LTC6911HMS-1 [Linear]

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP; 双匹配放大器,具有数字可编程增益,采用MSOP
LTC6911HMS-1
型号: LTC6911HMS-1
厂家: Linear    Linear
描述:

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
双匹配放大器,具有数字可编程增益,采用MSOP

模拟IC 信号电路 放大器 光电二极管
文件: 总20页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6911-1/LTC6911-2  
Dual Matched Amplifiers  
with Digitally Programmable  
Gain in MSOP  
U
FEATURES  
DESCRIPTIO  
The LTC®6911 is a family of low noise digitally program-  
mable gain amplifiers (PGAs) that are easy to use and  
occupy very little PC board space. The matched gain of  
both channels is adjustable using a 3-bit parallel interface  
to select voltage gains of 0, 1, 2, 5, 10, 20, 50 and 100V/  
V (LTC6911-1) and 0, 1, 2, 4, 8, 16, 32 and 64V/V  
(LTC6911-2). All gains are inverting.  
3-Bit Digital Gain Control:  
(Inverting Gains of 0, 1, 2, 5, 10, 20, 50  
and 100V/V) -1 Option  
(Inverting Gains of 0, 1, 2, 4, 8, 16, 32  
and 64V/V) -2 Option  
Two Matched Programmable Gain Amplifiers  
Channel-to-Channel Gain Matching of 0.1dB (Max)  
Rail-to-Rail Input Range  
Rail-to-Rail Output Swing  
The LTC6911 family consists of two matched inverting  
amplifiers with rail-to-rail outputs. When operated with  
unity gain, they will also process rail-to-rail input signals.  
A half-supply reference generated internally at the AGND  
pin supports single power supply applications. Operating  
from single or split supplies from 2.7V to 10.5V, the  
LTC6911 family is offered in a 10-lead MSOP package.  
Single or Dual Supply: 2.7V to 10.5V Total  
11MHz Gain Bandwidth Product  
Input Noise: 10nV/Hz  
Total System Dynamic Range to 120dB  
Input Offset Voltage: 2mV, Gain of 10  
Low Profile 10-Lead MSOP Package  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
APPLICATIO S  
Data Acquisition Systems  
Dynamic Gain Changing  
Automatic Ranging Circuits  
Automatic Gain Control  
U
TYPICAL APPLICATIO  
+
V
2.7V TO 10.5V 0.1µF  
Frequency Response (LTC6911-1)  
50  
7
9
V
= 10V, V = 5mV  
IN  
S
RMS  
GAIN OF –100 (DIGITAL INPUT 111)  
DIGITAL  
40  
30  
INPUT  
GAIN IN V/V  
1
2
3
10  
V
=
G2 G1 G0 LTC6911-1 LTC6911-2  
OUTA  
V
INA  
GAIN • V  
GAIN OF –50 (DIGITAL INPUT 110)  
INA  
INB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
AGND  
–1  
–1  
1µF  
GAIN OF –20 (DIGITAL INPUT 101)  
GAIN OF –10 (DIGITAL INPUT 100)  
GAIN OF –5 (DIGITAL INPUT 011)  
–2  
–5  
–10  
–20  
–50  
–100  
–2  
20  
10  
–4  
LTC6911-X  
–8  
–16  
–32  
–64  
8
V
OUTB  
=
GAIN OF –2 (DIGITAL INPUT 010)  
GAIN OF –1 (DIGITAL INPUT 001)  
V
INB  
GAIN • V  
0
–10  
100  
691112 TA01  
1k  
10k  
100k  
1M  
10M  
4
5
6
G2  
FREQUENCY (Hz)  
691112 TA02  
G0  
G1  
sn691112 691112fs  
1
LTC6911-1/LTC6911-2  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
Total Supply Voltage (V+ to V) .............................. 11V  
Input Current ..................................................... ±10mA  
Operating Temperature Range (Note 2)  
LTC6911C-1/LTC6911C-2 .................. 40°C to 85°C  
LTC6911I-1/LTC6911I-2 .................... 40°C to 85°C  
LTC6911H-1/LTC6911H-2 ................ 40°C to 125°C  
Specified Temperature Range (Note 3)  
LTC6911C-1/LTC6911C-2 .................. 40°C to 85°C  
LTC6911I-1/LTC6911I-2 .................... 40°C to 85°C  
LTC6911H-1/LTC6911H-2 ................ 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
INA  
AGND  
INB  
1
2
3
4
5
10 OUTA  
9
8
7
6
V
OUTB  
+
G0  
V
G1  
G2  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 230°C/W  
ORDER PART NUMBER  
MS PART MARKING  
LTC6911CMS-1  
LTC6911IMS-1  
LTC6911HMS-1  
LTC6911CMS-2  
LTC6911IMS-2  
LTC6911HMS-2  
LTAHK  
LTAHM  
LTBCF  
LTAHH  
LTAHJ  
LTBCG  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
U
U
GAI SETTI GS A D PROPERTIES  
Table 1 (LTC6911-1)  
NOMINAL  
NOMINAL  
MAXIMUM LINEAR INPUT RANGE (V  
)
P-P  
INPUT  
IMPEDANCE  
(k)  
DIGITAL INPUTS  
VOLTAGE GAIN  
Dual 5V  
Supply  
Single 5V  
Supply  
Single 3V  
Supply  
G2  
0
G1  
0
G0  
0
Volts/Volt  
(dB)  
–120  
0
0
–1  
–2  
–5  
–10  
–20  
–50  
–100  
10  
10  
5
2
1
0.5  
0.2  
0.1  
5
5
2.5  
1
0.5  
0.25  
0.1  
0.05  
3
3
(Open)  
10  
5
2
1
1
1
1
0
0
1
0
1
0
6
1.5  
0.6  
0.3  
0.15  
0.06  
0.03  
0
1
1
14  
20  
26  
34  
40  
1
0
0
1
0
1
1
1
0
1
1
1
Table 2 (LTC6911-2)  
NOMINAL  
INPUT  
NOMINAL  
VOLTAGE GAIN  
MAXIMUM LINEAR INPUT RANGE (V  
)
P-P  
DIGITAL INPUTS  
Dual 5V  
Supply  
Single 5V  
Supply  
Single 3V  
Supply  
IMPEDANCE  
(k)  
G2  
0
0
G1  
0
0
G0  
0
1
Volts/Volt  
0
(dB)  
–120  
0
10  
10  
5
5
3
3
(Open)  
10  
–1  
0
1
0
–2  
6
5
2.5  
1.5  
5
0
1
1
1
1
0
0
1
1
0
1
0
–4  
–8  
–16  
–32  
–64  
12  
2.5  
1.25  
0.625  
0.3125  
0.156  
0.078  
0.75  
0.375  
0.188  
0.094  
0.047  
2.5  
18.1  
24.1  
30.1  
36.1  
1.25  
0.625  
0.3125  
0.156  
1.25  
1.25  
1.25  
1.25  
1
1
1
sn691112 691112fs  
2
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
LTC6911-1/LTC6911-2  
Total Supply Voltage (V )  
2.7  
10.5  
2.7  
10.5  
V
S
Supply Current per Channel  
V = 2.7V, V = V = V  
AGND  
2.1 3.15  
2.5 3.75  
3.1 4.65  
3.1 4.65  
2.1 3.25  
2.5 4.00  
3.1 5.00  
3.1 5.00  
mA  
mA  
mA  
mA  
S
INA  
INB  
V = 5V, V = V = V  
S
INA  
INB  
AGND  
V = ±5V, V = V = 0V, Pins 4, 5, 6 = –4.5V or 5V  
S
INA  
INB  
V = ±5V, V = V = 0V, Pin 4 = 4.5V,  
S
INA  
INB  
Pins 5, 6 = 0.5V  
Output Voltage Swing LOW (Note 4)  
V = 2.7V, R = 10k Tied to Mid Supply  
12  
60  
30  
110  
12  
60  
35  
125  
mV  
mV  
S
L
V = 2.7V, R = 500Tied to Mid Supply  
S
L
V = 5V, R = 10k Tied to Mid Supply  
20  
40  
20  
45  
mV  
mV  
S
L
V = 5V, R = 500Tied to Mid Supply  
100 170  
100 190  
S
L
V = ±5V, R = 10k Tied to 0V  
30  
50  
30  
60  
mV  
mV  
S
L
V = ±5V, R = 500Tied to 0V  
190 260  
190 290  
S
L
Output Voltage Swing HIGH (Note 4)  
V = 2.7V, R = 10k Tied to Mid Supply  
10  
50  
20  
80  
10  
50  
25  
90  
mV  
mV  
S
L
V = 2.7V, R = 500Tied to Mid Supply  
S
L
V = 5V, R = 10k Tied to Mid Supply  
10  
90  
30  
160  
10  
90  
35  
175  
