LTC694CS8-3.3#TRPBF [Linear]

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC694CS8-3.3#TRPBF
型号: LTC694CS8-3.3#TRPBF
厂家: Linear    Linear
描述:

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

光电二极管
文件: 总20页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC694-3.3/LTC695-3.3  
3.3V Microprocessor  
Supervisory Circuits  
FEATURES  
DESCRIPTION  
TheLTC®694-3.3/LTC695-3.3providecomplete3.3Vpower  
supply monitoring and battery control functions. These  
include power-on reset, battery back-up, RAM write pro-  
tection, power failure warning and watchdog timing. The  
devicesarepincompatibleupgradesoftheLTC694/LTC695  
that are optimized for 3.3V systems. Operating power  
consumption has been reduced to 0.6mW (typical) and  
3μW maximum in battery back-up mode. Microprocessor  
reset and memory write protection are provided when the  
supply falls below 2.9V. The RESET output is guaranteed  
n
Guaranteed Reset Assertion at V = 1V  
CC  
n
Pin Compatible with LTC694/LTC695 for 3.3V Systems  
n
200μA Typical Supply Current  
Fast (30ns Typ) Onboard Gating of  
RAM Chip Enable Signals  
SO-8 and S16 Packages  
2.90V Precision Voltage Monitor  
n
n
n
n
Power OK/Reset Time Delay: 200ms or Adjustable  
n
Minimum External Component Count  
n
1μA Maximum Standby Current  
n
Voltage Monitor for Power-Fail or  
to remain logic low with V as low as 1V.  
CC  
Low-Battery Warning  
Thermal Limiting  
The LTC694-3.3/LTC695-3.3 power the active RAMs with  
a charge pumped NMOS power switch to achieve low  
dropout and low supply current. When primary power is  
lost, auxiliary power, connected to the battery input pin,  
powers the RAMs in standby through an efficient PMOS  
switch.  
n
n
Performance Specified Over Temperature  
APPLICATIONS  
n
3.3V Low Power Systems  
n
For an early warning of impending power failure, the  
LTC694-3.3/LTC695-3.3 provide an internal comparator  
with a user-defined threshold. An internal watchdog timer  
isalsoavailable,whichforcestheresetpinstoactivestates  
when the watchdog input is not toggled prior to a preset  
timeout period.  
Critical μP Power Monitoring  
n
Intelligent Instruments  
n
Battery-Powered Computers and Controllers  
n
Automotive Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
RESET Output Voltage  
vs Supply Voltage  
LT1129-3.3  
V
V
≥ 5V  
IN  
5
3.3V  
V
V
V
POWER TO  
μP  
V
IN  
OUT  
CC  
OUT  
+
+
CMOS RAM POWER  
0.1μF  
100μF  
0.1μF  
2.4V  
1μF  
OUT SENSE  
SHDN  
GND  
LTC695-3.3  
μP  
SYSTEM  
DECODER OUTPUT  
RAM CS  
μP RESET  
μP NMI  
4
3
CE IN  
BATT  
CE OUT  
RESET  
PFO  
51k  
18k  
PFI  
WDI  
I/O LINE  
2
1
0
GND  
MICROPROCESSOR RESET, BATTERY BACK-UP,  
100Ω  
RAM WRITE PROTECTION, POWER WARNING AND  
WATCHDOG TIMING ARE ALL IN A SINGLE CHIP  
FOR 3.3V MICROPROCESSOR SYSTEM  
0.1μF  
694/5-3.3 TA01  
0
1
2
3
4
5
SUPPLY VOLTAGE (V)  
694/5-3.3 TA02  
69453fb  
1
LTC694-3.3/LTC695-3.3  
ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2)  
Terminal Voltage  
V
Output Current ................. Short-Circuit Protected  
OUT  
V .......................................................... –0.3V to 6V  
Power Dissipation............................................. 500mW  
Operating Temperature Range  
CC  
V
...................................................... –0.3V to 6V  
BATT  
All Other Inputs ..................... –0.3V to (V  
Input Current  
+ 0.3V)  
LTC694C-3.3/LTC695C-3.3...................... 0°C to 70°C  
LTC694I-3.3/LTC695I-3.3 ....................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
OUT  
V
V
..................................................................100mA  
BATT  
GND...................................................................10mA  
CC  
.................................................................25mA  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
V
1
2
16 RESET  
BATT  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RESET  
RESET  
WDO  
CE IN  
CE OUT  
WDI  
BATT  
V
OUT  
V
15  
14  
13  
12  
RESET  
OUT  
V
CC  
V
3
4
5
6
7
8
WDO  
CC  
GND  
GND  
CE IN  
BATT ON  
LOW LINE  
OSC IN  
BATT ON  
LOW LINE  
OSC IN  
CE OUT  
11 WDI  
PFO  
PFO  
10  
9
OSC SEL  
PFI  
PFI  
OSC SEL  
SW PACKAGE  
16-LEAD PLASTIC WIDE SO  
N PACKAGE  
16-LEAD PDIP  
T
JMAX  
= 110°C, θ = 130°C/W  
JA  
T
= 110°C, θ = 130°C/W  
JMAX  
JA  
TOP VIEW  
TOP VIEW  
V
V
8
1
V
OUT  
1
2
3
4
8
7
6
5
V
BATT  
BATT  
OUT  
V
2
7
6
5
V
RESET  
RESET  
WDI  
CC  
CC  
WDI  
3
4
GND  
PFI  
GND  
PFI  
PFO  
PFO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
T
JMAX  
= 110°C, θ = 180°C/W  
JA  
T
= 110°C, θ = 130°C/W  
JA  
JMAX  
69453fb  
2
LTC694-3.3/LTC695-3.3  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC695CN-3.3#PBF  
LTC695IN-3.3#PBF  
LTC695CSW-3.3#PBF  
LTC695ISW-3.3#PBF  
LTC694CN8-3.3#PBF  
LTC694IN8-3.3#PBF  
LTC694CS8-3.3#PBF  
LTC694IS8-3.3#PBF  
TAPE AND REEL  
PART MARKING  
LTC695CN-3.3  
LTC695IN-3.3  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC695CN-3.3#TRPBF  
LTC695IN-3.3#TRPBF  
16-Lead PDIP  
16-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LTC695CSW-3.3#TRPBF LTC695CSW-3.3  
16-Lead Plastic Wide SO  
16-Lead Plastic Wide SO  
8-Lead PDIP  
LTC695ISW-3.3#TRPBF  
LTC694CN8-3.3#TRPBF  
LTC694IN8-3.3#TRPBF  
LTC694CS8-3.3#TRPBF  
LTC694IS8-3.3#TRPBF  
LTC695ISW-3.3  
LTC694CN8-3.3  
LTC694IN8-3.3  
6943  
–40°C to 85°C  
0°C to 70°C  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
694I3  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
Consult LTC Marketing for military grade parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
PRODUCT SELECTION GUIDE  
RESET  
THRESHOLD  
(V)  
CONDITIONAL  
BATTERY  
BACK-UP  
WATCHDOG  
TIMER  
BATTERY  
BACK-UP  
POWER-FAIL RAM WRITE PUSH-BUTTON  
PINS  
8
WARNING  
PROTECT  
RESET  
LTC694-3.3  
LTC695-3.3  
LTC690  
2.90  
2.90  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
16  
8
X
X
X
4.65  
LTC691  
16  
8
4.65  
LTC694  
4.65  
LTC695  
16  
8
4.65  
LTC699  
4.65  
LTC1232  
LTC1235  
8
4.37/4.62  
4.65  
X
X
16  
X
X
X
X
69453fb  
3
LTC694-3.3/LTC695-3.3  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 3.3V, VBATT = 2V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Battery Back-Up Switching  
Operating Voltage Range  
l
l
V
V
3.0  
1.5  
5.50  
2.75  
V
V
CC  
BATT  
V
Output Voltage  
I
= 1mA  
V
V
– 0.1  
V
V
– 0.01  
– 0.01  
V
V
OUT  
OUT  
CC  
CC  
CC  
CC  
l
l
l
– 0.2  
I
I
I
= 50mA  
V
– 0.8  
V – 0.4  
CC  
V
V
OUT  
OUT  
OUT  
CC  
V
in Battery Back-Up Mode  
= 250μA, V < V  
V
– 0.1  
V
– 0.02  
BATT  
OUT  
CC  
BATT  
BATT  
Supply Current (Exclude I  
)
≤ 50μA, V = 3.6V  
0.2  
0.2  
0.6  
1.0  
mA  
mA  
OUT  
CC  
l
l
l
Supply Current in Battery Back-Up Mode  
V
= 0V, V  
= 2V  
BATT  
0.04  
0.04  
1
5
μA  
μA  
CC  
Battery Standby Current (+ = Discharge, – = Charge) 3.6V > V > V  
+ 0.2V  
BATT  
–0.02  
–0.10  
0.02  
0.10  
μA  
μA  
CC  
Battery Switchover Threshold (V – V  
)
BATT  
Power-Up  
Power-Down  
70  
50  
mV  
mV  
CC  
Battery Switchover Hysteresis  
20  
mV  
V
l
l
BATT ON Output Voltage (Note 4)  
I
= 800μA  
0.3  
25  
SINK  
BATT ON Output Short-Circuit Current (Note 4)  
BATT ON = V , Sink Current  
BATT ON = 0V, Source Current  
25  
1
mA  
μA  
OUT  
0.5  
2.8  
Reset and Watchdog Timer  
Reset Voltage Threshold  
Reset Threshold Hysteresis  
Reset Active Time  
l
2.9  
40  
3.0  
V
mV  
OSC SEL HIGH, V = 3V  
160  
140  
200  
200  
240  
280  
ms  
ms  
CC  
l
l
l
Watchdog Timeout Period, Internal Oscillator  
Long Period, V = 3V  
1.2  
1.0  
1.6  
1.6  
2.0  
2.25  
sec  
sec  
CC  
Short Period, V = 3V  
80  
70  
100  
100  
120  
140  
ms  
ms  
CC  
l
l
Watchdog Timeout Period, External Clock (Note 5)  
Long Period, V = 3V  
4032  
960  
4097  
1025  
Clock  
Cycles  
CC  
Short Period, V = 3V  
CC  
Reset Active Time PSRR  
4
ms/V  
Watchdog Timeout Period PSRR, Internal OSC  
Short Period  
Long Period  
2
32  
ms/V  
ms/V  
l
l
Minimum WDI Input Pulse Width  
V
= 0.4V, V = 3V  
200  
2.3  
ns  
IL  
IH  
RESET Output Voltage at V = 1V  
I
= 10μA, V = 1V  
4
200  
0.3  
mV  
CC  
SINK  
CC  
RESET and LOW_LINE Output Voltage (Note 4)  
I
I
= 400μA, V = 2.8V  
V
V
l
l
SINK  
SOURCE  
CC  
= 0.1μA, V = 3V  
CC  
l
l
RESET and WDO Output Voltage (Note 4)  
I
I
= 400μA, V = 3V  
0.3  
25  
V
V
SINK  
CC  
= 0.1μA, V = 2.8V  
2.3  
1
SOURCE  
CC  
RESET, RESET, WDO, LOW_LINE  
Output Short-Circuit Current (Note 4)  
Output Source Current  
Output Sink Current  
3
9
μA  
mA  
l
l
l
WDI Input Threshold  
WDI Input Current  
Logic Low  
Logic High  
0.4  
50  
V
V
2.3  
l
l
WDI = V  
4
–8  
μA  
μA  
OUT  
WDI = 0V  
–50  
69453fb  
4
LTC694-3.3/LTC695-3.3  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 3.3V, VBATT = 2V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Fail Detector  
PFI Input Threshold  
PFI Input Threshold PSRR  
PFI Input Current  
l
l
1.25  
1.3  
1.35  
V
mV/V  
nA  
0.3  
0.01  
25  
l
l
PFO Output Voltage (Note 4)  
I
I
= 800μA  
0.3  
V
V
SINK  
SOURCE  
= 0.1μA  
2.3  
1
l
PFO Short-Circuit Source Current (Note 4)  
PFI = HIGH, PFO = 0V  
PFI = LOW, PFO = V  
3
17  
25  
μA  
μA  
OUT  
PFI Comparator Response Time (Falling)  
ΔV = –20mV, V = 15mV  
2
μs  
IN  
OD  
PFI Comparator Response Time (Rising) (Note 4)  
ΔV = 20mV, V = 15mV  
40  
8
μs  
μs  
IN  
OD  
with 10kꢀ Pull-Up  
Chip Enable Gating  
CE IN Threshold  
V
V
0.45  
V
V
IL  
IH  
1.9  
CE IN Pull-Up Current (Note 6)  
CE OUT Output Voltage  
3
μA  
l
l
l
I
I
I
= 800μA  
0.3  
50  
V
V
V
SINK  
= 400μA  
V
V
– 0.50  
– 0.05  
SOURCE  
SOURCE  
OUT  
OUT  
= 1μA, V = 0V  
CC  
l
CE IN Propagation Delay  
C = 20pF  
30  
ns  
L
CE OUT Output Short-Circuit Current  
Output Source Current  
Output Sink Current  
15  
20  
mA  
mA  
Oscillator  
OSC IN Input Current (Note 6)  
OSC SEL Input Pull-Up Current (Note 6)  
OSC IN Frequency Range  
2
5
μA  
μA  
l
OSC SEL = 0V  
0
125  
kHz  
kHz  
OSC SEL = 0V, C = 47pF  
4
A
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The external clock feeding into the circuit passes through the  
oscillator before clocking the watchdog timer. Variation in the timeout  
period is caused by phase errors which occur when the oscillator divides  
the external clock by 64. The resulting variation in the timeout period is 64  
plus one clock of jitter.  
Note 2: All voltage values are with respect to GND.  
Note 6: The input pins of CE IN, OSC IN and OSC SEL have weak internal  
pull-ups which pull to the supply when the input pins are floating.  
Note 3: For military temperature range parts, consult the factory.  
Note 4: The output pins of BATT ON, LOW_LINE, PFO, WDO, RESET and  
RESET have weak internal pull-ups of typically 3μA. However, external pull-  
up resistors may be used when higher speed is required.  
69453fb  
5
LTC694-3.3/LTC695-3.3  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Failure Input Threshold  
vs Temperature  
Output Voltage vs Load Current  
Output Voltage vs Load Current  
2.40  
2.39  
2.38  
2.37  
2.36  
2.35  
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.298  
1.296  
1.294  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
V
= 3.3V  
V
V
T
= 0V  
= 2.4V  
= 25°C  
CC  
V
V
T
= 3.3V  
= 2.4V  
= 25°C  
CC  
BATT  
A
CC  
BATT  
A
SLOPE = 4.6Ω  
SLOPE = 90Ω  
0
100  
200  
300  
400  
500  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
10  
20  
30  
40  
50  
LOAD CURRENT (μA)  
LOAD CURRENT (mA)  
694/5-3.3 G02  
694/5-3.3 G03  
694/5-3.3 G01  
Power-Fail Comparator  
Response Time with Pull-Up  
Resistor  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator  
Response Time  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
T
= 3.3V  
V
T
= 3.3V  
V
T
= 3.3V  
CC  
A
CC  
A
CC  
A
= 25°C  
= 25°C  
= 25°C  
V
+
PFI  
3.3V  
10k  
PFO  
PFO  
30pF  
V
+
PFI  
1.3V  
PFO  
30pF  
V
+
PFI  
1.3V  
1.3V  
30pF  
V
= 20mV STEP  
1.315V  
1.295V  
1.305V  
1.285V  
1.315V  
1.295V  
PFI  
2
V
= 20mV STEP  
V
= 20mV STEP  
PFI  
60  
PFI  
6
0
1
3
4
5
7
8
14  
12 16 18  
6
9
0
140  
160 180  
2
4
8
10  
0
120  
80 100  
20 40  
TIME (μs)  
TIME (μs)  
TIME (μs)  
694/5-3.3 G04  
694/5-3.3 G06  
694/5-3.3 G05  
Reset Active Time  
vs Temperature  
Reset Voltage Threshold  
vs Temperature  
RESET Output Voltage  
vs Supply Voltage  
2.90  
2.89  
2.88  
2.87  
2.86  
2.85  
2.84  
5
220  
210  
200  
190  
180  
170  
160  
150  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
4
3
2
1
0
50  
TEMPERATURE (°C)  
100 125  
1
3
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
2
4
5
–50 –25  
0
25  
75  
SUPPLY VOLTAGE (V)  
694/5-3.3 G09  
694/5-3.3 G08  
694/5-3.3 G07  
69453fb  
6
LTC694-3.3/LTC695-3.3  
PIN FUNCTIONS  
BATT ON: Battery On Logic Output from Comparator C2.  
PFI: Power Failure Input. PFI is the noninverting input  
to the power-fail comparator, C3. The inverting input is  
internallyconnectedtoa1.3Vreference. Thepowerfailure  
output remains high when PFI is above 1.3V and goes  
BATT ON goes low when V  
is internally connected to  
OUT  
V . The output typically sinks 25mA and can provide  
CC  
base drive for an external PNP transistor to increase the  
output current above the 50mA rating of V . BATT ON  
low when PFI is below 1.3V. Connect PFI to GND or V  
OUT  
OUT  
goes high when V  
is internally switched to V  
.
when C3 is not used.  
OUT  
BATT  
CE IN: Logic Input to the Chip_Enable Gating Circuit. CE IN  
can be derived from microprocessor’s address line and/or  
decoder output. See the Applications Information section  
and Figure 5 for additional information.  
PFO: Power Failure Output from C3. PFO remains high  
when PFI is above 1.3V and goes low when PFI is below  
1.3V. When V is lower than V  
, C3 is shut down and  
BATT  
CC  
PFO is forced low.  
CE OUT: Logic Output on the Chip_Enable Gating Circuit.  
RESET: Active High Logic Output. It is the inverse of  
RESET.  
When V is above the reset voltage threshold, CE OUT is  
CC  
a buffered replica of CE IN. When V is below the reset  
CC  
RESET: Logic Output for μP Reset Control. Whenever V  
CC  
voltage threshold CE OUT is forced high (see Figure 5).  
falls below either the reset voltage threshold (2.90V, typi-  
GND: Ground Pin.  
cally) or V , RESET goes active low. After V returns  
BATT  
CC  
LOW_LINE: Logic Output from Comparator C1. LOW_LINE  
to 3.3V, the reset pulse generator forces RESET to remain  
active low for a minimum of 140ms. When the watchdog  
timer is enabled but not serviced prior to a preset timeout  
period, the reset pulse generator also forces RESET to ac-  
tive low for a minimum of 140ms for every preset timeout  
period (see Figure 11). The reset active time is adjustable  
on the LTC695-3.3. An external push-button reset can be  
used in connection with the RESET output. See Push-But-  
ton Reset in the Applications Information section.  
indicates a low line condition at the V input. When V  
CC  
CC  
falls below the reset voltage threshold (2.90V typically),  
LOW_LINE goes low. As soon as V rises above the reset  
CC  
voltage threshold, LOW_LINE returns high (see Figure 1).  
LOW_LINE goes low when V drops below V  
(see  
CC  
BATT  
Table 1).  
OSC IN: Oscillator Input. OSC IN can be driven by an  
external clock signal or an external capacitor can be con-  
nected between OSC IN and GND when OSC SEL is forced  
low. Inthisconfigurationthenominalresetactivetimeand  
watchdog timeout period are determined by the number  
of clocks or set by the formula (see the Applications In-  
formation section). When OSC SEL is high or floating, the  
internal oscillator is enabled and the reset active time is  
fixed at 200ms typical for the LTC695-3.3. OSC IN selects  
between the 1.6 seconds and 100ms typical watchdog  
timeout periods. In both cases, the timeout period im-  
mediately after a reset is 1.6 seconds typical.  
V
: Back-Up Battery Input. When V falls below V  
,
BATT  
CC  
BATT  
auxiliary power connected to V  
, is delivered to V  
BATT  
OUT  
through PMOS switch, M2. If back-up battery or auxiliary  
power is not used, V should be connected to GND.  
BATT  
V : 3.3V Supply Input. The V pin should be bypassed  
CC  
CC  
with a 0.1μF capacitor.  
V
: Voltage Output for Backed Up Memory. Bypass with  
OUT  
a capacitor of 0.1μF or greater. During normal operation,  
V
obtains power from V through an NMOS power  
OUT  
CC  
switch,M1,whichcandeliverupto50mAandhasatypical  
OSC SEL: Oscillator Selection Input. When OSC SEL is  
high or floating, the internal oscillator sets the reset active  
time and watchdog timeout period. Forcing OSC SEL low,  
allows OSC IN to be driven from an external clock signal  
or an external capacitor can be connected between OSC  
IN and GND.  
on resistance of 5ꢀ. When V is lower than V  
is internally switched to V  
, V  
CC  
BATT OUT  
. If V  
BATT  
and V are not  
OUT  
BATT  
used, connect V  
to V .  
OUT  
CC  
69453fb  
7
LTC694-3.3/LTC695-3.3  
PIN FUNCTIONS  
WDI: Watchdog Input. WDI is a three-level input. Driving  
WDIeitherhighorlowforlongerthanthewatchdogtimeout  
period, forces both RESET and WDO low. Floating WDI  
disables the watchdog timer. The timer resets itself with  
each transition of the watchdog input (see Figure 11).  
WDO: Watchdog Logic Output. When the watchdog input  
remains either high or low for longer than the watchdog  
timeout period, WDO goes low. WDO is set high whenever  
there is a transition on the WDI pin, or LOW_LINE goes  
low. The watchdog timer can be disabled by floating WDI  
(see Figure 11).  
BLOCK DIAGRAM  
M2  
V
V
OUT  
BATT  
M1  
V
CC  
CHARGE  
PUMP  
+
BATT ON  
C2  
LOW LINE  
+
C1  
CE OUT  
1.3V  
GND  
CE IN  
C3  
PFO  
+
PFI  
RESET  
OSC IN  
RESET PULSE  
GENERATOR  
OSC  
OSC SEL  
RESET  
WATCHDOG  
TIMER  
WDO  
TRANSITION  
DETECTOR  
WDI  
694/5-3.3 BD  
69453fb  
8
LTC694-3.3/LTC695-3.3  
APPLICATIONS INFORMATION  
Microprocessor Reset  
Battery Switchover  
The battery switchover circuit compares V to the V  
The LTC694-3.3/LTC695-3.3 use a bandgap voltage refer-  
enceandaprecisionvoltagecomparatorC1tomonitorthe  
CC  
BATT  
input, and connects V  
to whichever is higher. When  
OUT  
3.3V supply input on V (see the Block Diagram). When  
V
rises to 70mV above V  
comparator, C2, connects V  
, the battery switchover  
CC  
CC  
BATT  
V
fallsbelowtheresetvoltagethreshold,theRESETout-  
to V through a charge  
CC  
CC  
OUT  
putisforcedtoactivelowstate.Theresetvoltagethreshold  
pumpedNMOSpowerswitch,M1.WhenV fallsto50mV  
CC  
accounts for a 10% variation on V , so the RESET output  
above V  
, C2 connects V  
to V  
through a PMOS  
CC  
BATT  
OUT  
BATT  
becomes active low when V falls below 3.0V (2.9V typi-  
switch, M2. C2hastypically20mVofhysteresistoprevent  
CC  
cal).Onpower-up,theRESETsignalisheldactivelowfora  
minimumof140msafterresetvoltagethresholdisreached  
toallowthepowersupplyandmicroprocessortostabilize.  
The reset active time is adjustable on the LTC695-3.3.  
On power-down, the RESET signal remains active low  
spuriousswitchingwhenV remainsnearlyequaltoV  
.
CC  
BATT  
The response time of C2 is approximately 20μs.  
During normal operation, the LTC694-3.3/LTC695-3.3 use  
a charge-pumped NMOS power switch to achieve low  
dropout and low supply current. This power switch can  
even with V as low as 1V. This capability helps hold the  
CC  
deliver up to 50mA to V  
from V and has a typical on  
OUT  
CC  
microprocessor in stable shutdown condition. Figure 1  
resistance of 5ꢀ. The V  
pin should be bypassed with  
OUT  
shows the timing diagram of the RESET signal.  
a capacitor of 0.1μF or greater to ensure stability. Use of  
a larger bypass capacitor is advantageous for supplying  
current to heavy transient loads.  
The precision voltage comparator, C1, typically has 40mV  
of hysteresis which ensures that glitches at V pin do  
CC  
not activate the RESET output. Response time is typically  
When operating currents larger than 50mA are required  
10ms.Tohelppreventmistriggeringduetotransientloads,  
from V , or a lower dropout (V – V voltage dif-  
OUT  
CC  
OUT  
the V pin should be bypassed with a 0.1μF capacitor  
CC  
ferential) is desired, the LTC695-3.3 should be used. This  
product provides BATT ON output to drive the base of  
an external PNP transistor (Figure 2). If higher currents  
are needed with the LTC694-3.3, a high current Schottky  
with the leads trimmed as short as possible.  
The LTC695-3.3 has two additional outputs: RESET and  
LOW_LINE.RESETisanactivehighoutputandistheinverse  
ofRESET. LOW_LINEistheoutputoftheprecisionvoltage  
diode can be connected from the V pin to the V  
pin  
CC  
OUT  
comparator C1. When V falls below the reset voltage  
to supply the extra current.  
CC  
threshold,LOW_LINEgoeslow.LOW_LINEreturnshighas  
soon as V rises above the reset voltage threshold.  
CC  
V2  
V2  
V1  
V1  
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
V
CC  
RESET  
t
1
t
1
t
= RESET ACTIVE TIME  
1
LOW LINE  
694/5-3.3 F01  
Figure 1. Reset Active Time  
69453fb  
9
LTC694-3.3/LTC695-3.3  
APPLICATIONS INFORMATION  
V
– V  
R
ANY PNP POWER TRANSISTOR  
OUT  
R
BATT  
I =  
V
5
V
3.3V  
0.1μF  
OUT  
CC  
BATT ON  
3
2
0.1μF  
3.3V  
V
V
OUT  
CC  
LTC694-3.3  
LTC695-3.3  
0.1μF  
0.1μF  
LTC695-3.3  
1
V
BATT  
GND  
V
BATT  
GND  
2.4V  
2.4V  
4
694/5-3.3 F02  
694/5-3.3 F03  
Figure 2. Using BATT ON to Drive External PNP Transistor  
Figure 3. Charging External Battery Through VOUT  
The LTC694-3.3/LTC695-3.3 are protected for safe area  
operation with short-circuit limit. Output current is limited  
to approximately 200mA. If the device is overloaded for  
a long period of time, thermal shutdown turns the power  
switch off until the device cools down. The threshold  
temperatureforthermalshutdownisapproximately155°C  
with about 10°C of hysteresis which prevents the device  
from oscillating in and out of shutdown.  
The operating voltage at the V  
pin ranges from 1.5V  
BATT  
to 2.75V. The charging resistor for rechargeable batteries  
should be connected to V since this eliminates the  
OUT  
discharge path that exists when the resistor is connected  
to V (Figure 3).  
CC  
Replacing the Back-Up Battery  
When changing the back-up battery with system power  
on, spuriousresetscanoccurwhilethebatteryisremoved  
due to battery standby current. Although battery standby  
current is only a tiny leakage current, it can still charge  
ThePNPswitchusedincompetitivedeviceswasnotchosen  
for the internal power switch because it injects unwanted  
current into the substrate. This current is collected by the  
up the stray capacitance on the V  
pin. The oscillation  
V
pin in competitive devices and adds to the charging  
BATT  
BATT  
cycle is as follows: When V  
reaches within 50mV of  
current of the battery which can damage lithium batteries.  
The LTC694-3.3/LTC695-3.3 use a charge-pumped NMOS  
powerswitchtoeliminateunwantedchargingcurrentwhile  
achieving low dropout and low supply current. Since no  
current goes to the substrate, the current collected by  
BATT  
V ,theLTC694-3.3/LTC695-3.3switchtobatterybackup.  
CC  
V
OUT  
pulls V  
low and the device goes back to normal  
BATT  
operation. The leakage current then charges up the V  
pin again and the cycle repeats.  
BATT  
V
pin is strictly junction leakage.  
BATT  
If spurious resets during battery replacement pose no  
problems, thennoactionisrequired. Otherwise, aresistor  
A 125ꢀ PMOS switch connects the V  
input to V  
OUT  
BATT  
from V  
to GND will hold the pin low while changing  
in battery back-up mode. The switch is designed for very  
low dropout voltage (input-to-output differential). This  
feature is advantageous for low current applications such  
as battery back-up in CMOS RAM and other low power  
CMOS circuitry. The supply current in battery back-up  
mode is 1μA maximum.  
BATT  
the battery. For example, the battery standby current is  
1μA maximum over temperature so the external resistor  
required to hold V  
below V is:  
BATT  
CC  
VCC – 50mV  
1µA  
R≤  
With V = 3V, a 2.7M resistor will work. With a 2V battery,  
CC  
this resistor will draw only 0.7μA from the battery, which  
is negligible in most cases.  
69453fb  
10  
LTC694-3.3/LTC695-3.3  
APPLICATIONS INFORMATION  
If battery connections are made through long wires, a  
10ꢀ to 100ꢀ series resistor and a 0.1μF capacitor are  
recommended to prevent any overshoot beyond V due  
to the lead inductance (Figure 4).  
10Ω  
V
BATT  
0.1μF  
2.7M  
LTC694-3.3  
LTC695-3.3  
CC  
Table1showsthestateofeachpinduringbatteryback-up.  
When the battery switchover section is not used, connect  
GND  
694/5-3.3 F04  
V
to GND and V  
to V .  
BATT  
Table 1. Input and Output Status in Battery Back-Up Mode  
SIGNAL STATUS  
C2 monitors V for active switchover.  
OUT  
CC  
Figure 4. 10Ω/0.1μF Combination Eliminates Inductive  
Overshoot and Prevents Spurious Resets During Battery  
Replacement. The 2.7M Pulls the VBATT Pin to Ground  
While the Battery is Removed, Eliminating Spurious Resets  
V
V
V
CC  
CC  
V
is connected to V  
through an internal PMOS switch.  
OUT  
BATT  
OUT  
BATT  
Memory Protection  
The supply current is 1μA maximum.  
The LTC695-3.3 includes memory protection circuitry  
which ensures the integrity of the data in memory by pre-  
BATT ON Logic high. The open-circuit output voltage is equal to V  
.
OUT  
PFI  
Power failure input is ignored.  
venting write operations when V is at invalid level. Two  
CC  
additional pins, CE IN and CE OUT, control the Chip_Enable  
PFO  
Logic low.  
RESET  
RESET  
Logic low.  
or Write inputs of CMOS RAM. When V is 3.3V, CE OUT  
CC  
Logic high. The open-circuit output voltage is equal to V  
.
OUT  
LOW_LINE Logic low.  
follows CE IN with a typical propagation delay of 30ns.  
When V falls below the reset voltage threshold or V  
,
CC  
BATT  
WDI  
Watchdog input is ignored.  
CE OUT is forced high, independent of CE IN. CE OUT is  
an alternative signal to drive the CE, CS, or Write input of  
battery backed up CMOS RAM. CE OUT can also be used  
to drive the Store or Write input of an EEPROM, EAROM  
or NOVRAM to achieve similar protection. Figure 5 shows  
the timing diagram of CE IN and CE OUT.  
WDO  
Logic high. The open-circuit output voltage is equal to V  
.
OUT  
CE IN  
CE OUT  
OSC IN  
Chip_Enable input is ignored.  
Logic high. The open-circuit output voltage is equal to V  
OSC IN is ignored.  
.
OUT  
OSC SEL OSC SEL is ignored.  
V2  
V
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
CC  
V1  
CE IN  
V
= V  
BATT  
OUT  
CE OUT  
V
= V  
BATT  
OUT  
694/5-3.3 F05  
Figure 5. Timing Diagram for CE IN and CE OUT  
69453fb  
11  
LTC694-3.3/LTC695-3.3  
APPLICATIONS INFORMATION  
CE IN can be derived from the microprocessor’s address  
decoderoutput.Figure6showsatypicalnonvolatileCMOS  
RAM application.  
V
V
V
3.3V  
0.1μF  
CC  
OUT  
CC  
+
0.1μF  
62512  
RAM  
10μF  
LTC695-3.3  
CE OUT  
CS  
GND  
30ns PROPAGATION DELAY  
FROM DECODER  
Memory protection can also be achieved with the LTC694-  
3.3 by using RESET as shown in Figure 7.  
V
BATT  
CE IN  
RESET  
2.4V  
GND  
RESET  
694/5-3.3 F06  
TO μP  
Power-Fail Warning  
TheLTC694-3.3/LTC695-3.3generateaPowerFailureOut-  
put(PFO)forearlywarningoffailureinthemicroprocessor’s  
power supply. This is accomplished by comparing the  
power failure input (PFI) with an internal 1.3V reference.  
Figure 6. A Typical Nonvolatile CMOS RAM Application  
V
V
V
CC  
62128  
RAM  
3.3V  
0.1μF  
CC  
OUT  
+
0.1μF  
10μF  
PFO goes low when the voltage at the PFI pin is less than  
1.3V. Typically PFI is driven by an external voltage divider  
(R1 and R2 in Figures 8 and 9) which senses either an  
unregulated DC input or a regulated 3.3V output. The  
voltage divider ratio can be chosen such that the voltage  
at the PFI pin falls below 1.3V several milliseconds before  
the 3.3V supply falls below the maximum reset voltage  
threshold 3.0V. PFO is normally used to interrupt the  
microprocessor to execute shutdown procedure between  
PFO and RESET or RESET.  
LTC694-3.3  
CS1  
CS  
V
RESET  
GND  
CS2  
BATT  
2.4V  
GND  
694/5-3.3 F07  
Figure 7. Write Protect for RAM with LTC694-3.3  
V
≥ 5V  
LT1129-3.3  
3.3V  
IN  
V
V
V
OUT  
CC  
IN  
+
+
10μF OUT SENSE  
100μF  
0.1μF  
LTC694-3.3  
LTC695-3.3  
SHDN  
R4  
10k  
The power-fail comparator, C3, does not have hysteresis.  
Hysteresiscanbeaddedhowever, byconnectingaresistor  
between the PFO output and the noninverting PFI input  
pin as shown in Figures 8 and 9. The upper and lower trip  
points in the comparator are established as follows:  
R3  
200k  
ADJ  
R1  
51k  
PFO  
GND  
PFI  
R2  
16k  
TO μP  
694/5-3.3 F08  
When PFO output is low, R3 sinks current from the sum-  
ming junction at the PFI pin.  
Figure 8. Monitoring Unregulated DC Supply with the  
LTC694-3.3/LTC695-3.3s Power-Fail Comparator  
R1 R1  
+
V =1.3V 1+  
H
LT1129-3.3  
V
r 6.5V  
0.1μF  
10μF  
R2 R3  
IN  
3.3V  
V
V
V
CC  
IN  
OUT  
+
+
When PFO output is high, the series combination of R3  
and R4 source current into the PFI summing junction.  
OUT SENSE  
R4  
10k  
R1  
27k  
10μF  
LTC694-3.3  
LTC695-3.3  
SHDN  
R3  
2.7M  
ADJ  
PFO  
GND  
PFI  
R1 (3.3V 1.3V)R1⎞  
R2 1.3V(R3+R4) ⎠  
VL =1.3V 1+  
694/5-3.3 F09  
R2  
16k  
TO μP  
R5  
5k  
R1  
R3  
Assuming R4 << R3, VHYSTERESIS = 3.3V  
Figure 9. Monitoring Regulated DC Supply with the  
LTC694-3.3/LTC695-3.3s Power-Fail Comparator  
69453fb  
12  
LTC694-3.3/LTC695-3.3  
APPLICATIONS INFORMATION  
Example 1: The circuit in Figure 8 demonstrates the use  
of the power-fail comparator to monitor the unregulated  
power supply input. Assuming the the rate of decay of the  
Monitoring the Status of the Battery  
C3 can also monitor the status of the memory back-up  
battery (Figure 10). If desired, the CE OUT can be used to  
applyatestloadtothebattery. SinceCEOUTisforcedhigh  
in battery back-up mode, the test load will not be applied  
to the battery while it is in use, even if the microprocessor  
supplyinputV is100mV/msandthetotaltimetoexecutea  
IN  
shutdownprocedureis8ms.AlsothenoiseofV is200mV.  
IN  
With these assumptions in mind, we can reasonably set  
V = 5V which is 1.6V greater than the sum of maximum  
L
is not powered.  
reset voltage threshold and the dropout voltage of the  
3.3V  
LT1129-3.3 (3V + 0.4V) and V  
= 850mV.  
HYSTERESIS  
V
CC  
V
BATT  
R1  
LOW-BATTERY SIGNAL  
T0 μP I/O PIN  
PFO  
VHYSTERESIS = 3.3V = 850mV  
R1  
1M  
R3  
LTC695-3.3  
PFI  
R3 ≈ 3.88 R1  
R2  
2.4V  
1.6M  
CE IN  
GND  
I/O PIN  
Choose R3 = 200k and R1 = 51k. Also select R4 = 10k  
which is much smaller than R3.  
CE OUT  
R
20k  
L
51k (3.3V 1.3V)51k⎞  
5V =1.3V 1−  
OPTIONAL TEST LOAD  
R2  
1.3V(210k)  
694/5-3.3 F10  
R2 = 15.8k, Choose nearest 5% resistor 16k and recal-  
culate V ,  
Figure 10. Back-Up Battery Monitor with Optional Test Load  
L
51k (3.3V 1.3V)51k⎞  
Watchdog Timer  
VL =1.3V 1+  
=4.96 V  
16k  
1.3V(210k) ⎠  
The LTC694-3.3/LTC695-3.3 provide a watchdog timer  
function to monitor the activity of the microprocessor. If  
the microprocessor does not toggle the watchdog input  
(WDI) within a selected timeout period, RESET is forced  
to active low for a minimum of 140ms. The reset active  
timeisadjustableontheLTC695-3.3. Sincemanysystems  
can not service the watchdog timer immediately after a  
reset, the LTC695-3.3 has a longer timeout period (1.0  
second minimum) right after a reset is issued. The normal  
timeoutperiod(70msminimum)becomeseffectivefollow-  
ing the first transition of WDI after RESET is inactive. The  
watchdog timeout period is fixed at 1.0 second minimum  
on the LTC694-3.3. Figure 11 shows the timing diagram  
of watchdog timeout period and reset active time. The  
watchdog timeout period is restarted as soon as RESET is  
inactive. When either a high-to-low or low-to-high transi-  
tion occurs at the WDI pin prior to timeout, the watchdog  
time is reset and begins to time out again. To ensure the  
watchdog time does not time out, either a high-to-low or  
low-to-high transition on the WDI pin must occur at or  
less than the minimum timeout period. If the input to the  
51k 51k  
+
V =1.3V 1+  
=5.77 V  
H
16 k 200k  
(4.96V 3.4V)  
=15.6ms  
100mV /ms  
V
= 5.77V – 4.96V = 810mV  
HYSTERESIS  
The15.6msallowsenoughtimetoexecuteshutdownpro-  
cedureformicroprocessorand810mVofhysteresiswould  
prevent PFO from going low due to the noise of V .  
IN  
Example 2: The circuit in Figure 9 can be used to measure  
the regulated 3.3V supply to provide early warning of  
power failure. Because of variations in the PFI threshold,  
thiscircuitrequiresadjustmenttoensurethePFIcompara-  
tor trips before the reset threshold is reached. Adjust R5  
such that the PFO output goes low when the V supply  
reaches the desired level (e.g., 3.1V).  
CC  
69453fb  
13  
LTC694-3.3/LTC695-3.3  
APPLICATIONS INFORMATION  
V
= 3.3V  
CC  
WDI  
t
1
t
2
t
3
= RESET ACTIVE TIME  
= NORMAL WATCHDOG TIMEOUT PERIOD  
= WATCHDOG TIMEOUT PERIOD IMMEDIATELY  
AFTER A RESET  
WDO  
t
t
3
2
RESET  
t
t
1
1
694/5-3.3 F11  
Figure 11. Watchdog Timeout Period and Reset Active Time  
EXTERNAL OSCILLATOR  
EXTERNAL CLOCK  
8
3
4
8
7
3
4
OSC SEL  
3.3V  
3.3V  
V
V
CC  
OSC SEL  
CC  
LTC695-3.3  
LTC695-3.3  
7
GND  
OSC IN  
OSC IN  
GND  
INTERNAL OSCILLATOR  
1.6 SECOND WATCHDOG  
INTERNAL OSCILLATOR  
100ms WATCHDOG  
3
8
3
8
7
FLOATING  
OR HIGH  
FLOATING  
OR HIGH  
V
V
3.3V  
3.3V  
OSC SEL  
CC  
OSC SEL  
CC  
LTC695-3.3  
LTC695-3.3  
7
4
FLOATING  
OR HIGH  
4
OSC IN  
OSC IN  
GND  
GND  
694/5-3.3 F12  
Figure 12. Oscillator Configurations  
TheLTC695-3.3hastwoadditionalpins,OSCSELandOSC  
IN, which allow reset active time and watchdog timeout  
period to be adjusted per Table 2. Several configurations  
are shown in Figure 12.  
WDI pin remains either high or low, reset pulses will be  
issued every 1.6 seconds typically. The watchdog time  
can be deactivated by floating the WDI pin. The timer  
is also disabled when V falls below the reset voltage  
CC  
threshold or V  
.
BATT  
OSC IN can be driven by an external clock signal or an  
external capacitor can be connected between OSC IN and  
GND when OSC SEL is forced low. In these configura-  
tions, the nominal reset active time and watchdog timeout  
period are determined by the number of clocks or set by  
the formula in Table 2. When OSC SEL is high or floating,  
The LTC695-3.3 provides an additional output (Watchdog  
Output, WDO) which goes low if the watchdog timer is  
allowed to time out and remains low until set high by the  
next transition on the WDI pin. WDO is also set high when  
V
falls below the reset voltage threshold or V  
.
CC  
BATT  
69453fb  
14  
LTC694-3.3/LTC695-3.3  
TYPICAL APPLICATION  
Table 2. LTC695-3.3 Reset Active Time and Watchdog Timeout Selections  
WATCHDOG TIMEOUT PERIOD  
RESET ACTIVE TIME  
IMMEDIATELY AFTER  
OSC SEL  
Low  
OSC IN  
NORMAL (SHORT PERIOD)  
RESET (LONG PERIOD)  
LTC695-3.3  
External Clock Input  
External Capacitor*  
1024 CLKs  
4096 CLKs  
2048 CLKs  
Low  
400ms  
•C  
1.6s  
•C  
800ms  
•C  
70pF  
70pF  
70pF  
Floating or High  
Floating or High  
Low  
100ms  
1.6 sec  
1.6 sec  
1.6 sec  
200ms  
200ms  
Floating or High  
184,000  
C(pF) • 1025  
*The nominal internal frequency is 10.24kHz. The nominal oscillator frequency with external capacitor is f  
(Hz) =  
OSC  
the internal oscillator is enabled and the reset active time  
is fixed at 140ms minimum for the LTC695-3.3. OSC IN  
selects between the 1 second and 70ms minimum normal  
watchdogtimeoutperiods.Inbothcases,thetimeoutperiod  
immediately after a reset is at least 1 second.  
The 100ꢀ resistor in series with the push-button is re-  
quired to prevent the ringing, due to the capacitance and  
lead inductance, from pulling the RESET pins of the MPU  
and LTC69X below ground.  
V
3.3V  
RESET  
LTC694-3.3  
RESET  
CC  
Push-Button Reset  
100ꢀ  
0.1μF  
MPU  
(e.g. 68HC05)  
LTC695-3.3  
The LTC694-3.3/LTC695-3.3 do not provide a logic input  
for direct connection to a push-button. However, a push-  
button in series with a 100ꢀ resistor connected to the  
RESET output pin (Figure 13) provides an alternative for  
manual reset. Connecting a 0.1μF capacitor to the RESET  
pin debounces the push-button input.  
GND  
694/5-3.3 F13  
Figure 13. The External Push-Button Reset  
TYPICAL APPLICATION  
Capacitor Back-Up with 74HC4016 Switch  
3.3V  
V
V
CC  
OUT  
0.1μF  
10 11 12 14  
0.1μF  
R1  
10k  
LTC695-3.3  
2
1
LOW LINE  
V
74HC4016  
BATT  
R2  
30k  
7
13  
100μF  
+
GND  
694/5-3.3 TA03  
69453fb  
15  
LTC694-3.3/LTC695-3.3  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
.130 p .005  
.300 – .325  
.045 – .065  
(3.302 p 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.255 p .015*  
(6.477 p 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
3
.325  
.018 p .003  
(0.457 p 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
.160 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
69453fb  
16  
LTC694-3.3/LTC695-3.3  
PACKAGE DESCRIPTION  
N Package  
16-Lead PDIP (Narrow 0.300)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
12  
10  
9
8
15  
13  
11  
16  
.255 .015*  
(6.477 0.381)  
2
1
3
4
6
5
7
.300 – .325  
(7.620 – 8.255)  
.130 .005  
(3.302 0.127)  
.045 – .065  
(1.143 – 1.651)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
–.015  
.325  
.120  
(3.048)  
MIN  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
N16 1002  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
69453fb  
17  
LTC694-3.3/LTC695-3.3  
PACKAGE DESCRIPTION  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
69453fb  
18  
LTC694-3.3/LTC695-3.3  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
3/10  
Removed “UL Recognized” and UL file number from the Features section.  
1
69453fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC694-3.3/LTC695-3.3  
TYPICAL APPLICATION  
Write Protect for Additional RAMs  
3.3V  
V
V
CC  
V
V
OUT  
CC  
+
0.1μF  
10μF  
LH5168SH  
RAM A  
0.1μF  
LTC695-3.3  
CS  
CE OUT  
30ns PROPAGATION  
DELAY  
CS A  
BATT  
CE IN  
2.4V  
LOW LINE  
GND  
V
CC  
0.1μF  
0.1μF  
LH5116S  
RAM B  
CS1  
CS B  
CS2  
V
CC  
LH5116S  
RAM C  
CS C  
CS1  
CS2  
OPTIONAL CONNECTION FOR  
ADDITIONAL RAMs  
694/5-3.3 TA04  
RELATED PARTS  
PART NUMBER  
LTC1326  
DESCRIPTION  
Micropower Precision Triple Supply Monitor  
Micropower Triple Supply Monitor for PCI Applications  
COMMENTS  
4.725V, 3.118V, 1V Thresholds (0.75%)  
Meets PCI t Timing Specifications  
LTC1536  
FAIL  
69453fb  
LT 0310 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC694CS8-PBF

Microprocessor Supervisory Circuits
Linear

LTC694CS8PBF

Microprocessor Supervisory Circuits
Linear

LTC694I

Microprocessor Supervisory Circuits
Linear

LTC694I-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC694IJ8

IC 1-CHANNEL POWER SUPPLY MANAGEMENT CKT, CDIP8, 0.300 INCH, HERMETIC SEALED, CERDIP-8, Power Management Circuit
Linear

LTC694IN-3.3

IC 2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, PLASTIC, DIP-8, Power Management Circuit
Linear

LTC694IN8

Microprocessor Supervisory Circuits
Linear

LTC694IN8#PBF

LTC694 - Microprocessor Supervisory Circuits; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IN8-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC694IN8-3.3#PBF

暂无描述
Linear

LTC694IN8-PBF

Microprocessor Supervisory Circuits
Linear

LTC694IN8PBF

Microprocessor Supervisory Circuits
Linear