTOR MATCHING (%)  
V
REF  
= 2.5V  
1991 TA01  
1991 TA01b  
1991fh  
1
LT1991  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Specified Temperature Range (Note 5)  
+
Total Supply Voltage (V to V ) ................................40V  
Input Voltage (Pins P1/M1, Note 2) ........................ 60V  
Input Voltage  
LT1991C...............................................–40°C to 85°C  
LT1991I................................................–40°C to 85°C  
LT1991H............................................. –40°C to 125°C  
Maximum Junction Temperature  
+
(Other Inputs Note 2) ..................V + 0.2V to V – 0.2V  
Output Short-Circuit Duration (Note 3) ........... Indefinite  
Operating Temperature Range (Note 4)  
DD Package ......................................................... 125°C  
MS Package ......................................................... 150°C  
Storage Temperature Range  
DD Package ........................................... –65°C to 125°C  
MS Package........................................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ..................300°C  
LT1991C...............................................–40°C to 85°C  
LT1991I................................................–40°C to 85°C  
LT1991H............................................. –40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
P1  
P3  
P9  
1
2
3
4
5
10 M1  
P1  
P3  
P9  
EE  
REF  
1
2
3
4
5
10 M1  
9
8
7
6
M3  
M9  
9
8
7
6
M3  
M9  
CC  
OUT  
V
EE  
V
V
V
CC  
REF  
OUT  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, q = 230°C/W  
JA  
JMAX  
EXPOSED PAD CONNECTED TO V PCB  
EE  
CONNECTION OPTIONAL  
T
JMAX  
= 125°C, q = 43°C/W  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1991CDD#PBF  
LT1991ACDD#PBF  
LT1991IDD#PBF  
LT1991AIDD#PBF  
LT1991HDD#PBF  
LT1991CMS#PBF  
LT1991ACMS#PBF  
LT1991IMS#PBF  
LT1991AIMS#PBF  
LT1991HMS#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTCT1991CDD#TRPBF  
LT1991ACDD#TRPBF  
LT1991IDD#TRPBF  
LT1991AIDD#TRPBF  
LT1991HDD#TRPBF  
LT1991CMS#TRPBF  
LT1991ACMS#TRPBF  
LT1991IMS#TRPBF  
LT1991AIMS#TRPBF  
LT1991HMS#TRPBF  
LBMM  
LBMM  
LBMM  
LBMM  
LBMM  
LTQD  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTQD  
10-Lead Plastic MSOP  
0°C to 70°C  
LTQD  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
LTQD  
10-Lead Plastic MSOP  
LTQD  
10-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1991fh  
2
LT1991  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the operating  
temperature range of 0°C to 70°C for C-grade parts and –40°C to 85°C for I-grade parts, otherwise specifications are at TA = 25°C.  
Difference amplifier configuration, VS = 5V, 0V or 15V; VCM = VREF = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 15V, V  
MIN  
TYP  
MAX  
UNITS  
∆G  
Gain Error  
= 10V; R = 10k  
OUT L  
S
l
l
l
l
G = 1; LT1991A  
G = 1; LT1991  
0.04  
0.08  
0.06  
0.12  
%
%
%
%
G = 3 or 9; LT1991A  
G = 3 or 9; LT1991  
l
l
GNL  
Gain Nonlinearity  
V = 15V; V  
=
=
10V; R = 10k  
1
10  
3
ppm  
S
OUT  
L
∆G/∆T  
CMRR  
Gain Drift vs Temperature (Note 6)  
V = 15V; V  
10V; R = 10k  
0.3  
ppm/°C  
S
OUT  
L
Common Mode Rejection Ratio,  
Referred to Inputs (RTI)  
V = 15V; V  
=
15.2V  
S
CM  
l
l
l
l
G = 9; LT1991A  
G = 3; LT1991A  
G = 1; LT1991A  
80  
75  
75  
60  
100  
93  
90  
70  
dB  
dB  
dB  
dB  
Any Gain; LT1991  
V
Input Voltage Range (Note 7)  
P1/M1 Inputs  
CM  
l
l
l
V = 15V; V = 0V  
–28  
–0.5  
0.75  
27.6  
5.1  
2.35  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
REF  
V = 3V, 0V; V = 1.25V  
S
P1/M1 Inputs, P9/M9 Connected to REF  
V = 15V; V = 0V  
l
l
l
–60  
–14  
–1.5  
60  
16.8  
7.3  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
P3/M3 Inputs  
l
l
l
V = 15V; V = 0V  
–15.2  
0.5  
0.95  
15.2  
4.2  
1.95  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
REF  
V = 3V, 0V; V = 1.25V  
S
P9/M9 Inputs  
l
l
l
V = 15V; V = 0V  
–15.2  
0.85  
1.0  
15.2  
3.9  
1.9  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
REF  
V = 3V, 0V; V = 1.25V  
S
V
Op Amp Offset Voltage (Note 8)  
LT1991AMS, V = 5V, 0V  
15  
15  
25  
25  
50  
µV  
µV  
OS  
S
l
l
l
135  
LT1991AMS, V = 15V  
80  
160  
µV  
µV  
S
LT1991MS  
LT1991DD  
100  
200  
µV  
µV  
150  
250  
µV  
µV  
l
l
∆V /∆T  
Op Amp Offset Voltage Drift (Note 6)  
Op Amp Input Bias Current (Note 11)  
0.3  
2.5  
1
µV/°C  
OS  
IB  
5
7.5  
nA  
nA  
l
l
l
I
OS  
Op Amp Input Offset Current (Note 11) LT1991A  
LT1991  
50  
50  
500  
750  
pA  
pA  
1000  
1500  
pA  
pA  
Op Amp Input Noise Voltage  
0.01Hz to 1Hz  
0.35  
0.07  
0.25  
0.05  
µV  
P-P  
RMS  
0.01Hz to 1Hz  
0.1Hz to 10Hz  
0.1Hz to 10Hz  
µV  
µV  
RMS  
P-P  
µV  
e
n
Input Noise Voltage Density  
G = 1; f = 1kHz  
G = 9; f = 1kHz  
180  
46  
nV/√Hz  
nV/√Hz  
1991fh  
3
LT1991  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the operating  
temperature range of 0°C to 70°C for C-grade parts and –40°C to 85°C for I-grade parts, otherwise specifications are at TA = 25°C.  
Difference amplifier configuration, VS = 5V, 0V or 15V; VCM = VREF = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
R
IN  
Input Impedance (Note 10)  
P1 (M1 = Ground)  
P3 (M3 = Ground)  
P9 (M9 = Ground)  
630  
420  
350  
900  
600  
500  
1170  
780  
650  
kΩ  
kΩ  
kΩ  
l
l
l
M1 (P1 = Ground)  
M3 (P3 = Ground)  
M9 (P9 = Ground)  
315  
105  
35  
450  
150  
50  
585  
195  
65  
kΩ  
kΩ  
kΩ  
l
l
l
l
∆R  
Resistor Matching (Note 9)  
450k Resistors, LT1991A  
Other Resistors, LT1991A  
450k Resistors, LT1991  
Other Resistors, LT1991  
0.01  
0.02  
0.02  
0.04  
0.04  
0.06  
0.08  
0.12  
%
%
%
%
l
l
∆R/∆T  
PSRR  
Resistor Temperature Coefficient (Note 6) Resistor Matching  
Absolute Value  
0.3  
3
ppm/°C  
ppm/°C  
–30  
l
l
Power Supply Rejection Ratio  
Minimum Supply Voltage  
V = 1.35V to 18V (Note 8)  
S
105  
135  
2.4  
dB  
V
2.7  
V
OUT  
Output Voltage Swing (to Either Rail)  
No Load  
S
V = 5V, 0V  
40  
55  
65  
110  
mV  
mV  
mV  
l
l
V = 5V, 0V  
S
V = 15V  
S
1mA Load  
V = 5V, 0V  
150  
225  
275  
300  
mV  
mV  
mV  
S
l
l
V = 5V, 0V  
S
V = 15V  
S
I
SC  
Output Short-Circuit Current (Sourcing) Drive Output Positive;  
Short Output to Ground  
8
4
12  
21  
mA  
mA  
l
l
Output Short-Circuit Current (Sinking)  
Drive Output Negative;  
Short Output to V or Midsupply  
8
4
mA  
mA  
S
BW  
–3dB Bandwidth  
G = 1  
G = 3  
G = 9  
110  
78  
40  
kHz  
kHz  
kHz  
GBWP  
Op Amp Gain Bandwidth Product  
Rise Time, Fall Time  
f = 10kHz  
560  
kHz  
t , t  
G = 1; 0.1V Step; 10% to 90%  
G = 9; 0.1V Step; 10% to 90%  
3
8
µs  
µs  
r
f
t
Settling Time to 0.01%  
G = 1; V = 5V, 0V; 2V Step  
42  
48  
114  
74  
µs  
µs  
µs  
µs  
s
S
G = 1; V = 5V, 0V; –2V Step  
S
G = 1; V = 15V, 10V Step  
S
G = 1; V = 15V, –10V Step  
S
l
l
SR  
Slew Rate  
V = 5V, 0V; V  
= 1V to 4V  
0.06  
0.08  
0.12  
0.12  
V/µs  
V/µs  
S
OUT  
V = 15V; V  
=
10V; V  
= 5V  
S
OUT  
MEAS  
I
Supply Current  
V = 5V, 0V  
100  
110  
150  
µA  
µA  
s
S
l
l
V = 15V  
S
130  
160  
210  
µA  
µA  
1991fh  
4
LT1991  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the operating  
temperature range of –40°C to 125°C for H-grade parts, otherwise specifications are at TA = 25°C. Difference amplifier configuration,  
VS = 5V, 0V or 15V; VCM = VREF = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
∆G  
Gain Error  
V = 15V, V  
=
10V; R = 10k  
L
S
OUT  
l
l
G = 1  
0.08  
0.12  
%
%
G = 3 or 9  
l
l
GNL  
Gain Nonlinearity  
V = 15V; V  
=
=
10V; R = 10k  
1
10  
3
ppm  
S
OUT  
L
∆G/∆T  
CMRR  
Gain Drift vs Temperature (Note 6)  
V = 15V; V  
10V; R = 10k  
0.3  
ppm/°C  
S
OUT  
L
Common Mode Rejection Ratio,  
Referred to Inputs (RTI)  
V = 15V; V  
=
15.2V  
S
CM  
l
l
l
G = 9  
G = 3  
G = 1  
77  
70  
70  
100  
93  
90  
dB  
dB  
dB  
V
Input Voltage Range (Note 7)  
P1/M1 Inputs  
V = 15V; V = 0V  
CM  
l
l
l
–28  
–0.5  
0.75  
27.6  
5.1  
2.35  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
P1/M1 Inputs, P9/M9 Connected to REF  
V = 15V; V = 0V  
l
l
l
–60  
–14  
–1.5  
60  
16.8  
7.3  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
V = 3V, 0V; V = 1.25V  
S
REF  
P3/M3 Inputs  
l
l
l
V = 15V; V = 0V  
–15.2  
0.5  
0.95  
15.2  
4.2  
1.95  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
REF  
V = 3V, 0V; V = 1.25V  
S
P9/M9 Inputs  
l
l
l
V = 15V; V = 0V  
–15.2  
0.85  
1.0  
15.2  
3.9  
1.9  
V
V
V
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
REF  
V = 3V, 0V; V = 1.25V  
S
V
Op Amp Offset Voltage (Note 8)  
LT1991MS  
25  
25  
100  
285  
µV  
µV  
OS  
l
LT1991DD  
150  
295  
µV  
µV  
l
l
∆V /∆T  
Op Amp Offset Voltage Drift (Note 6)  
Op Amp Input Bias Current (Note 11)  
0.3  
2.5  
1
µV/°C  
OS  
IB  
5
25  
nA  
nA  
l
l
I
OS  
Op Amp Input Offset Current (Note 11)  
Op Amp Input Noise Voltage  
50  
1000  
4500  
pA  
pA  
0.01Hz to 1Hz  
0.01Hz to 1Hz  
0.1Hz to 10Hz  
0.1Hz to 10Hz  
0.35  
0.07  
0.25  
0.05  
µV  
P-P  
RMS  
P-P  
RMS  
µV  
µV  
µV  
e
Input Noise Voltage Density  
Input Impedance (Note 10)  
G = 1; f = 1kHz  
G = 9; f = 1kHz  
180  
46  
nV/√Hz  
nV/√Hz  
n
l
l
l
R
P1 (M1 = Ground)  
P3 (M3 = Ground)  
P9 (M9 = Ground)  
630  
420  
350  
900  
600  
500  
1170  
780  
650  
kΩ  
kΩ  
kΩ  
IN  
l
l
l
M1 (P1 = Ground)  
M3 (P3 = Ground)  
M9 (P9 = Ground)  
315  
105  
35  
450  
150  
50  
585  
195  
65  
kΩ  
kΩ  
kΩ  
l
l
∆R  
Resistor Matching (Note 9)  
450k Resistors  
Other Resistors  
0.02  
0.04  
0.08  
0.12  
%
%
l
l
∆R/∆T  
Resistor Temperature Coefficient (Note 6) Resistor Matching  
Absolute Value  
0.3  
–30  
3
ppm/°C  
ppm/°C  
1991fh  
5
LT1991  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the operating  
temperature range of –40°C to 125°C for H-grade parts, otherwise specifications are at TA = 25°C. Difference amplifier configuration,  
VS = 5V, 0V or 15V; VCM = VREF = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
135  
2.4  
MAX  
UNITS  
dB  
l
l
PSRR  
Power Supply Rejection Ratio  
Minimum Supply Voltage  
Output Voltage Swing (to Either Rail)  
V = 1.35V to 18V (Note 8)  
S
105  
2.7  
V
V
OUT  
No Load  
V = 5V, 0V  
40  
55  
75  
120  
mV  
mV  
mV  
S
l
l
V = 5V, 0V  
S
V = 15V  
S
1mA Load  
V = 5V, 0V  
150  
225  
300  
340  
mV  
mV  
mV  
S
l
l
V = 5V, 0V  
S
V = 15V  
S
I
Output Short-Circuit Current (Sourcing) Drive Output Positive;  
Short Output to Ground  
8
4
12  
21  
mA  
mA  
SC  
l
l
Output Short-Circuit Current (Sinking)  
Drive Output Negative;  
Short Output to V or Midsupply  
8
4
mA  
mA  
S
BW  
–3dB Bandwidth  
G = 1  
G = 3  
G = 9  
110  
78  
40  
kHz  
kHz  
kHz  
GBWP  
Op Amp Gain Bandwidth Product  
Rise Time, Fall Time  
f = 10kHz  
560  
kHz  
t , t  
G = 1; 0.1V Step; 10% to 90%  
G = 9; 0.1V Step; 10% to 90%  
3
8
µs  
µs  
r
f
t
Settling Time to 0.01%  
G = 1; V = 5V, 0V; 2V Step  
42  
48  
114  
74  
µs  
µs  
µs  
µs  
s
S
G = 1; V = 5V, 0V; –2V Step  
S
G = 1; V = 15V, 10V Step  
S
G = 1; V = 15V, –10V Step  
S
l
l
SR  
Slew Rate  
V = 5V, 0V; V  
= 1V to 4V  
0.06  
0.08  
0.12  
0.12  
V/µs  
V/µs  
S
OUT  
V = 15V; V  
=
10V; V  
= 5V  
S
OUT  
MEAS  
I
Supply Current  
V = 5V, 0V  
100  
110  
180  
µA  
µA  
s
S
l
l
V = 15V  
S
130  
160  
250  
µA  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: This parameter is not 100% tested.  
Note 7: Input voltage range is guaranteed by the CMRR test at V = 15V.  
S
For the other voltages, this parameter is guaranteed by design and through  
correlation with the 15V test. See the Applications Information section to  
determine the valid input voltage range under various operating conditions.  
Note 2: The P3/M3 and P9/M9 inputs should not be taken more than 0.2V  
beyond the supply rails. The P1/M1 inputs can withstand 60V if P9/M9  
Note 8: Offset voltage, offset voltage drift and PSRR are defined as  
are grounded and V = 15V (see Applications Information section about  
S
referred to the internal op amp. You can calculate output offset as follows.  
“High Voltage CM Difference Amplifiers”).  
In the case of balanced source resistance, V  
= V NOISEGAIN  
OS  
OS,OUT  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum ratings.  
+ I • 450k + I • 450k • (1– R /R ) where R and R are the total  
OS B P N P N  
resistance at the op amp positive and negative terminal respectively.  
Note 4: Both the LT1991C and LT1991I are guaranteed functional over the  
–40°C to 85°C temperature range. The LTC1991H is guaranteed functional  
over the –40°C to 125°C temperature range.  
Note 9: Applies to resistors that are connected to the inverting inputs.  
Resistor matching is not tested directly, but is guaranteed by the gain  
error test.  
Note 5: The LT1991C is guaranteed to meet the specified performance  
from 0°C to 70°C and is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but is not tested or QA sampled  
at these temperatures. The LT1991I is guaranteed to meet specified  
performance from –40°C to 85°C. The LT1991H is guaranteed to meet  
specified performance from –40°C to 125°C.  
Note 10: Input impedance is tested by a combination of direct  
measurements and correlation to the CMRR and gain error tests.  
Note 11: I and I are tested at V = 5V, 0V only.  
B
OS  
S
1991fh  
6
LT1991  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Difference Amplifier Configuration)  
Output Voltage Swing  
Output Voltage Swing  
Supply Current vs Supply Voltage  
vs Temperature  
vs Load Current (Output Low)  
V
200  
175  
150  
125  
100  
75  
CC  
1400  
1200  
1000  
800  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
NO LOAD  
–20  
–40  
–60  
OUTPUT HIGH  
(RIGHT AXIS)  
T
= 85°C  
T
= 85°C  
A
A
T
= 25°C  
A
T
= –40°C  
A
T
= 25°C  
A
600  
60  
40  
20  
T
= –40°C  
A
400  
50  
OUTPUT LOW  
(LEFT AXIS)  
200  
25  
V
EE  
V
EE  
0
–25  
0
25  
50  
75  
125  
5
6
7
8
9
10  
–50  
100  
0
0
2
4
6
8
10 12 14 16 18 20  
1
2
3
4
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE ( Vꢀ  
1991 G02  
1991 G03  
1991 G01  
Output Voltage Swing  
vs Load Current (Output High)  
Output Short-Circuit Current  
vs Temperature  
Input Offset Voltage  
vs Difference Gain  
25  
20  
15  
10  
5
150  
100  
50  
V
CC  
V = 5V, 0V  
S
V
= 5V, 0V  
V
S
= 5V, 0V  
S
REPRESENTATIVE PARTS  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
SINKING  
T
= –40°C  
A
T
= 85°C  
T
A
= 25°C  
A
0
SOURCING  
–50  
–100  
–150  
0
–50  
4
0
1
2
3
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
25  
50  
75 100 125  
–25  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
GAIN (V/V)  
1991 G06  
1991 G04  
1991 G05  
Output Offset Voltage  
vs Difference Gain  
Gain Error vs Load Current  
Slew Rate vs Temperature  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1000  
750  
0.04  
0.03  
0.02  
0.01  
0
V
= 5V, 0V  
GAIN = 1  
GAIN = 1  
S
REPRESENTATIVE PARTS  
V
V
A
=
OUT  
15V  
10V  
= 25°C  
V
V
=
OUT  
15V  
= 10V  
S
S
=
T
500  
250  
SR (FALLING EDGE)  
0
+
SR (RISING EDGE)  
–250  
–500  
–750  
–1000  
–0.01  
–0.02  
–0.03  
–0.04  
REPRESENTATIVE UNITS  
50  
TEMPERATURE (°C)  
100 125  
1991 G09  
1
2
4
–50 –25  
0
25  
75  
0
5
1
2
3
4
5
6
7
8
9
10 11 12 13  
3
GAIN (V/V)  
LOAD CURRENT (mA)  
1991 G07  
1991 G08  
1991fh  
7
LT1991  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Difference Amplifier Configuration)  
Bandwidth vs Gain  
CMRR vs Frequency  
PSRR vs Frequency  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
120  
100  
80  
60  
40  
20  
0
V
T
= 5V, 0V  
V
T
= 5V, 0V  
= 25°C  
S
A
V
T
= 5V, 0V  
= 25°C  
S
A
S
A
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
GAIN = 9  
GAIN = 1  
= 25°C  
GAIN = 3  
GAIN = 9  
GAIN = 1  
GAIN = 3  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
2
3
4
5
6
7
8
9
10 11 12 13  
FREQUENCY (Hz)  
GAIN SETTING (V/V)  
1991 G11  
1991 G12  
1991 G10  
Output Impedance vs Frequency  
CMRR vs Temperature  
Gain Error vs Temperature  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
1000  
100  
10  
120  
100  
80  
60  
40  
20  
0
V
T
= 5V, 0V  
= 25°C  
GAIN = 1  
GAIN = 1  
S
A
V
= 15V  
V
= 15V  
S
S
GAIN = 9  
GAIN = 3  
GAIN = 1  
1
0.1  
0.01  
REPRESENTATIVE UNITS  
REPRESENTATIVE UNITS  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1991 G13  
1991 G15  
1991 G14  
Gain vs Frequency  
Gain and Phase vs Frequency  
0.01Hz to 1Hz Voltage Noise  
30  
20  
2
1
V
A
= 5V, 0V  
= 25°C  
S
V
= 5V, 0V  
= 25°C  
S
V
= ±±1V  
= 21°C  
S
A
PHASE  
GAIN  
T
0
T
A
T
GAIN = 9  
GAIN = 3  
GAIN = 1  
MEASURED IN G =±3  
REFERRED TO OP AMP INPUTS  
0
–45  
–90  
–135  
–180  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
10  
GAIN = 1  
0
–10  
–20  
1
10  
100  
600  
0.5  
1
10  
100  
400  
0
±0 20 30 40 10 60 70 80 90 ±00  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TIME (s)  
1991 G16  
1991 G17  
±99± G2±  
1991fh  
8
LT1991  
TYPICAL PERFORMANCE CHARACTERISTICS  
Small Signal Transient Response  
Small Signal Transient Response  
Small Signal Transient Response  
GAIN = 3  
GAIN = 9  
GAIN = 1  
50mV/DIV  
50mV/DIV  
50mV/DIV  
1991 G19  
1991 G20  
1991 G18  
5µs/DIV  
5µs/DIV  
5µs/DIV  
PIN FUNCTIONS  
P1(Pin1):NoninvertingGain-of-1input. Connectsa450k  
internal resistor to the op amp’s noninverting input.  
(Difference Amplifier Configuration)  
OUT (Pin 6): Output. V  
= V + 1 • (V – V ) + 3 •  
OUT REF P1 M1  
(V – V ) + 9 • (V – V ).  
P3 M3 P9 M9  
P3(Pin2):NoninvertingGain-of-3input. Connectsa150k  
internal resistor to the op amp’s noninverting input.  
V
(Pin 7): Positive Power Supply. Can be anything from  
CC  
2.7V to 36V above the V voltage.  
EE  
P9 (Pin 3): Noninverting Gain-of-9 input. Connects a 50k  
internal resistor to the op amp’s noninverting input.  
M9 (Pin 8): Inverting Gain-of-9 input. Connects a 50k  
internal resistor to the op amp’s inverting input.  
V (Pin 4): Negative Power Supply. Can be either ground  
M3 (Pin 9): Inverting Gain-of-3 input. Connects a 150k  
EE  
(in single supply applications), or a negative voltage (in  
internal resistor to the op amp’s inverting input.  
split supply applications).  
M1 (Pin 10): Inverting Gain-of-1 input. Connects a 450k  
internal resistor to the op amp’s inverting input.  
REF (Pin 5): Reference Input. Sets the output level when  
differencebetweeninputsiszero.Connectsa450kinternal  
resistor to the op amp’s noninverting input.  
Exposed Pad: Must be soldered to PCB.  
BLOCK DIAGRAM  
M1 M3 M9  
V
OUT  
6
CC  
10  
9
8
7
50k  
450k  
4pF  
150k  
450k  
450k  
INM  
INP  
OUT  
LT1991  
150k  
450k  
50k  
4pF  
1
2
3
4
5
1991 BD  
P1  
P3  
P9  
V
REF  
EE  
1991fh  
9
LT1991  
APPLICATIONS INFORMATION  
Introduction  
admittances. Because it has 9 times the admittance, the  
voltage applied to the P9 input has 9 times the effect of  
the voltage applied to the P1 input.  
TheLT1991maybethelastopampyoueverhavetostock.  
Because it provides you with several precision matched  
resistors, you can easily configure it into several different  
classicalgaincircuitswithoutaddingexternalcomponents.  
The several pages of simple circuits in this data sheet  
demonstrate just how easy the LT1991 is to use. It can  
be configured into difference amplifiers, as well as into  
inverting and noninverting single ended amplifiers. The  
fact that the resistors and op amp are provided together  
in such a small package will often save you board space  
and reduce complexity for easy probing.  
Bandwidth  
The bandwidth of the LT1991 will depend on the gain you  
select (or more accurately the noise gain resulting from  
the gain you select). In the lowest configurable gain of 1,  
the –3dB bandwidth is limited to 450kHz, with peaking of  
about 2dB at 280kHz. In the highest configurable gains,  
bandwidth is limited to 32kHz.  
Input Noise  
The Op Amp  
The LT1991 input noise is dominated by the Johnson  
noise of the internal resistors (√4kTR). Paralleling all  
four resistors to the +input gives a 32.1kΩ resistance,  
for 23nV/√Hz of voltage noise. The equivalent network  
on the –input gives another 23nV/√Hz , and taking their  
RMSsumgivesatotal33nV/√Hzinputreferrednoisefloor.  
Output noise depends on configuration and noise gain.  
The op amp internal to the LT1991 is a precision device  
with1Vtypicaloffsetvoltageand3nAinputbiascurrent.  
The input offset current is extremely low, so matching the  
source resistance seen by the op amp inputs will provide  
for the best output accuracy. The op amp inputs are not  
rail-to-rail, but extend to within 1.2V of V and 1V of  
CC  
V . For many configurations though, the chip inputs will  
EE  
Input Resistance  
function rail-to-rail because of effective attenuation to the  
+input. The output is truly rail-to-rail, getting to within  
40mV of the supply rails. The gain bandwidth product of  
the op amp is about 560kHz. In noise gains of 2 or more,  
itisstableintocapacitiveloadsupto500pF. Innoisegains  
below 2, it is stable into capacitive loads up to 100pF.  
The LT1991 input resistances vary with configuration,  
but once configured are apparent on inspection. Note that  
resistors connected to the op amp’s –input are looking  
intoavirtualground, sotheysimplyparallel. Anyfeedback  
resistancearound the opamp does not contribute to input  
resistance. Resistors connected to the op amp’s +input  
are looking into a high impedance, so they add as paral-  
lel or series depending on how they are connected, and  
whether or not some of them are grounded. The op amp  
+input itself presents a very high GΩ impedance. In the  
classical noninverting op amp configuration, the LT1991  
presents the high input impedance of the op amp, as is  
usual for the noninverting case.  
The Resistors  
The resistors internal to the LT1991 are very well matched  
SiChrome based elements protected with barrier metal.  
Although their absolute tolerance is fairly poor ( 30%),  
their matching is to within 0.04%. This allows the chip to  
achieve a CMRR of 75dB, and gain errors within 0.04%.  
The resistor values are 50k, 150k, and 2 of 450k, con-  
nected to each of the inputs. The resistors have power  
limitations of 1watt for the 450k resistors, 0.3watt for the  
150k resistors and 0.5watt for the 50k resistors; however,  
in practice, power dissipation will be limited well below  
these values by the maximum voltage allowed on the  
input and REF pins. The 450k resistors connected to the  
M1 and P1 inputs are isolated from the substrate, and can  
thereforebetakenbeyondthesupplyvoltages.Thenaming  
of the pins “P1,” “P3,” “P9,” etc., is based on their relative  
Common Mode Input Voltage Range  
The LT1991 valid common mode input range is limited  
by three factors:  
1. Maximum allowed voltage on the pins  
2. The input voltage range of the internal op amp  
3. Valid output voltage  
1991fh  
10  
LT1991  
APPLICATIONS INFORMATION  
The maximum voltage allowed on the P3, M3, P9, and as a gain of 13 difference amplifier on a single supply  
M9 inputs includes the positive and negative supply plus with the output REF connected to ground. This is a great  
a diode drop. These pins should not be driven more than circuit, but it does not support V = 0V at any common  
DM  
0.2V outside of the supply rails. This is because they are mode because the output clips into ground while trying  
connected through diodes to internal manufacturing post- to produce 0V . It can be fixed simply by declaring the  
OUT  
package trim circuitry, and through a substrate diode to valid input differential range not to extend below +4mV,  
V . If more than 10mA is allowed to flow through these or by elevating the REF pin above 40mV, or by providing  
EE  
pins, there is a risk that the LT1991 will be detrimmed or a negative supply.  
damaged. The P1 and M1 inputs do not have clamp diodes  
Calculating Input Voltage Range  
or substrate diodes or trim circuitry and can be taken well  
outside the supply rails. The maximum allowed voltage on  
the P1 and M1 pins is 60V.  
Figure 2 shows the LT1991 in the generalized case of  
a difference amplifier, with the inputs shorted for the  
common mode calculation. The values of R and R are  
dictated by how the P inputs and REF pin are connected.  
By superposition we can write:  
The input voltage range of the internal op amp extends  
F
G
to within 1.2V of V and 1V of V . The voltage at which  
CC  
EE  
the op amp inputs common mode is determined by the  
voltage at the op amp’s +input, and this is determined by  
the voltages on pins P1, P3, P9 and REF (see “Calculating  
Input Voltage Range” section). This is true provided that  
the op amp is functioning and feedback is maintaining the  
inputs at the same voltage, which brings us to the third  
requirement.  
V
= V • (R /(R + R )) + V • (R /(R + R ))  
INT  
EXT  
F
F
G
REF  
G
F
G
Or, solving for V  
:
EXT  
V
EXT  
= V • (1 + R /R ) – V R /R  
INT G F REF G  
F
But valid V voltages are limited to V – 1.2V and V  
INT  
CC  
EE  
+ 1V, so:  
For valid circuit function, the op amp output must not be  
clipped.Theoutputwillclipiftheinputsignalsareattempt-  
ing to force it to within 40mV of its supply voltages. This and:  
usually happens due to too large a signal level, but it can  
also occur with zero input differential and must therefore  
be included as an example of a common mode problem.  
Consider Figure 1. This shows the LT1991 configured  
MAX V = (V – 1.2) • (1 + R /R ) – V R /R  
EXT  
CC  
G
F
REF  
G
F
MIN V = (V + 1) • (1 + R /R ) – V R /R  
F
EXT  
EE  
G
F
REF  
G
R
F
5V  
V
CC  
R
R
G
7
+
50k  
450k  
8
V
EXT  
V
INT  
4pF  
150k  
450k  
9
G
V
EE  
V
REF  
10  
R
F
1991 F02  
+
6
5
V
DM  
0V  
V
= 13 • V  
DM  
OUT  
Figure 2. Calculating CM Input Voltage Range  
450k  
150k  
50k  
+
1
2
3
V
CM  
2.5V  
4pF  
These two voltages represent the high and low extremes  
of the common mode input range, if the other limits have  
not already been exceeded (1 and 3, above). In most  
cases, the inverting inputs M1 through M9 can be taken  
further than these two extremes because doing this does  
not move the op amp input common mode. To calculate  
450k  
REF  
LT1991  
1991 F01  
4
Figure 1. Difference Amplifier Cannot Produce  
0V on a Single Supply. Provide a Negative  
Supply, or Raise Pin 5, or Provide 4mV of VDM  
the limit on this additional range, see Figure 3. Note that,  
1991fh  
11  
LT1991  
APPLICATIONS INFORMATION  
with V  
= 0, the op amp output is at V . From the  
representation of the circuit on the top. The LT1991 is  
shown on the bottom configured in a precision gain  
of 5.5. One of the benefits of the noninverting op amp  
configuration is that the input impedance is extremely  
high. The LT1991 maintains this benefit. Given the finite  
number of available feedback resistors in the LT1991, the  
number of gain configurations is also finite. The complete  
list of such Hi-Z input noninverting gain configurations is  
shown in Table 1. Many of these are also represented in  
Figure 5 in schematic form. Note that the P-side resistor  
inputs have been connected so as to match the source  
impedance seen by the internal op amp inputs. Note also  
thatgainandnoisegainareidentical,foroptimalprecision.  
MORE  
REF  
max V (the high cm limit), as V  
goes positive, the  
EXT  
MORE  
op amp output will go more negative from V  
amount V  
by the  
REF  
R /R , so:  
MORE  
F
G
V
= V – V  
R /R  
MORE F G  
OUT  
REF  
Or:  
V
= (V – V ) • R /R  
REF OUT G F  
MORE  
The most negative that V  
can go is V + 0.04V, so:  
EE  
OUT  
Max V  
= (V – V – 0.04V) • R /R  
REF EE G F  
MORE  
(should be positive)  
The situation where this function is negative, and there-  
fore problematic, when V = 0 and V = 0, has already  
REF  
EE  
R
F
been dealt with in Figure 1. The strength of the equation  
is demonstrated in that it provides the three solutions  
R
G
suggested in Figure 1: raise V , lower V , or provide  
REF  
EE  
+
some negative V  
.
MORE  
V
OUT  
V
IN  
Likewise, from the lower common mode extreme, mak-  
ing the negative input more negative will raise the output  
V
= GAIN • V  
OUT  
IN  
G
GAIN = 1 + R /R  
F
CLASSICAL NONINVERTING OP AMP CONFIGURATION.  
YOU PROVIDE THE RESISTORS.  
voltage, limited by V – 0.04V.  
CC  
MIN V  
= (V – V + 0.04V) • R /R  
MORE  
REF  
CC  
G
F
(should be negative)  
R
F
50k  
450k  
4pF  
8
V
150k  
450k  
CC  
9
R
R
G
G
V
+
MORE  
10  
+
V
INT  
V
6
EXT  
V
OUT  
MAX OR MIN  
450k  
150k  
50k  
1
2
3
V
EE  
V
REF  
4pF  
R
1991 F03  
F
Figure 3. Calculating Additional  
Voltage Range of Inverting Inputs  
450k  
LT1991  
5
V
IN  
Again, the additional input range calculated here is only  
available provided the other remaining constraint is not  
violated, the maximum voltage allowed on the pin.  
CLASSICAL NONINVERTING OP AMP CONFIGURATION  
IMPLEMENTED WITH LT1991. R = 225k, R = 50k, GAIN = 5.5.  
F
G
GAIN IS ACHIEVED BY GROUNDING, FLOATING OR FEEDING BACK  
THE AVAILABLE RESISTORS TO ARRIVE AT DESIRED R AND R .  
F
G
The Classical Noninverting Amplifier: High Input Z  
1991 F04  
WE PROVIDE YOU WITH <0.1% RESISTORS.  
Perhaps the most common op amp configuration is the  
noninverting amplifier. Figure 4 shows the textbook  
Figure 4. The LT1991 as a Classical Noninverting Op Amp  
1991fh  
12  
LT1991  
APPLICATIONS INFORMATION  
Table 1. Configuring the M Pins for Simple Noninverting Gains.  
The P Inputs are driven as shown in the examples on the  
next page  
M9, M3, M1 Connection  
Gain  
1
M9  
M3  
M1  
Output  
Output  
Output  
Float  
Output  
Output  
Float  
Output  
Ground  
Ground  
Ground  
Output  
Float  
1.077  
1.1  
1.25  
1.273  
1.3  
1.4  
2
Output  
Ground  
Ground  
Ground  
Float  
Output  
Output  
Output  
Float  
Ground  
Ground  
Output  
Output  
Float  
2.5  
2.8  
3.25  
3.5  
4
Float  
Ground  
Output  
Output  
Output  
Ground  
Ground  
Float  
Ground  
Ground  
Ground  
Float  
Ground  
Float  
5
Float  
Ground  
Output  
Output  
Float  
5.5  
7
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Float  
10  
11  
Float  
Ground  
Float  
13  
Ground  
Ground  
14  
Ground  
1991fh  
13  
LT1991  
APPLICATIONS INFORMATION  
+
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
V
V
V
CC  
CC  
CC  
6
6
6
6
6
6
6
6
6
LT1991  
V
V
V
LT1991  
V
V
V
LT1991  
V
V
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
REF  
5
V
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
IN  
V
V
V
EE  
EE  
EE  
V
V
IN  
IN  
4
4
4
V
S
V
S
V
S
GAIN = 1  
GAIN = 2  
GAIN = 3.25  
+
V
+
+
7
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
V
CC  
V
CC  
V
CC  
LT1991  
LT1991  
LT1991  
OUT  
REF  
5
OUT  
REF  
5
1
2
3
1
2
3
1
2
3
REF  
5
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
S
V
S
V
V
V
IN  
IN  
IN  
GAIN = 4  
GAIN = 5  
GAIN = 5.5  
+
7
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
V
CC  
V
CC  
V
CC  
LT1991  
LT1991  
LT1991  
OUT  
REF  
5
OUT  
REF  
5
1
2
3
1
2
3
1
2
3
REF  
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
V
V
V
EE  
EE  
EE  
V
V
IN  
IN  
4
4
4
V
S
V
S
V
S
V
IN  
GAIN = 7  
GAIN = 10  
GAIN = 11  
+
+
V
S
V
S
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
V
V
CC  
CC  
6
6
LT1991  
V
LT1991  
V
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
REF  
REF  
5
P1  
P3  
P9  
P1  
P3  
P9  
5
V
V
EE  
EE  
V
IN  
4
4
V
S
V
S
V
IN  
1991 F05  
GAIN = 13  
GAIN = 14  
Figure 5. Some Implementations of Classical Noninverting  
Gains Using the LT1991. High Input Z Is Maintained  
1991fh  
14  
LT1991  
APPLICATIONS INFORMATION  
Attenuation Using the P Input Resistors  
Table 2. Configuring the P Pins for Various Attenuations.  
Those Shown in Bold Are Functional Even When the Input Drive  
Exceeds the Supplies.  
Attenuation happens as a matter of fact in difference  
amplifier configurations, but it is also used for reducing  
peak signal level or improving input common mode range  
even in single ended systems. When signal conditioning  
indicates a need for attenuation, the LT1991 resistors are  
ready at hand. The four precision resistors can provide  
several attenuation levels, and these are tabulated in  
Table 2 as a design reference.  
P9, P3, P1, REF Connection  
A
P9  
P3  
P1  
Drive  
Drive  
Drive  
Drive  
Drive  
Drive  
Drive  
Ground  
Float  
REF  
0.0714  
0.0769  
0.0909  
0.1  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Float  
Ground  
Ground  
Float  
Ground  
Float  
Ground  
Float  
Float  
0.143  
0.182  
0.2  
Ground  
Float  
Drive  
Drive  
Ground  
Drive  
Ground  
Ground  
Ground  
Float  
V
IN  
V
V
0.214  
0.231  
0.25  
0.286  
0.308  
0.357  
0.4  
Ground  
Ground  
Float  
456k  
156k  
56k  
IN  
INT  
1
2
3
R
R
OKAY UP  
TO ±±6V  
+
A
Drive  
4pF  
V
INT  
Ground  
Drive  
Drive  
Drive  
Drive  
Drive  
Drive  
Drive  
Ground  
Ground  
Float  
G
V
= A • V  
IN  
INT  
A = R /(R + R )  
Ground  
Ground  
Ground  
Float  
Ground  
Float  
456k  
G
A
G
LT1991  
Drive  
5
Drive  
Drive  
CLASSICAL ATTENUATOR  
LT1991 ATTENUATING TO THE +INPUT BY  
DRIVING AND GROUNDING AND FLOATING  
Ground  
Float  
Drive  
INPUTS R = 456k, R = 56k, SO A = 6.1.  
A
G
0.5  
Float  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Float  
1991 F6±  
0.6  
Float  
Drive  
Figure 6. LT1991 Provides for Easy Attenuation to the Op Amp’s  
+Input. The P1 Input Can Be Taken Well Outside of the Supplies  
0.643  
0.692  
0.714  
0.75  
Drive  
Ground  
Ground  
Ground  
Drive  
Drive  
Becausetheattenuationsandthenoninvertinggainsareset  
independently, they can be combined. This provides high  
gain resolution, about 340 unique gains between 0.077  
and 14, as plotted in Figure 7. This is too large a number  
to tabulate, but the designer can calculate achievable gain  
by taking the vector product of the gains and attenuations  
in Tables 1 and 2, and seeking the best match. Average  
gain resolution is 1.5%, with a worst-case of 7%.  
Drive  
Drive  
Float  
Float  
0.769  
0.786  
0.8  
Drive  
Ground  
Ground  
Drive  
Drive  
Drive  
Drive  
Ground  
Ground  
Float  
Drive  
Drive  
Float  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Drive  
0.818  
0.857  
0.9  
Drive  
Float  
Drive  
Drive  
Drive  
Float  
100  
0.909  
0.923  
0.929  
1
Drive  
Float  
Drive  
Float  
Drive  
Drive  
10  
Drive  
Drive  
Drive  
Drive  
Drive  
Drive  
1
0.1  
0.01  
50  
100  
150  
200  
COUNT  
300  
0
250  
350  
1991 F07  
Figure 7. Over 346 Unique Gain Settings Achievable with the  
LT1991 by Combining Attenuation with Noninverting Gain  
1991fh  
15  
LT1991  
APPLICATIONS INFORMATION  
Inverting Configuration  
Table 3. Configuring the M Pins for Simple Inverting Gains  
M9, M3, M1 Connection  
The inverting amplifier, shown in Figure 8, is another clas-  
sical op amp configuration. The circuit is actually identical  
to the noninverting amplifier of Figure 4, except that V  
and GND have been swapped. The list of available gains  
is shown in Table 3, and some of the circuits are shown  
in Figure 9. Noise gain is 1+|Gain|, as is the usual case for  
inverting amplifiers. Again, for the best DC performance,  
match the source impedance seen by the op amp inputs.  
Gain  
–0.077  
–0.1  
–0.25  
–0.273  
–0.3  
–0.4  
–1  
M9  
Output  
Output  
Float  
M3  
Output  
Float  
M1  
Drive  
Drive  
Drive  
Output  
Float  
IN  
Output  
Drive  
Drive  
Drive  
Float  
Output  
Output  
Output  
Float  
Drive  
Drive  
Output  
Output  
Float  
R
F
–1.5  
–1.8  
–2.25  
–2.5  
–3  
Float  
Drive  
Output  
Output  
Output  
Drive  
Drive  
Float  
Drive  
Drive  
Drive  
Float  
R
G
V
+
IN  
Drive  
Float  
V
OUT  
V
= GAIN • V  
IN  
–4  
Float  
Drive  
Output  
Output  
Float  
OUT  
GAIN = – R /R  
F
G
–4.5  
–6  
Drive  
Drive  
Drive  
Drive  
Drive  
Drive  
CLASSICAL INVERTING OP AMP CONFIGURATION.  
YOU PROVIDE THE RESISTORS.  
Drive  
Float  
–9  
–10  
Float  
Drive  
Float  
–12  
Drive  
Drive  
50k  
450k  
4pF  
8
9
V
IN  
–13  
Drive  
(DRIVE)  
150k  
450k  
10  
+
6
V
OUT  
450k  
150k  
50k  
1
2
3
4pF  
450k  
LT1991  
5
CLASSICAL INVERTING OP AMP CONFIGURATION IMPLEMENTED  
WITH LT1991. R = 225k, R = 50k, GAIN = –4.5.  
F
G
GAIN IS ACHIEVED BY GROUNDING, FLOATING OR FEEDING BACK  
THE AVAILABLE RESISTORS TO ARRIVE AT DESIRED R AND R .  
F
G
1991 F08  
WE PROVIDE YOU WITH <0.1% RESISTORS.  
Figure 8. The LT1991 as a Classical Inverting Op Amp.  
Note the Circuit Is Identical to the Noninverting Amplifier,  
Except that VIN and Ground Have Been Swapped  
1991fh  
16  
LT1991  
APPLICATIONS INFORMATION  
+
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
IN  
7
7
V
V
V
CC  
CC  
CC  
V
V
IN  
IN  
6
6
6
6
6
6
6
LT1991  
V
V
V
LT1991  
V
V
V
LT1991  
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
REF  
5
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
S
V
S
GAIN = –0.25  
GAIN = –1  
GAIN = –2.25  
+
V
+
+
7
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
IN  
7
7
V
IN  
V
CC  
V
CC  
V
CC  
V
IN  
6
LT1991  
LT1991  
LT1991  
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
REF  
5
OUT  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
S
V
S
GAIN = –3  
GAIN = –4  
GAIN = –4.5  
+
7
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
V
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
IN  
IN  
IN  
7
V
CC  
V
CC  
V
CC  
6
LT1991  
LT1991  
LT1991  
V
OUT  
REF  
5
OUT  
REF  
5
OUT  
REF  
5
OUT  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
V
V
V
EE  
EE  
EE  
4
4
4
V
S
V
S
V
S
GAIN = –6  
GAIN = –9  
GAIN = –10  
+
+
V
S
V
S
8
9
10  
8
9
10  
V
M9  
M3  
M1  
M9  
M3  
M1  
IN  
7
7
V
V
CC  
CC  
V
IN  
6
6
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
REF  
5
P1  
P3  
P9  
P1  
P3  
P9  
5
V
V
EE  
EE  
4
4
V
S
V
S
1991 F09  
GAIN = –12  
GAIN = –13  
Figure 9. It Is Simple to Get Precision Inverting Gains with the LT1991.  
Input Impedance Varies from 45kΩ (Gain = –13) to 450kΩ (Gain = –1)  
1991fh  
17  
LT1991  
APPLICATIONS INFORMATION  
Difference Amplifiers  
R
F
The resistors in the LT1991 allow it to easily make differ-  
ence amplifiers also. Figure 10 shows the basic 4-resistor  
difference amplifier and the LT1991. A difference gain of  
3 is shown, but notice the effect of the additional dashed  
connections. By connecting the 450k resistors in paral-  
lel, the gain is reduced by a factor of 2. Of course, with  
so many resistors, there are many possible gains. Table  
4 shows the difference gains and how they are achieved.  
Note that, as for inverting amplifiers, the noise gain is 1  
more than the signal gain.  
R
R
G
+
V
V
+
IN  
IN  
V
OUT  
G
V
= GAIN • (V + – V  
)
IN  
OUT  
IN  
GAIN = R /R  
R
F
G
F
CLASSICAL DIFFERENCE AMPLIFIER USING THE LT1991  
50k  
450k  
4pF  
8 M9  
Table 4. Connections Giving Difference Gains for the LT1991  
150k  
450k  
M3  
9
V
IN  
+
Gain  
0.077  
0.1  
0.25  
0.273  
0.3  
0.4  
1
V
IN  
V
Output  
M3, M9  
M9  
GND (REF)  
P3, P9  
P9  
IN  
10 M1  
P1  
P1  
M1  
M1  
+
PARALLEL  
TO CHANGE  
R , R  
6
5
V
OUT  
450k  
150k  
50k  
1
2
3
F
G
P1  
P3  
P9  
P1  
M1  
M3  
P3  
4pF  
P3  
M3  
M1, M9  
M9  
P1, P9  
P9  
+
V
IN  
P3  
M3  
450k  
P1, P3  
P1  
M1, M3  
M1  
M9  
P9  
LT1991  
1.5  
1.8  
2.25  
2.5  
3
P3  
M3  
M1  
M1, M3  
M3  
P1  
P1, P3  
P3  
CLASSICAL DIFFERENCE AMPLIFIER IMPLEMENTED  
WITH LT1991. R = 450k, R = 150k, GAIN = 3.  
P9  
M9  
F
G
P9  
M9  
ADDING THE DASHED CONNECTIONS CONNECTS THE  
P1, P9  
P3  
M1, M9  
M3  
M3  
P3  
TWO 450k RESISTORS IN PARALLEL, SO R IS REDUCED  
F
TO 225k. GAIN BECOMES 225k/150k = 1.5.  
1991 F10  
4
P1, P3  
P9  
M1, M3  
M9  
Figure 10. Difference Amplifier Using the LT1991. Gain Is Set  
Simply by Connecting the Correct Resistors or Combinations  
of Resistors. Gain of 3 Is Shown, with Dashed Lines Modifying  
It to Gain of 1.5. Noise Gain Is Optimal  
4.5  
6
M1  
M1  
P1  
P1  
P3, P9  
P9  
M3, M9  
M9  
9
10  
P1, P9  
P3, P9  
M1, M9  
M3, M9  
12  
13  
P1, P3, P9 M1, M3, M9  
1991fh  
18  
LT1991  
APPLICATIONS INFORMATION  
+
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
V
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
IN  
IN  
7
7
V
V
V
CC  
CC  
CC  
+
+
V
V
V
V
IN  
IN  
IN  
6
6
6
6
6
6
6
LT1991  
V
V
V
LT1991  
V
V
V
LT1991  
V
V
V
OUT  
REF  
5
OUT  
REF  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
REF  
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
IN  
5
5
V
V
V
EE  
EE  
EE  
+
4
4
4
V
V
S
S
V
S
GAIN = 0.25  
GAIN = 1  
GAIN = 2.25  
+
V
+
+
7
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
IN  
7
7
+
+
V
V
V
V
IN  
IN  
IN  
IN  
V
V
V
CC  
CC  
CC  
6
LT1991  
LT1991  
LT1991  
OUT  
REF  
5
OUT  
REF  
1
2
3
1
2
3
1
2
3
REF  
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
V
V
V
EE  
EE  
EE  
+
V
IN  
4
4
4
V
V
S
S
V
S
GAIN = 3  
GAIN = 4  
GAIN = 4.5  
+
7
+
7
+
V
S
V
V
S
S
8
9
10  
8
9
10  
8
9
10  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
V
V
V
CC  
CC  
CC  
6
LT1991  
LT1991  
LT1991  
OUT  
REF  
5
OUT  
REF  
1
2
3
1
2
3
1
2
3
REF  
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
V
V
V
EE  
EE  
EE  
+
+
+
IN  
4
4
4
V
S
V
S
V
S
GAIN = 6  
GAIN = 9  
V
GAIN = 10  
+
+
V
V
S
S
8
9
10  
8
9
10  
V
IN  
M9  
M3  
M1  
IN  
M9  
M3  
M1  
7
7
V
V
CC  
CC  
6
6
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
5
5
V
V
EE  
EE  
+
+
V
V
IN  
IN  
4
4
V
S
V
S
1991 F11  
GAIN = 12  
GAIN = 13  
Figure 11. Many Difference Gains Are Achievable Just by Strapping the Pins  
1991fh  
19  
LT1991  
APPLICATIONS INFORMATION  
50k  
450k  
4pF  
M9  
M3  
M1  
8
150k  
450k  
9
V
IN  
R
F
10  
+
CROSS-  
6
5
V
OUT  
COUPLING  
R
R
450k  
150k  
50k  
G
1
P1  
+
V
V
+
IN  
V
OUT  
4pF  
2 P3  
+
G
V
IN  
IN  
V
= GAIN • (V + – V  
)
IN IN  
OUT  
GAIN = R /R  
450k  
R
F
F
G
P9  
3
LT1991  
CLASSICAL DIFFERENCE AMPLIFIER IMPLEMENTED  
WITH LT1991. R = 450k, R = 150k, GAIN = 3.  
CLASSICAL DIFFERENCE AMPLIFIER  
F
G
GAIN CAN BE ADJUSTED BY "CROSS COUPLING." MAKING THE  
DASHED CONNECTIONS REDUCE THE GAIN FROM 3 T0 2.  
WHEN CROSS COUPLING, SEE WHAT IS CONNECTED TO THE  
V
IN  
+ VOLTAGE. CONNECTING P3 AND M1 GIVES +3 –1 = 2.  
CONNECTIONS TO V ARE SYMMETRIC: M3 AND P1.  
1991 F12  
IN  
Figure 12. Another Method of Selecting Difference Gain Is “Cross-Coupling.”  
The Additional Method Means the LT1991 Provides All Integer Gains from 1 to 13  
+
Difference Amplifier: Additional Integer Gains Using  
Cross-Coupling  
V
+
V
S
S
8
9
10  
8
9
10  
M9  
M3  
M1  
V
M9  
M3  
M1  
IN  
7
7
V
V
IN  
IN  
V
V
CC  
CC  
6
6
Figure 12 shows the basic difference amplifier as well as  
the LT1991 in a difference gain of 3. But notice the effect  
of the additional dashed connections. This is referred to  
as “cross-coupling” and has the effect of reducing the  
differential gain from 3 to 2. Using this method, additional  
integer gains are achievable, as shown in Table 5 below,  
so that all integer gains from 1 to 13 are achieved with the  
LT1991.Notethattheequationscanbewrittenbyinspection  
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
5
OUT  
REF  
OUT  
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
+
5
V
V
V
EE  
EE  
+
V
IN  
4
4
V
S
S
GAIN = 2  
GAIN = 5  
+
+
V
V
S
S
8
9
10  
8
9
10  
V
V
V
IN  
IN  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
V
V
CC  
CC  
6
6
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
5
OUT  
REF  
OUT  
1
2
3
1
2
3
+
P1  
P3  
P9  
P1  
P3  
P9  
from the V connections, and that the V connections  
IN  
IN  
5
V
V
V
EE  
EE  
+
V
IN  
+
are simply the opposite (swap P for M and M for P). Noise  
gain,bandwidth,andinputimpedancespecificationsforthe  
various cases are also tabulated, as these are not obvious.  
Schematics are provided in Figure 13.  
4
4
IN  
V
S
S
GAIN = 7  
GAIN = 8  
+
7
V
S
8
9
10  
V
V
IN  
M9  
M3  
M1  
V
CC  
Table 5. Connections Using Cross-Coupling. Note That Equations Can  
6
+
LT1991  
V
OUT  
OUT  
REF  
Be Written by Inspection of the V Column  
IN  
1
2
3
P1  
P3  
P9  
+
5
V
Noise –3dB BW  
R
R
IN  
EE  
IN  
+
+
IN  
4
Gain  
2
V
V
Equation Gain  
3 – 1  
P9, M3, M1 M9, P3, P1 9 – 3 – 1 14  
P9, M3 M9, P3 9 – 3 13  
P9, P1, M3 M9, M1, P3 9 + 1 – 3 14  
P9, M1 M9, P1 9 – 1 11  
kHz  
70  
32  
35  
32  
38  
32  
Typ kΩ Typ kΩ  
IN  
IN  
V
S
P3, M1  
M3, P1  
5
281  
97  
141  
49  
49  
44  
50  
37  
1991 F13  
GAIN = 11  
5
6*  
7
122  
121  
248  
242  
Figure 13. Integer Gain Difference  
Amplifiers Using Cross-Coupling  
8
11 P9, P3, M1 M9, M3, P1 9 + 3 – 1 14  
*Gain of 6 is better implemented as shown previously, but is included here for completeness.  
1991fh  
20  
LT1991  
APPLICATIONS INFORMATION  
High Voltage CM Difference Amplifiers  
Table 6. HighV CM Connections Giving Difference Gains for  
the LT1991  
This class of difference amplifier remains to be discussed.  
Figure 14 shows the basic circuit on the top. The effective  
input voltage range of the circuit is extended by the fact  
Max, Min V  
EXT  
Noise  
Gain  
(Substitute V – 1.2,  
CC  
+
Gain  
V
V
R
T
V
+ 1 for V  
)
IN  
IN  
EE  
LIM  
thatresistorsR attenuatethecommonmodevoltageseen  
1
1
1
1
P1  
P1  
P1  
P1  
M1  
2
5
2 • V - V  
LIM REF  
T
by the op amp inputs. For the LT1991, the most useful  
M1 P3, M3  
M1 P9, M9  
5 • V – V – 3 • V  
LIM REF TERM  
resistors for R are the M1 and P1 450kΩ resistors, be-  
11  
14  
11 • V – V – 9 • V  
LIM REF TERM  
G
cause they do not have diode clamps to the supplies and  
therefore can be taken outside the supplies. As before, the  
input CM of the op amp is the limiting factor and is set by  
M1  
P3||P9  
14 • V – V – 12 • V  
LIM REF TERM  
M3||M9  
R
F
the voltage at the op amp +input, V . By superposition  
INT  
we can write:  
V
CC  
R
R
G
V
= V • (R ||R )/(R + R ||R ) + V • (R ||R )/  
INT  
EXT  
F
T
G
F
T
REF  
G
T
+
V
+
IN  
V
(R + R ||R ) + V  
• (R ||R )/(R + R ||R )  
F G T F G  
OUT  
F
G
T
TERM  
G
V
(= V  
IN  
)
EXT  
V
= GAIN • (V + – V  
IN  
)
OUT  
IN  
Solving for V  
:
EXT  
GAIN = R /R  
F
G
V
R
T
R
T
EE  
R
F
V
EXT  
= (1 + R /(R ||R )) • (V – V • (R ||R )/  
G F T INT REF G T  
V
REF  
V
TERM  
(R + R ||R ) – V  
• (R ||R )/(R + R ||R ))  
F G T F G  
F
G
T
TERM  
HIGH CM VOLTAGE DIFFERENCE AMPLIFIER  
Given the values of the resistors in the LT1991, this equa-  
tion has been simplified and evaluated, and the resulting  
equations provided in Table 6. As before, substituting  
INPUT CM TO OP AMP IS ATTENUATED BY  
RESISTORS R CONNECTED TO V  
T
TERM.  
7
12V  
V
– 1.2 and V + 1 for V  
will give the valid upper  
CC  
EE  
LIM  
50k  
450k  
4pF  
8 M9  
andlowercommonmodeextremesrespectively.Following  
are sample calculations for the case shown in Figure 14,  
right-hand side. Note that P9 and M9 are terminated so  
row 3 of Table 6 provides the equation:  
150k  
450k  
M3  
9
10 M1  
6
5
V
MAX V = 11 • (V – 1.2V) – V – 9 • V  
TERM  
OUT  
EXT  
CC  
REF  
450k  
150k  
50k  
1
2
3
P1  
P3  
P9  
+
= 11 • (10.8V) – 2.5 – 9 • 12 = 8.3V  
+
V
V
IN  
IN  
4pF  
INPUT CM RANGE  
= –60V TO 8.3V  
and:  
MIN V = 11 • (V + 1V) – V – 9 • V  
TERM  
450k  
REF  
2.5V  
EXT  
EE  
REF  
LT1991  
4
= 11 • (1V) – 2.5 – 9 • 12 = –99.5V  
HIGH NEGATIVE CM VOLTAGE DIFFERENCE AMPLIFIER  
IMPLEMENTED WITH LT1991.  
but this exceeds the 60V absolute maximum rating of  
the P1, M1 pins, so –60V becomes the de facto negative  
common mode limit. Several more examples of high CM  
circuitsareshowninFigures15,16,17forvarioussupplies.  
R = 450k, R = 450k, R 50k, GAIN = 1  
F
G
T
1991 F14  
V
= V = 12V, V  
CC  
= 2.5V, V = GROUND.  
REF EE  
TERM  
Figure 14. Extending CM Input Range  
1991fh  
21  
LT1991  
APPLICATIONS INFORMATION  
3V  
3V  
3V  
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
7
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1991  
V
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
4
4
4
3V  
V
= 0.8V TO 2.35V  
V
CM  
V
= 2V TO 3.6V  
DM  
V
= –1V TO 0.6V  
DM  
CM  
CM  
V
> 40mV  
<–40mV  
3V  
3V  
7
3V  
7
3V  
7
8
9
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
CC  
V
CC  
V
CC  
10  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1991  
V
LT1991  
V
OUT  
V
OUT  
V
OUT  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
+
+
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
1.25V  
1.25V  
4
4
4
1.25V  
V
= 0V TO 4V  
V
= 3.8V TO 7.75V  
V = –5V TO –1.25V  
CM  
CM  
CM  
3V  
3V  
7
3V  
7
3V  
7
8
9
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
CC  
V
CC  
V
CC  
10  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1991  
V
LT1991  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
1.25V  
1.25V  
4
4
4
1.25V  
V
= –1.5V TO 7.2V  
V
= 9.8V TO 18.55V  
V = –17.2V TO –8.45V  
CM  
CM  
CM  
3V  
3V  
7
3V  
7
3V  
7
8
9
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
CC  
V
CC  
V
CC  
10  
+
V
V
V
IN  
IN  
IN  
IN  
IN  
6
6
6
LT1991  
V
LT1991  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
+
+
V
V
V
IN  
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
1.25V  
1.25V  
1.25V  
4
4
4
1.25V  
V
= –2.25V TO 8.95V  
V
= 12.75V TO 23.95V  
V
= –23.2V TO –12V  
CM  
CM  
CM  
1991 F15  
Figure 15. Common Mode Ranges for Various LT1991 Configurations on VS = 3V, 0V; with Gain = 1  
1991fh  
22  
LT1991  
APPLICATIONS INFORMATION  
5V  
5V  
5V  
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
7
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
6
6
6
LT1991  
V
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
4
4
4
3V  
V
= –0.5V TO 5.1V  
V
= 2V TO 7.6V  
> 40mV  
V
= –3V TO 2.6V  
<–40mV  
CM  
CM  
V
CM  
V
DM  
DM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
V
V
CC  
CC  
CC  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
6
LT1991  
V
LT1991  
V
OUT  
V
OUT  
V
OUT  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
+
+
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
2.5V  
2.5V  
4
4
4
2.5V  
V
= –5V TO 9V  
V
= 2.5V TO 16.5V  
V = –12.5V TO 1.5V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
LT1991  
V
LT1991  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
2.5V  
2.5V  
4
4
4
2.5V  
V
= –14V TO 16.8V  
V
= 8.5V TO 39.3V  
V = –36.5V TO –5.7V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
V
V
CC  
CC  
CC  
+
+
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
LT1991  
V
LT1991  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
+
V
V
V
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
2.5V  
2.5V  
2.5V  
4
4
4
2.5V  
V
= –18.5V TO 20.7V  
V
= 11.5V TO 50.7V  
V
= –48.5V TO –9.3V  
CM  
CM  
CM  
1991 F16  
Figure 16. Common Mode Ranges for Various LT1991 Configurations on VS = 5V, 0V; with Gain = 1  
1991fh  
23  
LT1991  
APPLICATIONS INFORMATION  
5V  
5V  
5V  
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
7
7
7
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
6
6
6
6
6
6
6
6
6
6
6
6
LT1991  
V
LT1991  
V
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
–5V  
–5V  
–5V  
–5V  
–5V  
V
= –8V TO 7.6V  
V
= –3V TO 12.6V  
V
= –13V TO 2.6V  
<–40mV  
DM  
CM  
CM  
V
CM  
V
> 40mV  
DM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
V
V
CC  
CC  
CC  
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1991  
V
LT1991  
V
OUT  
V
OUT  
V
OUT  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
+
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
–5V  
–5V  
–5V  
–5V  
V
= –20V TO 19V  
V
= –5V TO 34V  
V = –35V TO 4V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
V
V
CC  
CC  
CC  
+
+
+
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1991  
V
LT1991  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
–5V  
–5V  
–5V  
–5V  
V
= –44V TO 41.8V  
V
= 1V TO 60V  
V = –60V TO –3.2V  
CM  
CM  
CM  
5V  
5V  
7
5V  
7
5V  
7
8
9
10  
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
M9  
M3  
M1  
V
V
V
CC  
CC  
CC  
+
+
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
LT1991  
V
LT1991  
LT1991  
V
OUT  
OUT  
REF  
OUT  
REF  
OUT  
REF  
1
2
3
1
2
3
1
2
3
+
V
V
V
P1  
P3  
P9  
P1  
P3  
P9  
P1  
P3  
P9  
5
5
5
V
V
V
EE  
EE  
EE  
4
4
4
–5V  
–5V  
= 4V TO 60V  
–5V  
= –56V TO 53.2V  
–5V  
= –60V TO –6.8V  
V
V
V
CM  
CM  
CM  
1991 F17  
Figure 17. Common Mode Ranges for Various LT1991 Configurations on VS = 5V, with Gain = 1  
1991fh  
24  
LT1991  
TYPICAL APPLICATIONS  
Micropower AV = 10 Instrumentation Amplifier  
V
OUT  
10  
9
8
7
6
+
V
M
1/2 LT6011  
4pF  
+
+
LT1991  
V
P
1/2 LT6011  
4pF  
1
2
3
4
5
1991 TA02  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10 1.65 ± 0.10  
(4 SIDES) (2 SIDES)  
PACKAGE  
OUTLINE  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
1991fh  
25  
LT1991  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-ꢀꢂꢂꢀ Rev E)  
0.889 0.ꢀꢁ7  
(.035 .005)  
5.ꢁ3  
3.ꢁ0 – 3.45  
(.ꢁ0ꢂ)  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
MIN  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.497 0.07ꢂ  
(.0ꢀ9ꢂ .003)  
REF  
0.50  
(.0ꢀ97)  
BSC  
0.305 0.038  
(.0ꢀꢁ0 .00ꢀ5)  
TYP  
ꢀ0 9  
8
7 ꢂ  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0.ꢁ54  
(.0ꢀ0)  
0° – ꢂ° TYP  
GAUGE PLANE  
3
4 5  
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
0.8ꢂ  
(.034)  
REF  
ꢀ.ꢀ0  
(.043)  
MAX  
DETAIL “A”  
0.ꢀ8  
(.007)  
SEATING  
PLANE  
0.ꢀ7 – 0.ꢁ7  
(.007 – .0ꢀꢀ)  
TYP  
0.ꢀ0ꢀꢂ 0.0508  
(.004 .00ꢁ)  
0.50  
(.0ꢀ97)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
1991fh  
26  
LT1991  
REVISION HISTORY (Revision history begins at Rev H)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
H
5/12  
Corrected specified temperature range for C-grade parts in the Order Information table.  
2
Corrected V = –20V to 19V and V = –5V to 34V configurations in Figure 17.  
24  
28  
CM  
CM  
Updated Related Parts Table  
1991fh  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT1991  
TYPICAL APPLICATION  
Bidirectional Current Source  
Single Supply AC Coupled Amplifier  
+
V
V
= 2.7V TO 36V  
7
S
S
8
9
10  
8
9
10  
M9  
M3  
M1  
M9  
M3  
M1  
7
1µF  
V
V
IN  
IN  
6
6
LT1991  
4
LT1991  
V
OUT  
1
2
3
1
2
3
+
R1  
P1  
P3  
P9  
V
CC  
P1  
P3  
P9  
0.1µF  
R2*  
10k  
5
10k  
5
V
IN  
4
+ –  
V
IN  
V
IN  
I
=
LOAD  
V
10kΩ  
S
GAIN = 12  
*SHORT R2 FOR LOWEST OUTPUT  
OFFSET CURRENT. INCLUDE R2 FOR  
HIGHEST OUTPUT IMPEDANCE.  
BW = 7Hz TO 32kHz  
1991 TA03  
Ultra-Stable Precision Attenuator  
Analog Level Adaptor  
5V  
8
9
1ꢀ  
5V  
M9  
M3  
M1  
7
8
9
1ꢀ  
M9  
M3  
M1  
7
6
LT1991  
ꢀ-4V  
OUT  
6
1
2
3
V
13  
REF  
5
IN  
1ꢀV  
P1  
P3  
P9  
LT1991  
V
=
IN  
OUT  
1
2
3
V
REF  
5
IN  
P1  
P3  
P9  
= 14V to 53V  
4
4
–5V  
LT179ꢀ –2.5  
1µF  
5V  
6
4
2
1991 TAꢀ4  
1
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1990  
High Voltage, Gain Selectable Difference Amplifier  
Precision Gain Selectable Difference Amplifier  
High Speed, Gain Selectable Difference Amplifier  
250V Common Mode, Micropower, Pin Selectable Gain = 1, 10  
Micropower, Pin Selectable Up to Gain = 118  
LT1996  
LT1995  
30MHz, 1000V/µs, Pin Selectable Gain = –7 to 8  
LT6010/LT6011/  
LT6012  
Single/Dual/Quad 135µA 14nV/√Hz Rail-to-Rail Out  
Precision Op Amp  
Similar Op Amp Performance as Used in LT1991 Difference Amplifier  
LT6013/LT6014  
Single/Dual 145µA 8nV/√Hz Rail-to-Rail Out  
Precision Op Amp  
Lower Noise A ≥ 5 Version of LT1991 Type Op Amp  
V
LTC6910-X  
LT1999  
Programmable Gain Amplifiers  
3 Gain Configurations, Rail-to-Rail Input and Output  
CMRR > 80dB at 100kHz  
High Voltage Bidirectional Current Sense Amplifier  
Quad Matched Resistor Network  
LT5400  
0.01% Matching, CMRR > 86dB  
1991fh  
LT 0512 REV H • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
l
l
LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6911-1

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911-1_15

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911-2

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911-2_15

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911CMS-1

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911CMS-2

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear
Linear

LTC6911HMS-1

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911HMS-1#TR

LTC6911 - Dual Matched Amplifiers with Digitally Programmable Gain in MSOP; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6911HMS-2

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911HMS-2#TR

暂无描述
Linear
Linear