mV  
mV  
S
L
V = 5V, R = 500Tied to Mid Supply  
S
L
V = ±5V, R = 10k Tied to 0V  
20  
40  
20  
45  
mV  
mV  
S
L
V = ±5V, R = 500Tied to 0V  
180 250  
180 270  
S
L
Output Short-Circuit Current (Note 5) V = 2.7V  
±27  
±35  
±27  
±35  
mA  
mA  
S
V = ±5V  
S
AGND Open-Circuit Voltage  
V = 5V  
S
2.45 2.5 2.55  
2.45 2.5 2.55  
V
AGND (Common Mode)  
Input Voltage Range  
V = 2.7V  
S
V = ±5V  
S
0.55  
0.75  
4.30  
1.60  
3.65  
0.55  
0.75  
1.60  
3.65  
3.20  
V
V
V
S
V = 5V  
3.20 4.30  
AGND Rejection (i.e., Common  
Mode Rejection or CMRR)  
V = 2.7V, V  
S
= 1.1V to 1.6V  
= 2.5V to 2.5V  
55  
55  
80  
75  
50  
50  
80  
75  
dB  
dB  
S
AGND  
AGND  
V = ±5V, V  
Power Supply Rejection Ratio (PSRR) V = 2.7V to ±5V  
60  
80  
57  
80  
dB  
S
Slew Rate  
V = 5V, V  
S
= V  
OUTA  
= 1.1V to 3.9V  
12  
16  
12  
16  
V/µs  
V/µs  
S
OUTA  
OUTB  
V = ±5V, V  
= V  
= ±1.4V  
OUTB  
Signal Attenuation at Gain = 0 Setting Gain = 0 (Digital Inputs 000), f = 20kHz  
120  
120  
dB  
Digital Input “High” Voltage  
Digital Input “Low” Voltage  
Digital Input “High” Current  
Digital Input “Low” Current  
V = 2.7V  
S
V = ±5V  
S
2.43  
4.50  
4.50  
2.43  
4.50  
4.50  
V
V
V
S
V = 5V  
V = 2.7V  
0.27  
0.50  
0.50  
0.27  
0.50  
0.50  
V
V
V
S
V = 5V  
S
V = ±5V  
S
V = 2.7V, Pins 4, 5, 6 = 2.43V  
1
5
1
5
µA  
µA  
µA  
S
V = 5V, Pins 4, 5, 6 = 4.5V  
S
V = ±5V, Pins 4, 5, 6 = 4.5V  
10  
10  
S
V = 2.7V, Pins 4, 5, 6 = 0.27V  
1
5
10  
1
5
10  
µA  
µA  
µA  
S
V = 5V, Pins 4, 5, 6 = 0.5V  
S
V = ±5V, Pins 4, 5, 6 = 0.5V  
S
sn691112 691112fs  
3
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
LTC6911-1 Only  
Voltage Gain (Note 6)  
V = 2.7V, Gain = 1, R = 10k  
–0.07  
0
0.07  
–0.08  
0
0.07  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
–0.11 –0.02 0.07  
–0.13 –0.02 0.07  
S
L
V = 2.7V, Gain = 2, R = 10k  
5.94 6.01 6.08  
5.93 6.01 6.08  
dB  
dB  
S
L
V = 2.7V, Gain = 5, R = 10k  
13.85 13.95 14.05 13.8 13.95 14.05  
S
L
V = 2.7V, Gain = 10, R = 10k  
19.7 19.93 20.1  
19.6 19.85 20.1  
19.65 19.93 20.1  
19.45 19.85 20.1  
dB  
dB  
S
L
V = 2.7V, Gain = 10, R = 500Ω  
S
L
V = 2.7V, Gain = 20, R = 10k  
25.75 25.94 26.1  
33.5 33.8 34.1  
25.65 25.94 26.1  
33.4 33.8 34.1  
dB  
dB  
S
L
V = 2.7V, Gain = 50, R = 10k  
S
L
V = 2.7V, Gain = 100, R = 10k  
39.0 39.6 40.1  
37.4 38.9 40.1  
38.8 39.6 40.1  
36.5 38.9 40.1  
dB  
dB  
S
L
V = 2.7V, Gain = 100, R = 500Ω  
S
L
V = 5V, Gain = 1, R = 10k  
–0.08 0.01 0.08  
–0.11 –0.01 0.07  
–0.09 0.01 0.08  
–0.13 –0.01 0.07  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
5.95 6.02 6.09  
13.8 13.96 14.1  
5.94 6.02 6.09  
13.78 13.96 14.1  
dB  
dB  
S
L
V = 5V, Gain = 5, R = 10k  
S
L
V = 5V, Gain = 10, R = 10k  
19.8 19.94 20.1  
19.6 19.87 20.1  
19.75 19.94 20.1  
19.45 19.87 20.1  
dB  
dB  
S
L
V = 5V, Gain = 10, R = 500Ω  
S
L
V = 5V, Gain = 20, R = 10k  
25.8 25.94 26.1  
33.5 33.84 34.1  
25.75 25.94 26.1  
33.4 33.84 34.1  
dB  
dB  
S
L
V = 5V, Gain = 50, R = 10k  
S
L
V = 5V, Gain = 100, R = 10k  
39.3 39.7 40.1  
38.0 39.2 40.1  
39.1 39.7 40.1  
37.0 39.2 40.1  
dB  
dB  
S
L
V = 5V, Gain = 100, R = 500Ω  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.06 0.01 0.08  
–0.10 0.00 0.08  
–0.07 0.01 0.08  
–0.11 0.00 0.08  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
5.95 6.02 6.09  
13.8 13.96 14.1  
5.94 6.02 6.09  
13.79 13.96 14.1  
dB  
dB  
S
L
V = ±5V, Gain = 5, R = 10k  
S
L
V = ±5V, Gain = 10, R = 10k  
19.8 19.94 20.1  
19.7 19.91 20.1  
19.75 19.94 20.1  
19.60 19.91 20.1  
dB  
dB  
S
L
V = ±5V, Gain = 10, R = 500Ω  
S
L
V = ±5V, Gain = 20, R = 10k  
25.8 25.95 26.1  
33.7 33.87 34.1  
25.75 25.95 26.1  
33.60 33.87 34.1  
dB  
dB  
S
L
V = ±5V, Gain = 50, R = 10k  
S
L
V = ±5V, Gain = 100, R = 10k  
39.4 39.8 40.2  
38.8 39.5 40.1  
39.25 39.8 40.2  
38.00 39.5 40.1  
dB  
dB  
S
L
V = ±5V, Gain = 100, R = 500Ω  
S
L
Channel-to-Channel Voltage  
Gain Match  
V = 2.7V, Gain = 1, R = 10k  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
S
L
V = 2.7V, Gain = 2, R = 10k  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 2.7V, Gain = 5, R = 10k  
S
L
V = 2.7V, Gain = 10, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 2.7V, Gain = 10, R = 500Ω  
S
L
V = 2.7V, Gain = 20, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 2.7V, Gain = 50, R = 10k  
S
L
V = 2.7V, Gain = 100, R = 10k  
–0.20 0.02 0.20  
–1.00 0.02 1.00  
–0.20 0.02 0.20  
–1.50 0.02 1.50  
dB  
dB  
S
L
V = 2.7V, Gain = 100, R = 500Ω  
S
L
sn691112 691112fs  
4
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
LTC6911-1 Only  
Channel-to-Channel Voltage  
Gain Match  
V = 5V, Gain = 1, R = 10k  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 5V, Gain = 5, R = 10k  
S
L
V = 5V, Gain = 10, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 5V, Gain = 10, R = 500Ω  
S
L
V = 5V, Gain = 20, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 5V, Gain = 50, R = 10k  
S
L
V = 5V, Gain = 100, R = 10k  
–0.2 0.02 0.2  
–0.8 0.02 0.8  
–0.2 0.02 0.2  
–1.2 0.02 1.2  
dB  
dB  
S
L
V = 5V, Gain = 100, R = 500Ω  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = ±5V, Gain = 5, R = 10k  
S
L
V = ±5V, Gain = 10, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = ±5V, Gain = 10, R = 500Ω  
S
L
V = ±5V, Gain = 20, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = ±5V, Gain = 50, R = 10k  
S
L
V = ±5V, Gain = 100, R = 10k  
–0.2 0.02 0.2  
–0.6 0.02 0.6  
–0.2 0.02 0.2  
–0.9 0.02 0.9  
dB  
dB  
S
L
V = ±5V, Gain = 100, R = 500Ω  
S
L
Gain Temperature Coefficient  
V = 5V, Gain = 1, R = Open  
2
2
ppm/°C  
ppm/°C-  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = Open  
–1.5  
–11  
–30  
–38  
–70  
–140  
–1.5  
–11  
–30  
–38  
–70  
–140  
S
L
V = 5V, Gain = 5, R = Open  
S
L
V = 5V, Gain = 10, R = Open  
S
L
V = 5V, Gain = 20, R = Open  
S
L
V = 5V, Gain = 50, R = Open  
S
L
V = 5V, Gain = 100, R = Open  
S
L
Channel-to-Channel Gain Temperature V = 5V, Gain = 1, R = Open  
1.0  
1.0  
0.2  
1.0  
0.4  
3.0  
3.0  
1.0  
1.0  
0.2  
1.0  
0.4  
3.0  
3.0  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
Coefficient Match  
V = 5V, Gain = 2, R = Open  
S L  
V = 5V, Gain = 5, R = Open  
S
L
V = 5V, Gain = 10, R = Open  
S
L
V = 5V, Gain = 20, R = Open  
S
L
V = 5V, Gain = 50, R = Open  
S
L
V = 5V, Gain = 100, R = Open  
S
L
Channel-to-Channel Isolation (Note 7) f = 200kHz  
V = 5V, Gain = 1, R = 10k  
108  
107  
93  
108  
107  
93  
dB  
dB  
dB  
S
L
V = 5V, Gain = 10, R = 10k  
S
L
V = 5V, Gain = 100, R = 10k  
S
L
Offset Voltage Magnitude Referred  
to INA or INB Pins (Note 8)  
Gain = 1  
Gain = 10  
2.0  
1.1  
22  
12  
2.0  
1.1  
22  
14  
mV  
mV  
Offset Voltage Magnitude Drift  
Referred to INA or INB Pins (Note 8)  
Gain = 1  
Gain = 10  
12  
6.6  
20  
11  
µV/°C  
µV/°C  
sn691112 691112fs  
5
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
LTC6911-1 Only  
DC Input Resistance at  
INA or INB Pins (Note 9)  
DC V or V = 0V  
INA INB  
Gain = 0  
>100  
10  
5
>100  
10  
5
MΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Gain = 1  
Gain = 2  
Gain = 5  
Gain > 5  
2
2
1
1
DC Input Resistance Match  
Gain = 1  
Gain = 2  
Gain = 5  
Gain > 5  
10  
5
10  
5
R
– R  
INA  
INB  
2
2
1
1
DC Small-Signal Output Resistance  
at OUTA or OUTB Pins  
DC V or V = 0V  
INA INB  
Gain = 0  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
Gain = 1  
Gain = 2  
Gain = 5  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
30  
30  
Gain-Bandwidth Product  
Gain = 100, f = 200kHz  
7
11  
18  
6
11  
18  
MHz  
IN  
Wideband Noise (Referred to Input)  
f = 1kHz to 200kHz  
Gain = 0 (Output Noise Only)  
Gain = 1  
7.5  
12.3  
8.5  
6.1  
5.2  
5.0  
4.5  
3.8  
7.5  
12.3  
8.5  
6.1  
5.2  
5.0  
4.5  
3.8  
µV  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
Gain = 2  
Gain = 5  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
Voltage Noise Density  
(Referred to Input)  
f = 50kHz  
Gain = 1  
28  
19  
28  
19  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
Gain = 2  
Gain = 5  
14  
14  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
12  
12  
11.5  
10.8  
9.9  
11.5  
10.8  
9.9  
Total Harmonic Distortion  
Gain = 10, f = 10kHz, V  
= 1V  
RMS  
90  
0.003  
90  
0.003  
dB  
%
IN  
OUT  
Gain = 10, f = 100kHz, V  
= 1V  
RMS  
82  
0.008  
82  
0.008  
dB  
%
IN  
OUT  
sn691112 691112fs  
6
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
LTC6911-2 Only  
Voltage Gain (Note 6)  
V = 2.7V, Gain = 1, R = 10k  
–0.07  
0
0.07  
–0.08  
0
0.07  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
–0.11 –0.02 0.07  
–0.13 –0.02 0.07  
S
L
V = 2.7V, Gain = 2, R = 10k  
5.94 6.01 6.08  
5.93 6.01 6.08  
dB  
dB  
S
L
V = 2.7V, Gain = 4, R = 10k  
11.9 12.02 12.12 11.88 12.02 12.12  
S
L
V = 2.7V, Gain = 8, R = 10k  
17.80 18.00 18.15 17.75 18.00 18.15  
17.65 17.94 18.15 17.55 17.94 18.15  
dB  
dB  
S
L
V = 2.7V, Gain = 8, R = 500Ω  
S
L
V = 2.7V, Gain = 16, R = 10k  
23.8 24.01 24.25 23.75 24.01 24.25  
dB  
dB  
S
L
V = 2.7V, Gain = 32, R = 10k  
29.7 30 30.2  
29.65 30 30.2  
S
L
V = 2.7V, Gain = 64, R = 10k  
35.3 35.8 36.2  
34.2 35.3 36.2  
35.15 35.8 36.2  
33.65 35.3 36.2  
dB  
dB  
S
L
V = 2.7V, Gain = 64, R = 500Ω  
S
L
V = 5V, Gain = 1, R = 10k  
–0.08 0.00 0.08  
–0.10 –0.01 0.08  
–0.09 0.00 0.08  
–0.12 –0.01 0.08  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
5.96 6.02 6.1  
5.95 6.02 6.1  
dB  
dB  
S
L
V = 5V, Gain = 4, R = 10k  
11.85 12.02 12.15 11.83 12.02 12.15  
S
L
V = 5V, Gain = 8, R = 10k  
17.85 18.01 18.15 17.83 18.01 18.15  
17.65 17.96 18.15 17.50 17.96 18.15  
dB  
dB  
S
L
V = 5V, Gain = 8, R = 500Ω  
S
L
V = 5V, Gain = 16, R = 10k  
23.85 24.02 24.15 23.80 24.02 24.15  
dB  
dB  
S
L
V = 5V, Gain = 32, R = 10k  
29.70 30.02 30.2  
29.65 30.02 30.2  
S
L
V = 5V, Gain = 64, R = 10k  
35.5 35.9 36.3  
34.7 35.6 36.1  
35.40 35.9 36.3  
34.20 35.6 36.1  
dB  
dB  
S
L
V = 5V, Gain = 64, R = 500Ω  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.06 0.01 0.08  
–0.10 0.00 0.08  
–0.07 0.01 0.08  
–0.11 0.00 0.08  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
5.96 6.02 6.1  
5.95 6.02 6.1  
dB  
dB  
S
L
V = ±5V, Gain = 4, R = 10k  
11.9 12.03 12.15 11.88 12.03 12.15  
S
L
V = ±5V, Gain = 8, R = 10k  
17.85 18.02 18.15 17.83 18.02 18.15  
17.80 17.99 18.15 17.73 17.99 18.15  
dB  
dB  
S
L
V = ±5V, Gain = 8, R = 500Ω  
S
L
V = ±5V, Gain = 16, R = 10k  
23.85 24.03 24.15 23.82 24.03 24.15  
dB  
dB  
S
L
V = ±5V, Gain = 32, R = 10k  
29.85 30 30.2  
29.8 30 30.2  
S
L
V = ±5V, Gain = 64, R = 10k  
35.65 36.0 36.20 35.55 36.0 36.20  
35.20 35.8 36.20 34.80 35.8 36.20  
dB  
dB  
S
L
V = ±5V, Gain = 64, R = 500Ω  
S
L
Channel-to-Channel  
Voltage Gain Match  
V = 2.7V, Gain = 1, R = 10k  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
S
L
V = 2.7V, Gain = 2, R = 10k  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 2.7V, Gain = 4, R = 10k  
S
L
V = 2.7V, Gain = 8, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 2.7V, Gain = 8, R = 500Ω  
S
L
V = 2.7V, Gain = 16, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 2.7V, Gain = 32, R = 10k  
S
L
V = 2.7V, Gain = 64, R = 10k  
–0.2 0.02 0.2  
–0.7 0.02 0.7  
–0.2 0.02 0.2  
–1.0 0.02 1.0  
dB  
dB  
S
L
V = 2.7V, Gain = 64, R = 500Ω  
S
L
sn691112 691112fs  
7
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
V = 5V, Gain = 1, R = 10k  
LTC6911-2 Only  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 5V, Gain = 4, R = 10k  
S
L
V = 5V, Gain = 8, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 5V, Gain = 8, R = 500Ω  
S
L
V = 5V, Gain = 16, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = 5V, Gain = 32, R = 10k  
S
L
V = 5V, Gain = 64, R = 10k  
–0.15 0.02 0.15  
–0.60 0.02 0.60  
–0.15 0.02 0.15  
–0.80 0.02 0.80  
dB  
dB  
S
L
V = 5V, Gain = 64, R = 500Ω  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
–0.1 0.02 0.1  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
–0.1 0.02 0.1  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = ±5V, Gain = 4, R = 10k  
S
L
V = ±5V, Gain = 8, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = ±5V, Gain = 8, R = 500Ω  
S
L
V = ±5V, Gain = 16, R = 10k  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
–0.15 0.02 0.15  
dB  
dB  
S
L
V = ±5V, Gain = 32, R = 10k  
S
L
V = ±5V, Gain = 64, R = 10k  
–0.15 0.02 0.15  
–0.40 0.02 0.40  
–0.15 0.02 0.15  
–0.60 0.02 0.60  
dB  
dB  
S
L
V = ±5V, Gain = 64, R = 500Ω  
S
L
Gain Temperature Coefficient  
V = 5V, Gain = 1, R = Open  
2
–1  
2
–1  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = Open  
S
L
V = 5V, Gain = 4, R = Open  
–7  
–7  
S
L
V = 5V, Gain = 8, R = Open  
–21  
–28  
–40  
–115  
–21  
–28  
–40  
–115  
S
L
V = 5V, Gain = 16, R = Open  
S
L
V = 5V, Gain = 32, R = Open  
S
L
V = 5V, Gain = 64, R = Open  
S
L
Channel-to-Channel Gain  
Temperature Coefficient Match  
V = 5V, Gain = 1, R = Open  
0
0
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = Open  
–0.5  
0.5  
0.5  
1.0  
4.0  
4.0  
–0.5  
0.5  
0.5  
1.0  
4.0  
4.0  
S
L
V = 5V, Gain = 4, R = Open  
S
L
V = 5V, Gain = 8, R = Open  
S
L
V = 5V, Gain = 16, R = Open  
S
L
V = 5V, Gain = 32, R = Open  
S
L
V = 5V, Gain = 64, R = Open  
S
L
Channel-to-Channel Isolation (Note 7) f = 200kHz  
V = 5V, Gain = 1, R = 10k  
110  
110  
93  
110  
110  
93  
dB  
dB  
dB  
S
L
V = 5V, Gain = 8, R = 10k  
S
L
V = 5V, Gain = 64, R = 10k  
S
L
Offset Voltage Magnitude  
Referred to INA or INB Pins (Note 8)  
Gain = 1  
Gain = 8  
2.0  
1.1  
22  
12  
2.0  
1.1  
22  
14  
mV  
mV  
Offset Voltage Magnitude Drift  
Referred to INA or INB Pins (Note 8)  
Gain = 1  
Gain = 8  
12  
6.8  
20  
11  
µV/°C  
µV/°C  
DC Input Resistance at  
INA or INB Pins (Note 9)  
DC V or V = 0V  
INA INB  
Gain = 0  
>100  
10  
>100  
10  
MΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Gain = 1  
Gain = 2  
Gain = 4  
Gain > 4  
5
5
2.5  
1.25  
2.5  
1.25  
sn691112 691112fs  
8
LTC6911-1/LTC6911-2  
ELECTRICAL CHARACTERISTICS  
to midsupply point, unless otherwise noted.  
The denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, AGND = 2.5V, Gain = 1 (Digital Inputs 001), RL = 10k  
C/I GRADES  
MIN TYP MAX  
H GRADE  
MIN TYP MAX UNITS  
PARAMETER  
CONDITIONS  
LTC6911-2 Only  
DC Input Resistance Match  
INA  
Gain = 1  
Gain = 2  
Gain = 4  
Gain > 4  
10  
5
10  
5
R
– R  
INB  
2
2
1
1
DC Small-Signal Output Resistance  
at OUTA or OUTB Pins  
DC V or V = 0V  
INA INB  
Gain = 0  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
30  
30  
Wideband Noise (Referred to Input)  
f = 1kHz to 200kHz  
Gain = 0 (Output Noise Only)  
Gain = 1  
7.4  
12.4  
8.5  
6.5  
5.5  
5.2  
4.9  
4.3  
7.4  
12.4  
8.5  
6.5  
5.5  
5.2  
4.9  
4.3  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Voltage Noise Density  
(Referred to Input)  
f = 50kHz  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
28.0  
19.0  
14.8  
12.7  
11.8  
11.5  
10.9  
28.0  
19.0  
14.8  
12.7  
11.8  
11.5  
10.9  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
Total Harmonic Distortion  
Gain-Bandwidth Product  
Gain = 8, f = 10kHz, V  
= 1V  
RMS  
90  
90  
dB  
%
IN  
OUT  
0.003  
0.003  
Gain = 8, f = 100kHz, V  
= 1V  
RMS  
82  
0.008  
82  
0.008  
dB  
%
IN  
OUT  
Gain = 64, f = 200kHz  
6
11  
17  
6
11  
17  
MHz  
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 6: Gain is measured with a DC large-signal test using an output  
excursion between approximately 30% and 70% of the total supply  
voltage.  
Note 2: The LTC6911C and LTC6911I are guaranteed functional over the  
operating temperature range of 40°C to 85°C. The LTC6911H is  
guaranteed functional over the operating temperature range of 40°C to  
125°C.  
Note 3: The LTC6911C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6911C is designed, characterized and expected to  
meet specified performance from 40°C to 85°C but is not tested or QA  
sampled at these temperatures. LTC6911I is guaranteed to meet specified  
performance from 40°C to 85°C. The LTC6911H is guaranteed to meet  
specified performance from –40°C to 125°C.  
Note 4: Output voltage swings are measured as differences between the  
output and the respective supply rail.  
Note 5: Extended operation with output shorted may cause junction  
temperature to exceed the 150°C limit and is not recommended.  
Note 7: Channel-to-channel isolation is measured by applying a 200kHz  
input signal to one channel so that its output varies 1V  
and measuring  
RMS  
the output voltage RMS of the other channel relative to AGND with its  
input tied to AGND. Isolation is calculated:  
V
VOUTA  
VOUTB  
IsolationA = 20 log10 OUTB , IsolationB = 20 log10  
VOUTA  
Note 8: Offset voltage referred to the INA or INB input is (1 + 1/G) times  
the offset voltage of the internal op amp, where G is the nominal gain  
magnitude. See Applications Information.  
Note 9: Input resistance can vary by approximately ±30% part-to-part at a  
given gain setting (input resistance match remains as specified).  
sn691112 691112fs  
9
LTC6911-1/LTC6911-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC6911-1)  
LTC6911-1 Gain Shift  
LTC6911-1 –3dB Bandwidth  
vs Gain Setting  
LTC6911-1 Frequency Response  
vs Temperature  
50  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.100  
0.075  
0.050  
0.025  
0
V
= 10V, V = 5mV  
IN  
V
= 5mV  
RMS  
V
S
= 5V  
S
RMS  
IN  
V
V
= 2.7V  
OUTPUT UNLOADED  
S
GAIN OF 100 (DIGITAL INPUT 111)  
= ±5V  
40  
30  
S
GAIN = 100  
GAIN = 10  
GAIN OF 50 (DIGITAL INPUT 110)  
GAIN OF 20 (DIGITAL INPUT 101)  
GAIN OF 10 (DIGITAL INPUT 100)  
GAIN OF 5 (DIGITAL INPUT 011)  
20  
10  
GAIN = 1  
–0.025  
–0.050  
–0.075  
–0.100  
GAIN OF 2 (DIGITAL INPUT 010)  
GAIN OF 1 (DIGITAL INPUT 001)  
0
–10  
100  
1k  
10k  
100k  
1M  
10M  
–25  
0
50  
1
10  
100  
–50  
75  
100  
25  
FREQUENCY (Hz)  
GAIN  
TEMPERATURE (°C)  
6911 G02  
6911 G01  
6911 G03  
LTC6911-1 Channel Isolation  
vs Frequency  
LTC6911-1 Power Supply  
Rejection vs Frequency  
LTC6911-1 Noise Density  
vs Frequency  
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
