LTC6992IS6-4#TRMPBF [Linear]

LTC6992 - TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM); Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC6992IS6-4#TRMPBF
型号: LTC6992IS6-4#TRMPBF
厂家: Linear    Linear
描述:

LTC6992 - TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM); Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

光电二极管
文件: 总34页 (文件大小:530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TimerBlox:  
Voltage-Controlled Pulse  
Width Modulator (PWM)  
FeaTures  
DescripTion  
The LTC®6992 is a silicon oscillator with an easy-to-use  
analog voltage-controlled pulse width modulation (PWM)  
capability. The LTC6992 is part of the TimerBlox® family  
of versatile silicon timing devices.  
n
Pulse Width Modulation (PWM) Controlled by  
Simple 0V to 1V Analog Input  
n
Four Available Options Define Duty Cycle Limits  
Minimum Duty Cycle at 0% or 5%  
Maximum Duty Cycle at 95% or 100%  
A single resistor, R , programs the LTC6992’s inter-  
SET  
n
Frequency Range: 3.81Hz to 1MHz  
nal master oscillator frequency. The output frequency  
is determined by this master oscillator and an internal  
n
Configured with 1 to 3 Resistors  
n
<1.7% Maximum Frequency Error  
frequency divider, N , programmable to eight settings  
DIV  
n
PWM Duty Cycle Error <3.7% Maximum  
from 1 to 16384.  
n
Frequency Modulation (VCO) Capability  
1MHz 50kΩ  
NDIV RSET  
n
2.25V to 5.5V Single Supply Operation  
fOUT  
=
,NDIV = 1,4,16 …16384  
n
115μA Supply Current at 100kHz  
n
500μs Start-Up Time  
Applying a voltage between 0V and 1V on the MOD pin  
sets the duty cycle.  
n
CMOS Output Driver Sources/Sinks 20mA  
n
–55°C to 125°C Operating Temperature Range  
n
The four versions differ in their minimum/maximum duty  
cycle. Note that a minimum duty cycle limit of 0% or  
maximum duty cycle limit of 100% allows oscillations to  
stop at the extreme duty cycle settings.  
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
and 2mm × 3mm DFN  
applicaTions  
DEVICE NAME  
LTC6992-1  
LTC6992-2  
LTC6992-3  
LTC6992-4  
PWM DUTY CYCLE RANGE  
0% to 100%  
n
PWM Servo Loops  
n
Heater Control  
5% to 95%  
0% to 95%  
5% to 100%  
n
LED Dimming Control  
n
High Vibration, High Acceleration Environments  
n
Portable and Battery-Powered Equipment  
For easy configuration of the LTC6992, download the  
TimerBlox Designer tool at www.linear.com/timerblox.  
L, LT, LTC and LTM, Linear Technology, TimerBlox and the Linear logo are registered  
trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks  
are the property of their respective owners.  
Typical applicaTion  
1MHz Pulse Width Modulator  
ANALOG PWM  
DUTY CYCLE  
MOD  
MOD  
GND  
SET  
OUT  
CONTROL  
(0V TO 1V)  
0.5V/DIV  
LTC6992  
3.3V  
+
V
C1  
0.1µF  
OUT  
1V/DIV  
DIV  
6992 TA01a  
R
SET  
50k  
6992 TA01b  
2µs/DIV  
69921234fc  
1
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
(Note 1)  
absoluTe MaxiMuM raTings  
+
Supply Voltage (V ) to GND .........…………………….6V  
Specified Temperature Range (Note 3)  
Maximum Voltage On Any Pin  
LTC6992C ................................................ 0°C to 70°C  
LTC6992I .............................................–40°C to 85°C  
LTC6992H.......................................... –40°C to 125°C  
LTC6992MP ....................................... –55°C to 125°C  
Junction Temperature .......................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
.............................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6992C ............................................–40°C to 85°C  
LTC6992I .............................................–40°C to 85°C  
LTC6992H..........................................40°C to 125°C  
LTC6992MP ....................................... –55°C to 125°C  
S6 Package.......................................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
6
5
4
OUT  
GND  
MOD  
V+  
DIV  
SET  
1
2
3
MOD 1  
GND 2  
SET 3  
6 OUT  
7
GND  
+
5 V  
4 DIV  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
DCB PACKAGE  
6-LEAD (2mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 192°C/W, θ = 51°C/W  
JMAX  
JA  
JC  
T
= 150°C, θ = 64°C/W, θ = 10.6°C/W  
JA JC  
EXPOSED PAD (PIN 7) IS GND, PCB CONNECTION IS OPTIONAL  
JMAX  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6992CDCB-1#TRMPBF LTC6992CDCB-1#TRPBF  
LTC6992IDCB-1#TRMPBF LTC6992IDCB-1#TRPBF  
LTC6992HDCB-1#TRMPBF LTC6992HDCB-1#TRPBF  
LDXC  
LDXC  
LDXC  
LTDXB  
LTDXB  
LTDXB  
LDXF  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6992CS6-1#TRMPBF  
LTC6992IS6-1#TRMPBF  
LTC6992CS6-1#TRPBF  
LTC6992IS6-1#TRPBF  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6992HS6-1#TRMPBF LTC6992HS6-1#TRPBF  
LTC6992CDCB-2#TRMPBF LTC6992CDCB-2#TRPBF  
LTC6992IDCB-2#TRMPBF LTC6992IDCB-2#TRPBF  
LTC6992HDCB-2#TRMPBF LTC6992HDCB-2#TRPBF  
6-Lead Plastic TSOT-23  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LDXF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LDXF  
LTC6992CS6-2#TRMPBF  
LTC6992IS6-2#TRMPBF  
LTC6992CS6-2#TRPBF  
LTC6992IS6-2#TRPBF  
LTDXD  
LTDXD  
LTDXD  
LFCP  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6992HS6-2#TRMPBF LTC6992HS6-2#TRPBF  
LTC6992CDCB-3#TRMPBF LTC6992CDCB-3#TRPBF  
LTC6992IDCB-3#TRMPBF LTC6992IDCB-3#TRPBF  
LTC6992HDCB-3#TRMPBF LTC6992HDCB-3#TRPBF  
6-Lead Plastic TSOT-23  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LFCP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFCP  
LTC6992CS6-3#TRMPBF  
LTC6992IS6-3#TRMPBF  
LTC6992CS6-3#TRPBF  
LTC6992IS6-3#TRPBF  
LTFCQ  
LTFCQ  
LTFCQ  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
LTC6992HS6-3#TRMPBF LTC6992HS6-3#TRPBF  
6-Lead Plastic TSOT-23  
69921234fc  
2
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6992CDCB-4#TRMPBF LTC6992CDCB-4#TRPBF  
LTC6992IDCB-4#TRMPBF LTC6992IDCB-4#TRPBF  
LTC6992HDCB-4#TRMPBF LTC6992HDCB-4#TRPBF  
LFCR  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LFCR  
–40°C to 85°C  
LFCR  
–40°C to 125°C  
0°C to 70°C  
LTC6992CS6-4#TRMPBF  
LTC6992IS6-4#TRMPBF  
LTC6992CS6-4#TRPBF  
LTC6992IS6-4#TRPBF  
LTFCS  
LTFCS  
LTFCS  
LTDXB  
LTDXD  
LTFCQ  
LTFCS  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
LTC6992HS6-4#TRMPBF LTC6992HS6-4#TRPBF  
LTC6992MPS6-1#TRMPBF LTC6992MPS6-1#TRPBF  
LTC6992MPS6-2#TRMPBF LTC6992MPS6-2#TRPBF  
LTC6992MPS6-3#TRMPBF LTC6992MPS6-3#TRPBF  
LTC6992MPS6-4#TRMPBF LTC6992MPS6-4#TRPBF  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
elecTrical characTerisTics  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET  
DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
,
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Oscillation Frequency  
f
Output Frequency  
3.81  
1000000  
Hz  
OUT  
Frequency Accuracy (Note 4)  
3.81Hz ≤ f  
≤ 1MHz  
0.8  
1.7  
2.4  
%
%
f  
OUT  
OUT  
l
l
Frequency Drift Over Temperature  
Frequency Drift Over Supply  
0.005  
%/°C  
f /T  
OUT  
+
+
l
l
V = 4.5V to 5.5V  
0.25  
0.08  
0.65  
0.18  
%/V  
%/V  
f /V  
OUT  
+
V = 2.25V to 4.5V  
Long-Term Frequency Stability  
Period Jitter (Note 9)  
(Note 10)  
90  
ppm/√kHr  
N
DIV  
N
DIV  
= 1  
= 4  
1.2  
%
%
P-P  
0.4  
0.07  
P-P  
%
RMS  
N
DIV  
= 16  
0.15  
0.022  
%
RMS  
P-P  
%
Pulse Width Modulation  
PWM Duty Cycle Accuracy  
V
= 0.2 • V to 0.8 • V  
3.0  
3.7  
4.5  
4.9  
%
%
%
D  
MOD  
MOD  
MOD  
SET  
SET  
l
l
V
V
= 0.2 • V to 0.8 • V  
SET SET  
< 0.2 • V or V  
> 0.8 • V  
SET  
MOD  
SET  
MOD  
MOD  
MOD  
MOD  
l
l
l
l
D
D
Maximum Duty Cycle Limit  
Minimum Duty Cycle Limit  
Duty Cycle Settling Time (Note 6)  
LTC6992-1/LTC6992-4, POL = 0, V  
LTC6992-2/LTC6992-3, POL = 0, V  
LTC6992-1/LTC6992-3, POL = 0, V  
LTC6992-2/LTC6992-4, POL = 0, V  
= 1V  
= 1V  
= 0V  
= 0V  
100  
%
%
%
%
µs  
MAX  
90.5  
95  
5
99  
0
MIN  
1
9.5  
t
t
= t /N  
OUT DIV  
8•t  
MASTER  
S,PWM  
MASTER  
69921234fc  
3
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
elecTrical characTerisTics  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET  
DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
,
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
+
l
l
l
l
l
l
l
l
l
l
V
Operating Supply Voltage Range  
Power-On Reset Voltage  
Supply Current  
2.25  
5.5  
1.95  
450  
285  
420  
280  
390  
265  
170  
150  
V
V
+
I
R = ∞, R = 50k,  
DIV  
V = 5.5V  
365  
225  
350  
225  
325  
215  
120  
105  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
S
L
SET  
N
= 1  
+
V = 2.25V  
+
R = ∞, R = 50k,  
V = 5.5V  
L
DIV  
SET  
N
= 4  
+
V = 2.25V  
+
R = ∞, R = 50k,  
V = 5.5V  
L
DIV  
SET  
N
≥ 16  
+
V = 2.25V  
+
R = ∞, R = 800k,  
V = 5.5V  
L
DIV  
SET  
N
= 1 to 16,384  
+
V = 2.25V  
Analog Inputs  
l
l
l
V
Voltage at SET Pin  
0.97  
50  
1.00  
75  
1.03  
800  
V
µV/°C  
kΩ  
SET  
∆V /∆T  
V
SET  
Drift Over Temperature  
SET  
R
Frequency-Setting Resistor  
MOD Pin Input Capacitance  
MOD Pin Input Current  
SET  
2.5  
pF  
l
l
10  
nA  
V
V
V
V
Voltage for Maximum  
LTC6992-1/LTC6992-4, POL = 0, D = 100%  
LTC6992-2/LTC6992-3, POL = 0, D = 95%  
0.90•V  
0.86•V  
0.936•V  
SET  
V
V
MOD,HI  
MOD,LO  
DIV  
MOD  
SET  
SET  
Duty Cycle  
l
V
Voltage for Minimum  
LTC6992-1/LTC6992-3, POL = 0, D = 0%  
LTC6992-2/LTC6992-4, POL = 0, D = 5%  
0.064•V  
0.10•V  
0.14•V  
V
V
MOD  
SET  
SET  
SET  
Duty Cycle  
+
l
l
DIV Pin Voltage  
0
V
V
+
∆V /∆V  
DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
1.5  
%
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
DIV  
l
DIV Pin Input Current  
Output Current  
10nA  
Digital Output  
+
I
V = 2.7V to 5.5V  
20  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage (Note 7) V = 5.5V  
I
I
= –1mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OL  
OUT  
OUT  
= –16mA  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= -8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
Low Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
+
+
t
t
Output Rise Time (Note 8)  
Output Fall Time (Note 8)  
V = 5.5V, R  
= ∞  
= ∞  
LOAD  
1.1  
1.7  
2.7  
ns  
ns  
ns  
r
LOAD  
LOAD  
V = 3.3V, R  
+
V = 2.25V, R  
= ∞  
+
V = 5.5V, R  
= ∞  
1.0  
1.6  
2.4  
ns  
ns  
ns  
f
LOAD  
LOAD  
+
V = 3.3V, R  
= ∞  
= ∞  
+
V = 2.25V, R  
LOAD  
69921234fc  
4
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 9: Jitter is the ratio of the peak-to-peak deviation of the period to the  
mean of the period. This specification is based on characterization and is  
not 100% tested.  
Note 10: Long-term drift of silicon oscillators is primarily due to the  
movement of ions and impurities within the silicon and is tested at 30°C  
under otherwise nominal operating conditions. Long-term drift is specified  
as ppm/√kHr due to the typically nonlinear nature of the drift. To calculate  
drift for a set time period, translate that time into thousands of hours, take  
the square root and multiply by the typical drift number. For instance, a  
year is 8.77kHr and would yield a drift of 266ppm at 90ppm/√kHr. Drift  
without power applied to the device may be approximated as 1/10th of the  
drift with power, or 9ppm/√kHr for a 90ppm/√kHr device.  
Note 2: The LTC6992C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 3: The LTC6992C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6992C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6992I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6992H is guaranteed  
to meet specified performance from –40°C to 125°C. The LTC6992MP is  
guaranteed to meet specified performance from –55°C to 125°C.  
Note 4: Frequency accuracy is defined as the deviation from the f  
OUT  
equation, assuming R is used to program the frequency.  
SET  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
Note 6: Duty cycle settling time is the amount of time required for the  
output to settle within 1% of the final duty cycle after a 10% change in  
the setting ( 80mV step in V  
).  
MOD  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Frequency Error vs Temperature  
Typical perForMance characTerisTics  
otherwise noted.  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
3
2
3
2
3
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
2
R
= 200k  
R
= 50k  
R
= 800k  
SET  
SET  
SET  
3 PARTS  
3 PARTS  
3 PARTS  
1
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
GUARANTEED MIN OVER TEMPERATURE  
25 50 75 100 125  
TEMPERATURE (°C)  
GUARANTEED MIN OVER TEMPERATURE  
25 50 75 100 125  
TEMPERATURE (°C)  
GUARANTEED MIN OVER TEMPERATURE  
–50  
0
–25  
100 125  
–50  
0
–50  
0
25  
50  
75  
–25  
–25  
TEMPERATURE (°C)  
6992 G02  
6992 G01  
6992 G03  
69921234fc  
5
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical perForMance characTerisTics  
otherwise noted.  
Frequency Error vs RSET  
Frequency Drift vs Supply Voltage  
Typical VSET Distribution  
0.5  
0.4  
3
2
250  
200  
150  
100  
50  
2 LOTS  
DFN AND SOT-23  
1274 UNITS  
GUARANTEED MAX OVER TEMPERATURE  
3 PARTS  
0.3  
0.2  
1
R
= 50k  
SET  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
R
= 800k  
SET  
R
= 200k  
SET  
+
REFERENCED TO V = 4.5V  
GUARANTEED MIN OVER TEMPERATURE  
0
2
4
5
6
3
800  
0.98  
0.996  
V
SET  
1.004  
(V)  
1.012  
1.02  
50  
200  
(k)  
400  
0.988  
100  
SUPPLY VOLTAGE (V)  
R
SET  
6992 G05  
6992 G04  
6992 G06  
V
SET Drift vs ISET  
VSET Drift vs Supply  
VSET vs Temperature  
1.0  
0.8  
1.0  
0.8  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
3 PARTS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+
REFERENCED TO I  
= 10µA  
REFERENCED TO V = 4V  
SET  
0
10  
(µA)  
15  
20  
5
6
2
4
5
100 125  
3
–50  
0
25  
50  
75  
–25  
I
SUPPLY (V)  
TEMPERATURE (°C)  
SET  
6992 G07  
6992 G08  
6992 G09  
NDIV = 1 Duty Cycle Error vs RSET  
NDIV = 1 Duty Cycle Error vs RSET  
NDIV = 1 Duty Cycle Error vs RSET  
5
4
5
4
5
4
V
/V  
= 0.5 (50%)  
V
/V  
= 0.8 (87.5%)  
V
/V  
= 0.2 (12.5%)  
MOD SET  
MOD SET  
MOD SET  
DIVCODE = 0  
3 PARTS  
DIVCODE = 0  
3 PARTS  
DIVCODE = 0  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
400  
800  
50  
100  
200  
(k)  
400  
800  
50  
100  
200  
(k)  
50  
100  
200  
(k)  
400  
800  
R
R
R
SET  
SET  
SET  
6992 G11  
6992 G10  
6992 G12  
69921234fc  
6
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical perForMance characTerisTics  
otherwise noted.  
NDIV > 1 Duty Cycle Error vs RSET  
NDIV > 1 Duty Cycle Error vs RSET  
NDIV > 1 Duty Cycle Error vs RSET  
5
4
5
4
5
4
V
/V  
= 0.2 (12.5%)  
V
/V  
= 0.8 (87.5%)  
V
/V  
= 0.5 (50%)  
MOD SET  
MOD SET  
MOD SET  
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
50  
100  
200  
(k)  
400  
800  
400  
800  
50  
100  
200  
(k)  
50  
100  
200  
(k)  
400  
800  
R
R
R
SET  
SET  
SET  
6992 G13  
6992 G15  
6992 G14  
NDIV = 1 Duty Cycle Clamps  
vs RSET  
N
DIV = 1 Duty Cycle Error  
NDIV > 1 Duty Cycle Error vs RSET  
vs Temperature  
97  
96  
95  
94  
93  
92  
97  
96  
95  
94  
93  
92  
5
DIVCODE = 0  
3 PARTS  
DIVCODE = 4  
3 PARTS  
4
3
GUARANTEED MAX  
= 0.2 (12.5%)  
V
/V  
MOD SET  
DIVCODE = 0  
3 PARTS  
LTC6992-2/LTC6992-3  
= V  
2
V
LTC6992-2/LTC6992-3  
MOD  
SET  
V
= V  
1
MOD  
SET  
0
8
7
6
5
4
3
8
7
6
5
4
3
–1  
–2  
–3  
–4  
–5  
LTC6992-2/LTC6992-4  
= V  
LTC6992-2/LTC6992-4  
V
MOD  
SET  
V
= V  
MOD  
SET  
GUARANTEED MIN  
400  
800  
–50  
0
25  
50  
75 100 125  
50  
100  
200  
400  
800  
50  
100  
200  
(k)  
–25  
R
SET  
(k)  
R
TEMPERATURE (°C)  
SET  
6992 G16  
6992 G17  
6992 G18  
NDIV = 1 Duty Cycle Error  
vs Temperature  
NDIV > 1 Duty Cycle Error  
vs Temperature  
NDIV = 1 Duty Cycle Error  
vs Temperature  
5
4
5
4
5
4
GUARANTEED MAX  
GUARANTEED MAX  
GUARANTEED MAX  
V
/V  
= 0.8 (87.5%)  
V
/V  
= 0.2 (12.5%)  
V
/V  
= 0.5 (50%)  
MOD SET  
MOD SET  
MOD SET  
3
3
3
DIVCODE = 0  
3 PARTS  
DIVCODE = 4  
3 PARTS  
DIVCODE = 0  
3 PARTS  
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
GUARANTEED MIN  
GUARANTEED MIN  
GUARANTEED MIN  
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6992 G20  
6992 G21  
6992 G19  
69921234fc  
7
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical perForMance characTerisTics  
otherwise noted.  
NDIV > 1 Duty Cycle Error  
NDIV > 1 Duty Cycle Error  
= 1 Duty Cycle Clamps  
NDIV  
vs Temperature  
vs Temperature  
vs Temperature  
97  
96  
95  
94  
93  
92  
5
4
5
4
DIVCODE = 0  
3 PARTS  
GUARANTEED MAX  
GUARANTEED MAX  
V
/V  
= 0.8 (87.5%)  
V
/V  
= 0.5 (50%)  
MOD SET  
MOD SET  
3
3
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
LTC6992-2/LTC6992-3  
= V  
2
2
V
MOD  
SET  
1
1
0
0
8
7
6
5
4
3
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
LTC6992-2/LTC6992-4  
MOD  
V
= GND  
GUARANTEED MIN  
GUARANTEED MIN  
–50 –25  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6992 G24  
6992 G23  
6992 G22  
N
DIV > 1 Duty Cycle Clamps  
Duty Cycle Error vs DIVCODE  
vs Temperature  
Duty Cycle Error vs DIVCODE  
5
4
97  
96  
95  
94  
93  
92  
5
4
DIVCODE = 4  
3 PARTS  
V
/V  
= 0.5 (50%)  
V
/V  
= 0.2 (12.5%)  
MOD SET  
MOD SET  
3 PARTS  
3 PARTS  
3
3
2
2
LTC6992-2/LTC6992-3  
V
= V  
1
1
MOD  
SET  
0
0
8
7
6
5
4
3
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
LTC6992-2/LTC6992-4  
MOD  
V
= GND  
0
2
4
6
8
10  
12  
14  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
12  
14  
DIVCODE  
TEMPERATURE (°C)  
DIVCODE  
6992 G27  
6992 G25  
6992 G26  
NDIV > 1 Duty Cycle vs VMOD/ VSET  
Duty Cycle Error vs DIVCODE  
NDIV = 1 Duty Cycle vs VMOD/ VSET  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DIVCODE = 4  
LTC6992-1/  
3 PARTS  
DIVCODE = 0  
3 PARTS  
V
/V  
= 0.8 (87.5%)  
MOD SET  
LTC6992-1/  
LTC6992-4  
3 PARTS  
LTC6992-4  
3
LTC6992-2/  
LTC6992-3  
LTC6992-2/  
LTC6992-3  
2
1
0
–1  
–2  
–3  
–4  
–5  
LTC6992-2/  
LTC6992-4  
LTC6992-2/  
LTC6992-4  
LTC6992-1/LTC6992-3  
LTC6992-1/LTC6992-3  
0
0.2  
0.4  
0.6  
0.8  
1
0
2
4
6
8
10  
12  
14  
1
0
0.2  
0.4  
0.6  
0.8  
V /V (V/V)  
MOD SET  
DIVCODE  
V
/V  
(V/V)  
MOD SET  
6992 G30  
6992 G28  
6992 G29  
69921234fc  
8
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical perForMance characTerisTics  
otherwise noted.  
NDIV > 1 Duty Cycle vs VMOD/ VSET  
NDIV = 1 Duty Cycle Error vs Ideal  
NDIV > 1 Duty Cycle Error vs Ideal  
5
4
5
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DIVCODE = 4  
3 PARTS  
DIVCODE = 0  
3 PARTS  
LTC6992-1/LTC6992-3  
3
3
LTC6992-2/  
LTC6992-4  
2
2
PART C  
1
1
PART C  
PART B  
PART B  
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
PART A  
LTC6992-2/  
LTC6992-3  
PART A  
LTC6992-1/  
LTC6992-4  
DIVCODE = 11  
3 PARTS  
100  
0
25  
50  
75  
100  
0
25  
50  
75  
0
0.2  
0.4  
0.6  
0.8  
1
IDEAL DUTY CYCLE (%)  
IDEAL DUTY CYCLE (%)  
V
/V  
(V/V)  
MOD SET  
6992 G33  
6992 G32  
6992 G31  
Linearity Near 100% Duty Cycle  
N
DIV > 1 Duty Cycle Error vs Ideal  
Linearity Near 95% Duty Cycle  
5
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
DIVCODE = 11  
3 PARTS  
DIVCODE = 4  
LTC6992-1/LTC6992-4  
3 PARTS  
DIVCODE = 4  
LTC6992-2/LTC6992-3  
3 PARTS  
4
3
PART A  
2
PART C  
1
0
PART B  
–1  
–2  
–3  
–4  
–5  
0
25  
50  
75  
100  
0.804  
0.836  
V
0.868  
(V/V)  
0.9  
0.804  
0.836  
V
0.868  
/V (V/V)  
0.9  
IDEAL DUTY CYCLE (%)  
/V  
MOD SET  
MOD SET  
6992 G34  
6992 G35  
6992 G36  
Linearity Near 5% Duty Cycle  
Linearity Near 0% Duty Cycle  
Linearity Near 67% Duty Cycle  
72  
12  
11  
10  
9
12  
11  
10  
9
DIVCODE = 4  
71 3 PARTS  
DIVCODE = 4  
LTC6992-2/LTC6992-4  
3 PARTS  
DIVCODE = 4  
LTC6992-1/LTC6992-3  
3 PARTS  
70  
69  
68  
67  
66  
65  
64  
63  
62  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
0.596  
0.612  
0.628  
/V  
0.644  
(V/V)  
0.66  
0.676  
0.18  
0.084  
0.116  
V
0.148  
/V (V/V)  
0.18  
0.084  
0.116  
V
0.148  
(V/V)  
V
/V  
MOD SET  
MOD SET  
MOD SET  
6992 G37  
6992 G39  
6992 G38  
69921234fc  
9
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical perForMance characTerisTics  
otherwise noted.  
N
DIV > 1 Duty Cycle Drift  
Linearity Near 31% Duty Cycle  
= 1 Duty Cycle Drift vs Supply  
NDIV  
vs Supply  
0.5  
0.4  
0.5  
0.4  
36  
DIVCODE = 0  
DIVCODE = 4  
DIVCODE = 4  
35 3 PARTS  
5% CLAMP  
0.3  
0.3  
34  
33  
32  
31  
30  
29  
28  
27  
26  
0.2  
0.2  
V
/V  
= 0.2  
MOD SET  
95% CLAMP  
5% CLAMP  
V
0.1  
0.1  
95% CLAMP  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
/V  
= 0.5  
/V  
= 0.8  
MOD SET  
MOD SET  
V
/V  
= 0.2  
MOD SET  
V
/V  
= 0.8  
MOD SET  
V
/V  
= 0.5  
MOD SET  
+
+
REFERENCED TO V = 4V  
REFERENCED TO V = 4V  
2
3
4
5
6
6
0.308  
0.324  
0.34  
/V  
0.356  
(V/V)  
0.372  
0.388  
2
3
4
5
SUPPLY (V)  
SUPPLY (V)  
V
MOD SET  
6992 G41  
6992 G42  
6992 G40  
Supply Current vs Temperature  
Supply Current vs VMOD  
Supply Current vs Supply Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
LTC6992-2  
R
SET  
= 50k, ÷1  
5.0V, R  
= 50k, ÷1  
SET  
R
SET  
= 50k, ÷4  
5.0V, R  
= 50k, ÷16  
SET  
R
SET  
= 50k, ÷1  
R
R
= 50k, ÷16  
2.5V, R  
= 50k, ÷1  
SET  
SET  
R
= 50k, ÷16  
SET  
SET  
= 100k, ÷1  
= 800k, ÷1  
SET  
R
= 100k, ÷4  
= 800k, ÷1  
5.0V, R  
= 800k, ÷1  
= 800k, ÷1  
SET  
R
SET  
R
SET  
2.5V, R  
SET  
0
0
0
–50  
0
25  
50  
75 100 125  
–25  
0
0.2  
0.4  
V
0.6  
(V)  
0.8  
1
2
3
4
5
6
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
MOD  
6992 G45  
6992 G43  
6992 G44  
Jitter vs Frequency  
Supply Current vs Frequency, 5V  
Supply Current vs Frequency, 2.5V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
+
+
PEAK-TO-PEAK PERIOD  
DEVIATION MEASURED  
OVER 30s INTERVALS  
V
= 5V  
V
= 2.5V  
÷4  
V
/V  
= 0.5  
MOD SET  
+
÷1, V = 5V  
÷16,384  
÷4  
+
÷16,384  
÷1, V = 2.5V  
+
÷4, V = 5V  
÷1  
÷1  
+
÷4, V = 2.5V  
÷16  
÷64  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.001 0.01  
0.1  
1
10  
100 1000  
0.001 0.01  
0.1  
1
10  
100 1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6992 G46  
6992 G47  
6992 G48  
69921234fc  
10  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical perForMance characTerisTics  
otherwise noted.  
Rise and Fall Time  
vs Supply Voltage  
3.0  
Output Resistance  
vs Supply Voltage  
Typical Frequency Error vs  
Time (Long-Term Drift)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200  
150  
100  
50  
C
= 5pF  
65 UNITS  
LOAD  
SOT-23 AND DFN PARTS  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 30°C  
A
OUTPUT SOURCING CURRENT  
t
RISE  
0
–50  
t
FALL  
OUTPUT SINKING CURRENT  
–100  
–150  
–200  
0
0
400 800 1200 1600 2000 2400 2800  
2
3
4
5
6
2
3
4
5
6
TIME (h)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6992 G48a  
6992 G50  
6992 G51  
Typical ISET Current Limit vs V+  
Typical Start-Up, POL = 0  
1000  
800  
600  
400  
200  
0
SET PIN SHORTED TO GND  
+
V
1V/DIV  
OUT  
1V/DIV  
500µs  
6992 G53  
100µs/DIV  
+
V
= 2.5V  
DIVCODE = 3 (÷64)  
R
MOD  
= 50k  
SET  
2
3
4
5
6
V
= 0.3V (~25% DUTY CYCLE)  
SUPPLY VOLTAGE (V)  
6992 G52  
Typical Start-Up, POL = 1  
125kHz Full Modulation  
LTC6992-1  
V
MOD  
0.5V/DIV  
+
V
1V/DIV  
OUT  
1V/DIV  
OUT  
1V/DIV  
500µs  
6992 G54  
6992 G55  
100µs/DIV  
+
50µs/DIV  
+
V
= 2.5V  
V = 3.3V  
DIVCODE = 12 (÷64, POL = 1)  
DIVCODE = 1  
R = 100k  
SET  
R
MOD  
= 50k  
SET  
V
= 0.2V (~87.5% DUTY CYCLE)  
69921234fc  
11  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
pin FuncTions (DCB/S6)  
V (Pin1/Pin5):SupplyVoltage(2.25Vto5.5V).Thissup-  
ply should be kept free from noise and ripple. It should be  
bypassed directly to the GND pin with a 0.1μF capacitor.  
+
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
regulating the V voltage.  
SET  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
Input. The DIV pin voltage (V ) is internally converted  
DIV  
+
V
into a 4-bit result (DIVCODE). V may be generated by  
DIV  
+
MOD  
OUT  
a resistor divider between V and GND. Use 1% resistors  
LTC6992  
+
V
to ensure an accurate result. The DIV pin and resistors  
should be shielded from the OUT pin or any other traces  
that have fast edges. Limit the capacitance on the DIV pin  
+
GND  
SET  
V
C1  
0.1µF  
R1  
R2  
DIV  
to less than 100pF so that V settles quickly. The MSB of  
DIV  
6992 PF  
R
SET  
DIVCODE (POL) determines if the PWM signal is inverted  
before driving the output. When POL = 1 the transfer func-  
tionisinverted(dutycycledecreasingasV  
increases).  
MOD  
MOD (Pin 4/Pin 1): Pulse-Width Modulation Input. The  
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage  
on the SET pin (V ) is regulated to 1V above GND. The  
voltageontheMODpincontrolstheoutputdutycycle. The  
SET  
linear control range is between 0.1•V  
and 0.9•V  
SET  
SET  
amount of current sourced from the SET pin (I ) pro-  
SET  
(approximately 100mV to 900mV). Beyond those limits,  
the output will either clamp at 5% or 95%, or stop oscil-  
lating(0%or100%dutycycle), dependingontheversion.  
grams the master oscillator frequency. The I  
current  
SET  
range is 1.25μA to 20μA. The output oscillation will stop  
if I drops below approximately 500nA. A resistor con-  
SET  
GND(Pin5/Pin2):Ground.Tietoalowinductanceground  
plane for best performance.  
nected between SET and GND is the most accurate way to  
set the frequency. For best performance, use a precision  
metal or thin film resistor of 0.5% or better tolerance and  
50ppm/°C or better temperature coefficient. For lower ac-  
curacy applications an inexpensive 1% thick film resistor  
may be used.  
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings  
+
fromGNDtoV withanoutputresistanceofapproximately  
30Ω. The duty cycle is determined by the voltage on the  
MOD pin. When driving an LED or other low-impedance  
load a series output resistor should be used to limit the  
source/sink current to 20mA.  
69921234fc  
12  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
block DiagraM (S6 Package Pin Numbers Shown)  
+
V
5
R1  
POL  
DIV  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
R2  
OUTPUT  
POLARITY  
MASTER OSCILLATOR  
PULSE WIDTH MODULATOR  
I
SET  
MCLK  
PROGRAMMABLE DIVIDER  
÷1, 4, 16, 64, 256, 1024, 4096, 16384  
f
= 1MHz • 50kΩ •  
OSC  
V
V
– 0.1V  
MOD(LIM) SET  
t
SET  
ON  
DUTY CYCLE =  
0.8V  
OUT  
SET  
6
t
OUT  
DISABLE OUTPUT  
UNTIL SETTLED  
HALT OSCILLATOR  
IF I < 500nA  
SET  
t
t
ON  
D =  
V
MOD(LIM)  
OUT  
POR  
VOLTAGE LIMITER  
+
V
+
REF  
V
= 1V  
SET  
1V  
V
MOD  
1
3
2
6992 BD  
SET  
GND  
MOD  
I
SET  
R
SET  
69921234fc  
13  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
operaTion  
The LTC6992 is built around a master oscillator with a  
DIVCODE  
1MHz maximum frequency. The oscillator is controlled  
+
TheDIVpinconnectstoaninternal,V referenced4-bitA/D  
converter that determines the DIVCODE value. DIVCODE  
programs two settings on the LTC6992:  
by the SET pin current (I ) and voltage (V ), with a  
SET  
SET  
1MHz • 50k conversion factor that is accurate to ±0.8%  
under typical conditions.  
1. DIVCODE determines the output frequency divider set-  
ISET  
VSET  
1
fMASTER  
=
=1MHz 50k •  
ting, N  
.
DIV  
tMASTER  
2. DIVCODE determines the output polarity, via the POL  
bit.  
A feedback loop maintains V at 1V 30mV, leaving I  
SET  
SET  
as the primary means of controlling the output frequency.  
The simplest way to generate I is to connect a resistor  
+
V
DIV  
may be generated by a resistor divider between V  
SET  
and GND as shown in Figure 1.  
(R ) between SET and GND, such that I = V /R .  
SET  
SET  
SET SET  
The master oscillator equation reduces to:  
1
1MHz 50k  
fMASTER  
=
=
2.25V TO 5.5V  
tMASTER  
RSET  
+
V
LTC6992  
R1  
R2  
From this equation, it is clear that V drift will not affect  
SET  
theoutputfrequencywhenusingasingleprogramresistor  
DIV  
(R ). Error sources are limited to R  
tolerance and  
SET  
SET  
the inherent frequency accuracy f  
of the LTC6992.  
GND  
OUT  
6992 F01  
R
may range from 50k to 800k (equivalent to I  
SET  
SET  
between 1.25μA and 20μA).  
Figure 1. Simple Technique for Setting DIVCODE  
The LTC6992 includes a programmable frequency divider  
which can further divide the frequency by 1, 4, 16, 64,  
256, 1024, 4096 or 16384 before driving the OUT pin.  
The divider ratio N is set by a resistor divider attached  
DIV  
to the DIV pin.  
ISET  
VSET  
1
tOUT  
1MHz 50k  
fOUT  
=
=
NDIV  
With R in place of V /I the equation reduces to:  
SET  
SET SET  
1
1MHz 50k  
fOUT  
=
=
tOUT NDIV RSET  
69921234fc  
14  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
operaTion  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
RECOMMENDED f  
R1 (kΩ)  
Open  
976  
R2 (kΩ)  
Short  
102  
V
/V  
DIV  
DIV  
OUT  
0
1
1
62.5kHz to 1MHz  
15.63kHz to 250kHz  
3.906kHz to 62.5kHz  
976.6Hz to 15.63kHz  
244.1Hz to 3.906kHz  
61.04Hz to 976.6Hz  
15.26Hz to 244.1Hz  
3.815Hz to 61.04Hz  
3.815Hz to 61.04Hz  
15.26Hz to 244.1Hz  
61.04Hz to 976.6Hz  
244.1Hz to 3.906kHz  
976.6Hz to 15.63kHz  
3.906kHz to 62.5kHz  
15.63kHz to 250kHz  
62.5kHz to 1MHz  
≤0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥0.96875 0.015  
0
4
2
0
16  
64  
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
256  
1024  
4096  
16384  
16384  
4096  
1024  
256  
64  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
16  
182  
1
4
102  
976  
1
1
Short  
Open  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
supply voltage, which can also be calculated as:  
correspondingN andPOLvaluesfortherecommended  
DIV  
VDIV  
V+  
DIVCODE+ 0.5  
=
1.5ꢀ  
resistor pairs. Other values may be used as long as:  
16  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
DIV  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
tor tolerances and temperature effects).  
is 4, V = 0.281 • 3.3V = 928mV ± 50mV.  
DIV  
2. Thedrivingimpedance(R1||R2)doesnotexceed500kΩ.  
If the voltage is generated by other means (i.e. the output  
Figure 2 illustrates the information in Table 1, showing  
that N is symmetric around the DIVCODE midpoint.  
DIV  
+
of a DAC) it must track the V supply voltage. The last  
POL BIT = 0  
1000  
POL BIT = 1  
15  
0
100  
1
14  
13  
2
10  
3
12  
11  
1
0.1  
4
10  
5
9
6
7
8
0.01  
0.001  
+
+
0V  
0.5V  
V
INCREASING V  
DIV  
6992 F02  
Figure 2. Frequency Range and POL Bit vs DIVCODE  
69921234fc  
15  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
operaTion  
Pulse Width (Duty Cycle) Modulation  
Output Polarity (POL Bit)  
The MOD pin is a high impedance analog input providing  
direct control of the output duty cycle. The duty cycle is  
The duty cycle equation describes a proportional transfer  
function, where duty cycle increases as V  
increases.  
MOD  
proportional to the voltage applied to the MOD pin, V  
.
The LTC6992 includes a POL bit (determined by the  
DIVCODE as described earlier) that inverts the output  
signal. This makes the duty cycle gain negative, reducing  
MOD  
VMOD  
0.8 VSET  
1
8
Duty Cycle = D =  
duty cycle as V  
increases.  
MOD  
The PWM duty cycle accuracy D specifies that the above  
equation is valid to within 4.5% for V between 0.2 •  
MOD  
POL = 0  
VMOD  
1
8
V
and 0.8 • V (12.5% to 87.5% duty cycle).  
SET  
SET  
D=  
0.8 VSET  
Dt  
OUT  
Since V  
= 1V 30mV, the duty cycle equation may be  
SET  
approximated by the following equation.  
OUT  
VMOD 100mV  
Duty Cycle = D ≅  
t
OUT  
800mV  
POL = 1  
VMOD  
1
8
The V  
control range is approximately 0.1V to 0.9V.  
MOD  
D=1−  
MOD  
Driving V  
Dt  
OUT  
0.8 V  
SET  
+
beyond that range (towards GND or V ) will  
have no further affect on the duty cycle.  
OUT  
Duty Cycle Limits  
6992 F03  
t
OUT  
The only difference between the four versions of the  
LTC6992 is the limits, or clamps, placed on the output  
duty cycle. The LTC6992-1 generates output duty cycles  
ranging from 0% to 100%. At 0% or 100% the output  
Figure 3. POL Bit Functionality  
+
will stop oscillating and rest at GND or V , respectively.  
The LTC6992-2 will never stop oscillating, regardless of  
the V  
level. Internal clamping circuits limit its duty  
MOD  
cycle to a 5% to 95% range (1% to 99% guaranteed).  
Therefore, its V control range is 0.14 • V to 0.86 •  
MOD  
SET  
V
SET  
(approximately 0.14V to 0.86V).  
The LTC6992-3 and LTC6992-4 complete the family by  
providing one-sided clamping. The LTC6992-3 allows  
0% to 95% duty cycle, and the LTC6992-4 allows 5% to  
100% duty cycle.  
69921234fc  
16  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
operaTion  
Table 2. Duty Cycle Ranges  
DUTY CYCLE RANGE vs V  
POL = 1 forces a simple logic inversion, so it changes the  
dutycyclerangeoftheLTC6992-3(makingit100%to5%)  
and LTC6992-4 (making it 95% to 0%). These transfer  
functions are detailed in Figure 4.  
= 0V 1V  
MOD  
PART NUMBER  
LTC6992-1  
LTC6992-2  
LTC6992-3  
LTC6992-4  
POL = 0  
POL = 1  
0% to 100%  
5% to 95%  
0% to 95%  
5% to 100%  
100% to 0%  
95% to 5%  
100% to 5%  
95% to 0%  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V  
= 0.1  
MOD SET  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V  
= 0.14  
MOD SET  
POL = 0  
POL = 1  
POL = 0  
POL = 1  
V
/V  
= 0.86  
MOD SET  
V
/V  
= 0.9  
MOD SET  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
V
V
MOD SET  
MOD SET  
6992 F04a  
6992 F04b  
LTC6992-1  
LTC6992-2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V  
= 0.14  
V
/V  
= 0.1  
MOD SET  
MOD SET  
POL = 0  
POL = 1  
POL = 0  
POL = 1  
V
/V  
= 0.9  
V
/V  
= 0.86  
MOD SET  
MOD SET  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
V
V
MOD SET  
MOD SET  
6992 F02d  
6992 F02c  
LTC6992-3  
LTC6992-4  
Figure 4. PWM Transfer Functions for All LTC6992 Family Parts  
69921234fc  
17  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
operaTion  
Changing DIVCODE After Start-Up  
Start-Up Time  
Following start-up, the A/D converter will continue  
When power is first applied, the power-on reset (POR)  
monitoring V for changes. Changes to DIVCODE will  
circuit will initiate the start-up time, t  
. The OUT pin  
DIV  
START  
be recognized slowly, as the LTC6992 places a priority on  
eliminating any “wandering” in the DIVCODE. The typical  
delay depends on the difference between the old and  
new DIVCODE settings and is proportional to the master  
oscillator period.  
is held low during this time. The typical value for t  
START  
ranges from 0.5ms to 8ms depending on the master oscil-  
lator frequency (independent of N ):  
DIV  
t
= 500 • t  
MASTER  
START(TYP)  
The output will begin oscillating after t . If POL = 0  
START  
t
= 16 • (DIVCODE + 6) • t  
MASTER  
DIVCODE  
the first pulse has the correct width. If POL = 1 (DIVCODE  
≥ 8), the first pulse width can be shorter or longer than  
expected, depending on the duty cycle setting, and will  
A change in DIVCODE will not be recognized until it is  
stable, and will not pass through intermediate codes.  
AdigitalfilterisusedtoguaranteetheDIVCODEhassettled  
to a new value before making changes to the output. Then  
the output will make a clean (glitchless) transition to the  
new divider setting.  
never be less than 25% of t  
.
OUT  
Duringstart-up,theDIVpinA/Dconvertermustdetermine  
the correct DIVCODE before the output is enabled. The  
start-up time may increase if the supply or DIV pin volt-  
ages are not stable. For this reason, it is recommended to  
minimize the capacitance on the DIV pin so it will properly  
+
track V . Less than 100pF will not affect performance.  
DIV  
0.5V/DIV  
512µs  
+
V
OUT  
1V/DIV  
DIV  
STABLE V  
DIV  
6992 F05  
100µs/DIV  
+
V
= 3.3V  
R
= 200k  
SET  
t
DIVCODE  
V
= 0.3V  
MOD  
t
START  
OUT  
Figure 5. DIVCODE Change from 3 to 1  
6992 F06  
1ST PULSE WIDTH MAY BE INACCURATE  
Figure 6. Start-Up Timing Diagram  
69921234fc  
18  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
applicaTions inForMaTion  
Basic Operation  
To minimize supply current, choose the lowest N value  
DIV  
(generallyrecommended).Forfasterstart-upordecreased  
The simplest and most accurate method to program the  
jitter,chooseahigherN setting.Alternatively,useTable1  
DIV  
LTC6992 is to use a single resistor, R , between the  
SET  
as a guide to select the best N value for the given ap-  
DIV  
SET and GND pins. The design procedure is a four step  
plication.  
process. After choosing the proper LTC6992 version and  
POL bit setting, select the N value and then calculate  
With POL already chosen, this completes the selection of  
DIV  
the value for the R resistor.  
DIVCODE. Use Table 1 to select the proper resistor divider  
SET  
+
or V /V ratio to apply to the DIV pin.  
DIV  
Alternatively, Linear Technology offers the easy to use  
TimerBlox Designer tool to quickly design any LTC6992  
based circuit. Download the free TimerBlox Designer  
software at www.linear.com/timerblox.  
Step 4: Calculate and Select R  
SET  
The final step is to calculate the correct value for R  
using the following equation.  
SET  
Step 1: Selecting the POL Bit Setting  
1MHz 50k  
NDIV fOUT  
RSET  
=
(1b)  
Most applications will use POL = 0, resulting in a positive  
transferfunction.However,someapplicationsmayrequire  
Select the standard resistor value closest to the calculated  
value.  
a negative transfer function, where increasing V  
re-  
MOD  
duces the output duty cycle. For example, if the LTC6992  
is used in a feedback loop, POL = 1 may be required to  
achieve negative feedback.  
Example:DesignaPWMcircuitthatsatisfiesthefollowing  
requirements:  
• f  
= 20kHz  
Step 2: Selecting the LTC6992 Version  
OUT  
• Positive V  
to duty cycle response  
ThedifferencebetweentheLTC6992versionsisobservedat  
theendpointsofthedutycyclecontrolrange. Applications  
thatrequiretheoutputtoneverstoposcillatingshoulduse  
the LTC6992-2. On the other hand, if the output should be  
MOD  
• Output can reach 100% duty cycle, but not 0%  
• Minimum power consumption  
+
allowed to rest at GND or V (0% or 100% duty cycle),  
Step 1: Selecting the POL Bit Setting  
select the LTC6992-1.  
For positive transfer function (duty cycle increases with  
MOD  
The LTC6992-3 and LTC6992-4 clamp the duty cycle at  
only one end of the control range, allowing the output to  
stop oscillating at the other extreme. If POL = 1 the clamp  
will swap from low duty cycle to high, or vice-versa. Refer  
to Table 2 and Figure 4 for assistance in selecting the  
proper version.  
V
), choose POL = 0.  
Step 2: Selecting the LTC6992 Version  
To limit the minimum duty cycle, but allow the maximum  
duty cycle to reach 100%, choose LTC6992-4. (Note that  
if POL = 1 the LTC6992-3 would be the correct choice.)  
Step 3: Selecting the N Frequency Divider Value  
DIV  
Step 3: Selecting the N Frequency Divider Value  
DIV  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the POL bit and the  
Choose an N  
value that meets the requirements of  
DIV  
Equation (1a).  
N
value. For a given output frequency, N should be  
DIV  
DIV  
selected to be within the following range.  
3.125 ≤ N ≤ 50  
DIV  
62.5kHz  
fOUT  
1MHz  
fOUT  
Potential settings for N include 4 and 16. N = 4 is  
DIV  
DIV  
NDIV  
(1a)  
the best choice, as it minimizes supply current by us-  
69921234fc  
19  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
applicaTions inForMaTion  
Figure8demonstratestheworst-caseimpactofthisvaria-  
ing a large R  
resistor. POL = 0 and N = 4 requires  
SET  
DIV  
tion (if V is at its 0.97V or 1.03V limits).  
DIVCODE = 1. Using Table 1, choose the R1 and R2 values  
to program DIVCODE = 1.  
SET  
This error is in addition to the inherent PWM duty cycle  
accuracy spec D ( 4.5%), so care should be taken if  
Step 4: Select R  
SET  
accuracy at high duty cycles (V  
near 0.9V) is critical.  
MOD  
Calculate the correct value for R using Equation (1b).  
SET  
Sensitivity to V  
can be eliminated by making V  
MOD  
SET  
1MHz 50k  
420kHz  
proportionaltoV .Forexample,Figure9showsasimple  
SET  
RSET  
=
= 625k  
circuit for generating an arbitrary duty cycle. The equation  
for duty cycle does not depend on V at all.  
SET  
Since 625k is not available as a standard 1% resistor,  
substitute 619k if a 0.97% frequency shift is acceptable.  
Otherwise, select a parallel or series pair of resistors such  
as 309k and 316k to attain a more precise resistance.  
100  
90  
∆V  
= –30mV  
SET  
80  
70  
60  
50  
40  
30  
20  
10  
0
The completed design is shown in Figure 7.  
∆V  
= 0mV  
SET  
∆V  
= 30mV  
SET  
V
MOD  
MOD  
GND  
SET  
OUT  
LTC6992-4  
2.25V TO 5.5V  
+
V
R1  
976k  
DIVCODE = 1  
DIV  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
R2  
102k  
6992 F07  
R
SET  
V
MOD  
625k  
6992 F08  
Figure 8. Duty Cycle Variation Due to ∆VSET  
Figure 7. 20kHz PWM Oscillator  
Duty Cycle Sensitivity to ∆V  
SET  
MOD  
GND  
SET  
OUT  
The output duty cycle is proportional to the ratio of V  
/
MOD  
LTC6992-X  
2.25V TO 5.5V  
R1  
V
. Since V  
can vary up to 30mV from 1V it can  
SET  
SET  
+
V
effectively gain or attenuate V  
, as shown below when  
MOD  
V is added to the equation.  
SET  
DIV  
VMOD  
0.8 VSET + ∆VSET  
1
8
6992 F09  
R2  
D=  
R
R
SET1  
(
)
RSET2  
RSET1 +RSET2  
5
4
1
8
D=  
SET2  
Formanydesigns,theabsoluteV  
todutycycleaccuracy  
MOD  
is not critical. For others, making the simplifying assump-  
tion of V  
= 0V creates the potential for additional  
SET  
Figure 9. Fixed-Frequency, Arbitrary Duty Cycle Oscillator  
duty cycle error, which increases with V  
, reaching a  
MOD  
maximum of 3.4% if V = –30mV.  
SET  
VMOD VSET  
800mV VSET  
1
8
VSET  
D≅ −  
≅ − D  
+
IDEAL  
VSET  
69921234fc  
20  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
applicaTions inForMaTion  
I
Extremes (Master Oscillator Frequency Extremes)  
Pulse Width Modulation Bandwidth and Settling Time  
SET  
When operating with I  
outside of the recommended  
TheLTC6992hasawidePWMbandwith,makingitsuitable  
foravarietyoffeedbackapplications.Figure10showsthat  
the frequency response is flat for modulation frequencies  
up to nearly 1/10 of the output frequency. Beyond that  
SET  
1.25μA to 20μA range, the master oscillator operates  
outside of the 62.5kHz to 1MHz range in which it is most  
accurate.  
point, some peaking may occur (depending on N and  
DIV  
The oscillator will still function with reduced accuracy for  
average duty cycle setting).  
I
<1.25µA.Atapproximately500nA,theoscillatoroutput  
SET  
will be frozen in its current state. The output could halt in  
a high or low state. This avoids introducing short pulses  
while frequency modulating a very low frequency output.  
Duty cycle settling time depends on the master oscillator  
frequency. Following a 80mV step change in V  
, the  
MOD  
duty cycle takes approximately eight master clock cycles  
(8 • t ) to settle to within 1% of the final value.  
MASTER  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
Examples are shown in Figures 11a and 11b.  
10  
5
÷4, 50%  
÷16  
÷1, 50%  
0
÷1, 80%  
÷4, 15%  
–5  
–10  
–15  
–20  
0.001  
0.01  
0.1  
1
f
/f  
(Hz/Hz)  
MOD OUT  
6992 F10  
Figure 10. PWM Frequency Response  
V
MOD  
V
MOD  
0.1V/DIV  
0.1V/DIV  
OUT  
2V/DIV  
OUT  
2V/DIV  
DUTY CYCLE  
5% DIV  
DUTY CYCLE  
5% DIV  
6992 F11a  
6992 F11b  
10µs/DIV  
10µs/DIV  
+
+
V
= 3.3V  
V
= 3.3V  
DIVCODE = 0  
DIVCODE = 0  
R
V
= 200k  
R
V
= 200k  
SET  
MOD  
SET  
MOD  
= 0.3V ±±0ꢀV  
= 0.5V ±±0ꢀV  
Figure 11a. PWM Settling Time, 25% Duty Cycle  
Figure 11b. PWM Settling Time, 50% Duty Cycle  
69921234fc  
21  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
applicaTions inForMaTion  
Power Supply Current  
+
1. Connect the bypass capacitor, C1, directly to the V and  
GND pins using a low inductance path. The connection  
from C1 to the V pin is easily done directly on the top  
The power supply current varies with frequency, supply  
voltage and output loading. It can be estimated under any  
condition using the following equation:  
+
layer. For the DFN package, C1’s connection to GND is  
also simply done on the top layer. For the TSOT-23, OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1μF ceramic capacitor.  
If NDIV = 1 (DIVCODE = 0 or 15):  
IS(TYP) V+ fOUT 39pF +C  
(
)
LOAD  
V+  
V+ Duty Cycle  
+  
+
+ 2.2ISET + 85µA  
320kΩ  
RLOAD  
If NDIV > 1 (DIVCODE = 1 or 14):  
IS(TYP) V+ NDIV fOUT 27pF  
+ V+ fOUT 28pF +C  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
(
)
LOAD  
V+  
320kΩ  
V+ Duty Cycle  
3. Place R  
as close as possible to the SET pin and  
SET  
+  
+
+ 2.6 ISET + 90µA  
make a direct, short connection. The SET pin is a  
current summing node and currents injected into this  
pin directly modulate the operating frequency. Having  
a short connection minimizes the exposure to signal  
pickup.  
RLOAD  
SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES  
The LTC6992 is a 2.4% accurate silicon oscillator when  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. Adequate supply bypassing and proper  
PCB layout are important to ensure this.  
4. Connect R directly to the GND pin. Using a long path  
SET  
or vias to the ground plane will not have a significant  
affect on accuracy, but a direct, short connection is  
recommended and easy to apply.  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
Figure14showsexamplePCBlayoutsforboththeTSOT-23  
and DFN packages using 0603 sized passive components.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6992. These layouts are  
a guide and need not be followed exactly.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
69921234fc  
22  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
applicaTions inForMaTion  
MOD  
GND  
SET  
OUT  
LTC6992  
+
+
V
V
C1  
0.1µF  
R1  
R2  
DIV  
R
SET  
+
+
V
+
V
C1  
R1  
C1  
V
OUT  
GND  
MOD  
MOD  
GND  
SET  
OUT  
+
DIV  
SET  
V
R2  
DIV  
R1  
R
SET  
R
R2  
SET  
DFN PACKAGE  
TSOT-23 PACKAGE  
6992 F14  
Figure 14. Supply Bypassing and PCB Layout  
Constant On-Time Modulator  
Typical applicaTions  
V
MOD  
OUT  
C1  
MOD  
GND  
SET  
OUT  
R
R
M2  
M1  
V
LTC6992-1  
R
*
CC  
IN  
1.05k  
9.31k  
11.8k  
V
CTRL  
V
IN  
+
V
R1  
182k  
DIVCODE = 2  
(÷16, POL = 1)  
0V TO 2V  
R
44.2k  
SET  
0.1µF  
V
SET  
DIV  
R2  
6992 TA02  
976k  
*OPTIONAL RESISTOR ADJUSTS FOR DESIRED V RANGE.  
IN  
RSET  
50k  
RM2  
RM1+RM2  
IF  
= 0.9 THEN tON = NDIV 1.125µs •  
AS V INCREASES, t  
INCREASES AND DUTY CYCLE  
IN  
OUT  
DECREASES (BECAUSE POL = 1) TO MAINTAIN A CONSTANT t  
.
ON  
FOR CONSTANT OFF-TIME, JUST CHANGE DIVCODE SO POL = 0.  
69921234fc  
23  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Digitally Controlled Duty Cycle with Internal VREF Reference Variation Eliminated  
MOD  
GND  
SET  
OUT  
+
LTC6992-X  
V
+
V
+
0.1µF  
V
C1  
0.1µF  
R1  
R2  
+
DIV  
1/2  
LTC6078  
6992 TA03  
R
SET  
+
0.1µF  
V
V
REF  
CC  
D
IN  
LTC1659  
V
OUT  
µP  
CLK  
CS/LD  
GND  
Programming NDIV Using an 8-Bit DAC  
ANALOG PWM  
DUTY CYCLE CONTROL  
(0V TO 1V)  
DIVCODE DAC CODE  
MOD  
GND  
SET  
OUT  
0
1
0
LTC6992-X  
24  
2
40  
2.25V TO 5.5V  
+
V
3
56  
C1  
0.1µF  
C2  
0.1µF  
4
72  
5
88  
6
104  
120  
136  
152  
168  
184  
200  
216  
232  
255  
DIV  
7
8
9
R
SET  
V
CC  
SDI  
10  
11  
12  
13  
14  
15  
V
LTC2630-LZ8 SCK  
µP  
OUT  
CS/LD  
GND  
6992 TA04  
69921234fc  
24  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Changing Between Two Frequencies  
ANALOG PWM  
DUTY CYCLE CONTROL  
(0V TO 1V)  
ANALOG PWM  
DUTY CYCLE CONTROL  
(0V TO 1V)  
MOD  
GND  
SET  
OUT  
MOD  
GND  
SET  
OUT  
LTC6992-X  
LTC6992-X  
+
+
+
+
V
V
V
V
+
V
0.1µF  
0.1µF  
R1  
R2  
R1  
R2  
f
MAX  
R
VCO  
DIV  
DIV  
f
MIN  
+
R
R
SET2  
R
SET1  
V
SET  
f
MIN  
‘HC04  
f
MAX  
2N7002  
‘HC04  
6992 TA05  
NOTES  
NOTES  
WHILE THIS CIRCUIT IS SIMPLER THAN THE CIRCUIT TO THE RIGHT,  
1. WHEN THE NMOSFET IS OFF, THE FREQUENCY IS SET BY R  
= R  
SET1  
= R  
SET1  
.
SET  
SET  
ITS FREQUENCY ACCURACY IS WORSE DUE TO THE EFFECT OF  
2. WHEN THE NMOSFET IS ON, THE FREQUENCY IS SET BY R  
|| R  
.
SET2  
+
+
V
SUPPLY VARIATION FROM SYSTEM TO SYSTEM AND OVER TEMPERATURE.  
3. V SUPPLY VARIATION IS NOT A FACTOR AS THE SWITCHING RESISTOR IS  
EITHER FLOATING OR CONNECTED TO GROUND.  
Simple Diode Temperature Sensor  
R8  
84.5k  
5V  
5V  
0.1µF  
5V  
0.1µF  
R6  
45.3k  
R7  
16.9k  
+10mV/C  
R9  
+
365Ω  
MOC207M  
D3  
MOD  
GND  
SET  
OUT  
D1  
1N458  
LT6003  
Q1  
LTC6992-2  
+
5V  
V
R4  
1000k  
OUTPUT  
C1  
1µF  
0.1µF  
R11  
422Ω  
DIV  
R5  
6992 TA06  
R1  
186k  
130k  
R2  
N
= 16  
50k  
DIV  
f = 10kHz  
ADJUST FOR 50% DUTY CYCLE AT 25°C  
R3  
130k  
PWM OUTPUT FOR ISOLATED MEASUREMENT  
+1% DUTY CYCLE CHANGE PER DEGREE C  
–10°C TO 65°C RANGE WITH OPTO-ISOLATOR (DC: 15% TO 95%)  
69921234fc  
25  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Motor Speed/Direction Control for Full H-Bridge (Locked Anti-Phase Drive)  
V
S
12V  
A1  
A2  
2.6kHz, 5% TO 95% PWM  
5% DC = CLOCKWISE  
50% DC = STOPPED  
CW CURRENT  
FLOW  
95% DC = COUNTER CLOCKWISE  
MOTOR  
INPUT 0V TO 1V  
MOD  
GND  
SET  
OUT  
LTC6992-2  
+
+
V
V
R1  
1000k  
0.1µF  
POWER H-BRIDGE  
HIGH = SWITCH ON  
DIV  
R3  
300k  
R2  
280k  
6992 TA07  
Motor Speed/Direction Control for Full H-Bridge (Sign/Magnitude Drive)  
V
S
12V  
A5  
A4  
2.6kHz, 5% TO 95% PWM  
5% DC = SLOW  
95% DC = FAST  
CW CURRENT  
FLOW  
MOTOR  
INPUT 0V TO 1V  
MOD  
GND  
SET  
OUT  
LTC6992-2  
+
+
V
V
R4  
1000k  
0.1µF  
POWER H-BRIDGE  
HIGH = SWITCH ON  
DIV  
R3  
300k  
R5  
280k  
A3  
DIRECTION  
H = CCW, L = CW  
6992 TA08  
69921234fc  
26  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Ratiometric Sensor to Pulse Width, Non-Inverting Response  
R6  
9.09k  
V
S
C2  
0.22µF  
0.1µF  
C1  
0.15µF  
R4  
90.9k  
R5  
10M  
V
= 2.5V TO 5.5V  
S
+
R3  
10k  
K = 1  
OUTPUT  
DUTY CYCLE = K • 100%  
MOD  
OUT  
R
SENSOR  
K = 0  
LT1490  
LTC6992-1  
KV  
S
+
GND  
SET  
V
V
S
R1  
1000k  
0.1µF  
DIV  
R2  
186k  
6992 TA09  
R
SET  
316k  
N
OUT  
= 16  
= 10kHz  
DIV  
f
Ratiometric Sensor to Pulse Width, Inverting Response  
R6  
9.09k  
C2  
0.22µF  
V
S
0.1µF  
V
S
= 2.5V TO 5.5V  
R6  
90.9k  
C1  
0.15µF  
R3  
100k  
K = 1  
R
SENSOR  
K = 0  
K • V  
S
+
OUTPUT  
DUTY CYCLE = (1–K) • 100%  
R4  
10k  
MOD  
GND  
SET  
OUT  
LT1490  
LTC6992-1  
V
S
+
R5  
10k  
V
V
S
R1  
0.1µF  
1000k  
DIV  
R2  
186k  
6992 TA10  
R
SET  
316k  
N
OUT  
= 16  
= 10kHz  
DIV  
f
69921234fc  
27  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Radio Control Servo Pulse Generator  
R6  
9.09k  
R6  
90.9k  
C1  
1µF  
C2  
0.22µF  
V
S
V
S
= 2.5V TO 5.5V  
0.1µF  
R5  
130k  
+
OUTPUT  
1ms TO 2ms PULSE EVERY 16ms  
MOD  
OUT  
LT1490  
LTC6992-1  
R6  
8.66k  
+
GND  
SET  
V
V
S
R1  
1000k  
2ms  
SERVO  
CONTROL  
POT  
0.1µF  
DIV  
10k  
R2  
681k  
1ms  
6992 TA11  
R
SET  
196k  
N
OUT  
= 4096  
= 62.5Hz, 16ms PERIOD  
DIV  
f
Direct Voltage Controlled PWM Dimming (0 to 15000 Cd/m2 Intensity)  
R3  
90.9Ω  
V
MOD  
GND  
SET  
OUT  
DIMMING  
LTC6992-1  
D1  
+
5V  
V
HIGH INTENSITY LED  
SSL-LX5093XUWC  
C1  
R1  
1M  
0.1µF  
DIV  
R2  
280k  
6992 TA12  
R
SET  
105k  
f = 7.5kHz  
= 64  
N
DIV  
69921234fc  
28  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Wide Range LED Dimming (0 to 85000 Cd/m2 Brightness)  
R2  
7.5k  
V
FAST  
5V  
0.1µF  
5V  
FAST PWM  
R1  
10k  
+
CONTROLS 6000 TO 85000  
+
2
Cd/m BRIGHTNESS  
MOD  
OUT  
LT6004  
LT6004  
LTC6992-4  
+
GND  
SET  
V
R4  
7.5k  
R3  
10k  
5V  
3.3V  
3.3V  
5V  
PV  
C4  
R
DIV1  
0.1µF  
1M  
V
REF  
DIV  
IN  
IN  
R
DIV2  
+
LED  
R
280k  
SET1  
61.9k  
5–100%  
= 64  
A1  
D1  
D2  
N
DIV  
LT3518UF  
f = 12.6kHz  
PWM  
V
DIMMING  
0V TO 1.65V  
SLOW PWM  
CONTROLS 0 TO 6000  
2
Cd/m BRIGHTNESS  
V
SLOW  
LUMILEDS LXHL-BW02  
MOD  
OUT  
LTC6992-1  
+
GND  
SET  
V
5V  
C1  
R
DIV3  
0.1µF  
1M  
DIV  
R
DIV4  
R
681k  
SET2  
0–100%  
124k  
6992 TA13  
N
= 4096  
DIV  
f
= 100Hz  
OUT  
69921234fc  
29  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTions  
Isolated PWM (5% to 95%) Controller  
+
V
0.1µF  
+
ISOV  
R3  
1k  
0.1µF  
R6  
R14  
10k  
4.99k  
ISOLATION  
BARRIER  
T1  
R2  
R9  
R4  
10k  
+
+
LT1011  
100k  
20k  
1kHz  
SOURCE  
PWM  
ISOPWM  
MOD  
GND  
OUT  
MOD  
GND  
OUT  
R16  
100k  
LT1011  
C1  
1µF  
C2  
0.1µF  
LTC6992-2  
LTC6992-2  
R5  
20k  
R15  
10k  
L1  
L2  
+
+
+
V
V
ISOV  
0.1µF  
R7  
1k  
R8  
10k  
R1  
10k  
R12  
1M  
0.1µF  
R17  
10k  
SET  
DIV  
SET  
DIV  
+
0.1µF  
V
R11  
787k  
R13  
280k  
R10  
499k  
100kHz  
1kHz  
ISOLATED PWM  
C3  
1000pF  
INTERMEDIATE PWM  
+
6992 TA14  
+
ISOV  
0.1µF  
R18  
100k  
LT1636  
+
C4  
1µF  
LT1636  
CONCEPT DESIGN USING SIMPLE R-C FILTERING FOR PWM CONTROL.  
NOT OPTIMIZED FOR OFFSETS.  
T1: PCA EPF8119S ETHERNET TRANSFORMER  
69921234fc  
30  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715 Rev A)  
0.70 0.05  
1.65 0.05  
3.55 0.05  
(2 SIDES)  
2.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
1.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
2.00 0.10  
(2 SIDES)  
0.40 0.10  
TYP  
R = 0.05  
TYP  
4
6
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
1.35 0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
69921234fc  
31  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636 Rev B)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
69921234fc  
32  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/11  
2
4
Revised θ value for TSOT package in the Pin Configuration.  
JA  
Added Note 7 for V and V in the Electrical Characteristics table.  
OH  
OL  
12  
Minor edit to the Block Diagram.  
19  
Minor edit to the equation in the “Duty Cycle Sensitivity to ∆V ” section.  
SET  
25  
Revised Typical Applications drawings.  
B
C
07/11 Revised Description and Order Information sections  
1 to 3  
+
Added additional information to ∆f /∆V and included Note 11 in Electrical Characteristics section  
3, 4  
11  
OUT  
Added Typical Frequency Error vs Time curve to Typical Performance Characteristics section  
Added text to Basic Operation paragraph in Applications Information section  
19  
Corrected f  
value in Typical Applications drawing 6692 TA13  
29  
OUT  
01/12 Added MP-Grade  
1, 2, 3, 5  
69921234fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
33  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
Typical applicaTion  
PWM Controller for LED Driver  
L1  
6.8µH  
D1  
V
IN  
8V TO 16V  
C1  
0.22µF  
R1  
3.92M  
SHDN  
V
SW  
FB  
IN  
R2  
124k  
LT3517  
ANALOG PWM  
DUTY CYCLE  
CONTROL  
300mA  
PWM  
TGEN  
MOD  
GND  
SET  
OUT  
ISP  
LTC6992-1  
5V  
C1  
2.2µF  
(0V TO 1V)  
R
SENSE  
V
REF  
+
330mΩ  
C2  
4.7µF  
V
CTRL  
SYNC  
ISN  
TG  
0.1µF  
1M  
DIV  
V
C
R
SS GND  
T
102k  
681k  
C4  
0.1µF  
C3  
0.1µF  
R
6.04k  
2MHz  
T
6992 TA15  
C1: KEMET C0806C225K4RAC  
C2: KEMET C1206C475K3RAC  
C3, C4: MURATA GRM21BR71H104KA01B  
C5: MURATA GRM21BR71H224KA01B  
D1: DIODE DFLS160  
L1: TOKO B992AS-6R8N  
LEDS: LUXEON I (WHITE)  
M1: ZETEX ZXMP6A13FTA  
relaTeD parTs  
PART NUMBER  
LTC1799  
DESCRIPTION  
COMMENTS  
Wide Frequency Range  
Low Power, Wide Frequency Range  
Micropower, I = 35µA at 400kHz  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
LTC6900  
LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator  
SUPPLY  
LTC6930  
LTC6990  
LTC6991  
LTC6993  
LTC6994  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
TimerBlox, Voltage Controlled Oscillator  
TimerBlox, Very Low Frequency Clock with Reset  
TimerBlox, Monostable Pulse Generator  
TimerBlox, Delay Block/Debouncer  
0.09% Accuracy, 110µs Start-Up Time, 105µA at 32kHz  
Frequency from 488Hz to 1MHz, No Caps, 2.2% Accurate  
Cycle Time from 2ms to 9.5 Hours, No Caps, 2.2% Accurate  
Resistor Set Pulse Width from 1µs to 34sec, No Caps, 3% Accurate  
Resistor Set Delay from 1µs to 34sec, No Caps Required, 3% Accurate  
69921234fc  
LT 0112 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
34  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6992IS6-4-PBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992IS6-4-TRPBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6993

TimerBlox: Long Timer, Low Frequency Oscillator
Linear

LTC6993-1

TimerBlox: Monostable
Linear

LTC6993-1_15

Monostable Pulse Generator
Linear

LTC6993-2

TimerBlox: Monostable
Linear

LTC6993-2_15

Monostable Pulse Generator
Linear

LTC6993-3

TimerBlox: Monostable
Linear

LTC6993-3_15

Monostable Pulse Generator
Linear

LTC6993-4

TimerBlox: Monostable
Linear

LTC6993-4_15

Monostable Pulse Generator
Linear

LTC6993CDCB-3#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear