LTDY [Linear]

Single/Dual/Quad 400MHz Current Feedback Amplifier; 单/双/四核400MHz的电流反馈放大器
LTDY
型号: LTDY
厂家: Linear    Linear
描述:

Single/Dual/Quad 400MHz Current Feedback Amplifier
单/双/四核400MHz的电流反馈放大器

放大器
文件: 总20页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1395/LT1396/LT1397  
Single/Dual/Quad 400MHz  
Current Feedback Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1395/LT1396/LT1397 are single/dual/quad  
400MHzcurrentfeedbackamplifierswithan800V/µsslew  
rate and the ability to drive up to 80mA of output current.  
400MHz Bandwidth on ± 5V (AV = 1)  
350MHz Bandwidth on ± 5V (AV = 2, –1)  
0.1dB Gain Flatness: 100MHz (AV = 1, 2 and –1)  
High Slew Rate: 800V/µs  
The LT1395/LT1396/LT1397 operate on all supplies from  
a single 4V to ±6V. At ±5V, they draw 4.6mA of supply  
current per amplifier. The LT1395CS6 also adds a shut-  
down pin. When disabled, the LT1395CS6 draws virtually  
zero supply current and its output becomes high imped-  
ance. TheLT1395CS6willturnoninonly30nsandturnoff  
in 40ns, making it ideal in spread spectrum and portable  
equipment applications.  
Wide Supply Range: ±2V(4V) to ±6V(12V)  
80mA Output Current  
Low Supply Current: 4.6mA/Amplifier  
LT1395: SO-8, TSOT23-5 and TSOT23-6 Packages  
LT1396: SO-8, MSOP and Tiny 3mm × 3mm ×  
0.75mm DFN-8 Packages  
LT1397: SO-14, SSOP-16 and Tiny 4mm × 3mm ×  
0.75mm DFN-14 Packages  
For space limited applications, the LT1395 is available in  
TSOT-23 packages, the LT1396 is available in a tiny 3mm  
× 3mm × 0.75mm dual fine pitch leadless DFN package,  
and the LT1397 is available in a tiny 4mm × 3mm ×  
0.75mm DFN package.  
U
APPLICATIO S  
Cable Drivers  
Video Amplifiers  
MUX Amplifiers  
The LT1395/LT1396/LT1397 are manufactured on Linear  
Technology’sproprietarycomplementarybipolarprocess.  
They have standard single/dual/quad pinouts and they are  
optimized for use on supply voltages of ±5V.  
High Speed Portable Equipment  
IF Amplifiers  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Unity-Gain Video Loop-Through Amplifier  
Loop-Through Amplifier  
Frequency Response  
R
R
R
255  
R
F2  
255Ω  
G2  
G1  
F1  
10  
63.4Ω  
1.02k  
0
NORMAL SIGNAL  
–10  
–20  
1/2  
LT1396  
1/2  
LT1396  
V
OUT  
V
+
V
3.01k  
3.01k IN  
IN  
+
+
–30  
–40  
–50  
–60  
1% RESISTORS  
FOR A GAIN OF G:  
= G (V – V  
IN  
V
+
)
0.67pF  
12.1k  
0.67pF  
12.1k  
OUT  
IN  
COMMON MODE SIGNAL  
R
= R  
F1  
F2  
R
= (5G – 1) R  
G1  
F2  
R
F2  
HIGH INPUT RESISTANCE  
DOES NOT LOAD CABLE  
EVEN WHEN POWER IS OFF  
R
=
G2  
(5G – 1)  
100 1k  
10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
BNC INPUTS  
TRIM CMRR WITH R  
G1  
1395/6/7 TA01  
1395/6/7 TA02  
139567fc  
1
LT1395/LT1396/LT1397  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ........................... 12.6V  
Input Current (Note 2) ....................................... ±10mA  
Output Current................................................. ±100mA  
Differential Input Voltage (Note 2) ........................... ±5V  
Output Short-Circuit Duration (Note 3)........ Continuous  
Operating Temperature Range (Note 4)  
Specified Temperature Range (Note 5)  
LT1395C/LT1396C/LT1397C .................. 0°C to 70°C  
LT1397H ......................................... 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Storage Temperature Range  
(DD Package) ................................... 65°C to 125°C  
Junction Temperature (Note 6)............................ 150°C  
Junction Temperature (DD Package) (Note 6) ..... 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1395C/LT1396C/LT1397C ............. 40°C to 85°C  
LT1397H ......................................... 40°C to 125°C  
U
U
U
PI CO FIGURATIO  
TOP VIEW  
1
2
3
4
5
6
7
8
OUT D  
–IN D  
+IN D  
16  
15  
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
TOP VIEW  
+
V
V
+
12 +IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
+IN C  
–IN C  
OUT C  
NC  
+IN B  
–IN B  
OUT B  
NC  
+
+
V
11 V  
OUT B  
–IN B  
+IN B  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
V
OUT C  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
DE14 PACKAGE  
14-LEAD (4mm × 3mm) PLASTIC DFN  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 43°C/W, θJC = 4.3°C/W  
TJMAX = 150°C, θJA = 135°C/W  
TJMAX = 125°C, θJA = 160°C/W (NOTE 3)  
UNDERSIDE METAL CONNECTED TO V–  
(PCB CONNECTION OPTIONAL)  
EXPOSED PAD (PIN 15) IS V–  
MUST BE SOLDERED TO PCB  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
+
+
TOP VIEW  
+
+
V
V
TOP VIEW  
OUT 1  
5 V  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
+
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
7 OUT B  
6
5
+
V 2  
+
–IN B  
+IN B  
+
+IN 3  
4 –IN  
8
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S PACKAGE  
14-LEAD PLASTIC SO  
T
JMAX = 150°C, θJA = 100°C/W  
TJMAX = 150°C, θJA = 250°C/W  
TJMAX = 150°C, θJA = 250°C/W  
139567fc  
2
LT1395/LT1396/LT1397  
U
U
U
PI CO FIGURATIO  
TOP VIEW  
TOP VIEW  
+
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
V
OUT B  
–IN B  
+IN B  
+
+
OUT 1  
6 V  
OUT  
NC  
V
2
5 EN  
4 –IN  
+
+
V
+IN 3  
V
S8 PACKAGE (1395)  
8-LEAD PLASTIC SO  
S8 PACKAGE (1396)  
8-LEAD PLASTIC SO  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 150°C, θJA = 150°C/W  
TJMAX = 150°C, θJA = 230°C/W  
TJMAX = 150°C, θJA = 150°C/W  
U
W
U
ORDER I FOR ATIO  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT1396CDD#PBF  
LT1397CDE#PBF  
LT1397HDE#PBF  
LT1397CGN#PBF  
LT1396CMS8#PBF  
LT1397CS#PBF  
LT1395CS5#PBF  
LT1395CS6#PBF  
LT1395CS8#PBF  
LT1396CS8#PBF  
LT1396CDD#TRPBF  
LT1397CDE#TRPBF  
LT1397HDE#TRPBF  
LT1397CGN#TRPBF  
LT1396CMS8#TRPBF  
LT1397CS#TRPBF  
LT1395CS5#TRPBF  
LT1395CS6#TRPBF  
LT1395CS8#TRPBF  
LT1396CS8#TRPBF  
LABD  
1397  
1397  
8-Lead (3mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic SSOP  
8-Lead Plastic MSOP  
14-Lead Plastic SO  
5-Lead Plastic SOT-23  
6-Lead Plastic SOT-23  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
1397  
LTDY  
1397CS  
LTMA  
LTMF  
1395  
1396  
LEAD BASED FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT1396CDD  
LT1397CDE  
LT1397HDE  
LT1397CGN  
LT1396CMS8  
LT1397CS  
LT1395CS5  
LT1395CS6  
LT1395CS8  
LT1396CS8  
LT1396CDD#TR  
LT1397CDE#TR  
LT1397HDE#TR  
LT1397CGN#TR  
LT1396CMS8#TR  
LT1397CS#TR  
LT1395CS5#TR  
LT1395CS6#TR  
LT1395CS8#TR  
LT1396CS8#TR  
LABD  
1397  
1397  
8-Lead (3mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic SSOP  
8-Lead Plastic MSOP  
14-Lead Plastic SO  
5-Lead Plastic SOT-23  
6-Lead Plastic SOT-23  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
1397  
LTDY  
1397CS  
LTMA  
LTMF  
1395  
1396  
Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on nonstandard lead based finish parts.  
*Temperature grades are identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
139567fc  
3
LT1395/LT1396/LT1397  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, VS = ±5V, EN = 0.5V, pulse tested, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
1
± 10  
± 12  
mV  
mV  
OS  
V /T Input Offset Voltage Drift  
15  
10  
µV/°C  
OS  
+
I
Noninverting Input Current  
± 25  
± 30  
µA  
µA  
IN  
I
Inverting Input Current  
10  
± 50  
± 60  
µA  
µA  
IN  
e
Input Noise Voltage Density  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
4.5  
6
nV/Hz  
pA/Hz  
pA/Hz  
MΩ  
n
F
G
S
+i  
–i  
Noninverting Input Noise Current Density f = 1kHz  
n
Inverting Input Noise Current Density  
Input Resistance  
f = 1kHz  
= ±3.5V  
25  
1
n
R
V
0.3  
3.5  
IN  
IN  
C
V
Input Capacitance  
2.0  
pF  
IN  
Input Voltage Range, High  
V = ±5V  
4.0  
4.0  
V
V
INH  
S
V = 5V, 0V  
S
V
V
Input Voltage Range, Low  
Output Voltage Swing, High  
V = ±5V  
4.0  
1.0  
3.5  
V
V
INL  
S
V = 5V, 0V  
S
V = ±5V  
3.9  
3.7  
4.2  
V
V
V
OUTH  
S
V = ±5V  
S
V = 5V, 0V  
4.2  
S
V
V
V
Output Voltage Swing, Low  
Output Voltage Swing, High  
Output Voltage Swing, Low  
Common Mode Rejection Ratio  
V = ±5V  
4.2  
3.9  
3.7  
V
V
V
OUTL  
OUTH  
OUTL  
S
V = ±5V  
S
V = 5V, 0V  
0.8  
3.6  
S
V = ±5V, R = 150Ω  
3.4  
3.2  
V
V
V
S
L
V = ±5V, R = 150Ω  
S
L
V = 5V, 0V; R = 150Ω  
3.6  
S
L
V = ±5V, R = 150Ω  
3.6  
3.4  
3.2  
V
V
V
S
L
V = ±5V, R = 150Ω  
S
L
V = 5V, 0V; R = 150Ω  
0.6  
52  
10  
S
L
CMRR  
–I  
V
= ±3.5V  
42  
56  
dB  
CM  
Inverting Input Current  
Common Mode Rejection  
V
V
= ±3.5V  
= ±3.5V  
16  
22  
µA/V  
µA/V  
CMRR  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±5V  
S
70  
1
dB  
+I  
Noninverting Input Current  
Power Supply Rejection  
V = ±2V to ±5V  
S
2
3
µA/V  
µA/V  
PSRR  
–I  
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±5V  
S
2
7
µA/V  
PSRR  
A
Large-Signal Voltage Gain  
V
V
= ±2V, R = 150Ω  
50  
40  
80  
65  
dB  
kΩ  
mA  
mA  
µA  
V
OUT  
OUT  
L
R
Transimpedance, V /I  
= ±2V, R = 150Ω  
100  
OL  
OUT IN  
L
I
I
Maximum Output Current  
Supply Current per Amplifier  
Disable Supply Current  
R = 0Ω  
OUT  
S
L
V
= 0V  
4.6  
0.1  
6.5  
OUT  
EN Pin Voltage = 4.5V, R = 150Ω  
(LT1395CS6 only)  
100  
L
I
Enable Pin Current  
Slew Rate (Note 7)  
(LT1395CS6 only)  
30  
110  
200  
µA  
µA  
EN  
SR  
A = 1, R = 150Ω  
500  
800  
V/µs  
V
L
139567fc  
4
LT1395/LT1396/LT1397  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, VS = ±5V, pulse tested, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
R = R = 255, R = 100, (LT1395CS6 only)  
MIN  
TYP  
30  
MAX  
75  
UNITS  
ns  
t
t
Turn-On Delay Time (Note 9)  
Turn-Off Delay Time (Note 9)  
ON  
F
G
L
R = R = 255, R = 100, (LT1395CS6 only)  
40  
100  
ns  
OFF  
F
G
L
3dB BW –3dB Bandwidth  
A = 1, R = 374, R = 100Ω  
400  
350  
MHz  
MHz  
V
F
L
A = 2, R = R = 255, R = 100Ω  
V
F
G
L
0.1dB BW 0.1dB Bandwidth  
A = 1, R = 374, R = 100Ω  
100  
100  
MHz  
MHz  
V
F
L
A = 2, R = R = 255, R = 100Ω  
V
F
G
L
t , t  
Small-Signal Rise and Fall Time  
Propagation Delay  
R = R = 255, R = 100, V  
= 1V  
= 1V  
= 1V  
1.3  
2.5  
ns  
ns  
r
f
F
G
L
OUT  
OUT  
OUT  
P-P  
P-P  
P-P  
t
R = R = 255, R = 100, V  
F G L  
PD  
os  
Small-Signal Overshoot  
Settling Time  
R = R = 255, R = 100, V  
10  
%
F
G
L
t
0.1%, A = 1, R = R = 280, R = 150Ω  
25  
ns  
S
V
F
G
L
dG  
dP  
Differential Gain (Note 8)  
Differential Phase (Note 8)  
R = R = 255, R = 150Ω  
0.02  
0.04  
%
F
G
L
R = R = 255, R = 150Ω  
DEG  
F
G
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: This parameter is guaranteed to meet specified performance  
through design and characterization. It has not been tested.  
Note 6: TJ is calculated from the ambient temperature TA and the  
power dissipation PD according to the following formula:  
LT1395CS5: TJ = TA + (PD • 250°C/W)  
LT1396CS6: TJ = TA + (PD • 230°C/W)  
LT1395CS8: TJ = TA + (PD • 150°C/W)  
LT1396CS8: TJ = TA + (PD • 150°C/W)  
LT1396CMS8: TJ = TA + (PD • 250°C/W)  
LT1396CDD: TJ = TA + (PD • 160°C/W)  
LT1397CS14: TJ = TA + (PD • 100°C/W)  
LT1397CGN16: TJ = TA + (PD • 135°C/W)  
LT1397CDE: TJ = TA + (PD • 43°C/W)  
Note 3: A heat sink may be required depending on the power supply  
voltage and how many amplifiers have their outputs short circuited.  
The θ specified for the DD package is with minimal PCB heat spreading  
JA  
metal. Using expanded metal area on all layers of a board reduces  
this value.  
Note 4: The LT1395C/LT1396C/LT1397C are guaranteed functional over  
the operating temperature range of 40°C to 85°C. The LT1397H is  
guaranteed functional over the operating temperature range of –40°C  
to 125°C.  
Note 5: The LT1395C/LT1396C/LT1397C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1395C/LT1396C/LT1397C are  
designed, characterized and expected to meet specified performance from  
40°C and 85°C but are not tested or QA sampled at these temperatures.  
The LT1397H is guaranteed to meet specified performance from –40°C to  
125°C. For guaranteed I-grade parts, consult the factory.  
LT1397HDE: TJ = TA + (PD • 43°C/W)  
Note 7: Slew rate is measured at ± 2V on a ± 3V output signal.  
Note 8: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°.  
Ten identical amplifier stages were cascaded giving an effective  
resolution of 0.01% and 0.01°.  