115  
110  
105  
100  
95  
V
T
= ±2.5V  
= 25°C  
V
= ±2.5V  
V
V
= 5V  
OUT  
S
A
S
S
GAIN = 1  
= 1V  
RMS  
INPUT REFERRED  
GAIN = 1  
GAIN = 1  
+SUPPLY  
–SUPPLY  
GAIN = 10  
GAIN = 10  
GAIN = 100  
GAIN = 100  
90  
85  
1k  
10k  
100k  
1k  
10k  
100k  
1M  
10M  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6911 G05  
6911 G06  
6911 G04  
LTC6911-1 Distortion vs Frequency  
with Light Loading (RL = 10k)  
LTC6911-1 Distortion vs Frequency  
LTC6911-1 THD + Noise  
vs Input Voltage  
with Heavy Loading (RL = 500)  
–30  
–40  
–50  
–30  
–40  
–50  
–20  
–30  
V
V
= ±2.5V  
V
V
= ±2.5V  
S
S
= 1V  
(2.83V  
)
= 1V  
(2.83V  
)
OUT  
RMS  
P-P  
OUT  
RMS  
P-P  
GAIN = 100  
GAIN = 10  
GAIN = 100  
GAIN = 10  
GAIN = 1  
–40  
–50  
GAIN = 100  
GAIN = 10  
–60  
–70  
–60  
–70  
–60  
–70  
–80  
–80  
–80  
–90  
f
= 1kHz  
IN  
S
GAIN = 1  
150k  
–90  
–90  
–100  
–110  
V
= ±5V  
GAIN = 1  
BW = 100Hz TO 22kHz  
–100  
–100  
50k  
100k  
200k  
50k  
100k  
FREQUENCY (Hz)  
200k  
0
0
150k  
1m  
10n  
0.1  
1
10  
INPUT VOLTAGE (V  
)
P-P  
FREQUENCY (Hz)  
6911 G09  
6911 G07  
6911 G08  
sn691112 691112fs  
10  
LTC6911-1/LTC6911-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC6911-2)  
LTC6911-2 Gain Shift  
LTC6911-2 –3dB Bandwidth  
vs Gain Setting  
LTC6911-2 Frequency Response  
vs Temperature  
50  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.100  
0.075  
0.050  
0.025  
0
V
V
= ±5V  
IN  
V
IN  
V
V
= 10mV  
RMS  
V
S
= 5V  
S
= 10mV  
= 2.7V  
OUTPUT UNLOADED  
RMS  
S
= ±5V  
40  
30  
S
GAIN OF 64  
GAIN OF 32  
GAIN OF 16  
GAIN OF 8  
GAIN OF 4  
GAIN OF 2  
GAIN = 64  
GAIN = 8  
GAIN = 1  
20  
10  
–0.025  
–0.050  
–0.075  
–0.100  
GAIN OF 1  
0
–10  
100  
1k  
10k  
100k  
1M  
10M  
–25  
0
50  
1
10  
GAIN  
100  
–50  
75  
100  
25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
6911 G11  
6911 G010  
6911 G12  
LTC6911-2 Channel Isolation  
vs Frequency  
LTC6911-2 Power Supply  
Rejection vs Frequency  
LTC6911-2 Noise Density  
vs Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
1
120  
115  
110  
105  
100  
95  
V
= ±2.5V  
V
T
= ±2.5V  
= 25°C  
V
V
= 5V  
OUT  
S
S
A
S
GAIN = 1  
= 1V  
RMS  
INPUT REFERRED  
GAIN = 1  
GAIN = 8  
+SUPPLY  
–SUPPLY  
GAIN = 1  
GAIN = 8  
GAIN = 64  
GAIN = 64  
90  
85  
1k  
10k  
100k  
1M  
10M  
100k  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6911 G14  
6911 G15  
6911 G13  
LTC6911-2 Distortion vs Frequency  
with Light Loading (RL = 10k)  
LTC6911-2 Distortion vs Frequency  
LTC6911-2 THD + Noise  
vs Input Voltage  
with Heavy Loading (RL = 500)  
–30  
–40  
–50  
–20  
–30  
–30  
–40  
–50  
V
V
= ±2.5V  
V
V
= ±2.5V  
S
S
= 1V  
(2.83V  
)
= 1V  
(2.83V  
)
P-P  
OUT  
RMS  
P-P  
OUT  
RMS  
GAIN = 64  
GAIN = 8  
–40  
GAIN = 64  
–50  
GAIN = 8  
–60  
–70  
–60  
–70  
GAIN = 1  
–60  
GAIN = 64  
GAIN = 8  
–70  
–80  
–80  
–80  
–90  
GAIN = 1  
f
= 1kHz  
IN  
S
–90  
–90  
–100  
–110  
V
= ±5V  
GAIN = 1  
BW = 100Hz TO 22kHz  
–100  
–100  
50k  
100k  
FREQUENCY (Hz)  
200k  
1m  
10n  
0.1  
1
10  
0
150k  
50k  
100k  
200k  
0
150k  
INPUT VOLTAGE (V  
)
P-P  
FREQUENCY (Hz)  
6911 G18  
6911 G17  
6911 G16  
sn691112 691112fs  
11  
LTC6911-1/LTC6911-2  
U
U
U
PI FU CTIO S  
INA(Pin1):AnalogInput.TheinputsignaltotheAchannel  
amplifier of the LTC6911-X is the voltage difference be-  
tween the INA and AGND pin. The INA pin connects  
internally to a digitally controlled resistance whose other  
endisacurrentsummingpointatthesamepotentialasthe  
AGND pin (Figure 1). At unity gain (digital input 001), the  
value of this input resistance is approximately 10kand  
the INA pin voltage range is rail-to-rail (V+ to V). At gain  
settings above unity, the input resistance falls. The linear  
input range at INA also falls inversely proportional to the  
programmed gain. Tables 1 and 2 summarize this behav-  
ior. The higher gains are designed to boost lower level  
signals with good noise performance. In the “zero” gain  
state (digital input 000), analog switches disconnect the  
INA pin internally and this pin presents a very high input  
resistance. Theinputmayvaryfromrailtorailinthezero”  
gain setting, but the output is insensitive to it and is forced  
to the AGND potential.  
CircuitrydrivingtheINApinmustconsidertheLTC6911-X’s  
inputresistance, itslot-to-lotvariance, andthevariationof  
this resistance from gain setting to gain setting. Signal  
sources with significant output resistance may introduce  
a gain error as the source’s output resistance and the  
LTC6911-X’s input resistance form a voltage divider. This  
is especially true at higher gain settings where the input  
resistance is the lowest.  
In single supply voltage applications, it is important to  
remember that the LTC6911-X’s DC ground reference for  
both input and output is AGND, not V. With increasing  
gains,theLTC6911-X’sinputvoltagerangeforanunclipped  
output is no longer rail-to-rail but diminishes inversely to  
gain, centered about the AGND potential.  
G2  
6
G1  
5
G0  
4
CMOS LOGIC  
INA  
AGND  
INB  
1
2
3
INPUT R ARRAY  
FEEDBACK R ARRAY  
MOS-INPUT  
+
10 OUTA  
V
V
OP AMP  
+
10k  
9
8
7
V
+
10k  
MOS-INPUT  
OP AMP  
OUTB  
+
V
691112 F01  
INPUT R ARRAY  
FEEDBACK R ARRAY  
Figure 1. Block Diagram  
sn691112 691112fs  
12  
LTC6911-1/LTC6911-2  
U
U
U
PI FU CTIO S  
AGND (Pin 2): Analog Ground. The AGND pin is at the  
midpoint of an internal resistive voltage divider, develop-  
ing a potential halfway between the V+ and Vpins, with an  
equivalent series resistance to the pin of nominally 5kΩ  
(Figure 1). AGND is also the noninverting input to both the  
internal channel A and channel B amplifiers. This makes  
AGNDthegroundreferencevoltagefortheINA,INB,OUTA  
and OUTB pins. Recommended analog ground plane con-  
nectiondependsonhowpowerisappliedtotheLTC6911-X  
(see Figures 2, 3 and 4). Single power supply applications  
typically use Vfor the system signal ground. The analog  
ground plane in single supply applications should there-  
foretietoV, andtheAGNDpinshouldbebypassedtothis  
ground plane by a high quality capacitor of at least 1µF  
(Figure 2). The AGND pin provides an internal analog  
referencevoltageathalftheV+ supplyvoltage.Dualsupply  
applications with symmetrical supplies (such as ±5V)  
have a natural system ground plane potential of zero volts,  
whichcanbetieddirectlytotheAGNDpin,makingthezero  
volt ground plane the input and output reference voltage  
for the LTC6911-X (Figure 3). Finally, if dual asymmetrical  
power supplies are used, the supply ground is still the  
natural ground plane voltage. To maximize signal swing  
capability with an asymmetrical supply, however, it is  
often desirable to refer the LTC6911-X’s analog input and  
outputtoavoltageequidistantfromthetwosupplyrailsV+  
and V. The AGND pin will provide such a potential when  
open-circuited and bypassed with a capacitor (Figure 4).  
+
V
V
0.1µF  
0.1µF  
10  
9
8
7
6
5
LTC6911-X  
1
2
3
4
ANALOG  
GROUND  
PLANE  
SINGLE-POINT  
SYSTEM GROUND  
DIGITAL GROUND PLANE  
(IF ANY)  
691112 F03  
Figure 3. Dual Supply Ground Plane Connection  
+
+
V
V
V
0.1µF  
0.1µF  
0.1µF  
10  
9
8
7
6
10  
9
8
7
6
LTC6911-X  
LTC6911-X  
1
2
3
4
5
1
2
3
4
5
+
+
V
+ V  
V
REFERENCE  
REFERENCE  
2
ANALOG  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
2
1µF  
1µF  
SINGLE-POINT  
SYSTEM GROUND  
SINGLE-POINT  
SYSTEM GROUND  
DIGITAL GROUND PLANE  
(IF ANY)  
DIGITAL GROUND PLANE  
(IF ANY)  
691112 F02  
691112 F04  
Figure 4. Asymmetrical Dual Supply Ground Plane Connection  
Figure 2. Single Supply Ground Plane Connection  
sn691112 691112fs  
13  
LTC6911-1/LTC6911-2  
U
U
U
PI FU CTIO S  
In noise sensitive applications where AGND does not  
directly tie to a ground plane, as in Figures 2 and 4, it is  
important to AC-bypass the AGND pin. Otherwise, chan-  
nel-to-channel isolation is degraded and wideband noise  
will enter the signal path from the thermal noise of the  
internal voltage divider resistors that present a Thévenin  
equivalent resistance of approximately 5k. This noise  
can reduce SNR by at least 3dB at high gain settings. An  
external capacitor from AGND to the ground plane, whose  
impedance is well below 5kat frequencies of interest,  
will filter and suppress this noise. A 1µF high quality  
capacitor is effective for frequencies down to 1kHz. Larger  
capacitors extend this suppression to lower frequencies.  
This issue does not arise in dual supply applications  
because the AGND pin ties directly to ground.  
have small pull-down current sources (<10µA) which will  
force both channels into the “zero” gain state (digital input  
000) if the logic inputs are externally floated. No speed  
limitation is associated with the digital logic because it is  
memoryless and much faster than the analog signal path.  
V, V+ (Pins 7, 9): Power Supply Pins. The V+ and Vpins  
should be bypassed with 0.1µF capacitors to an adequate  
analog ground plane using the shortest possible wiring.  
Electrically clean supplies and a low impedance ground  
are important for the high dynamic range available from  
the LTC6911-X (see further details under the AGND pin  
description). Low noise linear power supplies are recom-  
mended. Switching power supplies require special care to  
prevent switching noise coupling into the signal path,  
reducing dynamic range.  
Inapplicationsrequiringananaloggroundreferenceother  
than half the total supply voltage, the user can override the  
built-in analog ground reference by tying the AGND pin to  
a reference voltage within the AGND voltage range speci-  
fied in the Electrical Characteristics table. The AGND pin  
will load the external reference with approximately 5kΩ  
returned to the half-supply potential. AGND should still be  
capacitively bypassed to a ground plane as noted above.  
Do not connect the AGND pin to the Vpin.  
OUTB (Pin 8): Analog Output. This is the output of the B  
channel internal operational amplifier and can swing rail-  
to-rail (V+ to V) as specified in the Electrical Characteris-  
tics table. The internal op amp remains active at all times,  
including the zero gain setting (digital input 000). For best  
performance, loading the output as lightly as possible will  
minimize signal distortion and gain error. The Electrical  
Characteristics table shows performance at output cur-  
rentsupto10mA, andthecurrentlimitswhichoccurwhen  
the output is shorted to mid-supply at 2.7V and ±5V  
supplies. Signal outputs above 10mA are possible but  
current-limiting circuitry will begin to affect amplifier  
performance at approximately 20mA. Long-term opera-  
tion above 20mA output is not recommended. Do not  
exceed a maximum junction temperature of 150°C. The  
outputwilldrivecapacitiveloadsupto50pF. Capacitances  
higher than 50pF should be isolated by a series resistor to  
preserve AC stability.  
INB (Pin 3): Analog Input. Refer to INA pin description.  
G0, G1, G2 (Pins 4, 5, 6): CMOS-Level Digital Gain  
ControlInputs.G2isthemostsignificantbit(MSB)andG0  
is the least significant bit (LSB). These pins control the  
voltage gain settings for both channels (see Tables 1  
and 2). Each channel’s gain cannot be set independent of  
theotherchannel.Thelogicinputpins(Gpins)areallowed  
to swing from Vto 10.5V above V, regardless of V+ so  
long as the logic levels meet the minimum requirements  
specified in the Electrical Characteristics table. The G0, G1  
and G2 pins are high impedance CMOS logic inputs, but  
OUTA (Pin 10): Analog Output. Refer to OUTB pin  
description.  
sn691112 691112fs  
14  
LTC6911-1/LTC6911-2  
W U U  
APPLICATIO S I FOR ATIO  
U
Functional Description  
Timing Constraints  
The LTC6911-1/LTC6911-2 are small outline, wideband  
inverting 2-channel amplifiers whose voltage gain is digi-  
tally programmable. Each delivers a choice of eight volt-  
age gains, controlled by the 3-bit digital parallel interface  
(G pins), which accept CMOS logic levels. The gain code  
is always monotonic; an increase in the 3-bit binary  
number (G2 G1 G0) causes an increase in the gain. Tables  
1 and 2 list the nominal voltage gains for LTC6911-1 and  
LTC6911-2 respectively. Gain control within each ampli-  
fier occurs by switching resistors from a matched array in  
or out of a closed-loop op amp circuit using MOS analog  
switches (Figure 1). Bandwidth depends on gain setting.  
Curves in the Typical Performance Characteristics section  
show measured frequency responses.  
Settling time in the CMOS gain-control logic is typically  
several nanoseconds and is faster than the analog signal  
path. When amplifier gain changes, the limiting timing is  
analog, not digital, because the effects of digital input  
changes are observed only through the analog output  
(Figure 1). The LTC6911-X’s logic is static (not latched)  
and therefore lacks bus timing requirements. However, as  
with any programmable-gain amplifier, each gain change  
causesanoutputtransientastheamplifier’soutputmoves,  
with finite speed, toward a differently scaled version of the  
input signal. Varying the gain faster than the output can  
settle produces a garbled output signal. The LTC6911-X  
analog path settles with a characteristic time constant or  
time scale, τ, that is roughly the standard value for a first  
order band limited response:  
Digital Control  
τ = 0.35/(2 π f–3dB  
)
Logic levels for the LTC6911-X digital gain control inputs  
(Pins 4, 5, 6) are nominally rail-to-rail CMOS, but can  
swing above V+ so long as the positive swing does not  
exceed 10.5V with respect to V. Each logic input has a  
small pull-down current source which can sink up to 10µA  
and is used to force the part into a gain of “zero” if the logic  
inputs are left unconnected. A logic 1 is nominally V+. A  
logic 0 is nominally Vor alternatively, 0V when using ±5V  
supplies. The parts are tested with the values listed in the  
Electrical Characteristics table. Digital Input “High” and  
“Low” voltages are 10% and 90% of the nominal full  
excursion on the inputs. That is, the tested logic levels are  
0.27V and 2.43V with a 2.7V supply, 0.5V and 4.5V with a  
5V supply, and 0.5V and 4.5V with ±5V supplies. Do not  
attempttodrivethedigitalinputswithTTLlogiclevels.TTL  
logic sources should be adapted with suitable pull-up  
resistors to V+ keeping in mind the internal pull-down  
current sources so that for a logic 1 they will swing to the  
positive rail.  
See the –3dB BW vs Gain Setting graph in the Typical  
Performance Characteristics.  
Offset Voltage vs Gain Setting  
The Electrical Characteristics table lists DC gain depen-  
dent voltage offset error in two gain configurations. The  
voltage offsets listed, VOS(IN), are referred to the input pin  
(INA or INB). These offsets are directly related to the  
internal amplifier input voltage offset, VOS(OA), by the  
magnitude of programmed gain, G:  
G
1+ G  
VOS(OA) = VOS(IN)  
The input referred offset, VOS(IN), for any gain setting can  
be inferred from VOS(OA) and the gain magnitude, G. For  
example, an internal offset VOS(OA) of 1mV will appear  
referred to the INA and INB pins as 2mV at a gain setting  
sn691112 691112fs  
15  
LTC6911-1/LTC6911-2  
W U U  
U
APPLICATIO S I FOR ATIO  
of 1, or 1.5mV at a gain setting of 2. At high gains, VOS(IN)  
approaches VOS(OA). (Offset voltage is random and can  
have either polarity centered on 0V.) The MOS input  
circuitryoftheinternalopampinFigure1drawsnegligible  
inputcurrents(unlikesomeopamps), soonlyVOS(OA) and  
G affect the overall amplifier’s offset.  
duetosmalljunctionleakagecurrents). Topreventdriving  
the INA or INB pin outside the supply limit and potentially  
damaging the chip, avoid AC input signals in the zero gain  
state with an AC-coupled capacitor. Also, switching later  
to a nonzero gain value will cause a transient pulse at the  
output of the LTC6911-1 (with a time constant set by the  
capacitor value and the new LTC6911-1 input resistance  
value). This occurs because the INA and INB pins return to  
the AGND potential forcing transient current sourced by  
theamplifieroutputtochargetheAC-couplingcapacitorto  
its proper DC blocking value.  
AC-Coupled Operation  
Adding capacitors in series with the INA and INB pins  
convert the LTC6911-X into a dual AC-coupled inverting  
amplifier,suppressingtheinputsignal’sDClevel(andalso  
adding the additional benefit of reducing the offset voltage  
from the LTC6911-X’s amplifier itself). No further compo-  
nents are required because the input of the LTC6911-X  
biases itself correctly when a series capacitor is added.  
The INA and INB analog input pins connect internally to a  
resistor whose nominal value varies between 10k and 1k  
depending on the version of LTC6911 used (see the  
rightmost column of Tables 1 and 2). Therefore, the low  
frequency cutoff will vary with capacitor and gain setting.  
For example, if a low frequency corner of 1kHz or lower on  
the LTC6911-1 is desired, use a series capacitor of 0.16µF  
or larger. A 0.16µF capacitor has a reactance of 1kat  
1kHz,givinga1kHzlower3dBfrequencyforgainsettings  
of 10V/V through 100V/V. If the LTC6911-1 is operated at  
lower gain settings with an 0.16µF capacitor, the higher  
input resistance will reduce the lower corner frequency  
downto100Hzatagainsettingof1V/V.Thesefrequencies  
scale inversely with the value of the input capacitor used.  
SNR and Dynamic Range  
The term “dynamic range” is much used (and abused)  
with signal paths. Signal-to-noise ratio (SNR) is an unam-  
biguous comparison of signal and noise levels, measured  
in the same way and under the same operating conditions.  
In a variable gain amplifier, however, further characteriza-  
tion is useful because both noise and maximum signal  
level in the amplifier will vary with the gain setting, in  
general. In the LTC6911-X, maximum output signal is  
independent of gain (and is near the full power supply  
voltage, as detailed in the Swing sections of the Electrical  
Characteristics table). The maximum input level falls with  
increasing gain, and the input-referred noise falls as well  
(asalsolistedinthetable). Tosummarizetheusefulsignal  
rangeinsuchanamplifier, wedefineDynamicRange(DR)  
as the ratio of maximum input (at unity gain) to minimum  
input-referred noise (at maximum gain). This DR has a  
physical interpretation as the range of signal levels that  
will experience an SNR above unity V/V or 0dB. At a 10V  
total power supply, DR in the LTC6911-X (gains 0V/V to  
Note that operating the LTC6911 family in “zero” gain  
mode (digital inputs 000) open circuits the INA and INB  
pinsandthisdemandssomecareifemployedwithaseries  
AC-coupledinputcapacitor. Whenthechip enters the zero  
gain mode, the opened INA or INB pin tends to sample and  
freeze the voltage across the capacitor to the value it held  
just before the zero gain state. This can place the INA or  
INB pin at or near the DC potential of a supply rail (the INA  
or INB pin may also drift to a supply potential in this state  
100V/V) is typically 120dB (the ratio of a nominal 9.9VP-P  
,
or 3.5VRMS (maximum input), to the 3.8µVRMS (high gain  
input noise). The SNR of an amplifier is the ratio of input  
level to input-referred noise, and can be 110dB with the  
LTC6911 family at unity gain.  
sn691112 691112fs  
16  
LTC6911-1/LTC6911-2  
W U U  
APPLICATIO S I FOR ATIO  
U
Construction and Instrumentation Cautions  
substantial capacitance (>10µF) near the chip, can create  
a high-Q LC resonance in the hundreds of kHz in the chip’s  
supplies or ground reference. This may impair circuit  
performance at those frequencies. A compact, carefully  
laid out printed circuit board with a good ground plane  
makesasignificantdifferenceinminimizingdistortionand  
maximizing channel isolation. Finally, equipment to mea-  
sure amplifier performance can itself add to distortion or  
noise floors. Checking for these limits with wired shorts  
from INA to OUTA and INB to OUTB in place of the chip is  
a prudent routine procedure.  
Electrically clean construction is important in applications  
seeking the full dynamic range of the LTC6911 family of  
dualamplifiers. ItisabsolutelycriticaltohaveAGNDeither  
AC bypassed or wired directly, using the shortest possible  
wiring,toalowimpedancegroundreturnforbestchannel-  
to-channel isolation. Short, direct wiring will minimize  
parasitic capacitance and inductance. High quality supply  
bypass capacitors of 0.1µF near the chip provide good  
decoupling from a clean, low inductance power source.  
But several cm of wire (i.e., a few microhenrys of induc-  
tance) from the power supplies, unless decoupled by  
sn691112 691112fs  
17  
LTC6911-1/LTC6911-2  
U
TYPICAL APPLICATIO  
Expanding an ADC’s Dynamic Range  
maximum sampling rate of 250ksps. An LTC6911-1, for  
example, expands the ADC’s input amplitude range by  
40dB while operating from the same single 5V supply. The  
499resistor and 270pF capacitor couple cleanly be-  
tweentheLTC6911-X’soutputandtheswitched-capacitor  
inputs of the LTC1865.  
Figure 5 shows a compact 2-channel data acquisition  
systemforwideranginginputlevels.Thisfigurecombines  
an LTC6911-X programmable amplifier (10-lead MSOP)  
with an LTC1865 analog-to-digital converter (ADC) in an  
8-lead MSOP. This ADC has 16-bit resolution and a  
+
V
0.1µF  
7
9
+
V
0.1µF  
499Ω  
499Ω  
1
2
3
10  
V
INA  
V
AGND  
270pF  
270pF  
CONV  
SCK  
CC  
1µF  
CH0  
CH1  
LTC1865  
GND  
LTC6911-X  
SDO  
SDI  
691112 F05  
8
V
INB  
ADC INTERFACE  
691112 F05  
4
5
6
GAIN CONTROL  
Figure 5. Expanding a Dual Channel ADC’s Dynamic Range  
sn691112 691112fs  
18  
LTC6911-1/LTC6911-2  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
0.50  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn691112 691112fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC6911-1/LTC6911-2  
U
TYPICAL APPLICATIO  
Fully Differential Amplifier with Digitally Programmable Gain  
High Dynamic Range (PGA Input)  
–5V  
0.1µF  
1
2
3
4
5
10  
9
1
2
3
4
8
7
6
5
+
V
V
LTC1992-1  
OR  
LTC1992-2  
OR  
LTC1992-5  
OR  
LTC1992-10  
IN  
LTC6911-1  
OR  
LTC6911-2  
5V  
–5V  
8
IN  
7
6
0.1µF  
0.1µF  
0.1µF  
+
V
V
OUT  
OUT  
G0 G1 G2  
DIGITAL GAIN CONTROL  
High CMRR (Differential Input)  
–5V  
+
V
V
IN  
0.1µF  
1
2
3
4
5
10  
9
1
2
3
4
8
7
6
5
+
V
LTC1992-1  
OR  
LTC1992-2  
OR  
LTC1992-5  
OR  
LTC1992-10  
OUT  
OUT  
IN  
V
LTC6911-1  
OR  
LTC6911-2  
5V  
–5V  
8
5V  
7
6
0.1µF  
0.1µF  
0.1µF  
691112 TA03  
G0 G1 G2  
DIGITAL GAIN CONTROL  
RELATED PARTS  
PART NUMBER  
LT®1228  
DESCRIPTION  
COMMENTS  
100MHz Gain Controlled Transconductance Amplifier  
40MHz Video Fader and Gain Controlled Amplifier  
10kHz to 150kHz Digitally Controlled Filter and PGA  
Differential Input, Continuous Analog Gain Control  
LT1251/LT1256  
LTC1564  
Two Input, One Output, Continuous Analog Gain Control  
Continuous Time, Low Noise 8th Order Filter and 4-Bit PGA  
LTC6910  
Digitally Controlled Programmable Gain Amplifier in SOT-23 Single Channel Version of the LTC6911  
LTC6915  
Digitally Controlled Programmable Instrumentation  
Amplifier with SPI Interface  
14 Bits of Gain Control  
sn691112 691112fs  
LT/TP 0104 1K • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC6911HMS-1#TR

LTC6911 - Dual Matched Amplifiers with Digitally Programmable Gain in MSOP; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6911HMS-2

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911HMS-2#TR

暂无描述
Linear
Linear

LTC6911IMS-1

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911IMS-2

Dual Matched Amplifiers with Digitally Programmable Gain in MSOP
Linear

LTC6911IMS-2#TR

暂无描述
Linear

LTC6912

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912CDE-1

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912CDE-2

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912CDE-2#TR

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6912CGN-1

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear