LTC6991CS6#TRMPBF [Linear]

LTC6991 - TimerBlox: Resettable, Low Frequency Oscillator; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LTC6991CS6#TRMPBF
型号: LTC6991CS6#TRMPBF
厂家: Linear    Linear
描述:

LTC6991 - TimerBlox: Resettable, Low Frequency Oscillator; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

机械 输出元件 振荡器
文件: 总24页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6991  
TimerBlox: Resettable, Low  
Frequency Oscillator  
FEATURES  
DESCRIPTION  
The LTC®6991 is a silicon oscillator with a program-  
mable period range of 1.024ms to 9.54 hours (29.1µHz  
to 977Hz), specifically intended for long duration timing  
events. The LTC6991 is part of the TimerBlox® family of  
versatile silicon timing devices.  
n
Period Range: 1ms to 9.5 Hours  
n
Configured with 1 to 3 Resistors  
n
<1.5% Maximum Frequency Error  
n
Output Reset Function  
n
2.25V to 5.5V Single Supply Operation  
n
55µA to 80µA Supply Current  
A single resistor, R , programs the LTC6991’s inter  
-
SET  
n
(2ms to 9.5hr Clock Period)  
nal master oscillator frequency. The output clock period  
n
500µs Start-Up Time  
is determined by this master oscillator and an internal  
n
CMOS Output Driver Sources/Sinks 20mA  
frequency divider, N , programmable to eight settings  
DIV  
n
–55°C to 125°C Operating Temperature Range  
21  
from 1 to 2 .  
n
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
NDIV RSET  
and 2mm × 3mm DFN Packages  
tOUT  
=
1.024ms, NDIV = 1,8,64,...,221  
50kΩ  
APPLICATIONS  
In normal operation, the LTC6991 oscillates with a 50%  
duty cycle. A reset function is provided to truncate the  
pulse (reducing the duty cycle). The reset pin can also be  
used to prevent the output from oscillating.  
n
“Heartbeat” Timers  
n
Watchdog Timers  
n
Intervalometers  
Periodic “Wake-Up” Call  
High Vibration, High Acceleration Environments  
Portable and Battery-Powered Equipment  
n
The RST and OUT pins can be configured for active-low  
or active-high operation using a polarity function.  
n
n
POL BIT  
RST PIN  
OUTPUT STATE  
Oscillating  
0 (reset)  
1 (reset)  
Oscillating  
0
0
1
1
0
1
0
1
All registered trademarks and trademarks are the property of their respective owners.  
For easy configuration of the LTC6991, download the  
TimerBlox Designer tool at www.linear.com/timerblox.  
Clock Period Range over Eight Divider Settings  
1ꢎꢟꢠ  
TYPICAL APPLICATION  
Low Frequency Pulse Generator  
1ꢟꢠ  
1ꢎꢔꢕꢖ  
1µs PULSE WIDTH  
OUT  
60 SECONDS  
R
PW  
1ꢔꢕꢖ  
2.26k  
1ꢎꢒꢓc  
RST  
GND  
SET  
OUT  
6991 TA01a  
C
PW  
LTC6991  
5V  
1ꢒꢓc  
1ꢎꢎꢛꢜ  
1ꢎꢛꢜ  
1ꢛꢜ  
470pF  
+
V
0.1µF  
R1  
R
SET  
1M  
715k  
DIV  
R2  
392k  
1ꢘꢗꢙ  
ꢀꢁꢂ ꢃꢁꢄ ꢂꢅꢉꢊꢋ ꢂ ꢌꢂꢍ  
ꢎꢘ6ꢗꢙ  
1ꢘꢝꢞꢙ  
ꢗꢘꢙ  
t
≈ R • C ≈ 1µs  
6991 ꢇꢈꢎ1ꢚ  
PULSE  
PW  
PW  
ꢀꢁꢂ  
6991fc  
1
For more information www.linear.com/LTC6991  
LTC6991  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Supply Voltage (V ) to GND ........................................6V  
Specified Temperature Range (Note 3)  
Maximum Voltage  
LTC6991C ................................................ 0°C to 70°C  
LTC6991I .............................................–40°C to 85°C  
LTC6991H.......................................... –40°C to 125°C  
LTC6991MP ....................................... –55°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
on Any Pin ................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6991C ............................................–40°C to 85°C  
LTC6991I .............................................–40°C to 85°C  
LTC6991H.......................................... –40°C to 125°C  
LTC6991MP ....................................... –55°C to 125°C  
S6 Package...........................................................300°C  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
TOP VIEW  
6
ꢁꢇꢀ  
ꢈꢉꢊ  
ꢋꢌꢀ  
1
RST 1  
GND 2  
SET 3  
6 OUT  
ꢊꢄꢃ  
ꢌꢅꢀ  
+
5 V  
4 DIV  
ꢊꢎꢏ ꢂꢐꢎꢑꢐꢈꢅ  
6ꢒꢓꢅꢐꢊ ꢔꢕꢖꢖ × ꢗꢖꢖꢘ ꢂꢓꢐꢌꢀꢄꢎ ꢊꢙꢉ  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T
JMAX  
= 150°C, θ = 192°C/W, θ = 51°C/W  
T
= 150°C, θ = 64°C/W, θ = 10.6°C/W  
JA  
JC  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 7) CONNECTED TO GND,  
PCB CONNECTION OPTIONAL  
ORDER INFORMATION  
http://www.linear.com/product/LTC6991#orderinfo  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC6991CDCB#TRMPBF  
LTC6991IDCB#TRMPBF  
LTC6991HDCB#TRMPBF  
LTC6991CS6#TRMPBF  
LTC6991IS6#TRMPBF  
LTC6991HS6#TRMPBF  
LTC6991MPS6#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LDWZ  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6991CDCB#TRPBF  
LTC6991IDCB#TRPBF  
LTC6991HDCB#TRPBF  
LTC6991CS6#TRPBF  
LTC6991IS6#TRPBF  
LTC6991HS6#TRPBF  
LTC6991MPS6#TRPBF  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LDWZ  
–40°C to 85°C  
LDWZ  
–40°C to 125°C  
0°C to 70°C  
LTDWY  
LTDWY  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
LTDWY  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
–55°C to 125°C  
LTDWY  
6-Lead Plastic TSOT-23  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult ADI Marketing for parts specified with wider operating temperature ranges.  
Consult ADI Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
6991fc  
2
For more information www.linear.com/LTC6991  
LTC6991  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, RST = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.024m  
29.1µ  
TYP  
MAX  
34,360  
977  
UNITS  
Seconds  
Hz  
t
f
Output Clock Period  
Output Frequency  
OUT  
OUT  
∆f  
Frequency Accuracy (Note 4)  
29.1µHz ≤ f  
≤ 977Hz  
OUT  
0.8  
1.5  
2.2  
%
%
OUT  
l
l
∆f /∆T  
Frequency Drift Over Temperature  
Frequency Drift Over Supply  
0.005  
%/°C  
OUT  
+
+
l
l
∆f /∆V  
V = 4.5V to 5.5V  
0.23  
0.06  
0.55  
0.16  
%/V  
%/V  
OUT  
+
V = 2.25V to 4.5V  
Long-Term Frequency Stability  
Period Jitter (Note 10)  
(Note 11)  
90  
ppm/√kHr  
N
N
= 1  
= 8  
15  
7
ppm  
ppm  
DIV  
DIV  
RMS  
RMS  
BW  
Frequency Modulation Bandwidth  
0.4 • f  
Hz  
OUT  
t
Frequency Change Settling Time (Note 9)  
1
Cycle  
S
Analog Inputs  
l
l
l
l
l
V
Voltage at SET Pin  
0.97  
1.00  
75  
1.03  
800  
V
µV/°C  
kΩ  
SET  
∆V /∆T  
V
Drift Over Temperature  
SET  
SET  
R
Frequency-Setting Resistor  
DIV Pin Voltage  
50  
0
SET  
DIV  
+
V
V
V
+
∆V /∆V  
DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
DIV  
1.5  
%
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
l
DIV Pin Input Current  
10  
nA  
Power Supply  
+
l
l
V
Operating Supply Voltage Range  
Power-On Reset Voltage  
Supply Current  
2.25  
5.5  
V
V
1.95  
+
+
l
l
I
R = ∞, R = 50k  
V = 5.5V  
135  
105  
170  
135  
µA  
µA  
S
L
SET  
V = 2.25V  
+
+
l
l
R = ∞, R = 100k  
V = 5.5V  
100  
80  
130  
105  
µA  
µA  
L
SET  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k  
V = 5.5V  
65  
55  
100  
85  
µA  
µA  
L
SET  
V = 2.25V  
6991fc  
3
For more information www.linear.com/LTC6991  
LTC6991  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, RST = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = , CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital I/O  
RST Pin Input Capacitance  
RST Pin Input Current  
2.5  
pF  
nA  
V
+
RST = 0V to V  
(Note 6)  
10  
+
l
l
V
V
High Level RST Pin Input Voltage  
Low Level RST Pin Input Voltage  
Output Current  
0.7 • V  
IH  
+
(Note 6)  
+
0.3 • V  
V
IL  
I
V = 2.7V to 5.5V  
20  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= –1mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OUT  
OUT  
= –16mA  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= –8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
OL  
Low Level Output Voltage (Note 7)  
Reset Propagation Delay  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
+
t
V = 5.5V  
16  
24  
40  
ns  
ns  
ns  
RST  
+
V = 3.3V  
+
V = 2.25V  
+
t
t
Minimum Input Pulse Width  
Output Rise Time (Note 8)  
V = 3.3V  
5
ns  
WIDTH  
r
+
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
+
t
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
f
+
V = 3.3V  
+
V = 2.25V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 2: The LTC6991C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 9: Settling time is the amount of time required for the output to settle  
Note 3: The LTC6991C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6991C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6991I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6991H is guaranteed  
to meet specified performance from –40°C to 125°C. The LTC6991MP is  
guaranteed to meet specified performance from –55°C to 125°C.  
within 1% of the final frequency after a 0.5× or 2× change in I  
.
SET  
Note 10: Jitter is the ratio of the deviation of the period to the mean of the  
period. This specification is based on characterization and is not 100%  
tested.  
Note 11: Long-term drift of silicon oscillators is primarily due to the  
movement of ions and impurities within the silicon and is tested at 30°C  
under otherwise nominal operating conditions. Long-term drift is specified  
as ppm/√kHr due to the typically nonlinear nature of the drift. To calculate  
drift for a set time period, translate that time into thousands of hours, take  
the square root and multiply by the typical drift number. For instance, a  
year is 8.77kHr and would yield a drift of 266ppm at 90ppm/√kHr. Drift  
without power applied to the device may be approximated as 1/10th of the  
drift with power, or 9ppm/√kHr for a 90ppm/√kHr device.  
Note 4: Frequency accuracy is defined as the deviation from the f  
OUT  
equation, assuming R is used to program the frequency.  
SET  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
Note 6: The RST pin has hysteresis to accommodate slow rising or falling  
+
signals. The threshold voltages are proportional to V . Typical values can  
+
be estimated at any supply voltage using V  
≈ 0.55 • V + 185mV  
RST(RISING)  
+
and V  
≈ 0.48 • V – 155mV.  
RST(FALLING)  
6991fc  
4
For more information www.linear.com/LTC6991  
LTC6991  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
1
1
1
ꢓꢆꢅꢄꢅꢔꢀꢁꢁꢕ ꢂꢅꢖ ꢎꢗꢁꢄ ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ  
ꢓꢆꢅꢄꢅꢔꢀꢁꢁꢕ ꢂꢅꢖ ꢎꢗꢁꢄ ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ  
ꢓꢆꢅꢄꢅꢔꢀꢁꢁꢕ ꢂꢅꢖ ꢎꢗꢁꢄ ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ  
ꢚ ꢛꢍꢍꢜ  
ꢚ ꢌꢍꢛ  
ꢚ ꢐꢍꢍꢛ  
ꢙꢁꢀ  
ꢙꢁꢀ  
ꢙꢁꢀ  
ꢑ ꢃꢅꢄꢀꢙ  
ꢑ ꢃꢅꢄꢀꢙ  
ꢑ ꢃꢅꢄꢀꢙ  
ꢋ1  
ꢋꢐ  
ꢋꢑ  
ꢋ1  
ꢋꢐ  
ꢋꢑ  
ꢋ1  
ꢋꢐ  
ꢋꢑ  
ꢓꢆꢅꢄꢅꢔꢀꢁꢁꢕ ꢂꢘꢔ ꢎꢗꢁꢄ ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ  
ꢓꢆꢅꢄꢅꢔꢀꢁꢁꢕ ꢂꢘꢔ ꢎꢗꢁꢄ ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ  
ꢓꢆꢅꢄꢅꢔꢀꢁꢁꢕ ꢂꢘꢔ ꢎꢗꢁꢄ ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ  
ꢌꢍ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
1ꢍꢍ 1ꢐꢌ  
ꢋꢌꢍ ꢋꢐꢌ  
ꢐꢌ  
ꢒꢌ  
ꢌꢍ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
1ꢍꢍ 1ꢐꢌ  
ꢋꢌꢍ ꢋꢐꢌ  
ꢐꢌ  
ꢒꢌ  
ꢌꢍ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
1ꢍꢍ 1ꢐꢌ  
ꢋꢌꢍ ꢋꢐꢌ  
ꢐꢌ  
ꢒꢌ  
6991 ꢓꢍꢑ  
6991 ꢓꢍ1  
6991 ꢓꢍꢐ  
Frequency Error vs RSET  
Frequency Drift vs Supply Voltage  
Typical VSET Distribution  
ꢊꢉꢆ  
ꢊꢆꢆ  
1ꢉꢆ  
1ꢆꢆ  
ꢉꢆ  
ꢏꢐꢑ  
ꢏꢐꢗ  
3
2
ꢊ ꢕꢒꢃꢁ  
ꢖꢓꢍ ꢗꢍꢖ ꢁꢒꢊꢙ  
1ꢊꢚꢋ ꢎꢍꢔꢃꢁ  
GUARANTEED MAX OVER TEMPERATURE  
3 PARTS  
ꢏꢐꢘ  
ꢏꢐꢍ  
1
0
ꢏꢐ1  
ꢎꢏꢐ1  
ꢎꢏꢐꢍ  
ꢎꢏꢐꢘ  
ꢎꢏꢐꢗ  
ꢎꢏꢐꢑ  
–1  
–2  
–3  
ꢓꢊꢕꢊꢓꢊꢙꢚꢊꢒ ꢇꢆ ꢅ ꢜ ꢗꢐꢑꢅ  
ꢀꢊꢇ  
ꢀꢊꢇ  
ꢀꢊꢇ  
ꢜ ꢑꢏꢝ  
ꢜ ꢍꢏꢏꢝ  
ꢜ ꢞꢏꢏꢝ  
GUARANTEED MIN OVER TEMPERATURE  
6
ꢆꢇ9ꢈ  
ꢆꢇ9ꢈꢈ  
ꢆꢇ996  
1ꢇꢆꢆꢋ  
ꢄꢀꢅ  
1ꢇꢆ1ꢊ  
1ꢇꢆꢊ  
0
200  
400  
(kΩ)  
600  
800  
ꢀꢁꢂꢂꢃꢄ ꢅꢆꢃꢇꢈꢉꢊ ꢋꢅꢌ  
R
ꢁꢂꢃ  
SET  
6991 ꢌꢆ6  
6991 G04  
6991 ꢉꢏꢑ  
VSET Drift vs ISET  
VSET Drift vs Supply  
VSET vs Temperature  
1ꢊꢈ  
ꢈꢊꢍ  
1ꢊꢋ  
ꢋꢊꢍ  
1ꢎꢍꢐꢍ  
1ꢎꢍ1ꢌ  
1ꢎꢍ1ꢍ  
1ꢎꢍꢍꢌ  
1ꢎꢍꢍꢍ  
ꢍꢎ99ꢌ  
ꢍꢎ99ꢍ  
ꢍꢎ9ꢏꢌ  
ꢍꢎ9ꢏꢍ  
ꢕ ꢃꢅꢄꢀꢔ  
ꢈꢊ6  
ꢋꢊ6  
ꢈꢊꢋ  
ꢋꢊꢌ  
ꢈꢊꢌ  
ꢋꢊꢈ  
ꢉꢈꢊꢌ  
ꢉꢈꢊꢋ  
ꢉꢈꢊ6  
ꢉꢈꢊꢍ  
ꢉ1ꢊꢈ  
ꢉꢋꢊꢈ  
ꢉꢋꢊꢌ  
ꢉꢋꢊ6  
ꢉꢋꢊꢍ  
ꢉ1ꢊꢋ  
ꢓꢂꢔꢂꢓꢂꢕꢖꢂꢗ ꢃꢘ ꢀ  
ꢙ 1ꢈꢅꢆ  
ꢒꢗꢔꢗꢒꢗꢘꢙꢗꢑ ꢕꢚ ꢆ ꢜ ꢌꢆ  
ꢁꢂꢃ  
1ꢈ  
ꢄꢅꢆꢇ  
1ꢎ  
ꢌꢈ  
6
ꢋꢌꢍ  
ꢐꢌ  
ꢌꢍ  
ꢑꢌ 1ꢍꢍ 1ꢐꢌ  
ꢋꢐꢌ  
ꢀꢁꢂꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢁꢂꢃ  
699ꢌ ꢏꢈꢐ  
6991 ꢐꢋꢍ  
6991 ꢒꢍ9  
6991fc  
5
For more information www.linear.com/LTC6991  
LTC6991  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Supply Current  
vs RST Pin Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
ꢕꢔꢈ  
ꢕꢈꢈ  
1ꢔꢈ  
1ꢈꢈ  
ꢔꢈ  
1ꢔꢎ  
1ꢍꢔ  
1ꢌꢍ  
1ꢕꢌ  
1ꢍꢍ  
ꢖꢌ  
ꢝ ꢗꢈꢈꢞ  
ꢂꢌꢃ  
ꢘ ꢔꢎꢙ  
ꢀꢊꢇ  
ꢔꢀ  
ꢔꢀ  
ꢁꢂꢃ ꢚꢓꢎꢎꢛꢑꢘ  
ꢁꢂꢃ ꢁꢛꢂꢛꢑꢘ  
ꢌꢘꢙ ꢄ  
ꢚ 1ꢍꢍꢛ  
ꢐꢁꢀ  
1ꢎꢎ  
ꢕꢔ  
ꢀꢊꢇ  
ꢘ 1ꢎꢎꢙ  
ꢕꢜꢌꢘꢙ ꢄ  
ꢚ 1ꢍꢍꢛ  
ꢐꢁꢀ  
ꢘ ꢍꢎꢎꢙ  
ꢘ ꢚꢎꢎꢙ  
ꢀꢊꢇ  
ꢜꢖꢜꢀ  
ꢜꢖꢜꢀ  
ꢁꢂꢃ ꢁꢛꢂꢛꢑꢘ  
ꢌꢘꢙ ꢄ  
ꢚ ꢝꢍꢍꢛ  
ꢚ ꢝꢍꢍꢛ  
ꢐꢁꢀ  
ꢁꢂꢃ ꢚꢓꢎꢎꢛꢑꢘ  
ꢀꢊꢇ  
ꢔꢎ  
ꢍꢔ  
ꢕꢜꢌꢘꢙ ꢄ  
ꢌꢍ  
ꢕꢌ  
ꢐꢁꢀ  
ꢈꢖꢕ  
ꢈꢖꢙ  
ꢈꢖ6  
ꢈꢖꢗ  
1ꢖꢈ  
6
ꢌꢍ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
1ꢍꢍ 1ꢕꢌ  
ꢋꢌꢍ ꢋꢕꢌ  
ꢕꢌ  
ꢖꢌ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
ꢄꢀ ꢆꢀꢄꢀꢇ  
ꢁꢂꢃ  
6991 ꢘ1ꢕ  
6991 ꢉ1ꢎ  
6991 ꢗ11  
RST Threshold Voltage  
vs Supply Voltage  
Supply Current vs RSET  
Typical ISET Current Limit vs V+  
1ꢐꢐꢐ  
ꢒꢐꢐ  
6ꢐꢐ  
ꢑꢐꢐ  
ꢓꢐꢐ  
ꢑꢒꢓ  
ꢑꢒꢔ  
ꢕꢒꢓ  
ꢕꢒꢔ  
1ꢒꢓ  
1ꢒꢔ  
ꢔꢒꢓ  
150  
125  
ꢀꢊꢇ ꢂꢍꢕ ꢀꢖꢆꢗꢇꢊꢘ ꢇꢆ ꢉꢕꢘ  
+
ꢂꢆꢀꢎꢇꢎꢅꢊꢖꢉꢆꢎꢏꢉ  
V
= 5V  
100  
75  
+
V
= 3.3V  
= 2.5V  
ꢏꢊꢉꢈꢇꢎꢅꢊꢖꢉꢆꢎꢏꢉ  
+
V
50  
25  
0
6
6
0
200  
400  
(kΩ)  
600  
800  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
R
SET  
6991 ꢉ1ꢏ  
6991 ꢉ1ꢐ  
6991 G13  
Reset Propagation Delay (tRST  
)
Rise and Fall Time  
vs Supply Voltage  
Typical Frequency Error  
vs Time (Long-Term Drift)  
vs Supply Voltage  
ꢕꢎ  
ꢗꢕ  
ꢗꢎ  
ꢖꢕ  
ꢖꢎ  
ꢍꢕ  
ꢍꢎ  
1ꢕ  
1ꢎ  
ꢕꢖꢗ  
ꢙꢖꢘ  
ꢙꢖꢗ  
1ꢖꢘ  
1ꢖꢗ  
ꢗꢖꢘ  
ꢙꢗꢗ  
1ꢖꢗ  
1ꢗꢗ  
ꢖꢗ  
ꢙ ꢕꢚꢛ  
6ꢖ ꢍꢎꢁꢀꢜ  
ꢝ ꢘꢞꢐ  
ꢃꢆꢈꢒ  
ꢃꢆꢈꢜ  
ꢜꢝꢙꢟ ꢉꢎꢇ ꢇꢊꢎ ꢠꢉꢋꢀꢜ  
ꢡ ꢟꢗꢢꢏ  
ꢍꢎꢀꢊ  
ꢘꢖꢗ  
ꢐꢈꢃꢃ  
ꢘ1ꢗꢗ  
ꢘ1ꢖꢗ  
ꢘꢙꢗꢗ  
6
6
ꢚꢗꢗ ꢛꢗꢗ 1ꢙꢗꢗ 16ꢗꢗ ꢙꢗꢗꢗ ꢙꢚꢗꢗ ꢙꢛꢗꢗ  
ꢀꢁꢂꢂꢃꢄ ꢅꢆꢃꢇꢈꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
6991 ꢉ1ꢔ  
6991 ꢓ1ꢔꢕ  
6991 ꢉ16  
6991fc  
6
For more information www.linear.com/LTC6991  
LTC6991  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Output Resistance  
vs Supply Current  
50  
Typical Start-Up with POL = 1  
45  
40  
35  
30  
25  
20  
15  
10  
5
1ꢀꢂꢃꢄꢀ  
OUTPUT SOURCING CURRENT  
1ꢋꢌ ꢕꢖ  
ꢙ ꢚꢄꢃꢐ  
ꢗꢘꢒꢇꢐꢑ  
ꢄꢛꢄꢇꢄꢘꢜ ꢝꢆꢜꢒꢐ  
ꢉꢊꢊꢋꢌ  
ꢅꢆꢇ  
1ꢀꢂꢃꢄꢀ  
OUTPUT SINKING CURRENT  
0
6991 ꢔ19  
ꢍ ꢈꢎꢉꢀ  
ꢃꢄꢀꢏꢅꢃꢐ ꢍ 1ꢉ  
ꢑ ꢍ ꢉꢊꢓ  
ꢒꢐꢇ  
ꢈꢉꢊꢋꢌꢂꢃꢄꢀ  
2
3
4
5
6
SUPPLY VOLTAGE (V)  
6991 G22  
PIN FUNCTIONS (DCB/S6)  
V+ (Pin 1/Pin 5): Supply Voltage (2.25V to 5.5V). This  
supply should be kept free from noise and ripple. It should  
be bypassed directly to the GND pin with a 0.1µF capacitor.  
and 50ppm/°C or better temperature coefficient. For lower  
accuracy applications an inexpensive 1% thick film resis  
-
tor may be used.  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
+
Input. A V referenced A/D converter monitors the DIV  
pin voltage (V ) to determine a 4-bit result (DIVCODE).  
DIV  
+
V
may be generated by a resistor divider between V  
regulating the V voltage.  
DIV  
SET  
and GND. Use 1% resistors to ensure an accurate result.  
The DIV pin and resistors should be shielded from the  
OUT pin or any other traces that have fast edges. Limit  
the capacitance on the DIV pin to less than 100pF so that  
ꢅꢆꢃ  
ꢋꢌꢃ  
ꢄ6991  
ꢇꢈꢉ  
ꢆꢊꢃ  
V
settles quickly. The MSB of DIVCODE (POL) deter-  
DIV  
ꢄ1  
ꢐꢑ1ꢒꢁ  
ꢅ1  
ꢅꢓ  
mines the polarity of the RST and OUT pins. If POL = 0,  
RST is active-high, and forces OUT low. If POL = 1, RST  
is active-low and forces OUT high.  
ꢉꢏꢍ  
6991 ꢀꢁ  
ꢆꢊꢃ  
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage  
on the SET pin (V ) is regulated to 1V above GND. The  
SET  
RST (Pin 4/Pin 1): Output Reset. The behavior of the RST  
pin is dependent on the polarity bit (POL). The POL bit is  
configured via the DIVCODE setting. When POL = 0, set-  
ting RST high forces OUT low and setting RST low allows  
the output to oscillate. When POL = 1, RST is active low.  
In that case, setting RST low forces OUT high and setting  
RST high allows the output to oscillate.  
amount of current sourced from the SET pin (I ) pro-  
SET  
grams the master oscillator frequency. The I  
current  
SET  
range is 1.25µA to 20µA. The output oscillation will stop  
if I drops below approximately 500nA. A resistor con-  
SET  
nected between SET and GND is the most accurate way to  
set the frequency. For best performance, use a precision  
metal or thin film resistor of 0.5% or better tolerance  
6991fc  
7
For more information www.linear.com/LTC6991  
LTC6991  
PIN FUNCTIONS (DCB/S6)  
GND (Pin 5/Pin 2): Ground. Tie to a low inductance  
ground plane for best performance.  
30Ω. When driving an LED or other low impedance load  
a series output resistor should be used to limit source/  
sink current to 20mA.  
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings  
from GND to V+ with an output resistance of approximately  
(S6 package pin numbers shown)  
BLOCK DIAGRAM  
5
+
V
R1  
POL BIT  
DIV  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
R2  
OUT  
OUTPUT  
POLARITY  
6
+
V
t
OUT  
MASTER OSCILLATOR  
D
Q
1µs  
V
SET  
FIXED  
DIVIDER  
÷ 1024  
MCLK  
=
t
=
PROGRAMMABLE  
DIVIDER  
MASTER  
50kΩ  
I
SET  
R
÷1, 8, 64, 512  
15 18 21  
4096, 2 , 2 , 2  
INPUT  
POLARITY  
HALT OSCILLATOR  
IF I < 500nA  
POR  
SET  
I
SET  
+
+
1V  
GND  
V
SET  
= 1V  
RST  
1
SET  
3
2
6991 BD  
I
SET  
R
SET  
6991fc  
8
For more information www.linear.com/LTC6991  
LTC6991  
OPERATION  
The LTC6991 is built around a master oscillator with a  
DIVCODE  
1MHz maximum frequency. The oscillator is controlled  
+
The DIV pin connects to an internal, V referenced 4-bit  
A/D converter that determines the DIVCODE value.  
DIVCODE programs two settings on the LTC6991:  
by the SET pin current (I ) and voltage (V ), with a  
SET  
SET  
1MHz • 50k conversion factor that is accurate to 0.8%  
under typical conditions.  
1. DIVCODE determines the output frequency divider set-  
1
I
SET  
ting, N  
.
f
=
= 1MHz • 50kΩ •  
DIV  
MASTER  
t
V
SET  
MASTER  
2. DIVCODE determines the polarity of the RST and OUT  
pins, via the POL bit.  
A feedback loop maintains V at 1V 30mV, leaving I  
as the primary means of conStrEoTlling the output frequency.  
The simplest way to generate I is to connect a resistor  
(RSET) between SET and GND, such that ISET = VSET/RSET  
The master oscillator equation reduces to:  
SET  
+
V
may be generated by a resistor divider between V  
DIV  
SET  
and GND as shown in Figure 1.  
.
ꢌꢍꢌꢎꢅ ꢃꢏ ꢎꢍꢎꢅ  
1
1MHz • 50kΩ  
ꢄ6991  
ꢋ1  
ꢋꢌ  
f
=
=
MASTER  
t
R
SET  
MASTER  
ꢇꢈꢅ  
From this equation, it is clear that V drift will not affect  
SET  
ꢉꢊꢇ  
the output frequency when using a single program resis-  
tor (RSET). Error sources are limited to RSET tolerance and  
6991 ꢀꢁ1  
the inherent frequency accuracy ∆f  
of the LTC6991.  
Figure 1. Simple Technique for Setting DIVCODE  
OUT  
RSET may range from 50k to 800k (equivalent to ISET  
between 1.25µA and 20µA).  
Table 1 offers recommended 1% resistor values that accu-  
rately produce the correct voltage division as well as the  
corresponding NDIV and POL values for the recommended  
resistor pairs. Other values may be used as long as:  
1. The VDIV/V+ ratio is accurate to 1.5% (including resis-  
tor tolerances and temperature effects)  
Before reaching the OUT pin, the oscillator frequency  
passes through a fixed ÷1024 divider. The LTC6991  
also includes a programmable frequency divider which  
can further divide the frequency by 1, 8, 64, 512, 4096,  
15 18  
21  
2 , 2 or 2 . The divider ratio N is set by a resistor  
DIV  
divider attached to the DIV pin.  
2. The driving impedance (R1||R2) does not exceed  
500kΩ.  
1MHz • 50kΩ  
I
SET  
f
=
=
, or  
OUT  
If the voltage is generated by other means (i.e., the output  
of a DAC) it must track the V+ supply voltage. The last  
1024 • N  
V
SET  
DIV  
1
N
V
SET  
column in Table 1 shows the ideal ratio of V to the  
DIV  
DIV  
t
=
• 1.024ms  
OUT  
supply voltage, which can also be calculated as:  
f
50kΩ  
I
SET  
OUT  
V
DIVCODE + 0.5  
DIV  
with R in place of V /I the equation reduces to:  
=
± 1.5%  
SET  
SET SET  
+
V
16  
N
DIV  
• R  
SET  
t
=
• 1.024ms  
OUT  
For example, if the supply is 3.3V and the desired DIVCODE  
is 4, V = 0.281 • 3.3V = 928mV 50mV.  
50kΩ  
DIV  
Figure 2 illustrates the information in Table 1, showing  
that N is symmetric around the DIVCODE midpoint.  
DIV  
6991fc  
9
For more information www.linear.com/LTC6991  
 
LTC6991  
OPERATION  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
RECOMMENDED t  
R1 (kΩ)  
Open  
976  
R2 (kΩ)  
Short  
102  
V
/V  
DIV  
DIV  
OUT  
0
1
1
1.024ms to 16.384ms  
8.192ms to 131ms  
65.5ms to 1.05sec  
524ms to 8.39sec  
4.19sec to 67.1sec  
33.6sec to 537sec  
268sec to 4,295sec  
2,147sec to 34,360sec  
2,147sec to 34,360sec  
268sec to 4,295sec  
33.6sec to 537sec  
4.19sec to 67.1sec  
524ms to 8.39sec  
65.5ms to 1.05sec  
8.192ms to 131ms  
1.024ms to 16.384ms  
≤0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥0.96875 0.015  
0
8
2
0
64  
512  
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
4,096  
32,768  
262,144  
2,097,152  
2,097,152  
262,144  
32,768  
4,096  
512  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
64  
182  
1
8
102  
976  
1
1
Short  
Open  
ꢗꢇꢘ ꢙꢓꢉ ꢚ ꢀ  
ꢗꢇꢘ ꢙꢓꢉ ꢚ 1  
1ꢀꢀꢀꢀ  
1ꢀꢀꢀ  
1ꢀꢀ  
1ꢀ  
6
9
1ꢀ  
11  
1ꢒ  
1
1ꢛ  
ꢀꢁ1  
1
1ꢜ  
ꢀꢁꢀ1  
ꢀꢁꢀꢀ1  
1ꢂ  
ꢀꢄ  
ꢀꢁꢂꢃꢄ  
ꢓꢎꢍꢔꢌꢕꢋꢓꢎꢖ ꢄ  
ꢏꢓꢄ  
6991 ꢑꢀꢒ  
Figure 2. Frequency Range and POL Bit vs DIVCODE  
6991fc  
10  
For more information www.linear.com/LTC6991  
 
LTC6991  
OPERATION  
RST Pin and Polarity (POL) Bit  
If POL = 0, the reset pin is active high and the output latch  
is not inverted. Therefore, pulling the RST pin high will  
reset the output latch and force the OUT pin low. Pulling  
RST low will allow the output to oscillate, with the next  
rising edge dependent on the internal oscillator.  
The RST pin controls the state of the LTC6991’s output  
as seen on the OUT pin. The active/inactive voltage levels  
depend on the POL bit setting.  
Table 2. Output States  
If POL = 1, the reset pin is active low and the output latch  
is inverted. Therefore, pulling the RST pin low will reset  
the output latch and force the OUT pin high. Pulling RST  
high will allow the output to oscillate, with the next falling  
edge dependent on the internal oscillator.  
POL BIT  
RST PIN  
OUTPUT STATE  
Oscillating  
0 (reset)  
0
0
1
1
0
1
0
1
1 (reset)  
Oscillating  
Note that the master oscillator frequency and phase are  
not affected by the RST pin; The LTC6991 continues to  
oscillate, internally, even when RST is active. While the  
reset function can block an output pulse, its exact place-  
ment in time can only be changed by power cycling the  
LTC6991.  
Each period of the LTC6991’s internal oscillator clocks  
the output state latch (see Block Diagram). The reset pin  
(RST) can reset or hold off the output latch. The active  
state of the reset pin is determined by the polarity func-  
tion (POL). Similarly, the output latch is followed by a  
buffer that can invert the output. The output polarity is  
also controlled by the POL bit.  
ꢆꢇꢈꢃꢉ  
ꢄꢅꢃ  
ꢁꢂꢃ  
ꢇꢊꢃꢋꢄꢊꢌꢍ  
ꢁꢅꢎꢇꢍꢍꢌꢃꢁꢄ  
ꢄꢅꢃ  
6991 ꢏꢐꢑ  
ꢁꢂꢃ  
Figure 3. RST Timing Diagram (POL = 0)  
ꢄꢅꢃ  
ꢁꢂꢃ  
ꢄꢅꢃ  
6991 ꢌꢍꢎ  
ꢆꢇꢃꢈꢄꢇꢉꢊ  
ꢁꢅꢋꢆꢊꢊꢉꢃꢁꢄ  
ꢁꢂꢃ  
Figure 4. RST Timing Diagram (POL = 1)  
6991fc  
11  
For more information www.linear.com/LTC6991  
LTC6991  
OPERATION  
Changing DIVCODE After Start-Up  
The start-up time may increase if the supply or DIV pin  
voltages are not stable. For this reason, it is recommended  
to minimize the capacitance on the DIV pin so it will prop-  
Following start-up, the A/D converter will continue moni-  
toring V  
for changes. The LTC6991 will respond to  
DIV  
+
erly track V . Less than 100pF will not affect performance.  
DIVCODE changes in less than one cycle.  
t
< 500 • t < t  
Start-Up Behavior  
DIVCODE  
MASTER  
OUT  
The output may have an inaccurate pulse width during the  
frequency transition. But the transition will be glitch-free  
and no high or low pulse can be shorter than the mas-  
ter clock period. A digital filter is used to guarantee the  
DIVCODE has settled to a new value before making  
changes to the output.  
When first powered up, the output is held low. If the polar-  
ity is set for non-inversion (POL = 0) and the output is  
enabled (RST = 0) at the end of the start-up time, OUT will  
begin oscillating. If the output is being reset (RST = 1) at  
the end of the start-up time, the first pulse will be skipped.  
Subsequent pulses will also be skipped until RST = 0.  
In inverted operation (POL = 1), the start-up sequence is  
similar. However, the LTC6991 does not know the correct  
DIVCODE setting when first powered up, so the output  
Start-Up Time  
When power is first applied, the power-on reset (POR)  
circuit will initiate the start-up time, t  
. The OUT pin  
defaults low. At the end of t  
, the value of DIVCODE  
START  
START  
is held low during this time. The typical value for t  
is recognized and OUT goes high (inactive) because  
POL = 1. If RST = 1 (inactive) then OUT will quickly fall  
START  
ranges from 0.5ms to 8ms depending on the master oscil-  
lator frequency (independent of N ):  
after a single t  
cycle. If RST = 0 at the end of the  
DIV  
MASTER  
start-up time, the output is held in reset and remains high.  
t
= 500 • t  
MASTER  
START(TYP)  
Figures7to10detailthefourpossiblestart-upsequences.  
During start-up, the DIV pin A/D converter must deter-  
mine the correct DIVCODE before the output is enabled.  
ꢀꢁꢂ  
ꢃꢄꢄꢅꢂꢆꢀꢁꢂ  
1ꢀꢂꢃꢄꢀ  
ꢉꢊꢊꢋꢌ  
ꢇꢈꢉ  
1ꢂꢆꢀꢁꢂ  
ꢅꢆꢇ  
1ꢀꢂꢃꢄꢀ  
6991 ꢋꢄꢌ  
6991 ꢍꢊ6  
ꢎ ꢏꢐꢏꢂ  
ꢎ ꢃꢄꢄꢔ  
1ꢄꢅꢊꢆꢀꢁꢂ  
ꢎ ꢈꢏꢉꢀ  
ꢈꢉꢊꢋꢌꢂꢃꢄꢀ  
ꢃꢄꢀꢐꢅꢃꢑ ꢎ ꢊ  
ꢎ ꢉꢊꢔ  
ꢒꢓꢉ  
ꢓꢑꢇ  
Figure 5. DIVCODE Change from 1 to 0  
Figure 6. Typical Start-Up  
6991fc  
12  
For more information www.linear.com/LTC6991  
LTC6991  
OPERATION  
ꢆꢄꢃ  
ꢁꢂꢃ  
6991 ꢍꢑꢒ  
ꢁꢂꢃ  
ꢄꢃꢅꢆꢃ  
Figure 7. Start-Up Timing Diagram (RST = 0, POL = 0)  
ꢆꢄꢃ  
ꢁꢂꢃ  
6991 ꢍꢑꢓ  
ꢁꢂꢃꢇꢂꢃ ꢈꢉꢄꢅꢊꢋꢌꢈ ꢍꢁꢆ  
ꢉꢎꢃꢌꢏꢌꢆ ꢐꢂꢉꢇꢋꢌ ꢁꢍ ꢀ  
ꢄꢃꢅꢆꢃ  
ꢁꢂꢃ  
Figure 8. Start-Up Timing Diagram (RST = 1, POL = 0)  
ꢆꢄꢃ  
ꢁꢂꢃ  
6991 ꢍꢑ9  
ꢁꢂꢃꢇꢂꢃ ꢈꢉꢄꢅꢊꢋꢌꢈ ꢍꢁꢆ  
ꢉꢎꢃꢌꢏꢌꢆ ꢐꢂꢉꢇꢋꢌ ꢁꢍ ꢀ  
ꢄꢃꢅꢆꢃ  
ꢁꢂꢃ  
ꢐꢅꢄꢃꢌꢆ  
Figure 9. Start-Up Timing Diagram (RST = 0, POL = 1)  
ꢆꢄꢃ  
ꢁꢂꢃ  
6991 ꢍ1ꢑ  
ꢁꢂꢃ  
ꢄꢃꢅꢆꢃ  
ꢐꢅꢄꢃꢌꢆ  
Figure 10. Start-Up Timing Diagram (RST = 1, POL = 1)  
6991fc  
13  
For more information www.linear.com/LTC6991  
LTC6991  
APPLICATIONS INFORMATION  
Basic Operation  
Example: Design a 1Hz oscillator with minimum power  
consumption and active-high reset input.  
The simplest and most accurate method to program the  
LTC6991 is to use a single resistor, R , between the SET  
Step 1: Select the POL Bit Setting  
SET  
and GND pins. The design procedure is a 3-step process.  
For noninverted (active-high) functionality, choose  
POL = 0.  
First select the POL bit setting and N value, then cal-  
DIV  
culate the value for the R resistor.  
SET  
Step 2: Select the N Frequency Divider Value  
Alternatively, Linear Technology offers the easy to use  
TimerBlox Designer tool to quickly design any LTC6991  
based circuit. Download the free TimerBlox Designer soft-  
ware at www.linear.com/timerblox.  
DIV  
Choose an NDIV value that meets the requirements of  
Equation (1), using t  
= 1000ms:  
OUT  
61.04 ≤ N ≤ 976.6  
DIV  
Step 1: Select the POL Bit Setting  
Potential settings for NDIV include 64 and 512. NDIV  
64 is the best choice, as it minimizes supply current  
by using a large R resistor. POL = 0 and N = 64  
=
The LTC6991 can operate in normal (active-high) or  
inverted (active-low) modes, depending on the set-  
ting of the POL bit. The best choice depends on the the  
application.  
SET  
DIV  
requires DIVCODE = 2. Using Table 1, choose R1 = 976k  
and R2 = 182k values to program DIVCODE = 2.  
Step 3: Select R  
Step 2: Select the N Frequency Divider Value  
SET  
DIV  
Calculate the correct value for R using Equation (2).  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the POL bit and the NDIV  
SET  
50k  
1000ms  
64  
R
=
SET  
= 763k  
value. For a given output clock period, N should be  
DIV  
1.024ms  
selected to be within the following range.  
Since 763k is not available as a standard 1% resistor,  
substitute 768k if a –0.7% frequency shift is acceptable.  
Otherwise, select a parallel or series pair of resistors such  
as 576k + 187k to attain a more precise resistance.  
t
t
OUT  
OUT  
N  
DIV  
(1)  
16.384ms  
1.024ms  
To minimize supply current, choose the lowest N value  
(generally recommended). Alternatively, useDITVable 1  
as a guide to select the best N  
application.  
The completed design is shown in Figure 11.  
value for the given  
DIV  
With POL already chosen, this completes the selection of  
ꢋꢌꢊ  
ꢋꢌꢊ  
ꢍꢎꢀ  
ꢌꢅꢊ  
ꢄꢏꢊ  
ꢃ6991  
ꢇꢕꢇꢖꢂ ꢊꢄ ꢖꢕꢖꢂ  
DIVCODE. Use Table 1 to select the proper resistor divider  
+
or V /V ratio to apply to the DIV pin.  
DIV  
ꢋ1  
9ꢑ6ꢒ  
Step 3: Calculate and Select R  
SET  
ꢀꢁꢂꢃꢄꢀꢅ ꢆ ꢇ  
ꢋꢇ  
1ꢓꢇꢒ  
ꢀꢁꢂ  
ꢑ6ꢔꢒ  
ꢌꢅꢊ  
The final step is to calculate the correct value for R  
using the following equation.  
SET  
6991 ꢈ11  
Figure 11. 1Hz Oscillator  
50k  
t
OUT  
R
=
SET  
(2)  
1.024ms N  
DIV  
Select the standard resistor value closest to the calculated  
value.  
6991fc  
14  
For more information www.linear.com/LTC6991  
 
LTC6991  
APPLICATIONS INFORMATION  
LTC6991 as “Wake-Up Timer”  
input to filter start-up glitches from the system as it is  
powered on.  
The output latch reset function provided by the RST pin  
allows the LTC6991 to enable a larger system at regular  
intervals. The on-time can be controlled by the system.  
This allows the system to shut itself down immediately  
after performing its tasks, reducing power consumption.  
If the LTC6991 is enabling a switching regulator that can  
operate on supplies greater than 5.5V, it will be neces-  
sary to limit the supply voltage provided to the LTC6991.  
If the LTC6991 output is not heavily loaded, and if a large  
R
resistor is used, the supply current will not be much  
laSrgETer than 100µA, so a simple regulator circuit can be  
constructed using a Zener diode.  
Figure 12 shows an example using “black boxes” for a  
switching regulator and the system being duty-cycled.  
In some cases, an RC filter may be necessary at the RST  
ꢡꢗ ꢁꢍ ꢜꢓꢗ  
ꢚꢄꢎ  
ꢍꢐꢁ  
ꢙꢉ  
ꢍꢐꢁ  
ꢅꢣꢙꢁꢂꢃꢙꢉꢎ  
ꢚꢄꢎꢐꢀꢈꢁꢍꢚ  
ꢅꢐꢑꢑꢆ  
ꢡꢒꢠꢓ ꢅꢄꢂꢍꢉꢋꢅ  
ꢞꢟ99ꢛ  
ꢀHꢁꢂ  
ꢍꢐꢁ  
1ꢉꢞꢠꢡꢡꢈ  
ꢒꢟ1ꢗ  
ꢚ1  
1ꢇ  
ꢓꢟ1ꢢꢕ  
ꢂ6991  
ꢋꢙꢗ  
ꢎꢉꢋ  
ꢚꢜ  
6ꢝ1ꢛ  
ꢅꢆꢅꢁꢄꢇ  
ꢋꢍꢉꢄ  
ꢅꢄꢁ  
ꢕꢙꢁ  
66ꢒꢛ  
1ꢓꢓꢛ  
ꢅꢄꢁ  
ꢚꢅꢁ  
ꢕꢙꢁ  
6991 ꢕ1ꢜ  
ꢓꢟ1ꢢꢕ  
ꢁꢃꢄ ꢅꢆꢅꢁꢄꢇ ꢂꢈꢉ ꢄꢊꢁꢄꢉꢋ ꢌ ꢈꢅ ꢀꢍꢉꢎ ꢈꢅ ꢉꢄꢄꢋꢄꢋ ꢏꢐꢑ ꢁꢍ ꢒꢓꢔ ꢍꢕ ꢌ  
ꢍꢐꢁ  
ꢍꢉ  
ꢍꢉ  
ꢍꢉ  
ꢍꢉ  
ꢚꢄꢎ  
ꢋꢍꢉꢄꢤꢚꢅꢁ  
ꢂ6991 ꢍꢐꢁ  
ꢍꢐꢁ  
ꢍꢐꢁ  
ꢍꢐꢁ  
Figure 12. Powering Up a System Once an Hour  
6991fc  
15  
For more information www.linear.com/LTC6991  
 
LTC6991  
APPLICATIONS INFORMATION  
OUT  
R
V
PW  
RST(RISING)  
t
= –R • C • In 1–  
PULSE  
PW  
PW  
+
2.26k  
(
)
V
RST  
GND  
SET  
OUT  
t
t
≈ –2.26kΩ • 470pF • In(1 – 0.61)  
≈ 1µs  
PULSE  
PULSE  
C
PW  
LTC6991  
2.25V TO 5.5V  
470pF  
+
1µs PULSE WIDTH  
60 SECONDS  
V
0.1µF  
R1  
1M  
R
715k  
SET  
DIV  
R2  
392k  
6991 F13a  
Figure 13a. Self-Resetting Circuit (DIVCODE = 4)  
OUT  
R
PW  
V
RST(FALLING)  
2.26k  
t
= –R • C • In  
PW PW  
PULSE  
+
(
)
V
RST  
GND  
SET  
OUT  
t
t
≈ –2.26kΩ • 470pF • In(0.43)  
≈ 0.9µs  
PULSE  
PULSE  
C
PW  
LTC6991  
2.25V TO 5.5V  
470pF  
+
V
0.9µs PULSE WIDTH  
60 SECONDS  
0.1µF  
R1  
392k  
R
715k  
SET  
DIV  
R2  
1M  
6991 F13b  
Figure 13b. Self-Resetting Circuit (DIVCODE = 11)  
Figure 13.  
Self-Resetting Circuits  
Voltage Controlled Frequency  
The RST pin has hysteresis to accommodate slow-  
changing input voltages. Furthermore, the trip points  
are proportional to the supply voltage (see Note 6 and  
the RST Threshold Voltage vs Supply Voltage curve in  
Typical Performance Characteristics). This allows an RC  
time constant at the RST input to generate a delay that is  
nearly independent of the supply voltage.  
With one additional resistor, the LTC6991 output frequency  
can be manipulated by an external voltage. As shown in  
Figure 14, voltage V  
sources/sinks a current through  
CTRL  
RVCO to vary the ISET current, which in turn modulates the  
output frequency as described in Equation (3).  
1MHz • 50kΩ  
R
R
V
CTRL  
VCO  
SET  
(3)  
f
=
• 1+  
OUT  
1024 • N  
• R  
V
SET  
DIV  
VCO  
A simple application of this technique allows the LTC6991  
output to reset itself, producing a well-controlled pulse  
once each cycle. Figure 13a and Figure 13b show circuits  
that produce approximately 1µs pulses once a minute.  
The only difference is in the POL bit setting, which con-  
trols whether the pulse is positive or negative.  
ꢅꢆꢃ  
ꢇꢈꢉ  
ꢆꢊꢃ  
ꢋꢌꢃ  
ꢄ6991  
ꢄ1  
ꢐꢑ1ꢒꢀ  
ꢅ1  
ꢍꢄꢋ  
ꢉꢏꢍ  
ꢄꢃꢅꢂ  
ꢆꢊꢃ  
ꢅꢓ  
6991 ꢀ1ꢁ  
Figure 14. Voltage-Controlled Oscillator  
6991fc  
16  
For more information www.linear.com/LTC6991  
 
 
LTC6991  
APPLICATIONS INFORMATION  
RST  
GND  
SET  
OUT  
+
LTC6991  
V
+
+
V
V
C1  
0.1µF  
0.1µF  
R1  
DIV  
+
1/2  
LTC6078  
R2  
+
V
6991 F15  
0.1µF  
1MHz • 50kΩ  
R
D
IN  
4096  
VCO  
SET  
f
=
• 1 +  
OUT  
(
)
1024 • N • R  
R
DIV  
VCO  
V
REF  
CC  
D
= 0 TO 4095  
IN  
D
IN  
R
VCO  
V
OUT  
µP  
LTC1659  
CLK  
ꢀꢁ/LD  
R
SET  
GND  
Figure 15. Digitally-Controlled Oscillator  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
Digital Frequency Control  
The control voltage can be generated by a DAC (digital-  
to-analog converter), resulting in a digitally-controlled  
frequency. Many DACs allow for the use of an external  
reference. If such a DAC is used to provide the VCTRL  
voltage, the VSET dependency can be eliminated by buffer-  
Frequency Modulation and Settling Time  
The LTC6991 will respond to changes in I up to a –3dB  
SET  
bandwidth of 0.4 • f  
.
ing V  
and using it as the DAC’s reference voltage, as  
OUT  
SET  
shown in Figure 15. The DAC’s output voltage now tracks  
any V variation and eliminates it as an error source.  
The SET pin cannot be tied directly to the reference input  
of the DAC because the current drawn by the DAC’s REF  
input would affect the frequency.  
Following a 2× or 0.5× step change in I , the output  
SET  
SET  
frequency takes less than one cycle to settle to within 1%  
of the final value.  
Power Supply Current  
The power supply current varies with frequency, supply  
voltage and output loading. It can be estimated under  
any condition using the following equation. This equation  
I
Extremes (Master Oscillator Frequency Extremes)  
SET  
When operating with ISET outside of the recommended  
1.25µA to 20µA range, the master oscillator operates  
outside of the 62.5kHz to 1MHz range in which it is most  
accurate.  
ignores C  
(valid for C  
< 1nF) and assumes the  
LOAD  
LOAD  
output has 50% duty cycle.  
+
+
V
V
+
The oscillator can still function with reduced accuracy  
for I < 1.25µA. At approximately 500nA, the oscillator  
I
V • f  
• 7.8pF +  
+
S(TYP)  
MASTER  
420kΩ 2 • R  
LOAD  
SET  
output will be frozen in its current state. The output could  
halt in a high or low state. This avoids introducing short  
pulses when frequency modulating a very low frequency  
output.  
+ 1.8 •I  
+ 50µA  
SET  
6991fc  
17  
For more information www.linear.com/LTC6991  
 
LTC6991  
APPLICATIONS INFORMATION  
ꢅꢆꢃ  
ꢇꢈꢉ  
ꢆꢊꢃ  
ꢋꢌꢃ  
ꢄ6991  
ꢄ1  
ꢐꢑ1ꢒꢀ  
ꢅ1  
ꢅꢓ  
ꢉꢏꢍ  
ꢆꢊꢃ  
ꢄ1  
ꢅ1  
ꢄ1  
ꢋꢌꢃ  
ꢇꢈꢉ  
ꢅꢆꢃ  
ꢅꢆꢃ  
ꢋꢌꢃ  
ꢉꢏꢍ  
ꢆꢊꢃ  
ꢇꢈꢉ  
ꢆꢊꢃ  
ꢅꢓ  
ꢉꢏꢍ  
ꢅ1  
ꢆꢊꢃ  
ꢆꢊꢃ  
ꢅꢓ  
6991 ꢀ1ꢁ  
DFN PACKAGE  
TSOT-23 PACKAGE  
Figure 16. Supply Bypassing and PCB Layout  
Supply Bypassing and PCB Layout Guidelines  
plane and the C1 connection to the ground plane are  
recommended to minimize the inductance. Capacitor  
C1 should be a 0.1µF ceramic capacitor.  
The LTC6991 is a 2.2% accurate silicon oscillator when  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. Adequate supply bypassing and proper  
PCB layout are important to ensure this.  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
3. Place R  
as close as possible to the SET pin and  
SET  
Figure 16 shows example PCB layouts for both the TSOT-  
23 and DFN packages using 0603 sized passive compo-  
nents. The layouts assume a two layer board with a ground  
plane layer beneath and around the LTC6991. These lay-  
outs are a guide and need not be followed exactly.  
make a direct, short connection. The SET pin is a cur-  
rent summing node and currents injected into this pin  
directly modulate the operating frequency. Having a  
short connection minimizes the exposure to signal  
pickup.  
1. Connect the bypass capacitor, C1, directly to the V+ and  
GND pins using a low inductance path. The connection  
4. Connect R directly to the GND pin. Using a long path  
or vias to SthEeT ground plane will not have a significant  
affect on accuracy, but a direct, short connection is  
recommended and easy to apply.  
+
from C1 to the V pin is easily done directly on the top  
layer. For the DFN package, C1’s connection to GND  
is also simply done on the top layer. For the TSOT-23,  
OUT can be routed through the C1 pads to allow a good  
C1 GND connection. If the PCB design rules do not  
allow that, C1’s GND connection can be accomplished  
through multiple vias to the ground plane. Multiple  
vias for both the GND pin connection to the ground  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
6991fc  
18  
For more information www.linear.com/LTC6991  
 
LTC6991  
TYPICAL APPLICATIONS  
5 Second On/Off Timed Relay Driver  
1ꢌꢍ  
ꢐꢕ1ꢖꢗ  
ꢊ1  
ꢆꢎ  
1ꢆꢂ1ꢂꢋ  
ꢀꢇꢈꢇꢉ  
ꢀꢈꢉ  
1
ꢀꢂ  
1ꢃꢄ  
ꢀꢅꢆ  
ꢀꢇꢑꢒꢓ ꢇꢆꢒꢚꢑꢇ  
ꢏꢎꢉꢎ 1ꢐꢌꢌ ꢀꢇꢑꢒꢓ  
9ꢐꢐ1ꢔ1ꢌꢔꢐ1  
ꢘ1  
ꢎꢅꢉ  
ꢏ6991  
ꢌꢆꢌꢌ19ꢒ  
ꢃꢍ  
ꢛꢆꢊ  
ꢏꢌ  
ꢐꢕ1ꢖꢗ  
ꢀ1  
1ꢁ  
ꢈꢇꢉ  
ꢊꢝꢍ  
ꢀꢌ  
ꢙ9ꢌꢄ  
ꢀꢙ  
11ꢋꢄ  
6991 ꢉꢒꢐꢌ  
1.5ms Radio Control Servo Reference Pulse Generator  
ꢓꢖ  
ꢋꢌꢍꢎ  
ꢏꢀꢐꢑꢁ ꢀꢐꢃꢁ  
ꢉꢁꢇꢁꢀꢐꢃꢅꢀ  
1ꢒꢓꢍꢎ  
ꢀꢁꢏꢁꢀꢁꢇꢔꢁ  
ꢆꢈꢕꢂꢁ  
ꢀꢙ  
1ꢌꢚ  
ꢋꢌꢍꢎ ꢆꢁꢀꢗꢅꢊ  
ꢀꢁꢂꢁꢃ ꢄ ꢅꢆꢁꢇ  
ꢀꢈꢇ ꢄ ꢉꢇꢊ  
ꢀꢂꢃ  
ꢅꢈꢃ  
ꢃꢀꢗꢉ  
ꢅꢈꢃ  
1ꢒꢓꢍꢎ ꢆꢈꢕꢂꢁ  
ꢔ6991  
ꢔ699ꢜꢟ1  
ꢓꢖ  
ꢓꢖ  
ꢉꢇꢊ  
ꢂꢁꢃ  
ꢉꢇꢊ  
ꢂꢁꢃ  
ꢔ1  
ꢌꢒꢌ1ꢛꢏ  
ꢔꢋ  
ꢌꢒ1ꢛꢏ  
ꢀꢘ  
9ꢙ6ꢚ  
ꢀ1  
1ꢑ  
ꢊꢗꢖ  
ꢊꢗꢖ  
ꢀ6  
1ꢋ1ꢚ  
ꢀꢜ  
1ꢘ6ꢚ  
ꢀꢓ  
1ꢌꢋꢚ  
ꢀꢋ  
ꢋꢞꢌꢚ  
6991 ꢃꢐꢌꢜ  
Cycling (10 Seconds On/Off) Symmetrical Power Supplies  
ꢂꢃ  
ꢔꢕꢓꢓꢆꢅꢖꢗ  
1ꢅꢉ  
1ꢅꢉ  
ꢊꢋ  
ꢌꢍꢎ  
ꢀ6  
ꢃꢇꢄ  
ꢀꢃ  
1ꢄ  
ꢂꢆ  
ꢀ11  
ꢅꢄ  
ꢀꢔꢎ  
ꢛꢋꢖ  
ꢔꢜꢎ  
ꢌꢍꢎ  
ꢔꢕ9ꢓ1ꢇ  
ꢏ6991  
ꢅꢉ  
ꢏ1  
ꢀꢁ  
ꢇꢐ1ꢑꢒ  
1ꢂ  
ꢂꢓ  
ꢖꢊꢉ  
ꢔꢕꢓꢓꢆꢅꢖꢗ  
ꢀ1ꢇ  
ꢃꢆꢙꢄ  
ꢀ9  
ꢆ9ꢃꢄ  
ꢀ1  
1ꢇꢇꢄ  
ꢀꢆ  
ꢅꢇꢄ  
ꢈ1ꢅꢉ  
ꢊꢋ  
ꢈ1ꢅꢉ  
ꢌꢍꢎ  
ꢂ1  
ꢔꢕ9ꢓ1ꢇ  
ꢒ6991 ꢎꢘꢇꢓ  
6991fc  
19  
For more information www.linear.com/LTC6991  
LTC6991  
TYPICAL APPLICATIONS  
Isolated AC Load Flasher  
5V  
0.1µF  
R3  
5
+
R4  
R5  
U2  
40W LAMP  
10k  
215Ω  
5.94k  
MOC3041M  
V
1
2
1
6
4
6
4
OPEN = OFF  
GND = ON  
HOT  
117V AC  
RST  
OUT  
R1  
LTC6991  
R7  
100Ω  
1M  
3
U3  
NTE5642  
SET  
DIV  
5V  
ZERO  
CROSSING  
GND  
2
R
SET  
R2  
392k  
C2  
0.022µF  
237k  
R6  
10k  
NEUTRAL  
AC  
10 SECONDS ON/OFF  
6991 TA05  
ISOLATION BARRIER = 7500V  
Interval (Wiper) Timer  
ꢇꢈ  
ꢉꢈ  
1ꢉꢈ  
ꢊꢃꢈ  
ꢉꢑ  
1ꢋ  
ꢇꢋ  
ꢌꢋ  
ꢍꢆꢆ  
ꢍꢙꢁꢜꢙꢁ  
ꢓꢔꢁ  
ꢕꢖꢗ  
ꢔꢘꢁ  
ꢍꢙꢁ  
ꢁꢓꢚꢕ  
ꢍꢙꢁ  
66ꢄꢉꢎ  
ꢇꢏꢃꢎ  
1ꢏꢇꢎ  
ꢇꢈ  
ꢂ6991  
ꢂ699ꢊꢛ1  
ꢇꢈ  
ꢕꢖꢗ  
ꢔꢘꢁ  
ꢉꢈ  
ꢃꢄ1ꢅꢆ  
ꢃꢄ1ꢅꢆ  
ꢚꢖꢁꢘꢓꢑꢞꢀ  
1ꢐ  
1ꢐ  
1ꢉꢈ  
ꢇ ꢔꢘꢂꢍꢖꢗꢔ ꢁꢍ  
ꢌ ꢐꢚꢖꢙꢁꢘꢔ  
ꢊꢃꢈ  
ꢗꢚꢑ  
ꢗꢚꢑ  
1ꢋ  
ꢇꢋ  
ꢌꢋ  
ꢊꢏꢊꢎ  
6ꢏ1ꢎ  
ꢇꢈ  
1ꢏꢄꢇꢎ  
1ꢏꢇꢎ  
ꢍꢆꢆ  
6991 ꢁꢞꢃ6  
ꢇꢈ  
ꢇꢏꢃꢎ  
11ꢊꢎ  
1ꢊꢊꢎ  
ꢉꢈ  
1ꢉꢈ  
ꢊꢃꢈ  
1ꢋ  
ꢇꢋ  
ꢌꢋ  
ꢍꢆꢆ  
6991fc  
20  
For more information www.linear.com/LTC6991  
LTC6991  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC6991#packaging for the most recent package drawings.  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715 Rev A)  
ꢂꢁꢥꢂ ±ꢂꢁꢂꢡ  
1ꢁ6ꢡ ±ꢂꢁꢂꢡ  
ꢀꢁꢡꢡ ±ꢂꢁꢂꢡ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢄꢁ1ꢡ ±ꢂꢁꢂꢡ  
ꢖꢏꢕꢗꢏꢑꢈ  
ꢋꢘꢌꢙꢆꢊꢈ  
ꢂꢁꢄꢡ ± ꢂꢁꢂꢡ  
ꢂꢁꢡꢂ ꢒꢅꢕ  
1ꢁꢀꢡ ±ꢂꢁꢂꢡ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢎꢈꢕꢋꢓꢓꢈꢊꢇꢈꢇ ꢅꢋꢙꢇꢈꢎ ꢖꢏꢇ ꢖꢆꢌꢕꢟ ꢏꢊꢇ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ  
ꢎ ꢦ ꢂꢁ11ꢡ  
ꢄꢁꢂꢂ ±ꢂꢁ1ꢂ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢂꢁꢝꢂ ± ꢂꢁ1ꢂ  
ꢌꢣꢖ  
ꢎ ꢦ ꢂꢁꢂꢡ  
ꢌꢣꢖ  
6
ꢀꢁꢂꢂ ±ꢂꢁ1ꢂ 1ꢁ6ꢡ ± ꢂꢁ1ꢂ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢖꢆꢊ 1 ꢒꢏꢎ  
ꢌꢋꢖ ꢓꢏꢎꢗ  
ꢃꢅꢈꢈ ꢊꢋꢌꢈ 6ꢉ  
ꢖꢆꢊ 1 ꢊꢋꢌꢕꢟ  
ꢎꢂꢁꢄꢂ ꢋꢎ ꢂꢁꢄꢡ  
× ꢝꢡ° ꢕꢟꢏꢓꢜꢈꢎ  
ꢃꢇꢕꢒ6ꢉ ꢇꢜꢊ ꢂꢝꢂꢡ  
1
ꢂꢁꢄꢡ ± ꢂꢁꢂꢡ  
ꢂꢁꢡꢂ ꢒꢅꢕ  
ꢂꢁꢥꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢄꢂꢂ ꢎꢈꢜ  
1ꢁꢀꢡ ±ꢂꢁ1ꢂ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢒꢋꢌꢌꢋꢓ ꢛꢆꢈꢐꢤꢈꢞꢖꢋꢅꢈꢇ ꢖꢏꢇ  
ꢂꢁꢂꢂ ꢧ ꢂꢁꢂꢡ  
ꢊꢋꢌꢈꢍ  
1ꢁ ꢇꢎꢏꢐꢆꢊꢑ ꢌꢋ ꢒꢈ ꢓꢏꢇꢈ ꢏ ꢔꢈꢇꢈꢕ ꢖꢏꢕꢗꢏꢑꢈ ꢋꢘꢌꢙꢆꢊꢈ ꢓꢂꢚꢄꢄ9 ꢛꢏꢎꢆꢏꢌꢆꢋꢊ ꢋꢜ ꢃꢌꢒꢇꢉ  
ꢄꢁ ꢇꢎꢏꢐꢆꢊꢑ ꢊꢋꢌ ꢌꢋ ꢅꢕꢏꢙꢈ  
ꢀꢁ ꢏꢙꢙ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ ꢏꢎꢈ ꢆꢊ ꢓꢆꢙꢙꢆꢓꢈꢌꢈꢎꢅ  
ꢝꢁ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ ꢋꢜ ꢈꢞꢖꢋꢅꢈꢇ ꢖꢏꢇ ꢋꢊ ꢒꢋꢌꢌꢋꢓ ꢋꢜ ꢖꢏꢕꢗꢏꢑꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢕꢙꢘꢇꢈ  
ꢓꢋꢙꢇ ꢜꢙꢏꢅꢟꢁ ꢓꢋꢙꢇ ꢜꢙꢏꢅꢟꢠ ꢆꢜ ꢖꢎꢈꢅꢈꢊꢌꢠ ꢅꢟꢏꢙꢙ ꢊꢋꢌ ꢈꢞꢕꢈꢈꢇ ꢂꢁ1ꢡꢢꢢ ꢋꢊ ꢏꢊꢣ ꢅꢆꢇꢈ  
ꢡꢁ ꢈꢞꢖꢋꢅꢈꢇ ꢖꢏꢇ ꢅꢟꢏꢙꢙ ꢒꢈ ꢅꢋꢙꢇꢈꢎ ꢖꢙꢏꢌꢈꢇ  
6ꢁ ꢅꢟꢏꢇꢈꢇ ꢏꢎꢈꢏ ꢆꢅ ꢋꢊꢙꢣ ꢏ ꢎꢈꢜꢈꢎꢈꢊꢕꢈ ꢜꢋꢎ ꢖꢆꢊ 1 ꢙꢋꢕꢏꢌꢆꢋꢊ ꢋꢊ ꢌꢟꢈ  
ꢌꢋꢖ ꢏꢊꢇ ꢒꢋꢌꢌꢋꢓ ꢋꢜ ꢖꢏꢕꢗꢏꢑꢈ  
6991fc  
21  
For more information www.linear.com/LTC6991  
LTC6991  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC6991#packaging for the most recent package drawings.  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
ꢌꢀ9ꢂ ꢎꢏꢐ  
ꢅꢆꢇꢈꢉ ꢊꢋ  
ꢂꢀ6ꢌ  
ꢗꢕꢛ  
ꢂꢀ9ꢁ  
ꢜꢉꢝ  
1ꢀꢌꢌ ꢜꢉꢝ  
1ꢀꢊ ꢗꢞꢆ  
1ꢀꢁꢂ ꢃ 1ꢀꢄꢁ  
ꢅꢆꢇꢈꢉ ꢊꢋ  
ꢌꢀꢍꢂ ꢎꢏꢐ  
ꢑꢀꢍꢁ ꢗꢕꢛ ꢌꢀ6ꢌ ꢜꢉꢝ  
ꢒꢞꢆ ꢇꢆꢉ ꢞꢔ  
ꢜꢉꢐꢇꢗꢗꢉꢆꢔꢉꢔ ꢏꢇꢓꢔꢉꢜ ꢒꢕꢔ ꢓꢕꢧꢇꢖꢈ  
ꢒꢉꢜ ꢞꢒꢐ ꢐꢕꢓꢐꢖꢓꢕꢈꢇꢜ  
ꢂꢀꢑꢂ ꢃ ꢂꢀꢊꢁ  
6 ꢒꢓꢐꢏ ꢅꢆꢇꢈꢉ ꢑꢋ  
ꢂꢀ9ꢁ ꢎꢏꢐ  
ꢂꢀꢍꢂ ꢃ ꢂꢀ9ꢂ  
ꢂꢀꢌꢂ ꢎꢏꢐ  
ꢔꢕꢈꢖꢗ ꢘꢕꢙ  
ꢂꢀꢂ1 ꢃ ꢂꢀ1ꢂ  
1ꢀꢂꢂ ꢗꢕꢛ  
ꢂꢀꢑꢂ ꢃ ꢂꢀꢁꢂ ꢜꢉꢝ  
1ꢀ9ꢂ ꢎꢏꢐ  
ꢂꢀꢂ9 ꢃ ꢂꢀꢌꢂ  
ꢅꢆꢇꢈꢉ ꢑꢋ  
ꢏ6 ꢈꢏꢇꢈꢚꢌꢑ ꢂꢑꢂꢌ  
ꢆꢇꢈꢉꢟ  
1ꢀ ꢔꢞꢗꢉꢆꢏꢞꢇꢆꢏ ꢕꢜꢉ ꢞꢆ ꢗꢞꢓꢓꢞꢗꢉꢈꢉꢜꢏ  
ꢌꢀ ꢔꢜꢕꢠꢞꢆꢡ ꢆꢇꢈ ꢈꢇ ꢏꢐꢕꢓꢉ  
ꢑꢀ ꢔꢞꢗꢉꢆꢏꢞꢇꢆꢏ ꢕꢜꢉ ꢞꢆꢐꢓꢖꢏꢞꢢꢉ ꢇꢝ ꢒꢓꢕꢈꢞꢆꢡ  
ꢊꢀ ꢔꢞꢗꢉꢆꢏꢞꢇꢆꢏ ꢕꢜꢉ ꢉꢛꢐꢓꢖꢏꢞꢢꢉ ꢇꢝ ꢗꢇꢓꢔ ꢝꢓꢕꢏꢣ ꢕꢆꢔ ꢗꢉꢈꢕꢓ ꢎꢖꢜꢜ  
ꢁꢀ ꢗꢇꢓꢔ ꢝꢓꢕꢏꢣ ꢏꢣꢕꢓꢓ ꢆꢇꢈ ꢉꢛꢐꢉꢉꢔ ꢂꢀꢌꢁꢊꢤꢤ  
6ꢀ ꢥꢉꢔꢉꢐ ꢒꢕꢐꢦꢕꢡꢉ ꢜꢉꢝꢉꢜꢉꢆꢐꢉ ꢞꢏ ꢗꢇꢚ19ꢑ  
6991fc  
22  
For more information www.linear.com/LTC6991  
LTC6991  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
7/11  
Updated Description, Typical Application, and Order Information sections  
1, 2  
3, 4  
6
+
Added additional information to ∆f /∆V and included Note 11 in Electrical Characteristics section  
OUT  
Added Typical Frequency Error vs Time curve to Typical Performance Characteristics section  
Added text to Basic Operation paragraph in Applications Information section  
Added MP grade  
14  
B
C
1/12  
1/18  
1, 2, 4  
Corrected I  
parameter typo. Corrected Figure number.  
4, 17, 18  
OUT(MAX)  
6991fc  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
23  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC6991  
TYPICAL APPLICATION  
Intervalometer for Time-Lapse Photography  
ꢊꢂꢁꢋꢌꢊꢁꢈꢅ ꢅꢆꢇꢁꢁꢈꢉ ꢊꢁ  
ꢍꢅꢈꢂ ꢁꢎ ꢍꢏꢐꢑꢋꢒ ꢋꢒꢁꢈꢉꢌꢊꢀꢅ  
ꢜꢝ  
1ꢖꢖꢕ  
ꢅꢆꢇꢁꢁꢈꢉ  
ꢉꢅꢁ  
ꢙꢒꢚ  
ꢅꢈꢁ  
ꢎꢇꢁ  
ꢜꢝ  
ꢂ6991  
ꢓꢓꢃꢄ  
1ꢃꢄ  
ꢉ1ꢊ  
ꢉ1ꢞ  
1ꢑ  
ꢅꢓ  
ꢓꢓꢔꢕ  
9ꢐꢏꢓꢕ  
ꢚꢋꢌ  
ꢟꢅꢀꢎꢝ ꢉꢊꢒꢙꢈꢠ  
1ꢏ1ꢑꢋꢒ ꢁꢎ ꢍꢏꢐ ꢑꢋꢒ  
ꢍꢅꢈꢂ ꢁꢎ  
6ꢘꢅꢈꢂ  
ꢅ1  
ꢅꢔ  
1ꢑ  
ꢔꢑ  
ꢉꢔ  
1ꢓꢖꢕ  
6991 ꢁꢊꢖꢗ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1799  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
Wide Frequency Range  
Low Power, Wide Frequency Range  
LTC6900  
LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillators  
Micropower, I  
= 35µA at 400kHz  
SUPPLY  
LTC6930  
LTC6990  
LTC6992  
LTC6993  
LTC6994  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
TimerBlox: Voltage-Controlled Silicon Oscillator  
0.09% Accuracy, 110µs Start-Up Time, 105µA at 32kHz  
Fixed-Frequency or Voltage-Controlled Operation  
Simple PWM with Wide Frequency Range  
TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)  
TimerBlox: Monostable Pulse Generator (One Shot)  
TimerBlox: Delay Block/Debouncer  
Resistor Programmable Pulse Width of 1µs to 34sec  
Delays Rising, Falling or Both Edges 1µs to 34sec  
6991fc  
LT 0118 REV C • PRINTED IN USA  
www.linear.com/LTC6991  
24  
ANALOG DEVICES, INC. 2018  

相关型号:

LTC6991CS6PBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6991HDCBPBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6991HS6PBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6991IDCBPBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6991IS6#TRMPBF

LTC6991 - TimerBlox: Resettable, Low Frequency Oscillator; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6991IS6PBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6992

TimerBlox: Long Timer, Low Frequency Oscillator
Linear

LTC6992-1

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992-1_15

Voltage-Controlled Pulse Width Modulator
Linear

LTC6992-2

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992-2_15

Voltage-Controlled Pulse Width Modulator
Linear

LTC6992-3

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear