LTC694IS8-3.3#TR [Linear]

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LTC694IS8-3.3#TR
型号: LTC694IS8-3.3#TR
厂家: Linear    Linear
描述:

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

电源电路 电源管理电路 微处理器 监控
文件: 总16页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC694-3.3/ LTC695-3.3  
3.3V Mic ro p ro c e sso r  
Sup e rviso ry Circ uits  
U
FEATURES  
DESCRIPTIO  
UL Recognized ®  
File # E145770  
The LTC®694-3.3/LTC695-3.3 provide complete 3.3V  
power supply monitoring and battery control functions.  
Theseincludepower-onreset,batteryback-up,RAMwrite  
protection, power failure warning and watchdog timing.  
The devices are pin compatible upgrades of the LTC694/  
LTC695 that are optimized for 3.3V systems. Operating  
power consumption has been reduced to 0.6mW (typical)  
and 3µW maximum in battery back-up mode. Micropro-  
cessor reset and memory write protection are provided  
when the supply falls below 2.9V. The RESET output is  
Guaranteed Reset Assertion at VCC = 1V  
Pin Compatible with LTC694/LTC695  
for 3.3V Systems  
200µA Typical Supply Current  
Fast (30ns Typ) On-Board Gating of  
RAM Chip Enable Signals  
SO-8 and S16 Packages  
2.90V Precision Voltage Monitor  
Power OK/Reset Time Delay: 200ms or Adjustable  
Minimum External Component Count  
1µA Maximum Standby Current  
Voltage Monitor for Power-Fail or  
Low-Battery Warning  
guaranteed to remain logic low with V as low as 1V.  
CC  
The LTC694-3.3/LTC695-3.3 power the active RAMs with  
a charge pumped NMOS power switch to achieve low  
dropout and low supply current. When primary power is  
lost, auxiliary power, connected to the battery input pin,  
powers the RAMs in standby through an efficient PMOS  
switch.  
Thermal Limiting  
Performance Specified Over Temperature  
U
APPLICATIO S  
For an early warning of impending power failure, the  
LTC694-3.3/LTC695-3.3 provide an internal comparator  
with a user-defined threshold. An internal watchdog timer  
is also available, which forces the reset pins to active  
states when the watchdog input is not toggled prior to a  
preset time-out period.  
3.3V Low Power Systems  
Critical µP Power Monitoring  
Intelligent Instruments  
Battery-Powered Computers and Controllers  
Automotive Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
RESET Output Voltage vs  
Supply Voltage  
5
LT1129-3.3  
V
V
IN  
5V  
3.3V  
V
IN  
V
V
POWER TO  
CMOS RAM POWER  
µP  
V
OUT  
CC  
OUT  
+
+
0.1µF  
4
3
100µF  
0.1µF  
1µF  
OUT SENSE  
SHDN  
GND  
LTC695-3.3  
µP  
SYSTEM  
DECODER OUTPUT  
RAM CS  
µP RESET  
µP NMI  
CE IN  
BATT  
CE OUT  
RESET  
PFO  
2.4V  
51k  
18k  
2
1
0
PFI  
WDI  
I/O LINE  
GND  
MICROPROCESSOR RESET, BATTERY BACK-UP,  
100Ω  
RAM WRITE PROTECTION, POWER WARNING AND  
WATCHDOG TIMING ARE ALL IN A SINGLE CHIP  
FOR 3.3V MICROPROCESSOR SYSTEM  
0.1µF  
0
1
2
3
4
5
694/5-3.3 TA01  
SUPPLY VOLTAGE (V)  
694/5-3.3 TA02  
1
LTC694-3.3/ LTC695-3.3  
W W W  
U
ABSOLUTE AXI U RATI GS (Notes 1 and 2)  
Terminal Voltage  
VOUT Output Current ................. Short-Circuit Protected  
V ...................................................... – 0.3V to 6V Power Dissipation............................................. 500mW  
CC  
Operating Temperature Range  
VBATT .................................................. – 0.3V to 6V  
All Other Inputs .................. – 0.3V to (VOUT + 0.3V)  
LTC694C-3.3/LTC695C-3.3 .................. 0°C to 70°C  
LTC694I-3.3/LTC695I-3.3 ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Input Current  
V .............................................................. 100mA  
CC  
VBATT ............................................................ 25mA Lead Temperature (Soldering, 10 sec)................. 300°C  
GND .............................................................. 10mA  
W
U
/O  
PACKAGE RDER I FOR ATIO  
(Note 3)  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
V
1
2
16 RESET  
BATT  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NUMBER  
RESET  
RESET  
WDO  
CE IN  
CE OUT  
WDI  
BATT  
V
15  
14  
13  
12  
RESET  
WDO  
OUT  
V
OUT  
V
3
4
5
6
7
8
CC  
V
CC  
LTC695CN-3.3  
LTC695IN-3.3  
LTC695CSW-3.3  
LTC695ISW-3.3  
GND  
BATT ON  
LOW LINE  
OSC IN  
CE IN  
GND  
BATT ON  
LOW LINE  
OSC IN  
CE OUT  
11 WDI  
PFO  
PFI  
PFO  
10  
9
OSC SEL  
PFI  
OSC SEL  
SW PACKAGE  
16-LEAD PLASTIC WIDE SO  
N PACKAGE  
16-LEAD PDIP  
TJMAX = 110°C, θJA = 130°C/W  
TJMAX = 110°C, θJA = 130°C/W  
TOP VIEW  
TOP VIEW  
LTC694CN8-3.3  
LTC694IN8-3.3  
LTC694CS8-3.3  
LTC694IS8-3.3  
V
V
1
2
3
4
8
7
6
5
V
OUT  
OUT  
1
2
3
4
8
7
6
5
V
BATT  
BATT  
V
RESET  
WDI  
V
CC  
RESET  
WDI  
CC  
S8 PART  
MARKING  
GND  
PFI  
GND  
PFI  
PFO  
PFO  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
6943  
694I3  
TJMAX = 110°C, θJA = 180°C/W  
TJMAX = 110°C, θJA = 130°C/W  
Consult factory for Military grade parts.  
U
PRODUCT SELECTIO GUIDE  
RESET  
CONDITIONAL  
BATTERY  
BACK-UP  
THRESHOLD WATCHDOG  
BATTERY  
POWER-FAIL  
WARNING  
RAM WRITE PUSH-BUTTON  
PINS  
8
(V)  
TIMER  
BACK-UP  
PROTECT  
RESET  
LTC694-3.3  
LTC695-3.3  
LTC690  
2.90  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
16  
8
2.90  
X
X
X
4.65  
LTC691  
16  
8
4.65  
LTC694  
4.65  
LTC695  
16  
8
4.65  
LTC699  
4.65  
LTC1232  
LTC1235  
8
4.37/4.62  
4.65  
X
X
16  
X
X
X
X
2
LTC694-3.3/ LTC695-3.3  
The denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 3.3V, VBATT = 2V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Battery Back-Up Switching  
Operating Voltage Range  
V
V
BATT  
3.0  
1.5  
5.50  
2.75  
V
V
CC  
V
Output Voltage  
I
= 1mA  
V
V
CC  
– 0.1  
– 0.2  
V
– 0.01  
V – 0.01  
CC  
V
V
OUT  
OUT  
CC  
CC  
I
= 50mA  
V
CC  
– 0.8  
V – 0.4  
CC  
V
V
OUT  
V
OUT  
in Battery Back-Up Mode  
I
= 250µA, V < V  
V
BATT  
– 0.1  
V – 0.02  
BATT  
OUT  
CC  
BATT  
Supply Current (Exclude I  
)
I
50mA, V = 3.6V  
0.2  
0.2  
0.6  
1.0  
mA  
mA  
OUT  
OUT  
CC  
Supply Current in Battery Back-Up Mode  
V
= 0V, V  
= 2V  
0.04  
0.04  
1
5
µA  
µA  
CC  
BATT  
Battery Standby Current (+ = Discharge, – = Charge)  
3.6V > V > V  
+ 0.2V  
0.02  
0.10  
0.02  
0.10  
µA  
µA  
CC  
BATT  
Battery Switchover Threshold (V – V  
)
Power Up  
Power Down  
70  
50  
mV  
mV  
CC  
BATT  
Battery Switchover Hysteresis  
BATT ON Output Voltage (Note 4)  
20  
mV  
V
I
= 800µA  
0.3  
25  
SINK  
BATT ON Output Short-Circuit Current (Note 4)  
BATT ON = V , Sink Current  
BATT ON = 0V, Source Current  
25  
1
mA  
µA  
OUT  
0.5  
2.8  
Reset and Watchdog Timer  
Reset Voltage Threshold  
Reset Threshold Hysteresis  
Reset Active Time  
2.9  
40  
3.0  
V
mV  
OSC SEL HIGH, V = 3V  
160  
140  
200  
200  
240  
280  
ms  
ms  
CC  
Watchdog Time-Out Period, Internal Oscillator  
Long Period, V = 3V  
1.2  
1.0  
1.6  
1.6  
2.0  
2.25  
sec  
sec  
CC  
Short Period, V = 3V  
80  
70  
100  
100  
120  
140  
ms  
ms  
CC  
Watchdog Time-Out Period, External Clock (Note 5)  
Long Period, V = 3V  
4032  
960  
4097  
1025  
Clock  
Cycles  
CC  
Short Period, V = 3V  
CC  
Reset Active Time PSRR  
4
ms/V  
Watchdog Time-Out Period PSRR, Internal OSC  
Short Period  
Long Period  
2
32  
ms/V  
ms/V  
Minimum WDI Input Pulse Width  
V = 0.4V, V = 3V  
200  
2.3  
ns  
IL  
IH  
RESET Output Voltage at V = 1V  
I
= 10µA, V = 1V  
4
200  
0.3  
mV  
CC  
SINK  
CC  
RESET and LOW LINE Output Voltage (Note 4)  
I
= 400µA, V = 2.8V  
V
V
SINK  
CC  
I
= 0.1µA, V = 3V  
CC  
SOURCE  
RESET and WDO Output Voltage (Note 4)  
I
= 400µA, V = 3V  
0.3  
25  
V
V
SINK  
CC  
I
= 0.1µA, V = 2.8V  
2.3  
1
SOURCE  
CC  
RESET, RESET, WDO, LOW LINE  
Output Short-Circuit Current (Note 4)  
Output Source Current  
Output Sink Current  
3
9
µA  
mA  
3
LTC694-3.3/ LTC695-3.3  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 3.3V, VBATT = 2V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
2.3  
TYP  
MAX  
UNITS  
WDI Input Threshold  
Logic Low  
Logic High  
0.4  
V
V
WDI Input Current  
WDI = V  
WDI = 0V  
4
–8  
50  
µA  
µA  
OUT  
50  
Power-Fail Detector  
PFI Input Threshold  
1.25  
1.3  
0.3  
1.35  
V
mV/V  
nA  
PFI Input Threshold PSRR  
PFI Input Current  
±0.01  
±25  
PFO Output Voltage (Note 4)  
I
= 800µA  
0.3  
V
V
SINK  
I
= 0.1µA  
2.3  
1
SOURCE  
PFO Short-Circuit Source Current (Note 4)  
PFI = HIGH, PFO = 0V  
PFI = LOW, PFO = V  
3
17  
25  
µA  
mA  
OUT  
PFI Comparator Response Time (Falling)  
V = 20mV, V = 15mV  
2
µs  
IN  
OD  
PFI Comparator Response Time (Rising) (Note 4)  
V = 20mV, V = 15mV  
with 10kPull-Up  
40  
8
µs  
µs  
IN  
OD  
Chip Enable Gating  
CE IN Threshold  
V
V
IH  
0.45  
V
V
IL  
1.9  
CE IN Pull-Up Current (Note 6)  
CE OUT Output Voltage  
3
µA  
I
= 800µA  
0.3  
50  
V
V
V
SINK  
I
= 400µA  
= 1µA, V = 0V  
V
V
OUT  
– 0.50  
– 0.05  
SOURCE  
OUT  
I
SOURCE  
CC  
CE IN Propagation Delay  
C = 20pF  
30  
ns  
L
CE OUT Output Short-Circuit Current  
Output Source Current  
Output Sink Current  
15  
20  
mA  
mA  
Oscillator  
OSC IN Input Current (Note 6)  
OSC SEL Input Pull-Up Current (Note 6)  
OSC IN Frequency Range  
±2  
µA  
µA  
5
OSC SEL = 0V  
OSC SEL = 0V, C  
0
125  
kHz  
kHz  
= 47pF  
4
OSC  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: The external clock feeding into the circuit passes through the  
of device may be impaired.  
oscillator before clocking the watchdog timer. Variation in the time-out  
period is caused by phase errors which occur when the oscillator divides  
the external clock by 64. The resulting variation in the time-out period is  
64 plus one clock of jitter.  
Note 2: All voltage values are with respect to GND.  
Note 3: For military temperature range parts, consult the factory.  
Note 4: The output pins of BATT ON, LOW LINE, PFO, WDO, RESET and  
RESET have weak internal pullups of typically 3µA. However, external pull-  
up resistors may be used when higher speed is required.  
Note 6: The input pins of CE IN, OSC IN and OSC SEL have weak internal  
pull-ups which pull to the supply when the input pins are floating.  
4
LTC694-3.3/ LTC695-3.3  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Power Failure Input Threshold  
vs Temperature  
Output Voltage vs Load Current  
Output Voltage vs Load Current  
2.40  
2.39  
2.38  
2.37  
2.36  
2.35  
1.310  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
V
= 3.3V  
V
= 0V  
= 2.4V  
= 25°C  
V
= 3.3V  
= 2.4V  
CC  
CC  
CC  
V
T
V
BATT  
1.308  
1.306  
1.304  
1.302  
1.300  
1.298  
1.296  
1.294  
BATT  
T
= 25  
°
C
A
A
SLOPE = 4.6Ω  
SLOPE = 90Ω  
0
100  
200  
300  
400  
500  
50  
TEMPERATURE (  
100 125  
–50 –25  
0
25  
75  
C)  
0
10  
20  
30  
40  
50  
LOAD CURRENT (µA)  
°
LOAD CURRENT (mA)  
694/5-3.3 G02  
694/5-3.3 G03  
694/5-3.3 G01  
Power-Fail Comparator  
Response Time with Pull-Up  
Resistor  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator  
Response Time  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
= 25°C  
V
= 3.3V  
= 25°C  
V
= 3.3V  
CC  
CC  
CC  
T
T
T = 25°C  
A
A
A
V
+
PFI  
3.3V  
10k  
PFO  
PFO  
30pF  
V
+
PFI  
1.3V  
PFO  
30pF  
V
+
PFI  
1.3V  
1.3V  
30pF  
V
= 20mV STEP  
1.305V  
1.285V  
1.315V  
1.295V  
1.315V  
1.295V  
PFI  
V
= 20mV STEP  
V
= 20mV STEP  
PFI  
PFI  
0
1
2
3
4
5
7
8
6
9
140  
14  
12 16 18  
0
60  
120  
160 180  
0
6
20 40  
80 100  
2
4
8
10  
TIME (µs)  
TIME (µs)  
TIME (µs)  
694/5-3.3 G04  
694/5-3.3 G05  
694/5-3.3 G06  
Reset Active Time vs  
Temperature  
Reset Voltage Threshold vs  
Temperature  
RESET Output Voltage vs  
Supply Voltage  
2.90  
2.89  
2.88  
2.87  
2.86  
2.85  
2.84  
5
220  
210  
200  
190  
180  
170  
160  
150  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
4
3
2
1
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
1
3
4
5
2
50  
TEMPERATURE (  
100 125  
–50 –25  
0
25  
75  
C)  
SUPPLY VOLTAGE (V)  
°
694/5-3.3 TA02  
694/5-3.3 G08  
694/5-3.3 G07  
5
LTC694-3.3/ LTC695-3.3  
U U  
U
PI FU CTIO S  
VCC: 3.3V Supply Input. The V pin should be bypassed  
with a 0.1µF capacitor.  
every preset time-out period (see Figure 11). The reset  
active time is adjustable on the LTC695-3.3. An external  
push-button reset can be used in connection with the  
RESET output. See Push-Button Reset in Applications  
Information section.  
CC  
VOUT:Voltage Output for Backed Up Memory. Bypass with  
a capacitor of 0.1µF or greater. During normal operation,  
VOUT obtains power from VCC through an NMOS power  
switch,M1,whichcandeliverupto50mAandhas atypical  
on resistance of 5. When VCC is lower than VBATT, VOUT  
is internally switched to VBATT. If VOUT and VBATT are not  
RESET: Active High Logic Ouput. It is the inverse of  
RESET.  
LOW LINE: Logic Output from Comparator C1. LOW LINE  
used, connect VOUT to V .  
CC  
indicates a low line condition at the VCC input. When V  
CC  
V
BATT:Back-UpBatteryInput.WhenV falls belowV  
,
falls below the reset voltage threshold (2.90V typically),  
CC  
BATT  
auxiliary power connected to VBATT, is delivered to V  
LOW LINE goes low. As soon as V rises above the reset  
OUT  
CC  
through PMOS switch, M2. If back-up battery or auxiliary  
voltage threshold, LOW LINE returns high (see Figure 1).  
power is not used, VBATT should be connected to GND.  
LOW LINE goes low when V drops below VBATT (see  
CC  
Table 1).  
GND: Ground Pin.  
WDI: Watchdog Input. WDI is a three-level input. Driving  
WDI either high or low for longer than the watchdog time-  
outperiod,forces bothRESETandWDOlow.FloatingWDI  
disables the watchdog timer. The timer resets itself with  
each transition of the watchdog input (see Figure 11).  
BATT ON: Battery On Logic Output from Comparator C2.  
BATT ON goes low when VOUT is internally connected to  
VCC.Theoutputtypicallysinks 25mAandcanprovidebase  
drive for an external PNP transistor to increase the output  
current above the 50mA rating of VOUT. BATT ON goes  
high when VOUT is internally switched to V  
.
WDO: Watchdog Logic Output. When the watchdog input  
remains either high or low for longer than the watchdog  
time-outperiod,WDOgoes low.WDOis sethighwhenever  
thereis atransitionontheWDIpin, orLOWLINEgoes low.  
The watchdog timer can be disabled by floating WDI (see  
Figure 11).  
BATT  
PFI: Power Failure Input. PFI is the noninverting input to  
the power-fail comparator, C3. The inverting input is  
internallyconnectedtoa1.3Vreference. Thepowerfailure  
output remains high when PFI is above 1.3V and goes low  
when PFI is below 1.3V. Connect PFI to GND or VOUT when  
C3 is not used.  
CE IN: Logic Input to the Chip Enable Gating Circuit. CE IN  
can be derived from microprocessors address line and/or  
decoder output. See Applications Information section and  
Figure 5 for additional information.  
PFO: Power Failure Output from C3. PFO remains high  
when PFI is above 1.3V and goes low when PFI is below  
1.3V. When VCC is lower than VBATT, C3 is shut down and  
PFO is forced low.  
CE OUT: Logic Output on the Chip Enable Gating Circuit.  
When V is above the reset voltage threshold, CE OUT is  
a buffered replica of CE IN. When VCC is below the reset  
voltage threshold CE OUT is forced high (see Figure 5).  
CC  
RESET: Logic Output for µP Reset Control. Whenever V  
CC  
falls below either the reset voltage threshold (2.90V,  
typically) or VBATT, RESET goes active low. After V  
CC  
returns to 3.3V, the reset pulse generator forces RESET to  
remain active low for a minimum of 140ms. When the  
watchdog timer is enabled but not serviced prior to a  
preset time-out period, the reset pulse generator also  
forces RESET to active low for a minimum of 140ms for  
OSC SEL: Oscillator Selection Input. When OSC SEL is  
high or floating, the internal oscillator sets the reset active  
timeandwatchdogtime-outperiod. ForcingOSCSELlow,  
allows OSC IN to be driven from an external clock signal or  
an external capacitor can be connected between OSC IN  
and GND.  
6
LTC694-3.3/ LTC695-3.3  
U U  
U
PI FU CTIO S  
OSC IN: Oscillator Input. OSC IN can be driven by an  
external clock signal or an external capacitor can be  
connected between OSC IN and GND when OSC SEL is  
forced low. In this configuration the nominal reset active  
time and watchdog time-out period are determined by the  
number of clocks or set by the formula (see Applications  
Information section). When OSC SEL is high or floating,  
the internal oscillator is enabled and the reset active time  
is fixed at 200ms typical for the LTC695-3.3. OSC IN  
selects between the 1.6 seconds and 100ms typical  
watchdog time-out periods. In both cases, the time-out  
period immediately after a reset is 1.6 seconds typical.  
W
BLOCK DIAGRA  
M2  
V
V
OUT  
BATT  
M1  
V
CC  
CHARGE  
PUMP  
BATT ON  
C2  
+
LOW LINE  
+
C1  
CE OUT  
1.3V  
GND  
CE IN  
C3  
+
PFO  
PFI  
RESET  
OSC IN  
RESET PULSE  
GENERATOR  
OSC  
OSC SEL  
RESET  
WATCHDOG  
TIMER  
WDO  
TRANSITION  
DETECTOR  
WDI  
694/5-3.3 BD  
7
LTC694-3.3/ LTC695-3.3  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Microprocessor Reset  
Battery Switchover  
TheLTC694-3.3/LTC695-3.3useabandgapvoltagerefer-  
enceandaprecisionvoltagecomparatorC1tomonitorthe  
3.3V supply input on V (see Block Diagram). When V  
The battery switchover circuit compares V to the V  
input, and connects VOUT to whichever is higher. When  
VCC rises to 70mV above VBATT, the battery switchover  
CC  
BATT  
CC  
CC  
falls below the reset voltage threshold, the RESET output  
is forced to active low state. The reset voltage threshold  
comparator, C2, connects VOUT to V through a charge-  
CC  
pumped NMOS power switch, M1. When VCC falls to  
50mV above VBATT, C2 connects VOUT to VBATT through a  
PMOS switch, M2. C2 has typically 20mV of hysteresis to  
prevent spurious switching when VCC remains nearly  
equal to VBATT. The response time of C2 is approximately  
20µs.  
accounts for a 10% variation on V , so the RESET output  
CC  
becomes active low when V falls below 3.0V (2.9V  
CC  
typical). On power-up, the RESET signal is held active low  
for a minimum of 140ms after reset voltage threshold is  
reached to allow the power supply and microprocessor to  
stabilize.Theresetactivetimeis adjustableontheLTC695-  
3.3. On power-down, the RESET signal remains active low  
During normal operation, the LTC694-3.3/LTC695-3.3  
use a charge-pumped NMOS power switch to achieve low  
dropout and low supply current. This power switch can  
even with V as low as 1V. This capability helps hold the  
CC  
microprocessor in stable shutdown condition. Figure 1  
shows the timing diagram of the RESET signal.  
deliver up to 50mA to VOUT from V and has a typical on  
CC  
resistance of 5. The VOUT pin should be bypassed with  
a capacitor of 0.1µF or greater to ensure stability. Use of  
a larger bypass capacitor is advantageous for supplying  
current to heavy transient loads.  
The precision voltage comparator, C1, typically has 40mV  
of hysteresis which ensures that glitches at V pin do not  
CC  
activate the RESET output. Response time is typically  
10µs.Tohelppreventmistriggeringduetotransientloads,  
When operating currents larger than 50mA are required  
theV pinshouldbebypassedwitha0.1µFcapacitorwith  
CC  
from VOUT, or a lower dropout (V -VOUT voltage differen-  
CC  
the leads trimmed as short as possible.  
tial) is desired, the LTC695-3.3 should be used. This  
product provides BATT ON output to drive the base of an  
external PNP transistor (Figure 2). If higher currents are  
needed with the LTC694-3.3, a high current Schottky  
diode can be connected from the VCC pin to the VOUT pin  
to supply the extra current.  
The LTC695-3.3 has two additional outputs: RESET and  
LOW LINE. RESET is an active high output and is the  
inverse of RESET. LOW LINE is the output of the precision  
voltage comparator C1. When VCC falls below the reset  
voltage threshold, LOW LINE goes low. LOW LINE returns  
highassoonasVCCrises abovetheresetvoltagethreshold.  
V2  
V2  
V1  
V1  
V1 = RESET VOLTAGE THRESHOLD  
V
CC  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
RESET  
t
1
t
1
t
= RESET ACTIVE TIME  
1
LOW LINE  
694/5-3.3 F01  
Figure 1. Reset Active Time  
8
LTC694-3.3/ LTC695-3.3  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
ANY PNP POWER TRANSISTOR  
V
– V  
BATT  
R
OUT  
I =  
R
5
V
3.3V  
0.1µF  
V
OUT  
CC  
BATT ON  
3
0.1µF  
1
2
3.3V  
V
V
CC  
0.1µF  
OUT  
LTC694-3.3  
LTC695-3.3  
0.1µF  
LTC695-3.3  
V
BATT  
V
BATT  
GND  
2.4V  
GND  
2.4V  
4
694/5-3.3 F02  
694/5-3.3 F03  
Figure 3. Charging External Battery Through VOUT  
Figure 2. Using BATT ON to Drive External PNP Transistor  
The LTC694-3.3/LTC695-3.3 are protected for safe area  
operation with short-circuit limit. Output current is limited  
to approximately 200mA. If the device is overloaded for a  
long period of time, thermal shutdown turns the power  
switch off until the device cools down. The threshhold  
temperatureforthermalshutdownis approximately155°C  
with about 10°C of hysteresis which prevents the device  
from oscillating in and out of shutdown.  
Replacing the Back-Up Battery  
When changing the back-up battery with system power  
on, spurious resets canoccurwhilethebatteryis removed  
due to battery standby current. Although battery standby  
current is only a tiny leakage current, it can still charge up  
the stray capacitance on the VBATT pin. The oscillation  
cycle is as follows: When VBATT reaches within 50mV of  
V , the LTC694-3.3/LTC695-3.3 switch to battery back-  
CC  
The PNP switch used in competitive devices was not  
chosen for the internal power switch because it injects  
unwanted current into the substrate. This current is col-  
lected by the VBATT pin in competitive devices and adds to  
the charging current of the battery which can damage  
lithiumbatteries.TheLTC694-3.3/LTC695-3.3useacharge-  
pumpedNMOSpowerswitchtoeliminateunwantedcharg-  
ing current while achieving low dropout and low supply  
current. Sincenocurrentgoes tothesubstrate, thecurrent  
collected by VBATT pin is strictly junction leakage.  
up. V  
pulls VBATT low and the device goes back to  
OUT  
normaloperation.Theleakagecurrentthencharges upthe  
BATT pin again and the cycle repeats.  
V
If spurious resets during battery replacement pose no  
problems, then no action is required. Otherwise, a resistor  
fromVBATT toGNDwillholdthepinlowwhilechangingthe  
battery. For example, the battery standby current is 1µA  
maximum over temperature so the external resistor re-  
quired to hold VBATT below V is:  
CC  
V – 50mV  
A 125PMOS switch connects the VBATT input to VOUT in  
battery back-up mode. The switch is designed for very low  
dropout voltage (input-to-output differential). This feature  
is advantageous for low current applications such as  
batteryback-upinCMOSRAMandotherlowpowerCMOS  
circuitry. The supply current in battery back-up mode is  
1µA maximum.  
CC  
R ≤  
1µA  
WithV =3V, a2.7Mresistorwillwork. Witha2Vbattery,  
CC  
this resistor will draw only 0.7µA from the battery, which  
is negligible in most cases.  
Ifbatteryconnections aremadethroughlongwires, a10Ω  
to 100series resistor and a 0.1µF capacitor are recom-  
mended to prevent any overshoot beyond V due to the  
The operating voltage at the VBATT pin ranges from 1.5V to  
2.75V. The charging resistor for rechargeable batteries  
should be connected to VOUT since this eliminates the  
discharge path that exists when the resistor is connected  
CC  
lead inductance (Figure 4).  
to V (Figure 3).  
CC  
9
LTC694-3.3/ LTC695-3.3  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
10Ω  
Table1shows thestateofeachpinduringbatteryback-up.  
When the battery switchover section is not used, connect  
V
BATT  
0.1µF  
2.7M  
LTC694-3.3  
LTC695-3.3  
V
BATT to GND and VOUT to V .  
CC  
Memory Protection  
GND  
The LTC695-3.3 includes memory protection circuitry  
which ensures the integrity of the data in memory by  
preventing write operations when VCC is at invalid level.  
Two additional pins, CE IN and CE OUT, control the Chip  
Enable or Write inputs of CMOS RAM. When VCC is 3.3V,  
CE OUT follows CE IN with a typical propagation delay of  
694/5-3.3 F04  
Figure 4. 10/0.1µF Combination Eliminates Inductive  
Overshoot and Prevents Spurious Resets During Battery  
Replacement. The 2.7M Pulls the VBATT Pin to Ground  
While the Battery is Removed, Eliminating Spurious Resets  
30ns. When V falls below the reset voltage threshold or  
CC  
Table 1. Input and Output Status in Battery Back-Up Mode  
VBATT, CE OUT is forced high, independent of CE IN. CE  
OUT is an alternative signal to drive the CE, CS, or Write  
input of battery backed up CMOS RAM. CE OUT can also  
be used to drive the Store or Write input of an EEPROM,  
EAROM or NOVRAM to achieve similar protection. Figure  
5 shows the timing diagram of CE IN and CE OUT.  
SIGNAL  
STATUS  
V
CC  
C2 monitors V for active switchover  
CC  
V
OUT  
V
OUT  
is connected to V  
through an internal PMOS switch  
BATT  
V
BATT  
The supply current is 1µA maximum.  
BATT ON Logic high. The open-circuit output voltage is equal to V  
OUT  
PFI  
Power failure input is ignored  
Logic low  
CE IN can be derived from the microprocessors address  
decoder output. Figure 6 shows a typical nonvolatile  
CMOS RAM application.  
PFO  
RESET  
RESET  
Logic low  
Logic high. The open-circuit output voltage is equal to V  
OUT  
LOW LINE Logic low  
MemoryprotectioncanalsobeachievedwiththeLTC694-  
3.3 by using RESET as shown in Figure 7.  
WDI  
Watchdog input is ignored.  
Logic high. The open-circuit output voltage is equal to V  
WDO  
OUT  
CE IN  
CE OUT  
OSC IN  
Chip Enable input is ignored.  
Logic high. The open-circuit output voltage is equal to V  
Power-Fail Warning  
OUT  
The LTC694-3.3/LTC695-3.3 generate a Power Failure  
Output (PFO) for early warning of failure in the  
microprocessors power supply. This is accomplished by  
OSC IN is ignored  
OSC SEL OSC SEL is ignored  
V2  
V
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
CC  
V1  
CE IN  
V
= V  
BATT  
OUT  
CE OUT  
V
= V  
BATT  
OUT  
694/5-3.3 F05  
Figure 5. Timing Diagram for CE IN and CE OUT  
10  
LTC694-3.3/ LTC695-3.3  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
comparing the power failure input (PFI) with an internal  
1.3V reference.  
V
V
V
CC  
3.3V  
CC  
OUT  
+
0.1µF  
0.1µF  
62512  
RAM  
10µF  
LTC695-3.3  
CE OUT  
CS  
PFO goes low when the voltage at the PFI pin is less than  
1.3V. Typically PFI is driven by an external voltage divider  
(R1 and R2 in Figures 8 and 9) which senses either an  
unregulated DC input or a regulated 3.3V output. The  
voltage divider ratio can be chosen such that the voltage  
at the PFI pin falls below 1.3V several milliseconds before  
the 3.3V supply falls below the maximum reset voltage  
threshold 3.0V. PFO is normally used to interrupt the  
microprocessor to execute shutdown procedure between  
PFO and RESET or RESET.  
GND  
30ns PROPAGATION DELAY  
FROM DECODER  
V
BATT  
CE IN  
RESET  
2.4V  
GND  
RESET  
694/5-3.3 F06  
TO µP  
Figure 6. A Typical Nonvolatile CMOS RAM Application  
V
V
V
CC  
3.3V  
0.1µF  
CC  
OUT  
+
0.1µF  
62128  
RAM  
10µF  
LTC694-3.3  
The power-fail comparator, C3, does not have hysteresis.  
Hysteresis can be added however, by connecting a resis-  
tor between the PFO output and the noninverting PFI input  
pin as shown in Figures 8 and 9. The upper and lower trip  
points in the comparator are established as follows:  
CS1  
CS2  
CS  
V
RESET  
GND  
BATT  
2.4V  
GND  
694/5-3.3 F07  
Figure 7. Write Protect for RAM with LTC694-3.3  
When PFO output is low, R3 sinks current from the  
summing junction at the PFI pin.  
V
5V  
LT1129-3.3  
3.3V  
IN  
R1 R1  
V
V
V
OUT  
CC  
IN  
V =1.3V 1+  
+
+
+
H
R2 R3  
10µF OUT SENSE  
100µF  
0.1µF  
LTC694-3.3  
LTC695-3.3  
SHDN  
ADJ  
R4  
10k  
R3  
200k  
R1  
51k  
WhenPFOoutputis high,theseries combinationofR3and  
R4 source current into the PFI summing junction.  
PFO  
PFI  
GND  
R2  
16k  
TO µP  
R1 (3.3V 1.3V)R1  
V =1.3V 1+  
694/5-3.3 F08  
L
R2 1.3V(R3 +R4)  
Figure 8. Monitoring Unregulated DC Supply with the  
LTC694-3.3/LTC695-3.3’s Power-Fail Comparator  
R1  
R3  
Assuming R4 << R3,V  
=3.3V  
HYSTERESIS  
Example 1:The circuit in Figure 8 demonstrates the use of  
the power-fail comparator to monitor the unregulated  
power supply input. Assuming the the rate of decay of the  
LT1129-3.3  
V
6.5V  
10µF  
0.1µF  
10µF  
IN  
3.3V  
V
V
V
OUT  
CC  
IN  
+
+
OUT SENSE  
R4  
10k  
R1  
LTC694-3.3  
LTC695-3.3  
27k  
SHDN  
ADJ  
R3  
2.7M  
supplyinputV is 100mV/ms andthetotaltimetoexecute  
IN  
PFO  
PFI  
a shutdown procedure is 8ms. Also the noise of V is  
IN  
GND  
200mV. With these assumptions in mind, we can reason-  
R2  
16k  
ably set V = 5V which is 1.6V greater than the sum of  
TO µP  
L
R5  
5k  
maximum reset voltage threshold and the dropout voltage  
of the LT1129-3.3 (3V + 0.4V) and VHYSTERESIS = 850mV.  
694/5-3.3 F09  
Figure 9. Monitoring Regulated DC Supply with the  
LTC694-3.3/LTC695-3.3’s Power-Fail Comparator  
11  
LTC694-3.3/ LTC695-3.3  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
3.3V  
R1  
V
= 3.3V = 850mV  
HYSTERESIS  
R3  
V
CC  
V
BATT  
LOW-BATTERY SIGNAL  
TO µP I/O PIN  
PFO  
R3 3.88 R1  
R1  
1M  
LTC695-3.3  
PFI  
Choose R3 = 200k and R1 = 51k. Also select R4 = 10k  
which is much smaller than R3.  
R2  
1.6M  
2.4V  
CE IN  
GND  
I/O PIN  
CE OUT  
51k (3.3V 1.3V)51k  
5V =1.3V 1+  
R
L
R2  
R2 = 15.8k, Choose nearest 5% resistor 16k and recalcu-  
late V ,  
1.3V(210k)  
20k  
OPTIONAL TEST LOAD  
694/5-3.3 F10  
L
Figure 10. Back-Up Battery Monitor with Optional Test Load  
51k (3.3V – 1.3V)51k  
V = 1.3V 1+  
= 4.96V  
L
Watchdog Timer  
16k  
1.3V(210k)  
The LTC694-3.3/LTC695-3.3 provide a watchdog timer  
function to monitor the activity of the microprocessor. If  
the microprocessor does not toggle the watchdog input  
(WDI)withinaselecedtime-outperiod, RESETis forcedto  
active low for a minimum of 140ms. The reset active time  
is adjustable on the LTC695-3.3. Since many systems can  
not service the watchdog timer immediately after a reset,  
the LTC695-3.3 has a longer time-out period (1.0 second  
minimum) right after a reset is issued. The normal time-  
out period (70ms minimum) becomes effective following  
the first transition of WDI after RESET is inactive. The  
watchdog time-out period is fixed at 1.0 second minimum  
ontheLTC694-3.3. Figure11shows thetimingdiagramof  
watchdog time-out period and reset active time. The  
watchdog time-out period is restarted as soon as RESET  
is inactive. When either a high-to-low or low-to-high  
transition occurs at the WDI pin prior to time-out, the  
watchdog time is reset and begins to time out again. To  
ensure the watchdog time does not time out, either a high-  
to-low or low-to-high transition on the WDI pin must  
occur at or less than the minimum time-out period. If the  
input to the WDI pin remains either high or low, reset  
pulses will be issued every 1.6 seconds typically. The  
watchdog time can be deactivated by floating the WDI pin.  
51k 51k  
V = 1.3V 1+  
+
= 5.77V  
H
16 k 200k  
(4.96V – 3.4V)  
100mV/ms  
= 15.6ms  
V
HYSTERESIS = 5.77V – 4.96V = 810mV  
The 15.6ms allows enough time to execute shutdown  
procedure for microprocessor and 810mV of hysteresis  
would prevent PFO from going low due to the noise of V .  
IN  
Example 2: The circuit in Figure 9 can be used to measure  
the regulated 3.3V supply to provide early warning of  
power failure. Because of variations in the PFI threshold,  
this circuit requires adjustment to ensure the PFI com-  
parator trips before the reset threshold is reached. Adjust  
R5suchthatthePFOoutputgoes lowwhentheV supply  
reaches the desired level (e.g., 3.1V).  
CC  
Monitoring the Status of the Battery  
C3 can also monitor the status of the memory back-up  
battery (Figure 10). If desired, the CE OUT can be used to  
applyatestloadtothebattery. SinceCEOUTis forcedhigh  
in battery back-up mode, the test load will not be applied  
to the battery while it is in use, even if the microprocessor  
is not powered.  
The timer is also disabled when V falls below the reset  
CC  
voltage threshold or V  
.
BATT  
12  
LTC694-3.3/ LTC695-3.3  
O U  
S
W
U
PPLICATI  
I FOR ATIO  
A
V
= 3.3V  
CC  
WDI  
t
t
t
= RESET ACTIVE TIME  
1
2
3
= NORMAL WATCHDOG TIME-OUT PERIOD  
= WATCHDOG TIME-OUT PERIOD IMMEDIATELY  
AFTER A RESET  
WDO  
t
t
3
2
RESET  
t
t
1
1
694/5-3.3 F11  
Figure 11. Watchdog Time-Out Period and Reset Active Time  
EXTERNAL OSCILLATOR  
EXTERNAL CLOCK  
8
3
8
7
3
4
OSC SEL  
3.3V  
3.3V  
V
V
CC  
OSC SEL  
OSC IN  
CC  
LTC695-3.3  
LTC695-3.3  
7
4
GND  
OSC IN  
GND  
INTERNAL OSCILLATOR  
1.6 SECOND WATCHDOG  
INTERNAL OSCILLATOR  
100ms WATCHDOG  
3
8
3
8
7
FLOATING  
OR HIGH  
FLOATING  
OR HIGH  
V
V
3.3V  
3.3V  
OSC SEL  
CC  
OSC SEL  
CC  
LTC695-3.3  
LTC695-3.3  
7
4
FLOATING  
OR HIGH  
4
OSC IN  
OSC IN  
GND  
GND  
694/5-3.3 F12  
Figure 12. Oscillator Configurations  
The LTC695-3.3 provides an additional output (Watchdog  
Output, WDO) which goes low if the watchdog timer is  
allowed to time out and remains low until set high by the  
next transition on the WDI pin. WDO is also set high when  
OSC IN can be driven by an external clock signal or an  
external capacitor can be connected between OSC IN and  
GNDwhenOSCSELis forcedlow. Intheseconfigurations,  
the nominal reset active time and watchdog time-out  
period are determined by the number of clocks or set by  
the formula in Table 2. When OSC SEL is high or floating,  
the internal oscillator is enabled and the reset active time  
is fixed at 140ms minimum for the LTC695-3.3. OSC IN  
selects between the 1 second and 70ms minimum normal  
watchdog time-out periods. In both cases, the time-out  
period immediately after a reset is at least 1 second.  
V falls below the reset voltage threshold or V  
.
CC  
BATT  
TheLTC695-3.3has twoadditonalpins,OSCSELandOSC  
IN, which allow reset active time and watchdog time-out  
period to be adjusted per Table 2. Several configurations  
are shown in Figure 12.  
13  
LTC694-3.3/ LTC695-3.3  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Table 2. LTC695-3.3 Reset Active Time and Watchdog Time-Out Selections  
WATCHDOG TIME-OUT PERIOD  
RESET ACTIVE TIME  
IMMEDIATELY  
AFTER RESET  
(Long Period)  
NORMAL  
(Short Period)  
OSC SEL  
OSC IN  
LTC695-3.3  
Low  
External Clock Input  
1024 CLKs  
4096 CLKs  
2048 CLKs  
400ms  
• C  
1.6 sec  
• C  
800ms  
• C  
Low  
External Capacitor*  
70pF  
70pF  
70pF  
Floating or High  
Floating or High  
Low  
100ms  
1.6 sec  
1.6 sec  
1.6 sec  
200ms  
200ms  
Floating or High  
184,000  
C(pF) • 1025  
*The nominal internal frequency is 10.24kHz. The nominal oscillator frequency with external capacitor is f  
(Hz) =  
OSC  
Push-Button Reset  
V
3.3V  
RESET  
LTC694-3.3  
RESET  
MPU  
CC  
100Ω  
0.1µF  
The LTC694-3.3/LTC695-3.3 do not provide a logic input  
for direct connection to a push-button. However, a push-  
button in series with a 100resistor connected to the  
RESET output pin (Figure 13) provides an alternative for  
manual reset. Connecting a 0.1µF capacitor to the RESET  
pin debounces the push-button input.  
(e.g. 68HC05)  
LTC695-3.3  
GND  
694/5-3.3 F13  
Figure 13. The External Push-Button Reset  
The 100resistor in series with the push-button is  
required to prevent the ringing, due to the capacitance and  
lead inductance, from pulling the RESET pins of the MPU  
and LTC69X below ground.  
U
O
TYPICAL APPLICATI  
Capacitor Back-Up with 74HC4016 Switch  
3.3V  
V
V
CC  
OUT  
0.1µF  
10 11 12 14  
0.1µF  
R1  
10k  
LTC695-3.3  
LOW LINE  
2
1
V
74HC4016  
BATT  
R2  
30k  
7
13  
100µF  
+
GND  
694/5-3.3 TA03  
14  
LTC694-3.3/ LTC695-3.3  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
0.125  
(0.229 – 0.381)  
0.020  
(3.175)  
MIN  
+0.035  
–0.015  
(0.508)  
MIN  
1
2
4
3
0.325  
N8 1197  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
–0.381  
8.255  
(
)
(0.457 ± 0.076)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
N Package 16-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
15  
13  
11  
16  
0.020  
(0.508)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
0.009 – 0.015  
(1.651)  
TYP  
(0.229 – 0.381)  
+0.035  
–0.015  
2
1
3
4
6
8
5
7
0.325  
0.125  
0.018 ± 0.003  
0.100 ± 0.010  
(2.540 ± 0.254)  
N16 1197  
+0.889  
–0.381  
(3.175)  
MIN  
(0.457 ± 0.076)  
8.255  
(
)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
SW Package 16-Lead Plastic Small Outline (Wide 0.300) (LTC DWG # 05-08-1620)  
0.291 – 0.299**  
(7.391 – 7.595)  
0.398 – 0.413*  
(10.109 – 10.490)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
15 14  
12  
10  
11  
9
16  
13  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.004 – 0.012  
(0.102 – 0.305)  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
2
3
5
7
8
1
4
6
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC694-3.3/ LTC695-3.3  
U
O
TYPICAL APPLICATI  
Write Protect for Additional RAMs  
3.3V  
V
V
V
OUT  
+
CC  
CC  
0.1µF  
10µF  
LH5168SH  
RAM A  
0.1µF  
LTC695-3.3  
CS  
CE OUT  
30ns PROPAGATION  
DELAY  
V
BATT  
CE IN  
CS A  
2.4V  
LOW LINE  
GND  
V
CC  
0.1µF  
0.1µF  
LH5116S  
RAM B  
CS1  
CS B  
CS2  
V
CC  
LH5116S  
RAM C  
CS C  
CS1  
CS2  
OPTIONAL CONNECTION FOR  
ADDITIONAL RAMs  
694/5-3.3 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1326  
Micropower Precision Triple Supply Monitor  
4.725V, 3.118V, 1V Thresholds (±0.75%)  
Meets PCI t Timing Specifications  
LTC1536  
Micropower Triple Supply Monitor for PCI Applications  
FAIL  
69453fa LT/TP 0399 2K REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1993  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC694IS8-3.3#TRPBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-PBF

Microprocessor Supervisory Circuits
Linear

LTC694IS8PBF

Microprocessor Supervisory Circuits
Linear

LTC694_15

Microprocessor Supervisory Circuits
Linear

LTC695

Microprocessor Supervisory Circuits
Linear

LTC695-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC695-3.3CSW

IC 1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, 0.300 INCH, PLASTIC, SOP-16, Power Management Circuit
Linear

LTC695-3.3_15

3.3V Microprocessor Supervisory Circuits
Linear

LTC6957-1

Low Phase Noise, Dual Output Buffer/Driver/Logic Converter
Linear

LTC6957-1

Low Phase Noise, Dual Output Logic Converter
ADI

LTC6957-1_15

Low Phase Noise, Dual Output Buffer/Driver/ Logic Converter
Linear

LTC6957-2

280MHz, 2.9ns Comparator Family with Rail-to-Rail Inputs and CMOS Outputs
Linear