LTC694IN8PBF [Linear]

Microprocessor Supervisory Circuits; 微处理器监控电路
LTC694IN8PBF
型号: LTC694IN8PBF
厂家: Linear    Linear
描述:

Microprocessor Supervisory Circuits
微处理器监控电路

微处理器 监控
文件: 总18页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC690/LTC691  
LTC694/LTC695  
Microprocessor  
Supervisory Circuits  
FEATURES  
DESCRIPTION  
The LTC®690 family provides complete power supply  
monitoringandbatterycontrolfunctionsformicroprocessor  
reset,batteryback-up,CMOSRAMwriteprotection,power  
failure warning and watchdog timing. A precise internal  
voltagereferenceandcomparatorcircuitmonitorthepower  
supply line. When an out-of-tolerance condition occurs,  
the reset outputs are forced to active states and the chip  
enable output unconditionally write-protects external  
memory. In addition, the RESET output is guaranteed to  
n
Guaranteed Reset Assertion at V = 1V  
CC  
n
1.5mA Maximum Supply Current  
n
Fast (35ns Max) Onboard Gating of RAM Chip  
Enable Signals  
SO-8 and S16 Packaging  
4.65V Precision Voltage Monitor  
n
n
n
Power OK/Reset Time Delay: 50ms, 200ms  
or Adjustable  
n
Minimum External Component Count  
n
1µA Maximum Standby Current  
remain logic low even with V as low as 1V.  
CC  
n
Voltage Monitor for Power-Fail  
The LTC690 family powers the active CMOS RAMs with a  
charge pumped NMOS power switch to achieve low drop-  
out and low supply current. When primary power is lost,  
auxiliary power, connected to the battery input pin, powers  
the RAMs in standby through an efficient PMOS switch.  
or Low-Battery Warning  
Thermal Limiting  
n
n
Performance Specified Over Temperature  
n
Superior Upgrade for MAX690 Family  
APPLICATIONS  
Foranearlywarningofimpendingpowerfailure,theLTC690  
family provides an internal comparator with a user-defined  
threshold.Aninternalwatchdogtimerisalsoavailable,which  
forces the reset pins to active states when the watchdog  
input is not toggled prior to a preset timeout period.  
n
Critical μP Power Monitoring  
n
Intelligent Instruments  
n
Battery-Powered Computers and Controllers  
n
Automotive Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
RESET Output Voltage  
vs Supply Voltage  
5
T
= 25°C  
A
LT®1086-5  
EXTERNAL PULL-UP = 10μA  
= 0V  
V
≥ 7.5V  
5V  
IN  
V
BATT  
POWER TO  
μP  
V
V
V
CC  
4
3
V
IN  
OUT  
OUT  
+
+
CMOS RAM POWER  
0.1μF  
3V  
0.1μF  
LTC690/LTC691  
LTC694/LTC695  
100μF  
10μF  
ADJ  
μP  
SYSTEM  
V
BATT  
μP RESET  
μP NMI  
RESET  
PFO  
2
1
0
51k  
10k  
I/O LINE  
PFI  
WDI  
GND  
690 TA01  
0.1μF 100Ω  
MICROPROCESSOR RESET, BATTERY BACK-UP, POWER FAILURE  
WARNING AND WATCHDOG TIMING ARE ALL IN A SINGLE CHIP  
FOR MICROPROCESSOR SYSTEMS  
0
1
2
3
4
5
SUPPLY VOLTAGE (V)  
690 TA02  
690fe  
1
LTC690/LTC691  
LTC694/LTC695  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1 and 2)  
Terminal Voltage  
V
Output Current ...................Short-Circuit Protected  
OUT  
V
V
.....................................................0.3V to 6.0V  
.................................................. –0.3V to 6.0V  
Power Dissipation...............................................500mW  
Operating Temperature Range  
CC  
BATT  
All Other Inputs ....................0.3V to (V  
+ 0.3V)  
LTC690/91/94/95C ............................... 0°C to 70°C  
LTC690/91/94/95I ............................40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec.) ................. 300°C  
OUT  
Input Current  
V
................................................................200mA  
BATT  
CC  
V
...............................................................50mA  
GND.................................................................20mA  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
V
RESET  
RESET  
WDO  
CE IN  
CE OUT  
WDI  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
RESET  
RESET  
WDO  
16  
15  
14  
13  
BATT  
BATT  
V
V
OUT  
OUT  
V
V
CC  
3
4
5
6
7
8
CC  
GND  
GND  
BATT ON  
LOWLINE  
OSC IN  
CE IN  
BATT ON  
LOWLINE  
OSC IN  
12  
CE OUT  
11 WDI  
PFO  
PFO  
10  
9
OSC SEL  
PFI  
PFI  
OSC SEL  
SW PACKAGE  
16-LEAD WIDE PLASTIC SO  
N PACKAGE  
16-LEAD PDIP  
T
JMAX  
= 110°C, θ = 130°C/W CONDITIONS: PCB MOUNT ON  
JA  
FR4 MATERIAL, STILL AIR AT 25°C, COPPER TRACE  
T
= 110°C, θ = 130°C/W  
JMAX  
JA  
TOP VIEW  
TOP VIEW  
V
V
1
2
3
4
V
BATT  
8
7
6
5
1
2
8
7
6
5
V
BATT  
OUT  
OUT  
V
V
RESET  
RESET  
WDI  
CC  
CC  
WDI  
GND  
PFI  
GND  
PFI  
3
4
PFO  
PFO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
T
= 110°C, θ = 180°C/W CONDITIONS; PCB MOUNT ON  
JA  
T
= 110°C, θ = 130°C/W (N8)  
JA  
JMAX  
JMAX  
FR4 MATERIAL, STILL AIR AT 25°C, COPPER TRACE  
690fe  
2
LTC690/LTC691  
LTC694/LTC695  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC691CN#PBF  
LTC691IN#PBF  
TAPE AND REEL  
LTC691CN#PBF  
LTC691IN#PBF  
LTC695CN#PBF  
LTC695IN#PBF  
LTC691CSW#PBF  
LTC691ISW#PBF  
LTC695CSW#PBF  
LTC695ISW#PBF  
LTC690CN8#PBF  
LTC690IN8#PBF  
LTC694CN8#PBF  
LTC694IN8#PBF  
LTC690CS8#PBF  
LTC690IS8#PBF  
LTC694CS8#PBF  
LTC694IS8#PBF  
PART MARKING  
LTC691CN  
PACKAGE DESCRIPTION  
16-Lead PDIP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC691IN  
16-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LTC695CN#PBF  
LTC695IN#PBF  
LTC695CN  
16-Lead PDIP  
LTC695IN  
16-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LTC691CSW#PBF  
LTC691ISW#PBF  
LTC695CSW#PBF  
LTC695ISW#PBF  
LTC690CN8#PBF  
LTC690IN8#PBF  
LTC694CN8#PBF  
LTC694IN8#PBF  
LTC690CS8#PBF  
LTC690IS8#PBF  
LTC694CS8#PBF  
LTC694IS8#PBF  
LTC691CSW  
LTC691ISW  
LTC695CSW  
LTC695ISW  
LTC690CN8  
LTC690IN8  
LTC694CN8  
LTC694IN8  
LTC690CS8  
LTC690IS8  
LTC694CS8  
LTC694IS8  
16-Lead Wide Plastic SO  
16-Lead Wide Plastic SO  
16-Lead Wide Plastic SO  
16-Lead Wide Plastic SO  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
8-Lead PDIP  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
PRODUCT SELECTION GUIDE  
CONDITIONAL  
BATTERY  
BACK-UP  
WATCHDOG  
TIMER  
BATTERY  
BACK-UP  
POWER-FAIL  
WARNING  
RAM WRITE  
PROTECT  
PUSHBUTTON  
RESET  
PINS  
8
RESET  
LTC690  
LTC691  
LTC694  
LTC695  
LTC699  
LTC1232  
LTC1235  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
16  
8
X
X
16  
8
8
X
X
16  
X
X
X
X
690fe  
3
LTC690/LTC691  
LTC694/LTC695  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = full operating range, VBATT = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Battery Back-Up Switching  
Operating Voltage Range  
V
V
4.75  
2.00  
5.50  
4.25  
V
V
CC  
BATT  
V
OUT  
Output Voltage  
I
= 1mA  
V
V
– 0.05  
– 0.10  
V
CC  
V
CC  
– 0.005  
– 0.005  
V
V
OUT  
CC  
CC  
l
I
I
I
= 50mA  
V
– 0.50  
V
– 0.250  
V
V
OUT  
OUT  
OUT  
CC  
CC  
V
in Battery Back-Up Mode  
= 250μA, V < V  
V
– 0.1  
V
– 0.2  
BATT  
OUT  
CC  
BATT  
BATT  
Supply Current (Exclude I  
)
= 50mA  
0.6  
0.6  
1.5  
2.5  
mA  
mA  
OUT  
l
l
l
Supply Current in Battery Back-Up Mode  
V
= 0V, V  
= 2.8V  
0.04  
0.04  
1
5
μA  
μA  
CC  
BATT  
Battery Standby Current (+ = Discharge, – = Charge) 5.5 > V > V  
+ 0.2V  
BATT  
–0.1  
–0.1  
+0.02  
+0.10  
μA  
μA  
CC  
Battery Switchover Threshold, V – V  
Power Up  
Power Down  
70  
50  
mV  
mV  
CC  
BATT  
Battery Switchover Hysteresis  
20  
mV  
V
BATT ON Output Voltage (Note 4)  
I
= 3.2mA  
0.4  
25  
SINK  
BATT ON Output Short-Circuit Current (Note 4)  
BATT ON = V  
Sink Current  
35  
1
m
OUT  
BATT ON = 0V Source Current  
0.5  
4.5  
μA  
Reset and Watchdog Timer  
Reset Voltage Threshold  
l
4.65  
40  
4.75  
V
Reset Threshold Hysteresis  
Reset Active Time (LTC690/91) (Note 5)  
mV  
OSC SEL HIGH, V = 5V  
40  
35  
50  
50  
60  
70  
ms  
ms  
CC  
l
l
l
l
Reset Active Time (LTC694/95) (Note 5)  
OSC SEL HIGH, V = 5V  
160  
140  
200  
200  
240  
280  
ms  
ms  
CC  
Watchdog Timeout Period, Internal Oscillator  
Long Period, V = 5V  
1.2  
1
1.6  
1.6  
2.00  
2.25  
sec  
sec  
CC  
Short Period, V = 5V  
80  
70  
100  
100  
120  
140  
ms  
ms  
CC  
Watchdog Timeout Period, External Clock (Note 6)  
Long Period  
Short Period  
4032  
960  
4097  
1025  
Clock  
Cycles  
Reset Active Time PSRR  
1
1
ms/V  
ms/V  
ns  
Watchdog Timeout Period PSRR, Internal OSC  
Minimum WDI Input Pulse Width  
l
V
IL  
= 0.4V, V = 3.5V  
200  
IH  
RESET Output Voltage at V = 1V  
I
= 10μA, V = 1V  
4
200  
0.4  
mV  
CC  
SINK  
CC  
RESET and LOWLINE Output Voltage (Note 4)  
I
I
= 1.6mA, V = 4.25V  
V
V
SINK  
CC  
= 1μA, V = 5V  
3.5  
3.5  
SOURCE  
CC  
RESET and WDO Output Voltage (Note 4)  
I
I
= 1.6mA, V = 5V  
0.4  
V
V
SINK  
CC  
= 1μA, V = 4.25V  
SOURCE  
CC  
690fe  
4
LTC690/LTC691  
LTC694/LTC695  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = full operating range, VBATT = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3
MAX  
UNITS  
μA  
RESET, RESET, WDO, LOWLINE  
Output Short-Circuit Current (Note 4)  
Output Source Current  
Output Sink Current  
1
25  
25  
mA  
V
WDI Input Threshold  
WDI Input Current  
Logic Low  
Logic high  
0.8  
50  
3.5  
l
l
WDI = V  
4
–8  
μA  
OUT  
WDI = 0V  
–50  
Power-Fail Detector  
PFI Input Threshold  
l
V
CC  
= 5V  
1.25  
1.3  
1.35  
V
mV/V  
nA  
PFI Input Threshold PSRR  
PFI Input Current  
0.3  
0.01  
25  
PFO Output Voltage (Note 4)  
I
I
= 3.2mA  
SOURCE  
0.4  
V
SINK  
= 1μA  
3.5  
1
PFO Short-Circuit Source Current (Note 4)  
PFI = HIGH, PFO = 0V  
PFI = LOW, PFO = V  
3
25  
2
25  
μA  
mA  
μs  
OUT  
PFI Comparator Response Time (Falling)  
ΔV = –20mV, V = 15mV  
IN OD  
PFI Comparator Response Time (Rising) (Note 4)  
ΔV = 20mV, V = 15mV  
40  
8
μs  
IN  
OD  
with 10kΩ Pull-Up  
Chip Enable Gating  
CE IN Threshold  
V
V
0.8  
0.4  
V
IL  
IH  
2
CE IN Pull-Up Current (Note 7)  
CE OUT Output Voltage  
3
μA  
V
I
I
I
= 3.2mA  
SINK  
SOURCE  
SOURCE  
= 3.0mA  
V
OUT  
V
OUT  
– 1.50  
– 0.05  
= 1μA, V = 0V  
CC  
CE Propagation Delay  
V
CC  
= 5V, C = 20pF  
20  
20  
35  
45  
ns  
L
l
CE OUT Output Short-Circuit Current  
Output Source Current  
Output Sink Current  
30  
35  
mA  
Oscillator  
OSC IN Input Current (Note 7)  
OSC SEL Input Pull-Up Current (Note 7)  
OSC IN Frequency Range  
2
5
μA  
μA  
l
OSC SEL = 0V  
0
250  
kHz  
kHz  
OSC IN Frequency with External Capacitor  
OSC SEL = 0V, C  
= 47pF  
4
OSC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The LTC690 and LTC691 have minimum reset active time of 35ms  
(50ms typically) while the LTC694 and LTC695 have longer minimum  
reset active time of 140ms (200ms typically). The reset active time of  
the LTC691 and LTC695 can be adjusted (see Table 2 in Applications  
Information section).  
Note 2: All voltage values are with respect to GND.  
Note 6: The external clock feeding into the circuit passes through the  
oscillator before clocking the watchdog timer (See Block Diagram).  
Variation in the timeout period is caused by phase errors which occur  
when the oscillator divides the external clock by 64. The resulting variation  
in the timeout period is 64 clocks plus one clock of jitter.  
Note 3: For military temperature range parts or for the LTC692 and  
LTC693, consult the factory.  
Note 4: The output pins of BATT ON, LOWLINE, PFO, WDO, RESET and  
RESET have weak internal pull-ups of typically 3μA. However, external pull-  
up resistors may be used when higher speed is required.  
Note 7: The input pins of CE IN, OSC IN and OSC SEL have weak internal  
pullups which pull to the supply when the input pins are floating.  
690fe  
5
LTC690/LTC691  
LTC694/LTC695  
BLOCK DIAGRAM  
M2  
V
V
BATT  
OUT  
M1  
V
CC  
CHARGE  
PUMP  
+
BATT ON  
C2  
LOWLINE  
+
C1  
CE OUT  
1.3V  
GND  
CE IN  
C3  
PFO  
+
PFI  
RESET  
RESET  
OSC IN  
RESET PULSE  
GENERATOR  
OSC  
OSC SEL  
WATCHDOG  
TIMER  
WDO  
690 BD  
TRANSITION  
DETECTOR  
WDI  
PIN FUNCTIONS  
V : 5V Supply Input. The V pin should be bypassed  
GND: Ground pin.  
BATT ON: Battery On Logic Output from Comparator C2.  
CC  
CC  
with a 0.1μF capacitor.  
V
: Voltage Output for Backed Up Memory. Bypass with  
BATT ON goes low when V  
is internally connected to  
OUT  
OUT  
a capacitor of 0.1μF or greater. During normal operation,  
V . The output typically sinks 35mA and can provide  
CC  
V
OUT  
obtains power from V through an NMOS power  
base drive for an external PNP transistor to increase the  
CC  
switch,M1,whichcandeliverupto50mAandhasatypical  
output current above the 50mA rating of V . BATT ON  
OUT  
on resistance of 5Ω. When V is lower than V , V  
goes high when V  
is internally switched to V  
.
CC  
BATT OUT  
OUT  
BATT  
is internally switched to V  
used, connect V  
. If V  
BATT  
and V  
are not  
OUT  
BATT  
PFI: Power Failure Input. PFI is the noninverting input  
to the power-fail comparator, C3. The inverting input is  
internallyconnectedtoa1.3Vreference. Thepowerfailure  
output remains high when PFI is above 1.3V and goes  
to V .  
OUT  
CC  
V
: Back-Up Battery Input. When V falls below V  
,
BATT  
CC  
BATT  
auxiliary power, connected to V  
, is delivered to V  
BATT  
OUT  
through PMOS switch, M2. If back-up battery or auxiliary  
power is not used, V  
low when PFI is below 1.3V. Connect PFI to GND or V  
when C3 is not used.  
OUT  
should be connected to GND.  
BATT  
690fe  
6
LTC690/LTC691  
LTC694/LTC695  
PIN FUNCTIONS  
PFO: Power Failure Output from C3. PFO remains high  
WDO: Watchdog Logic Output. When the watchdog input  
remains either high or low for longer than the watchdog  
timeout period, WDO goes low. WDO is set high whenever  
there is a transition on the WDI pin, or LOWLINE goes  
low. The watchdog timer can be disabled by floating WDI  
(see Figure 11).  
when PFI is above 1.3V and goes low when PFI is below  
1.3V. When V is lower than V  
, C3 is shut down and  
CC  
BATT  
PFO is forced low.  
RESET: Logic Output for μP Reset Control. Whenever  
falls below either the reset voltage threshold (4.65V,  
V
CC  
typically)orV  
,RESETgoesactivelow.AfterV returns  
BATT  
CE IN: Logic input to the ChipEnable gating circuit. CE IN  
can be derived from microprocessor’s address line and/or  
decoder output. See Applications Information section and  
Figure 5 for additional information.  
CC  
to 5V, reset pulse generator forces RESET to remain active  
lowforaminimumof35msfortheLTC690/LTC691(140ms  
for the LTC694/LTC695). When the watchdog timer is  
enabled but not serviced prior to a preset timeout period,  
reset pulse generator also forces RESET to active low for a  
minimum of 35ms for the LTC690/LTC691 (140ms for the  
LTC694/5)foreverypresettimeoutperiod(seeFigure11).  
The reset active time is adjustable on the LTC691/LTC695.  
Anexternalpushbuttonresetcanbeusedinconnectionwith  
the RESET output. See Pushbutton Reset in Applications  
Information section.  
CE OUT: Logic Output on the ChipEnable Gating Circuit.  
When V is above the reset voltage threshold, CE OUT is  
CC  
a buffered replica of CE IN. When V is below the reset  
CC  
voltage threshold CE OUT is forced high (see Figure 5).  
OSCSEL:OscillatorSelectionInput.WhenOSCSELishigh  
or floating, the internal oscillator sets the reset active time  
andwatchdogtimeoutperiod.ForcingOSCSELlow,allows  
OSC IN be driven from an external clock signal or external  
capacitor be connected between OSC IN and GND.  
RESET: RESET is an active high logic ouput. It is the  
inverse of RESET.  
OSC IN: Oscillator Input. OSC IN can be driven by  
an external clock signal or external capacitor can be  
connected between OSC IN and GND when OSC SEL is  
forced low. In this configuration the nominal reset active  
time and watchdog timeout period are determined by the  
number of clocks or set by the formula (see Applications  
Information section). When OSC SEL is high or floating,  
the internal oscillator is enabled and the reset active time  
is fixed at 50ms typical for the LTC691 and 200ms typical  
for the LTC695. OSC IN selects between the 1.6 seconds  
and 100ms typical watchdog timeout periods. In both  
cases, the timeout period immediately after a reset is 1.6  
seconds typical.  
LOWLINE:LogicOutputfromComparatorC1.LOWLINE  
indicates a low line condition at the V input. When V  
CC  
CC  
falls below the reset voltage threshold (4.65V typically),  
LOWLINE goes low. As soon as V rises above the reset  
CC  
voltage threshold, LOWLINE returns high (see Figure 1).  
LOWLINE goes low when V drops below V  
(see  
CC  
BATT  
Table 1).  
WDI: Watchdog Input, WDI, is a three level input. Driving  
WDIeitherhighorlowforlongerthanthewatchdogtimeout  
period, forces both RESET and WDO low. Floating WDI  
disables the watchdog timer. The timer resets itself with  
each transition of the watchdog input (see Figure 11).  
690fe  
7
LTC690/LTC691  
LTC694/LTC695  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Failure Input Threshold  
vs Temperature  
VOUT vs IOUT  
VOUT vs IOUT  
5.00  
2.80  
2.78  
2.76  
2.74  
2.72  
1.308  
1.306  
V
V
T
= 5V  
= 2.8V  
= 25°C  
V
V
T
= 0V  
= 2.8V  
= 25°C  
V
= 5V  
CC  
CC  
BATT  
A
CC  
BATT  
A
4.95  
4.90  
1.304  
1.302  
1.300  
1.298  
1.296  
1.294  
SLOPE = 125Ω  
SLOPE = 5Ω  
4.85  
4.80  
4.75  
0
10  
20  
30  
40  
50  
0
100  
200  
300  
400  
500  
–50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
LOAD CURRENT (mA)  
LOAD CURRENT (μA)  
690 G01  
690 G02  
690 G03  
Reset Active Time  
Reset Active Time  
Reset Voltage Threshold  
vs Temperature  
vs Temperature LTC690-1  
vs Temperature LTC694-5  
58  
56  
54  
52  
232  
224  
216  
208  
4.66  
V
= 5V  
V
= 5V  
CC  
CC  
4.65  
4.64  
4.63  
4.62  
50  
48  
46  
200  
192  
184  
4.61  
4.60  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50  
25  
75  
–50  
25  
75  
–25  
0
–25  
0
690 G04  
690 G05  
690 G06  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator Response  
Time with Pull-Up Resistor  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
T
= 5V  
V
T
= 5V  
V
T
= 5V  
CC  
A
CC  
A
CC  
A
= 25°C  
= 25˚C  
= 25°C  
V
+
PFI  
PFO  
V
30pF  
+
1.3V  
PFI  
PFO  
5V  
30pF  
1.3V  
V
+
10k  
PFI  
PFO  
30pF  
1.3V  
1.305V  
1.285V  
1.315V  
1.295V  
1.315V  
1.295V  
V
= 20mV STEP  
V
= 20mV STEP  
V
= 20mV STEP  
PFI  
2
PFI  
PFI  
4
0
1
3
4
5
7
8
6
140  
14  
0
60  
120  
160 180  
0
6
12  
16 18  
20 40  
80 100  
2
8
10  
TIME (μs)  
TIME (μs)  
TIME (μs)  
690 G07  
690 G08  
690 G09  
690fe  
8
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
Microprocessor Reset  
below the reset voltage threshold, LOWLINE goes low.  
LOWLINE returns high as soon as V rises above the  
CC  
TheLTC690familyusesabandgapvoltagereferenceanda  
precision voltage comparator C1 to monitor the 5V supply  
reset voltage threshold.  
input on V (see Block Diagram). When V falls below  
CC  
CC  
Battery Switchover  
the reset voltage threshold, the RESET output is forced  
The battery switchover circuit compares V to the V  
to active low state. The reset voltage threshold accounts  
CC  
BATT  
input, and connects V  
to whichever is higher. When  
for a 5% variation on V , so the RESET output becomes  
OUT  
CC  
V
rises to 70mV above V  
comparator, C2, connects V  
, the battery switchover  
active low when V falls below 4.75V (4.65V typical).  
CC  
BATT  
CC  
to V through a charge  
On power-up, the RESET signal is held active low for a  
minimum of 35ms for the LTC690/LTC691 (140ms for the  
LTC694/LTC695)afterresetvoltagethresholdisreachedto  
allow the power supply and microprocessor to stabilize.  
The reset active time is adjustable on the LTC691/LTC695.  
On power-down, the RESET signal remains active low  
OUT  
CC  
pumpedNMOSpowerswitch,M1.WhenV fallsto50mV  
CC  
above V  
, C2 connects V  
to V  
through a PMOS  
BATT  
OUT  
BATT  
switch, M2. C2hastypically20mVofhysteresistoprevent  
spuriousswitchingwhenV remainsnearlyequaltoV  
.
CC  
BATT  
The response time of C2 is approximately 20μs.  
even with V as low as 1V. This capability helps hold the  
CC  
During normal operation, the LTC690 family uses a charge  
pumped NMOS power switch to achieve low dropout and  
low supply current. This power switch can deliver up to  
microprocessor in stable shutdown condition. Figure 1  
shows the timing diagram of the RESET signal.  
50mA to V  
5Ω. The V  
from V and has a typical on resistance of  
The precision voltage comparator, C1, typically has 40mV  
OUT  
OUT  
CC  
pin should be bypassed with a capacitor of  
of hysteresis which ensures that glitches at V pin do  
CC  
0.1μF or greater to ensure stability. Use of a larger bypass  
capacitor is advantageous for supplying current to heavy  
transient loads.  
not activate the RESET output. Response time is typically  
10μs.Tohelppreventmistriggeringduetotransientloads,  
V
pin should be bypassed with a 0.1μF capacitor with  
CC  
the leads trimmed as short as possible.  
When operating currents larger than 50mA are required  
fromV ,oralowerdropout(V -V voltagedifferential)  
The LTC691 and LTC695 have two additional outputs:  
RESET and LOWLINE. RESET is an active high output  
and is the inverse of RESET. LOWLINE is the output  
OUT  
CC OUT  
is desired, the LTC691 and LTC695 should be used. These  
products provide BATT ON output to drive the base of  
of the precision voltage comparator C1. When V falls  
CC  
V2  
V2  
V1  
V1  
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
V
CC  
RESET  
t
1
t
1
t
= RESET ACTIVE TIME  
1
LOW LINE  
690 F01  
Figure 1. Reset Active Time  
690fe  
9
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
external PNP transistor (Figure 2). If higher currents  
farad-size double layer capacitors, can be used for short  
term memory back-up instead of a battery. The charging  
resistor for both capacitors and rechargeable batteries  
are needed with the LTC690 and LTC694, a high current  
Schottky diode can be connected from the V pin to the  
CC  
V
OUT  
pin to supply the extra current.  
should be connected to V  
since this eliminates the  
OUT  
discharge path that exists when the resistor is connected  
ANY PNP POWER TRANSISTOR  
to V (Figure 3).  
CC  
V
– V  
R
5
OUT  
BATT  
I =  
V
BATT ON  
3
1
2
5V  
0.1μF  
V
OUT  
V
CC  
R
LTC691  
LTC695  
0.1μF  
5V  
V
CC  
OUT  
V
BATT  
0.1μF  
0.1μF  
LTC690  
LTC691  
LTC694  
LTC695  
GND  
4
3V  
690 F02  
V
BATT  
GND  
Figure 2. Using BATT ON to Drive External PNP Transistor  
3V  
690 F03  
The LTC690 family is protected for safe area operation  
with short-circuit limit. Output current is limited to  
approximately 200mA. If the device is overloaded for  
long period of time, thermal shutdown turns the power  
switch off until the device cools down. The threshhold  
temperatureforthermalshutdownisapproximately155°C  
with about 10°C of hysteresis which prevents the device  
from oscillating in and out of shutdown.  
Figure 3. Charging External Battery Through VOUT  
Replacing the Back-Up Battery  
When changing the back-up battery with system power  
on, spurious resets can occur while battery is removed  
due to battery standby current. Although battery standby  
current is only a tiny leakage current, it can still charge  
up the stray capacitance on the V  
pin. The oscillation  
reaches within 50mV of  
BATT  
ThePNPswitchusedincompetitivedeviceswasnotchosen  
for the internal power switch because it injects unwanted  
current into the substrate. This current is collected by the  
cycle is as follows: When V  
BATT  
V , the LTC690 switches to battery back-up. V  
pulls  
CC  
OUT  
V
BATT  
low and the device goes back to normal operation.  
V
pin in competitive devices and adds to the charging  
BATT  
The leakage current then charges up the V  
and the cycle repeats.  
pin again  
BATT  
current of the battery which can damage lithium batteries.  
The LTC690 family uses a charge pumped NMOS power  
switch to eliminate unwanted charging current while  
achieving low dropout and low supply current. Since no  
current goes to the substrate, the current collected by  
If spurious resets during battery replacement pose no  
problems, thennoactionisrequired. Otherwise, aresistor  
to GND will hold the pin low while changing  
the battery. For example, the battery standby current is  
1μA maximum over temperature and the external resistor  
from V  
BATT  
V
pin is strictly junction leakage.  
BATT  
A 125Ω PMOS switch connects the V  
input to V  
OUT  
BATT  
required to hold V  
below V is:  
BATT  
CC  
in battery back-up mode. The switch is designed for very  
low dropout voltage (input-to-output differential). This  
feature is advantageous for low current applications such  
as battery back-up in CMOS RAM and other low power  
CMOS circuitry. The supply current in battery back-up  
mode is 1μA maximum.  
V –50mV  
CC  
R  
1μA  
With V = 4.5V, a 4.3M resistor will work. With a 3V  
CC  
battery, this resistor will draw only 0.7μA from the battery,  
which is negligible in most cases.  
The operating voltage at the V  
pin ranges from 2.0V  
BATT  
to 4.25V. High value capacitors, such as electrolytic or  
690fe  
10  
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
If battery connections are made through long wires, a  
input of battery-backed up CMOS RAM. CE OUT can also  
be used to drive the Store or Write input of an EEPROM,  
EAROM or NOVRAM to achieve similar protection. Figure  
5 shows the timing diagram of CE IN and CE OUT.  
10Ω to 100Ω series resistor and a 0.1μF capacitor are  
recommended to prevent any overshoot beyond V due  
CC  
to the lead inductance (Figure 4).  
CE IN can be derived from the microprocessor’s address  
decoderoutput.Figure6showsatypicalnonvolatileCMOS  
RAM application.  
10Ω  
V
BATT  
LTC690  
0.1μF  
4.3M  
LTC691  
LTC694  
LTC695  
Memory protection can also be achieved with the LTC690  
and LTC694 by using RESET as shown in Figure 7.  
GND  
690 F04  
Table 1. Input and Output Status in Battery Back-Up Mode  
SIGNAL  
STATUS  
Figure 4. 10Ω/0.1μF Combination Eliminates Inductive  
Overshoot and Prevents Spurious Resets During Battery  
Replacement  
V
C2 monitors V for active switchover.  
CC  
CC  
V
V
V
OUT  
is connected to V  
through an internal PMOS switch.  
OUT  
BATT  
The supply current is 1μA maximum.  
Logic high. The open-circuit output voltage is equal to V  
Power failure input is ignored.  
Logic low  
BATT  
Table1showsthestateofeachpinduringbatteryback-up.  
When the battery switchover section is not used, connect  
BATT ON  
PFI  
.
.
OUT  
V
to GND and V to V .  
OUT CC  
BATT  
PFO  
Memory Protection  
RESET  
RESET  
Logic low  
Logic high. The open-circuit output voltage is equal to V  
OUT  
The LTC691 and LTC695 include memory protection  
circuitry that ensures the integrity of the data in memory  
LOWLINE Logic low  
WDI  
Watchdog input is ignored.  
by preventing write operations when V is at invalid level.  
CC  
WDO  
Logic high. The open-circuit output voltage is equal to V  
.
OUT  
Two additional pins, CE IN and CE OUT, control the Chip  
CE IN  
ChipEnable Input is ignored.  
Enable or Write inputs of CMOS RAM. When V is 5V,  
CC  
CE OUT  
OSC IN  
OSC SEL  
Logic high. The open-circuit output voltage is equal to V  
OSC IN is ignored.  
.
OUT  
CE OUT follows CE IN with a typical propagation delay of  
20ns. When V falls below the reset voltage threshold  
CC  
or V , CE OUT is forced high, independent of CE IN. CE  
OSC SEL is ignored.  
BATT  
OUT is an alternative signal to drive the CE, CS, or Write  
V2  
V
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
CC  
V1  
CE IN  
V
= V  
BATT  
OUT  
CE OUT  
V
= V  
BATT  
OUT  
690 F05  
Figure 5. Timing Diagram for CE IN and CE OUT  
690fe  
11  
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
Power-Fail Warning  
5V  
0.1μF  
V
V
V
CC  
OUT  
CC  
+
0.1μF  
LTC691  
LTC695  
62512  
RAM  
10μF  
The LTC690 family generates a Power Failure Output  
(PFO) for early warning of failure in the microprocessor’s  
power supply. This is accomplished by comparing the  
Power Failure Input (PFI) with an internal 1.3V reference.  
PFO goes low when the voltage at the PFI pin is less than  
1.3V. Typically PFI is driven by an external voltage divider  
(R1 and R2 in Figures 8 and 9) which senses either an  
unregulatedDCinputoraregulated5Voutput.Thevoltage  
divider ratio can be chosen such that the voltage at the PFI  
pin falls below 1.3V several milliseconds before the 5V  
supply falls below the maximum reset voltage threshold  
4.75V.PFOisnormallyusedtointerruptthemicroprocessor  
to execute shutdown procedure between PFO and RESET  
or RESET.  
CE OUT  
CS  
20ns PROPAGATION DELAY  
FROM DECODER  
GND  
V
BATT  
GND  
CE IN  
RESET  
3V  
RESET  
TO μP  
690 F06  
Figure 6. A Typical Nonvolatile CMOS RAM Application  
5V  
0.1μF  
V
V
V
CC  
OUT  
CC  
+
0.1μF  
CS  
62128  
RAM  
CS1  
10μF  
LTC690  
LTC694  
V
RESET  
GND  
CS2  
BATT  
3V  
GND  
690 F07  
The power-fail comparator, C3, does not have hysteresis.  
Hysteresiscanbeaddedhowever, byconnectingaresistor  
between the PFO output and the noninverting PFI input  
pin as shown in Figures 8 and 9. The upper and lower trip  
points in the comparator are established as follows:  
Figure 7. Write Protect for RAM with LTC690 or LTC694  
LT1086-5  
V
≥ 7.5V  
IN  
5V  
V
V
IN  
OUT  
V
CC  
+
+
0.1μF  
R4  
10k  
ADJ  
10μF  
100μF  
LTC690/LTC691  
LTC694/LTC695  
WhenPFOoutputislow,R3sinkscurrentfromthesumming  
junction at the PFI pin.  
R3  
300k  
R1  
51k  
PFO  
GND  
PFI  
R1 R1  
R2 R3  
R2  
10k  
V =1.3V 1+  
+
H
690 F08  
TO μP  
When PFO output is high, the series combination of R3  
and R4 source current into the PFI summing junction.  
Figure 8. Monitoring Unregulated DC Supply  
with the LTC690s Power-Fail Comparator  
R1 (5V 1.3V)R1  
R2 1.3V(R3 + R4)  
V = 1.3V 1+  
L
LT1086-5  
5V  
V
≥ 6.5V  
10μF  
IN  
V
V
V
OUT  
IN  
CC  
+
+
R4  
0.1μF  
R1  
27k  
ADJ  
10μF  
LTC690/LTC691  
LTC694/LTC695  
R1  
R3  
10k  
Assuming R4 << R3,V  
= 5V  
R3  
2.7M  
HYSTERESIS  
PFO  
GND  
PFI  
Example 1: The circuit in Figure 8 demonstrates the use  
of the power-fail comparator to monitor the unregulated  
power supply input. Assuming the the rate of decay of the  
R2  
8.2k  
1690 F09  
TO μP  
R5  
3.3k  
supplyinputV is100mV/msandthetotaltimetoexecutea  
IN  
shutdownprocedureis8ms.AlsothenoiseofV is200mV.  
IN  
Figure 9. Monitoring Regulated DC Supply  
with the LTC690s Power-Fail Comparator  
With these assumptions in mind, we can reasonably set  
V = 7.5V which 1.25V greater than the sum of maximum  
L
resetvoltagethresholdandthedropoutvoltageofLT1086-5  
(4.75V + 1.5V) and V  
= 850mV.  
HYSTERESIS  
690fe  
12  
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
5V  
R1  
V
= 5V  
= 850V  
HYSTERESIS  
R3  
V
CC  
V
BATT  
LOW-BATTERY SIGNAL  
TO μP I/O PIN  
PFO  
R1  
1M  
R3 ≈ 5.88 R1  
LTC691  
LTC695  
PFI  
R2  
1M  
Choose R3 = 300k and R1 = 51k. Also select R4 = 10k  
which is much smaller than R3.  
3V  
CE IN  
I/O PIN  
CE OUT  
GND  
R
690 F10  
L
51k (5V 1.3V)51k  
20k  
7.5V =1.3V 1+  
R2  
1.3V(310k)  
OPTIONAL TEST LOAD  
Figure 10. Back-Up Battery Monitor with Optional Test Load  
R2 = 9.7kΩ, Choose nearest 5% resistor 10k and recalcu-  
late V ,  
L
Watchdog Timer  
51k (5V – 1.3V)51k  
V = 1.3V 1+  
= 7.32V  
L
The LTC690 family provides a watchdog timer function  
to monitor the activity of the microprocessor. If the  
microprocessor does not toggle the Watchdog Input  
(WDI) within a seleced timeout period, RESET is forced to  
active low for a minimum of 35ms for the LTC690/LTC691  
(140ms for the LTC694/LTC695). The reset active time is  
adjustable on the LTC691/LTC695. Since many systems  
can not service the watchdog timer immediately after  
a reset, the LTC691 and LTC695 have longer timeout  
period (1.0 second minimum) right after a reset is issued.  
The normal timeout period (70ms minimum) becomes  
effective following the first transition of WDI after RESET  
is inactive. The watchdog timeout period is fixed at 1.0  
second minimum on the LTC690 and LTC694. Figure 11  
showsthetimingdiagramofwatchdogtimeoutperiodand  
resetactivetime.Thewatchdogtimeoutperiodisrestarted  
as soon as RESET is inactive. When either a high-to-low  
or low-to-high transition occurs at the WDI pin prior to  
timeout, the watchdog time is reset and begins to time  
out again. To ensure the watchdog time does not time  
out, either a high-to-low or low-to-high transition on the  
WDI pin must occur at or less than the minimum timeout  
period. If the input to the WDI pin remains either high or  
low,resetpulseswillbeissuedevery1.6secondstypically.  
The watchdog time can be deactivated by floating the WDI  
10k  
1.3V(310k)  
51k 51k  
10k 300k  
VH = 1.3V 1+  
+
= 8.151V  
(7.32V – 6.25V)  
100mV/ms  
= 10.7ms  
V
= 8.151V – 7.32V = 831mV  
HYSTERESIS  
The 10.7ms allows enough time to execute shutdown  
procedure for microprocessor and 831mV of hysteresis  
would prevent PFO from going low due to the noise of V .  
IN  
Example 2: The circuit in Figure 9 can be used to measure  
the regulated 5V supply to provide early warning of power  
failure. Because of variations in the PFI threshold, this  
circuit requires adjustment to ensure the PFI comparator  
trips before the reset threshold is reached. Adjust R5 such  
thatthePFOoutputgoeslowwhentheV supplyreaches  
the desired level (e.g., 4.85V).  
CC  
Monitoring the Status of the Battery  
C3 can also monitor the status of the memory back-up  
battery (Figure 10). If desired, the CE OUT can be used to  
applyatestloadtothebattery. SinceCEOUTisforcedhigh  
in battery back-up mode, the test load will not be applied  
to the battery while it is in use, even if the microprocessor  
is not powered.  
pin. The timer is also disabled when V falls below the  
CC  
reset voltage threshold or V  
.
BATT  
690fe  
13  
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
The LTC691 and LTC695 provide an additional output  
(Watchdog Output, WDO) which goes low if the watchdog  
timer is allowed to time out and remains low until set high  
by the next transition on the WDI pin. WDO is also set high  
GND when OSC SEL is forced low. In these configurations,  
the nominal reset active time and watchdog timeout  
period are determined by the number of clocks or set by  
the formula in Table 2. When OSC SEL is high or floating,  
the internal oscillator is enabled and the reset active time  
is fixed at 35ms minimum for the LTC691 and 140ms  
minimum for the LTC695. OSC IN selectes between the  
1 second and 70ms minimum normal watchdog timeout  
periods. In both cases, the timeout period immediately  
after a reset is at least 1 second.  
when V falls below the reset voltage threshold or V  
.
CC  
BATT  
The LTC691 and LTC695 have two additonal pins OSC SEL  
and OSC IN, which allow reset active time and watchdog  
timeout period to be adjusted per Table 2. Several  
configurations are shown in Figure 12.  
OSC IN can be driven by an external clock signal or an  
external capacitor can be connected between OSC IN and  
V
= 5V  
CC  
WDI  
t
1
t
2
t
3
= RESET ACTIVE TIME  
= NORMAL WATCHDOG TIME-OUT PERIOD  
= WATCHDOG TIME-OUT PERIOD IMMEDIATELY  
AFTER A RESET  
WDO  
t
t
3
2
RESET  
t
t
1
1
690 F11  
Figure 11. Watchdog Timeout Period and Reset Active Time  
EXTERNAL OSCILLATOR  
EXTERNAL CLOCK  
3
8
7
8
3
4
V
OSC SEL  
5V  
5V  
V
OSC SEL  
CC  
CC  
LTC691  
LTC695  
LTC691  
LTC695  
7
4
GND  
OSC IN  
GND  
OSC IN  
INTERNAL OSCILLATOR  
1.6 SECOND WATCHDOG  
INTERNAL OSCILLATOR  
100ms WATCHDOG  
3
8
3
8
7
FLOATING  
OR HIGH  
FLOATING  
OR HIGH  
5V  
5V  
V
OSC SEL  
V
OSC SEL  
CC  
CC  
LTC691  
LTC695  
LTC691  
LTC695  
4
7
FLOATING  
OR HIGH  
4
GND  
OSC IN  
GND  
OSC IN  
690 F12  
Figure 12. Oscillator Configurations  
690fe  
14  
LTC690/LTC691  
LTC694/LTC695  
APPLICATIONS INFORMATION  
Table 2. LTC691 and LTC695 Reset Active Time and Watchdog Timeout Selections  
WATCHDOG TIME-OUT PERIOD  
RESET ACTIVE TIME  
IMMEDIATELY  
AFTER RESET  
(Long Period)  
NORMAL  
(Short Period)  
OSC SEL  
OSC IN  
LTC691  
LTC695  
External Clock Input  
1024 clks  
4096 clks  
512 clks  
2048 clks  
Low  
1.6sec  
70pF  
200ms  
70pF  
800ms  
70pF  
C  
C  
C  
External Capacitor*  
Low  
Floating or High  
Floating or High  
Low  
100ms  
1.6 sec  
1.6 sec  
1.6 sec  
50ms  
50ms  
200ms  
200ms  
Floating or High  
184,000  
C (pF)1025  
*The nominal internal frequency is 10.24kHz. The nominal oscillator frequency with external capacitor is f  
Pushbutton Reset  
(Hz) =  
OSC  
The LTC690 family does not provide a logic input for direct  
V
5V  
RESET  
RESET  
CC  
connection to a pushbutton. However, a pushbutton in  
serieswitha100ΩresistorconnectedtotheRESEToutput  
pin (Figure 13) provides an alternative for manual reset.  
Connecting a 0.1μF capacitor to the RESET pin debounces  
the pushbutton input.  
100Ω  
0.1μF  
MPU  
(e.g. 6805)  
LTC690/LTC691  
LTC694/LTC695  
690 F13  
GND  
The100Ωresistorinserieswiththepushbuttonisrequired  
to prevent the ringing, due to the capacitance and lead  
inductance, from pulling the RESET pins of the MPU and  
LTC69X below ground.  
Figure 13. The External Pushbutton Reset  
V
5V  
RESET  
LTC1235  
RESET  
CC  
MPU  
(e.g. 6805)  
Ifadedicatedpushbuttonresetinputisdesired,theLTC1235  
is a good choice (Figure 14). It has all the functions of the  
LTC695andprovidespushbuttonresetasanextrafeature.  
Its pushbutton is internally debounced and invokes the  
normal 200ms reset sequence. This eliminates the need  
for the 100Ω resistor and 0.1μF capacitor. It also provides  
a more consistent reset pulse.  
PBRST  
GND  
690 F14  
Figure 14. The External Pushbutton Reset with the LTC1235  
690fe  
15  
LTC690/LTC691  
LTC694/LTC695  
PACKAGE DESCRIPTION  
SW Package 16-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620)  
0.291 – 0.299**  
(7.391 – 7.595)  
0.398 – 0.413*  
(10.109 – 10.490)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
15 14  
12  
10  
11  
9
16  
13  
0.010 – 0.029  
(0.254 – 0.737)  
s 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.004 – 0.012  
(0.102 – 0.305)  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
2
3
5
7
8
1
4
6
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 0.005  
0.045 – 0.065  
0.300 – 0.325  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 0.015*  
(6.477 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
1
2
3
0.325  
N8 1197  
0.100 0.010  
(2.540 0.254)  
0.018 0.003  
+0.889  
8.255  
(
)
(0.457 0.076)  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
s 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
N Package 16-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
15  
13  
11  
16  
0.020  
(0.508)  
MIN  
0.255 0.015*  
(6.477 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
2
1
3
4
6
8
5
7
0.325  
–0.015  
0.125  
(3.175)  
MIN  
0.018 0.003  
(0.457 0.076)  
0.100 0.010  
(2.540 0.254)  
N16 1197  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
690fe  
16  
LTC690/LTC691  
LTC694/LTC695  
REVISION HISTORY (Revision history begins at Rev D)  
REV  
DATE  
3/10  
4/10  
DESCRIPTION  
PAGE NUMBER  
D
Removed “UL Recognized” and UL File Number From Features  
Remove LTC690MJ8  
1
3
E
690fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC690/LTC691  
LTC694/LTC695  
TYPICAL APPLICATION  
Capacitor Back-Up with 74HC4016 Switch  
Write Protect for Additional RAMs  
5V  
5V  
V
V
V
V
OUT  
CC  
V
CC  
V
CC  
OUT  
+
0.1μF  
62512  
RAM A  
LTC691  
LTC695  
0.1μF  
10μF  
0.1μF  
0.1μF  
LTC691  
LTC695  
R1  
10k  
10 11 12 14  
CS  
CE OUT  
20ns PROPAGATION  
DELAY  
2
1
BATT  
LOWLINE  
V
74HC4016  
7
BATT  
CE IN  
CSA  
3V  
R2  
30k  
LOWLINE  
13  
100μF  
+
GND  
GND  
V
CC  
0.1μF  
0.1μF  
62128  
RAM B  
CS1  
LTC690 TA03  
CSB  
CSC  
CS2  
V
CC  
62128  
RAM C  
CS1  
CS2  
OPTIONAL CONNECTION FOR  
ADDITIONAL RAMs  
690 TA04  
RELATED PARTS  
PART NUMBER  
LTC1326  
DESCRIPTION  
Micropower Precision Triple Supply Monitor  
Micropower Triple Supply Monitor for PCI Applications  
COMMENTS  
4.725V, 3.118V, 1V Thresholds ( 0.75%)  
Meets PCI t Timing Specifications  
LTC1536  
FAIL  
690fe  
LT 0410 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 1992  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC694IS-3.3

IC 2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8, Power Management Circuit
Linear

LTC694IS8

Microprocessor Supervisory Circuits
Linear

LTC694IS8#PBF

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8#TR

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8#TRPBF

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC694IS8-3.3#PBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3#TR

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3#TRPBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-PBF

Microprocessor Supervisory Circuits
Linear

LTC694IS8PBF

Microprocessor Supervisory Circuits
Linear

LTC694_15

Microprocessor Supervisory Circuits
Linear