Note 9: For LT1395CS6, turn-on delay time (tON) is measured from  
control input to appearance of 1V(50%) at the output, for VIN = 1V and  
AV = 2. Likewise, turn-off delay time (tOFF) is measured from control  
input to appearance of 1V(50%) on the output for VIN = 1V and  
AV = 2. This specification is guaranteed by design and characterization.  
139567fc  
5
LT1395/LT1396/LT1397  
W U  
TYPICAL AC PERFOR A CE  
SMALL SIGNAL  
3dB BW (MHz)  
SMALL SIGNAL  
0.1dB BW (MHz)  
SMALL SIGNAL  
PEAKING (dB)  
V (V)  
S
A
R ()  
L
R ()  
F
R ()  
G
V
±5  
±5  
±5  
±5  
±5  
±5  
±5  
1
100  
100  
100  
500  
500  
500  
500  
374  
255  
280  
221  
100  
90.9  
90.9  
255  
400  
350  
350  
300  
210  
65  
100  
100  
100  
100  
50  
0.1  
0.1  
0.1  
0.1  
0.0  
0.0  
0.1  
2
–1  
3
280  
110  
5
24.9  
10  
10  
10  
10  
10||100pF  
100  
50  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Closed-Loop Gain vs Frequency  
(AV = 1)  
Closed-Loop Gain vs Frequency  
(AV = 2)  
Closed-Loop Gain vs Frequency  
(AV = 1)  
0
–2  
–4  
–6  
0
–2  
–4  
–6  
6
4
2
0
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
1395/6/7 G01  
1M  
VS = ± 5V  
IN = –10dBm  
RF = RG = 255  
RL = 100Ω  
10M  
FREQUENCY (Hz)  
100M  
1G  
1395/6/7 G02  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
1395/6/7 G03  
VS = ± 5V  
VS = ±5V  
V
V
IN = 10dBm  
VIN = –10dBm  
RF = 374Ω  
RL = 100Ω  
RF = RG = 280Ω  
R
L = 100Ω  
Large-Signal Transient Response  
(AV = 2)  
Large-Signal Transient Response  
(AV = 1)  
Large-Signal Transient Response  
(AV = 1)  
1395/6/7 G04  
1395/6/7 G05  
1395/6/7 G06  
VS = ± 5V  
TIME (10ns/DIV)  
VS = ±5V  
TIME (10ns/DIV)  
VS = ±5V  
TIME (10ns/DIV)  
V
IN = ±1.25V  
VIN = ±2.5V  
RF = RG = 280Ω  
VIN = ± 2.5V  
R
F = 374Ω  
RF = RG = 255Ω  
RL = 100Ω  
RL = 100Ω  
RL = 100Ω  
139567fc  
6
LT1395/LT1396/LT1397  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Maximum Undistorted Output  
Voltage vs Frequency  
PSRR vs Frequency  
30  
40  
80  
8
7
6
5
4
3
2
T
R
R
V
V
= 25°C  
G
A
F
L
S
= R = 255  
70  
60  
= 100Ω  
= ± 5V  
A
= +1  
A = +2  
V
50  
V
= 2VPP  
OUT  
+PSRR  
PSRR  
60  
50  
40  
30  
70  
HD3  
HD2  
80  
T
= 25°C  
A
F
F
L
90  
20  
10  
0
T
= 25°C  
R = 374(A = 1)  
A
F
L
V
V
R
R
A
= R = 255  
R = R = 255(A = 2)  
R
V
G
G
V
100  
110  
= 100Ω  
= 100Ω  
= +2  
= ± 5V  
S
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
1395/6/7 G07  
1395/6/7 G09  
1395/6/7 G08  
LT1395CS6 Output Impedance  
(Disabled) vs Frequency  
Input Voltage Noise and Current  
Noise vs Frequency  
Output Impedance vs Frequency  
1000  
100  
100k  
10k  
1k  
100  
10  
R
A
= 374Ω  
R
R
A
= R = 255Ω  
F
V
S
F
L
V
S
G
= +1  
= 50Ω  
= +2  
V
= ± 5V  
V
= ± 5V  
1
–i  
n
+i  
n
10  
1
0.1  
0.01  
e
n
100  
10 30 100 300 1k 3k 10k 30k 100k  
FREQUENCY (Hz)  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
1395/6/7 G12  
1395/6/7 G11  
1395/6/7 G10  
Capacitive Load  
vs Output Series Resistor  
Maximum Capacitive Load  
vs Feedback Resistor  
Supply Current vs Supply Voltage  
1000  
100  
10  
40  
30  
20  
10  
0
6
5
R = R = 255Ω  
F
S
G
V
= ± 5V  
OVERSHOOT < 2%  
EN = V  
4
EN = 0V,  
ALL NON-DISABLE DEVICES  
3
2
R = R  
F
G
A
V
= +2  
1
0
V
S
= ± 5V  
PEAKING 5dB  
1
300  
900  
1500  
2100  
2700  
3300  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
0
1
2
3
4
5
6
7
8
9
FEEDBACK RESISTANCE ()  
SUPPLY VOLTAGE (± V)  
1395/6/7 G13  
1395/6/7 G14  
1395/6/7 G15  
139567fc  
7
LT1395/LT1396/LT1397  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Positive Supply Current per  
Amplifier vs Temperature  
LT1395CS6 Enable Pin Current  
vs Temperature  
Output Voltage Swing  
vs Temperature  
5
4
5.00  
10  
20  
V
= ± 5V  
V
= ± 5V  
S
EN = 5V  
S
4.75  
4.50  
R
L
= 100k  
R = 150  
L
3
EN = 0V  
EN = 0V,  
ALL NON-DISABLE DEVICES  
30  
40  
50  
60  
70  
2
4.25  
4.00  
3.75  
3.50  
3.25  
1
V
= ± 5V  
0
S
EN = –5V  
–1  
–2  
–3  
–4  
–5  
R
= 100k  
R
L
= 150Ω  
L
3.00  
80  
–25  
0
50  
75 100 125  
–50  
25  
–50  
0
25  
50  
75 100 125  
–25  
50  
100 125  
50 25  
0
25  
75  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1395/6/7 G18  
1395/6/7 G16  
1395/6/7 G17  
Input Offset Voltage  
vs Temperature  
Input Bias Currents  
vs Temperature  
15  
12  
9
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
S
= ± 5V  
V
= ± 5V  
S
+
I
B
I
B
6
3
0.5  
–1.0  
0
25  
0
50  
75 100 125  
–50 –25  
0
25  
50  
75  
100 125  
50  
25  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1395/6/7 G19  
1395/6/7 G20  
Square Wave Response  
Propagation Delay  
Rise Time and Overshoot  
OS = 10%  
1395/6/7 G21  
RL = 100  
RF = RG = 255Ω  
f = 10MHz  
TIME (10ns/DIV)  
1395/6/7 G23  
tr = 1.3ns  
1395/6/7 G22  
tPD = 2.5ns  
A
V = +2  
L = 100Ω  
RF = RG = 255Ω  
TIME (500ps/DIV)  
AV = +2  
RL = 100Ω  
RF = RG = 255Ω  
TIME (500ps/DIV)  
R
139567fc  
8
LT1395/LT1396/LT1397  
U
U
U
PIN FUNCTIONS  
LT1395CS5  
LT1397CS, LT1397CDE, LT1397HDE  
OUT (Pin 1): Output.  
OUT A (Pin 1): A Channel Output.  
V(Pin 2): Negative Supply Voltage, Usually –5V.  
IN A (Pin 2): Inverting Input of A Channel Amplifier.  
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.  
V+ (Pin 4): Positive Supply Voltage, Usually 5V.  
+IN B (Pin 5): Noninverting Input of B Channel Amplifier.  
IN B (Pin 6): Inverting Input of B Channel Amplifier.  
OUT B (Pin 7): B Channel Output.  
+IN (Pin 3): Noninverting Input.  
–IN (Pin 4): Inverting Input.  
V+ (Pin 5): Positive Supply Voltage, Usually 5V.  
LT1395CS6  
OUT (Pin 1): Output.  
OUT C (Pin 8): C Channel Output.  
V(Pin 2): Negative Supply Voltage, Usually –5V.  
+IN (Pin 3): Noninverting Input.  
–IN (Pin 4): Inverting Input.  
IN C (Pin 9): Inverting Input of C Channel Amplifier.  
+IN C (Pin 10):Noninverting Input of C Channel Amplifier.  
V(Pin 11): Negative Supply Voltage, Usually 5V.  
+IND(Pin12):NoninvertingInputofDChannelAmplifier.  
IN D (Pin 13): Inverting Input of D Channel Amplifier.  
OUT D (Pin 14): D Channel Output.  
EN (Pin 5): Enable Pin. Logic low to enable.  
V+ (Pin 6): Positive Supply Voltage, Usually 5V.  
LT1395CS8  
NC (Pin 1): No Connection.  
LT1397CGN  
IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
V(Pin 4): Negative Supply Voltage, Usually 5V.  
NC (Pin 5): No Connection.  
OUT A (Pin 1): A Channel Output.  
IN A (Pin 2): Inverting Input of A Channel Amplifier.  
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.  
V+ (Pin 4): Positive Supply Voltage, Usually 5V.  
+IN B (Pin 5): Noninverting Input of B Channel Amplifier.  
IN B (Pin 6): Inverting Input of B Channel Amplifier.  
OUT B (Pin 7): B Channel Output.  
OUT (Pin 6): Output.  
V+ (Pin 7): Positive Supply Voltage, Usually 5V.  
NC (Pin 8): No Connection.  
NC (Pin 8): No Connection.  
LT1396CMS8, LT1396CS8, LT1396CDD  
NC (Pin 9): No Connection.  
OUT A (Pin 1): A Channel Output.  
OUT C (Pin 10): C Channel Output.  
IN A (Pin 2): Inverting Input of A Channel Amplifier.  
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.  
V(Pin 4): Negative Supply Voltage, Usually 5V.  
+IN B (Pin 5): Noninverting Input of B Channel Amplifier.  
IN B (Pin 6): Inverting Input of B Channel Amplifier.  
OUT B (Pin 7): B Channel Output.  
IN C (Pin 11): Inverting Input of C Channel Amplifier.  
+IN C (Pin 12):Noninverting Input of C Channel Amplifier.  
V(Pin 13): Negative Supply Voltage, Usually 5V.  
+IND(Pin14):NoninvertingInputofDChannelAmplifier.  
IN D (Pin 15): Inverting Input of D Channel Amplifier.  
V+ (Pin 8): Positive Supply Voltage, Usually 5V.  
OUT D (Pin 16): D Channel Output.  
139567fc  
9
LT1395/LT1396/LT1397  
O U  
W U  
PPLICATI  
S I FOR ATIO  
A
Feedback Resistor Selection  
Slew Rate  
Thesmall-signalbandwidthoftheLT1395/LT1396/LT1397  
is set by the external feedback resistors and the internal  
junction capacitors. As a result, the bandwidth is a func-  
tion of the supply voltage, the value of the feedback  
resistor, the closed-loop gain and the load resistor. The  
LT1395/LT1396/LT1397 have been optimized for ±5V  
supply operation and have a 3dB bandwidth of 400MHz  
at a gain of 1 and 350MHz at a gain of 2. Please refer to  
the resistor selection guide in the Typical AC Perfor-  
mance table.  
Unlike a traditional voltage feedback op amp, the slew rate  
of a current feedback amplifier is not independent of the  
amplifier gain configuration. In a current feedback ampli-  
fier,boththeinputstageandtheoutputstagehaveslewrate  
limitations.Intheinvertingmode,andforgainsof2ormore  
inthenoninvertingmode,thesignalamplitudebetweenthe  
input pins is small and the overall slew rate is that of the  
outputstage.Forgainslessthan2inthenoninvertingmode,  
the overall slew rate is limited by the input stage.  
The input slew rate of the LT1395/LT1396/LT1397 is  
approximately600V/µsandissetbyinternalcurrentsand  
capacitances. The output slew rate is set by the value of  
the feedback resistor and internal capacitance. At a gain  
of 2 with 255feedback and gain resistors and ±5V  
supplies, theoutputslewrateistypically800V/µs. Larger  
feedback resistors will reduce the slew rate as will lower  
supply voltages.  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response).  
Enable/ Disable  
Capacitive Loads  
The LT1395CS6 has a unique high impedance, zero  
supply current mode which is controlled by the EN pin.  
The LT1395CS6 is designed to operate with CMOS logic;  
it draws virtually zero current when the EN pin is high. To  
activate the amplifier, its EN pin is normally pulled to a  
logiclow. However, supplycurrentwillvaryasthevoltage  
between the V+ supply and EN is varied. As seen in Figure  
1, +IS does vary with (V+ – VEN), particularly when the  
voltage difference is less than 3V. For normal operation,  
The LT1395/LT1396/LT1397 can drive many capacitive  
loads directly when the proper value of feedback resistor  
is used. The required value for the feedback resistor will  
increaseasloadcapacitanceincreasesandasclosed-loop  
gaindecreases. Alternatively, asmallresistor(5to35)  
canbeputinserieswiththeoutputtoisolatethecapacitive  
loadfromtheamplifieroutput. Thishastheadvantagethat  
the amplifier bandwidth is only reduced when the capaci-  
tive load is present. The disadvantage is that the gain is a  
function of the load resistance. See the Typical Perfor-  
mance Characteristics curves.  
5.0  
T
= 25°C  
A
+
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
V
= 0V  
Power Supplies  
The LT1395/LT1396/LT1397 will operate from single or  
split supplies from ± 2V (4V total) to ±6V (12V total). It  
is not necessary to use equal value split supplies, how-  
ever the offset voltage and inverting input bias current  
will change. The offset voltage changes about 2.5mV per  
volt of supply mismatch. The inverting bias current will  
typicallychangeabout10µApervoltofsupplymismatch.  
V
= 5V  
0
2
3
+
4
5
6
7
1
V
– V (V)  
EN  
1395/6/7 F01  
Figure 1. +IS vs (V+ – VEN  
)
139567fc  
10  
LT1395/LT1396/LT1397  
O U  
S
W U  
I FOR ATIO  
PPLICATI  
A
Differential Input Signal Swing  
OUTPUT  
To avoid any breakdown condition on the input transis-  
tors, thedifferentialinputswingmustbelimitedto±5V. In  
normal operation, the differential voltage between the  
input pins is small, so the ±5V limit is not an issue.  
Buffered RGB to Color-Difference Matrix  
EN  
An LT1397 can be used to create buffered color-differ-  
ence signals from RGB inputs (Figure 4). In this applica-  
tion, the R input arrives via 75coax. It is routed to the  
noninverting input of LT1397 amplifier A1 and to a 845Ω  
resistor R8. There is also an 82.5termination resistor  
R11, which yields a 75input impedance at the R input  
when considered in parallel with R8. R8 connects to the  
inverting input of a second LT1397 amplifier (A2), which  
also sums the weighted G and B inputs to create a  
–0.5 • Y output. LT1397 amplifier A3 then takes the  
–0.5 • Y output and amplifies it by a gain of –2, resulting  
in the Y output. Amplifier A1 is configured in a noninvert-  
ing gain of 2 with the bottom of the gain resistor R2 tied  
to the Y output. The output of amplifier A1 thus results in  
the color-difference output R-Y.  
1395/6/7 F02  
VS = ±5V  
VIN = 1V  
R
F = 255Ω  
RL = 100Ω  
RG = 255Ω  
Figure 2. Amplifier Enable Time, AV = 2  
OUTPUT  
EN  
1395/6/7 F03  
VS = ± 5V RF = 255Ω  
IN = 1V G = 255Ω  
RL = 100Ω  
The B input is similar to the R input. It arrives via 75Ω  
coax, and is routed to the noninverting input of LT1397  
amplifier A4, and to a 2320resistor R10. There is also  
a 76.8termination resistor R13, which yields a 75Ω  
V
R
Figure 3. Amplifier Disable Time, AV = 2  
it is important to keep the EN pin at least 3V below the V+  
supply. If a V+ of less than 3V is desired, and the amplifier  
will remain enabled at all times, then the EN pin should be  
tied to the Vsupply. The enable pin current is approxi-  
mately 30µA when activated. If using CMOS open-drain  
logic, an external 1k pull-up resistor is recommended to  
ensure that the LT1395CS6 remains disabled in spite of  
any CMOS drain leakage currents.  
+
75  
R8  
A1  
SOURCES  
R-Y  
845Ω  
1/4 LT1397  
R
R1  
255Ω  
R11  
82.5Ω  
R9  
432Ω  
R7  
G
B
255Ω  
R12  
90.9Ω  
R10  
2320Ω  
R6  
127Ω  
R5  
R2  
255Ω  
255Ω  
R13  
76.8Ω  
A2  
1/4 LT1397  
+
A3  
Y
The enable/disable times are very fast when driven from  
standard 5V CMOS logic. The LT1395CS6 enables in  
about 30ns (50% point to 50% point) while operating on  
±5V supplies (Figure 2). Likewise, the disable time is  
approximately40ns(50%pointto50%point)(Figure3).  
1/4 LT1397  
+
R4  
255Ω  
R3  
255Ω  
ALL RESISTORS 1%  
±5V  
A4  
B-Y  
V
S
=
1/4 LT1397  
1395/6/7 F04  
+
Figure 4. Buffered RGB to Color-Difference Matrix  
139567fc  
11  
LT1395/LT1396/LT1397  
O U  
W U  
PPLICATI  
S I FOR ATIO  
A
input impedance when considered in parallel with R10.  
R10 also connects to the inverting input of amplifier A2,  
adding the B contribution to the Y signal as discussed  
above. Amplifier A4 is configured in a noninverting gain  
of 2 configuration with the bottom of the gain resistor R4  
tied to the Y output. The output of amplifier A4 thus  
results in the color-difference output B-Y.  
R8 and R9 are grounded. This results in a gain of 2.41 and  
a contribution at the output of A2 of 2Y. The R-Y input is  
amplified by A2 with the gain set by resistors R8 and R10,  
giving an amplification of –1.02. This results in a contri-  
bution at the output of A2 of 1.02Y – 1.02R. The B-Y input  
is amplified by A2 with the gain set by resistors R9 and  
R10, giving an amplification of 0.37. This results in a  
contribution at the output of A2 of 0.37Y – 0.37B.  
The G input also arrives via 75coax and adds its  
contributiontotheYsignalviaa432resistorR9, which  
is tied to the inverting input of amplifier A2. There is also  
a 90.9termination resistor R12, which yields a 75Ω  
termination when considered in parallel with R9. Using  
superposition, it is straightforward to determine the  
output of amplifier A2. Although inverted, it sums the R,  
G and B signals in the standard proportions of 0.3R,  
0.59G and 0.11B that are used to create the Y signal.  
Amplifier A3 then inverts and amplifies the signal by 2,  
resulting in the Y output.  
IfwenowsumthethreecontributionsattheoutputofA2,  
we get:  
A2OUT = 3.40Y – 1.02R – 0.37B  
It is important to remember though that Y is a weighted  
sum of R, G and B such that:  
Y = 0.3R + 0.59G + 0.11B  
If we substitute for Y at the output of A2 we then get:  
A2OUT = (1.02R – 1.02R) + 2G + (0.37B – 0.37B)  
= 2G  
Buffered Color-Difference to RGB Matrix  
Theback-terminationresistorR11thenhalvestheoutput  
of A2 resulting in the G output.  
An LT1395 combined with an LT1396 can be used to  
create buffered RGB outputs from color-difference sig-  
nals (Figure 5). The R output is a back-terminated 75Ω  
signal created using resistor R5 and amplifier A1 config-  
ured for a gain of +4 via resistors R3 and R4. The  
noninverting input of amplifier A1 is connected via 1k  
resistors R1 and R2 to the Y and R-Y inputs respectively,  
resulting in cancellation of the Y signal at the amplifier  
input. The remaining R signal is then amplified by A1.  
R1  
1k  
Y
R2  
R5  
+
1k  
75  
A1  
R-Y  
R
1/2 LT1396  
R3  
267Ω  
R4  
88.7Ω  
R6  
205Ω  
R11  
75Ω  
+
The B output is also a back-terminated 75signal  
created using resistor R16 and amplifier A3 configured  
foragainof+4viaresistorsR14andR15.Thenoninverting  
input of amplifier A3 is connected via 1k resistors R12  
and R13 to the Y and B-Y inputs respectively, resulting in  
cancellation of the Y signal at the amplifier input. The  
remaining B signal is then amplified by A3.  
R7  
1k  
A2  
LT1395  
G
R10  
267Ω  
R8  
261Ω  
R9  
698Ω  
B-Y  
R12  
1k  
R16  
75Ω  
+
A3  
R13  
1k  
B
1/2 LT1396  
R14  
The G output is the most complicated of the three. It is a  
weighted sum of the Y, R-Y and B-Y inputs. The Y input  
is attenuated via resistors R6 and R7 such that amplifier  
A2’s noninverting input sees 0.83Y. Using superposition,  
we can calculate the positive gain of A2 by assuming that  
267Ω  
ALL RESISTORS 1%  
= ± 5V  
V
S
R15  
88.7Ω  
1395/6/7 F05  
Figure 5. Buffered Color-Difference to RGB Matrix  
139567fc  
12  
LT1395/LT1396/LT1397  
W
W
SI PLIFIED SCHE ATIC (each amplifier)  
+
V
–IN  
OUT  
+IN  
EN  
(LT1395CS6 ONLY)  
FOR ALL  
NON-DISABLE  
DEVICES  
V
1395/6/7 SS  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
139567fc  
13  
LT1395/LT1396/LT1397  
U
PACKAGE DESCRIPTIO  
DE Package  
14-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1708 Rev B)  
R = 0.115  
TYP  
0.40 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
8
14  
R = 0.05  
TYP  
0.70 ±0.05  
3.60  
±0.05  
1.70 ±0.05  
(2 SIDES)  
1.70 ± 0.05  
PIN 1  
2.20  
(2 SIDES)  
NOTCH  
PACKAGE  
OUTLINE  
±0.05  
3.00 ±0.10  
R = 0.20 OR  
(2 SIDES)  
0.35 × 45°  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DE14) DFN 0905 REV A  
7
1
0.25 ± 0.05  
0.75 ±0.05  
0.25 ± 0.05  
0.50  
BSC  
0.200 REF  
0.50 BSC  
3.30 ±0.05  
(2 SIDES)  
3.30 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF  
VERSION (WGED-3) IN JEDEC PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
139567fc  
14  
LT1395/LT1396/LT1397  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
0.52  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
(.0205)  
REF  
(NOTE 3)  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 ± 0.076  
(.009 – .015)  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
139567fc  
15  
LT1395/LT1396/LT1397  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1633)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
139567fc  
16  
LT1395/LT1396/LT1397  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1634)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
139567fc  
17  
LT1395/LT1396/LT1397  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
139567fc  
18  
LT1395/LT1396/LT1397  
U
PACKAGE DESCRIPTIO  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 ±.005  
(8.560 – 8.738)  
.050 BSC  
N
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
7
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
139567fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
19  
LT1395/LT1396/LT1397  
U
O
TYPICAL APPLICATI  
Single Supply RGB Video Amplifier  
input. Assuming a 75source impedance for the signal  
driving VIN, the Thevenin equivalent signal arriving at  
A1’s positive input is 3V + 0.4VIN, with a source imped-  
ance of 714. The combination of these two inputs gives  
anoutputatthecathodeofD2of2•VIN withnoadditional  
DC offset. The 75back termination resistor R9 halves  
the signal again such that VOUT equals a buffered version  
of VIN.  
The LT1395 can be used with a single supply voltage of  
6V or more to drive ground-referenced RGB video. In  
Figure6,two1N4148diodesD1andD2havebeenplaced  
in series with the output of the LT1395 amplifier A1 but  
within the feedback loop formed by resistor R8. These  
diodes effectively level-shift A1’s output downward by 2  
diodes, allowing the circuit output to swing to ground.  
It is important to note that the 4.7µF capacitor C1 has  
been added to provide enough current to maintain the  
voltage drop across diodes D1 and D2 when the circuit  
outputdropslowenoughthatthediodesmightotherwise  
turn off. This means that this circuit works fine for  
continuousvideoinput, butwillrequirethatC1chargeup  
after a period of inactivity at the input.  
Amplifier A1 is used in a positive gain configuration. The  
feedbackresistorR8is255.Thegainresistoriscreated  
from the parallel combination of R6 and R7, giving a  
Thevenin equivalent 63.5connected to 3.75V. This  
gives an AC gain of +5 from the noninverting input of  
amplifier A1 to the cathode of D2. However, the video  
input is also attenuated before arriving at A1’s positive  
5V  
C1  
4.7µF  
V
S
R1  
R6  
84.5  
6V TO 12V  
1000Ω  
D1  
D2  
R9  
75Ω  
+
V
OUT  
1N4148 1N4148  
A1  
LT1395  
R2  
1300Ω  
R3  
160Ω  
R8  
255Ω  
V
IN  
1395/6/7 TA03  
R4  
75Ω  
R7  
255Ω  
R5  
2.32Ω  
Figure 6. Single Supply RGB Video Amplifier (1 of 4 Channels)  
RELATED PARTS  
PART NUMBER  
LT1227/LT1229/LT1230  
LT1252/LT1253/LT1254  
LT1363/LT1364/LT1365  
LT1398/LT1399  
LT1675  
DESCRIPTION  
COMMENTS  
140MHz Single/Dual/Quad Current Feedback Amplifier 1100V/µs Slew Rate, Single Adds Shutdown Pin  
Low Cost Video Amplifiers  
Single, Dual and Quad 100MHz Current Feedback Amplifiers  
1000V/µs Slew Rate, Voltage Feedback  
70MHz Single/Dual/Quad Op Amps  
Dual/Triple Current Feedback Amplifiers  
Triple 2:1 Buffered Video Multiplexer  
Low Cost Triple Current Feedback Amplifiers  
300MHz Bandwidth, 0.1dB Flatness > 150MHz with Shutdown  
2.5ns Switching Time, 250MHz Bandwidth  
LT6559  
300MHz Bandwidth, Specified at +5V and ±5V, 3mm × 3mm  
QFN Package  
139567fc  
LT 0207 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 1999  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY