LTM2883CY-3I#PBF [Linear]

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C;
LTM2883CY-3I#PBF
型号: LTM2883CY-3I#PBF
厂家: Linear    Linear
描述:

LTM2883 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Adjustable ±12.5V and 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C

接口集成电路
文件: 总36页 (文件大小:1533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2883  
2
SPI/Digital or I C µModule  
Isolator with Adjustable 12.5V  
and 5V Regulated Power  
DESCRIPTION  
FEATURES  
n
2500V  
for One Minute per UL1577  
The LTM®2883 is a complete galvanic 6-channel digital  
µModule® (micromodule)isolator.Noexternalcomponents  
are required. A single 3.3V or 5V supply powers both  
sides of the interface through an integrated, isolated DC/  
DC converter. A logic supply pin allows easy interfacing  
withdifferentlogiclevelsfrom1.62Vto5.5V, independent  
of the main supply.  
RMS  
UL Recognized  
File #E151738  
®
n
Isolated Adjustable DC Power:  
3V to 5V at Up to 30mA  
12ꢀ5V at Up to 20mA  
No External Components Required  
n
n
n
n
2
SPI (LTM2883-S) or I C (LTM2883-I) Options  
High Common Mode Transient Immunity: 30kV/μs  
High Speed Operation:  
2
Available options are compliant with SPI and I C (master  
mode only) specifications.  
10MHz Digital Isolation  
The isolated side includes 12.5V and 5V nominal power  
supplies, each capable of providing more than 20mA of  
loadcurrent.Eachsupplymaybeadjustedfromitsnominal  
value using a single external resistor.  
4MHz/8MHz SPI Isolation  
2
400kHz I C Isolation  
n
n
n
n
n
n
3.3V (LTM2883-3) or 5V (LTM2883-5) Operation  
1.62V to 5.5V Logic Supply  
10kV ESD HBM Across the Isolation Barrier  
Coupled inductors and an isolation power transformer  
Maximum Continuous Working Voltage: 560V  
Low Current Shutdown Mode (<10µA)  
Low Profile (15mm × 11.25mm × 3.42mm)  
BGA Package  
PEAK  
provide 2500V  
of isolation between the input and out-  
RMS  
put logic interface. This device is ideal for systems where  
the ground loop is broken, allowing for a large common  
mode voltage range. Communication is uninterrupted for  
common mode transients greater than 30kV/μs.  
APPLICATIONS  
All registered trademarks and trademarks are the property of their respective owners.  
2
n
Isolated SPI or I C Interfaces  
n
Industrial Systems  
n
Test and Measurement Equipment  
n
Breaking Ground Loops  
TYPICAL APPLICATION  
Isolated 4MHz SPI Interface  
ꢈ2883ꢉꢊꢋ  
ꢍꢍ2  
LTM2883 Operating Through 35kV/µs CM Transient  
ꢊꢌ ꢁꢀ 2ꢂꢗꢁ  
ꢍꢍ  
ꢁꢌ  
ꢊꢌ  
ꢍꢍ2  
ꢇꢈꢉ  
ꢇꢄꢀ  
ꢇꢈꢉ2 ꢊ ꢇꢄꢀ2  
ꢃ2ꢘꢊꢌ ꢁꢀ 2ꢂꢗꢁ  
ꢓꢃ2ꢘꢊꢌ ꢁꢀ ꢃꢊꢗꢁ  
ꢁꢌ  
ꢅꢆ  
2ꢆꢃꢄꢅꢆ  
2ꢆꢃꢄꢅꢆ  
ꢁꢌ  
SDOE  
CS  
CS2  
ꢋꢏꢐ2  
ꢋꢍꢑ2  
ꢏꢐꢑꢐꢋꢅꢋꢅꢆꢐ  
ꢈꢒꢓꢓꢒꢔ ꢓꢒꢄꢐ  
ꢋꢏꢌꢔꢇꢅꢐꢔꢋꢇ  
CS  
ꢋꢏꢐ  
CS  
ꢋꢏꢐ  
ꢋꢏꢐ  
ꢋꢍꢑ  
ꢋꢍꢑ  
ꢋꢍꢑ  
ꢏꢅ2  
ꢋꢏꢅ  
ꢏꢅꢃ  
ꢐ2  
ꢋꢏꢅ2  
ꢐꢃ  
2ꢀꢀꢆꢃꢄꢅꢆ  
ꢋꢏꢅ  
ꢋꢏꢅ  
2883 ꢋꢌꢀꢍꢎ  
2ꢀꢁꢂꢃꢄꢅꢆ  
ꢎꢆꢏ  
ꢎꢆꢏ2  
2883 ꢀꢁꢂꢃꢄ  
2883fd  
1
For more information www.linear.com/LTM2883  
LTM2883  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V
to GND .................................................. –0.3V to 6V  
Logic Outputs  
CC  
V to GND .................................................... –0.3V to 6V  
L
DO1, DO2, SDO to GND ..............–0.3V to (V + 0.3V)  
L
+
V
, AV , AV to GND2 ........................... –0.3V to 6V  
O1, SCK2, SDI2, CS2,  
CC2  
CC2  
+
V to GND2 ................................................ –0.3V to 16V  
SCL2 to GND2 ........................–0.3V to (V  
+ 0.3V)  
CC2  
V , AV to GND2 .........................................0.3V to –16V  
Logic Inputs  
Operating Temperature Range (Note 4)  
LTM2883C.........................................0°C ≤ T ≤ 70°C  
A
A
DI1, SCK, SDI, CS, SCL, SDA, SDOE,  
LTM2883I ..................................... –40°C ≤ T ≤ 85°C  
ON to GND..................................–0.3V to (V + 0.3V)  
LTM2883H...................................–40°C ≤ T ≤ 105°C  
L
A
I1, I2, SDA2,  
SDO2 to GND2........................–0.3V to (V  
Maximum Internal Operating Temperature............ 125°C  
Storage Temperature Range .................. –40°C to 125°C  
Peak Body Reflow Temperature ............................ 245°C  
+ 0.3V)  
CC2  
PIN CONFIGURATION  
LTM2883-I  
LTM2883-S  
ꢖꢅꢌ ꢀꢊꢎꢗ  
ꢖꢅꢌ ꢀꢊꢎꢗ  
2
3
8
2
3
8
ꢄꢅ2 ꢄꢃꢁ ꢞꢁꢚ ꢞꢄꢇ ꢄꢊꢆ ꢂꢃꢄ ꢅꢃ  
ꢞꢄꢅ ꢄꢅ2 ꢞꢁꢍ ꢞꢄꢊ CS SDOE ꢅꢃ  
ꢄꢅꢆ  
ꢂꢃꢄ  
ꢄꢅꢆ  
ꢂꢃꢄ  
ꢁꢁ  
ꢁꢁ  
ꢊꢆ  
ꢂꢃꢄ2  
ꢇꢀ  
ꢇꢀ  
ꢇꢀ  
ꢊꢆ  
ꢂꢃꢄ2  
ꢇꢀ  
ꢇꢀ  
ꢇꢀ  
ꢁꢁ2  
ꢁꢁ2  
ꢊ2 ꢄꢃꢁ ꢞꢁꢚ2 ꢞꢄꢇ2 ꢅꢆ  
ꢋꢂꢇ ꢌꢇꢁꢍꢇꢂꢎ  
ꢞꢄꢅ2 ꢊ2 ꢞꢁꢍ2 ꢞꢄꢊ2 CS2  
ꢁꢁ2  
ꢁꢁ2  
ꢋꢂꢇ ꢌꢇꢁꢍꢇꢂꢎ  
32ꢏꢌꢊꢃ ꢐꢆꢑꢒꢒ × ꢆꢆꢓ2ꢑꢒꢒ × 3ꢓꢔ2ꢒꢒꢕ  
32ꢏꢌꢊꢃ ꢐꢆꢑꢒꢒ × ꢆꢆꢓ2ꢑꢒꢒ × 3ꢓꢔ2ꢒꢒꢕ  
T
= 125°C, θ = 30°C/W, θ = 15.7°C/W,  
T
= 125°C, θ = 30°C/W, θ  
= 15.7°C/W,  
JMAX  
JA  
JC(BOTTOM)  
JMAX  
JA  
JC(BOTTOM)  
θ
= 25°C/W, θ  
= 14.5°C/W  
θ
= 25°C/W, θ  
= 14.5°C/W  
JC(TOP)  
JBOARD  
JC(TOP)  
JBOARD  
θ VALUES DETERMINED PER JESD51-9, WEIGHT = 1.2g  
θ VALUES DETERMINED PER JESD51-9, WEIGHT = 1.2g  
2883fd  
2
For more information www.linear.com/LTM2883  
LTM2883  
ORDER INFORMATION  
http://wwwꢀlinearꢀcom/product/LTM2883#orderinfo  
PART NUMBER  
INPUT  
VOLTAGE  
PAD OR BALL  
FINISH  
PART MARKING  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE  
RANGE  
DEVICE  
FINISH CODE  
LTM2883CY-3S#PBF  
LTM2883IY-3S#PBF  
LTM2883HY-3S#PBF  
LTM2883CY-5S#PBF  
LTM2883IY-5S#PBF  
LTM2883HY-5S#PBF  
LTM2883CY-3I#PBF  
LTM2883IY-3I#PBF  
LTM2883HY-3I#PBF  
LTM2883CY-5I#PBF  
LTM2883IY-5I#PBF  
LTM2883HY-5I#PBF  
0°C TO 70°C  
–40°C TO 85°C  
–40°C TO 105°C  
0°C TO 70°C  
3V TO 3.6V  
4.5V TO 5.5V  
3V TO 3.6V  
LTM2883Y-3S  
LTM2883Y-5S  
LTM2883Y-3I  
LTM2883Y-5I  
–40°C TO 85°C  
–40°C TO 105°C  
0°C TO 70°C  
SAC305  
(RoHS)  
e1  
BGA  
4
–40°C TO 85°C  
–40°C TO 105°C  
0°C TO 70°C  
4.5V TO 5.5V  
–40°C TO 85°C  
–40°C TO 105°C  
• Device temperature grade is indicated by a label on the shipping  
container.  
Recommended BGA PCB Assembly and Manufacturing Procedures:  
www.linear.com/BGA-assy  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Terminal Finish Part Marking: www.linear.com/leadfree  
• BGA Package and Tray Drawings: www.linear.com/packaging  
This product is moisture sensitive. For more information, go to:  
www.linear.com/BGA-assy  
• This product is not recommended for second side reflow. For more  
information, go to: www.linear.com/BGA-assy  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
Input Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Supply Range  
Logic Supply Range  
Input Supply Current  
LTM2883-3  
LTM2883-5  
3
3.3  
5
3.6  
5.5  
V
V
CC  
4.5  
l
l
V
LTM2883-S  
LTM2883-I  
1.62  
3
5.5  
5.5  
V
V
L
5
l
l
l
I
I
ON = 0V  
0
25  
19  
10  
35  
28  
µA  
mA  
mA  
CC  
LTM2883-3, ON = V , No Load  
L
L
LTM2883-5, ON = V , No Load  
l
Logic Supply Current  
ON = 0V  
0
10  
10  
µA  
µA  
µA  
L
LTM2883-S, ON = V  
L
L
LTM2883-I, ON = V  
150  
2883fd  
3
For more information www.linear.com/LTM2883  
LTM2883  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
Output Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Regulated Output Voltage  
Output Voltage Operating Range  
Line Regulation  
No Load  
(Note 2)  
4.75  
3
5
5.25  
5.5  
V
V
CC2  
l
l
l
I
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
25  
8
100  
80  
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
Load Regulation  
= 100µA to 20mA  
= 100µA to 20mA  
= 20mA (Note 2)  
= 20mA (Note 2)  
= 0V  
ADJ Pin Voltage  
585  
600  
1
615  
Voltage Ripple  
mV  
RMS  
Efficiency  
45  
45  
%
I
Output Short Circuit Current  
Current Limit  
V
mA  
mA  
V
CC2  
CC2  
l
l
l
l
l
ΔV  
= –5%  
20  
12  
CC2  
+
V
Regulated Output Voltage  
Line Regulation  
No Load  
12.5  
5
13  
30  
I
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
Load Regulation  
= 100µA to 20mA  
= 100µA to 20mA  
= 20mA (Note 2)  
= 20mA (Note 2)  
200  
1.260  
ADJ Pin Voltage  
1.170  
1.220  
3
Voltage Ripple  
mV  
RMS  
Efficiency  
45  
%
LOAD  
+
+
I
Output Short Circuit Current  
Current Limit  
V = 0V  
70  
mA  
mA  
V
+
l
l
l
ΔV = 0.5V  
20  
V
Regulated Output Voltage  
Line Regulation  
No Load  
–12  
–12.5  
4
–13  
15  
I
I
I
I
I
= –1mA, MIN ≤ V ≤ MAX  
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
+
Load Regulation  
= 100µA to 15mA, V  
= 1.5mA  
= 1.5mA  
35  
LOAD  
LOAD  
+
l
ADJ Pin Voltage  
= 100µA to 15mA, V  
–1.184  
10  
–1.220  
2
–1.256  
+
Voltage Ripple  
= 15mA, V  
= 1.5mA (Note 2)  
mV  
RMS  
LOAD  
Efficiency  
= 15mA (Note 2)  
45  
%
LOAD  
I
Output Short-Circuit Current  
Current Limit  
V = 0V  
30  
mA  
mA  
+
l
ΔV = 0.5V, V = 1.5mA  
15  
Logic/SPI  
l
l
l
V
ITH  
Input Threshold Voltage  
ON, DI1, SDOE, SCK, SDI, CS 1.62V ≤ V < 2.35V  
0.25 • V  
0.33 • V  
0.75 • V  
0.67 • V  
V
V
V
L
L
L
L
L
ON, DI1, SDOE, SCK, SDI, CS 2.35V ≤ V  
L
I1, I2, SDO2  
0.33 • V  
0.67 • V  
CC2  
CC2  
l
I
Input Current  
1
µA  
mV  
V
INL  
V
V
Input Hysteresis  
Output High Voltage  
(Note 2)  
150  
HYS  
OH  
l
DO1, DO2, SDO  
V – 0.4  
L
I
I
= –1mA, 1.62V ≤ V < 3V  
= –4mA, 3V ≤ V ≤ 5.5V  
LOAD  
LOAD  
L
L
l
l
O1, SCK2, SDI2, CS2, I  
= –4mA  
V
– 0.4  
CC2  
V
V
LOAD  
V
Output Low Voltage  
Short-Circuit Current  
DO1, DO2, SDO  
0.4  
OL  
I
I
= 1mA, 1.62V ≤ V < 3V  
LOAD  
LOAD  
L
= 4mA, 3V ≤ V ≤ 5.5V  
L
l
l
O1, SCK2, SDI2, CS2, I  
= 4mA  
0.4  
85  
V
LOAD  
I
0V ≤ (DO1, DO2, SDO) ≤ V  
0V ≤ (O1, SCK2, SDI2, CS2) ≤ V  
mA  
mA  
SC  
L
60  
CC2  
2883fd  
4
For more information www.linear.com/LTM2883  
LTM2883  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C  
l
l
V
Low Level Input Voltage  
High Level Input Voltage  
SCL, SDA  
SDA2  
0.3 • V  
V
V
IL  
L
0.3 • V  
CC2  
l
l
V
SCL, SDA  
SDA2  
0.7 • V  
V
V
IH  
L
0.7 • V  
CC2  
l
I
Input Current  
SCL, SDA = V or 0V  
1
µA  
INL  
L
V
V
V
Input Hysteresis  
SCL, SDA  
SDA2  
0.05 • V  
mV  
mV  
HYS  
L
0.05 • V  
CC2  
l
l
Output High Voltage  
Output Low Voltage  
SCL2, I  
= –2mA  
V
– 0.4  
CC2  
L
V
V
OH  
LOAD  
DO2, I  
= –2mA  
V – 0.4  
LOAD  
l
l
l
l
l
SDA, V = 3V, I  
= 3mA  
= 2mA  
0.4  
0.4  
0.4  
0.45  
0.55  
V
V
V
V
V
OL  
L
LOAD  
LOAD  
= 2mA  
DO2, V = 3V, I  
L
SCL2, I  
LOAD  
SDA2, No Load, SDA = 0V, 4.5V ≤ V  
< 5.5V  
CC2  
CC2  
SDA2, No Load, SDA = 0V, 3V < V  
< 4.5V  
0.3  
l
C
C
Input Pin Capacitance  
Bus Capacitive Load  
SCL, SDA, SDA2 (Note 2)  
10  
pF  
IN  
B
l
l
l
l
SCL2, Standard Speed (Note 2)  
SCL2, Fast Speed  
SDA, SDA2, SR ≥ 1V/μs, Standard Speed (Note 2)  
SDA, SDA2, SR ≥ 1V/μs, Fast Speed  
400  
200  
400  
200  
pF  
pF  
pF  
pF  
l
l
Minimum Bus Slew Rate  
Short-Circuit Current  
SDA, SDA2  
1
V/µs  
I
SDA2 = 0, SDA = V  
100  
mA  
mA  
mA  
mA  
mA  
SC  
L
0V ≤ SCL2 ≤ V  
30  
30  
CC2  
L
0V ≤ DO2 ≤ V  
SDA = 0, SDA2 = V  
6
CC2  
SDA = V , SDA2 = 0  
–1.8  
L
ESD (HBM) (Note 2)  
Isolation Boundary  
+
(V , V , V , GND2) to (V , V , GND)  
10  
kV  
CC2  
CC  
L
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
Logic  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Maximum Data Rate  
10  
35  
MHz  
ns  
Ix DOx, C = 15pF (Note 3)  
L
t
t
, t  
Propagation Delay  
Rise Time  
C = 15pF (Figure 1)  
L
60  
100  
PHL PLH  
l
l
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
R
L
LTM2883-I, DO2, C = 15pF (Figure 1)  
L
l
l
t
Fall Time  
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
F
L
LTM2883-I, DO2, C = 15pF (Figure 1)  
L
SPI  
l
l
Maximum Data Rate  
Bidirectional Communication (Note 3)  
Unidirectional Communication (Note 3)  
4
8
MHz  
MHz  
l
t
t
, t  
Propagation Delay  
C = 15pF (Figure 1)  
35  
60  
100  
50  
ns  
ns  
PHL PLH  
L
Output Pulse Width Uncertainty  
SDI2, CS2 (Note 2)  
–20  
PWU  
2883fd  
5
For more information www.linear.com/LTM2883  
LTM2883  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
CONDITIONS  
C = 15pF (Figure 1)  
MIN  
TYP  
3
MAX  
12.5  
12.5  
50  
UNITS  
ns  
l
l
l
l
t
t
t
t
Rise Time  
R
F
L
Fall Time  
C = 15pF (Figure 1)  
L
3
ns  
, t  
Output Enable Time  
Output Disable Time  
ns  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PZH PZL  
L
L
, t  
50  
ns  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PHZ PLZ  
L
L
2
I C  
l
Maximum Data Rate  
Propagation Delay  
(Note 3)  
SCL SCL2, C = 15pF (Figure 1)  
400  
–20  
kHz  
l
l
l
t
, t  
150  
150  
200  
225  
250  
350  
ns  
ns  
ns  
PHL PLH  
L
SDA SDA2, R = Open, C = 15pF (Figure 3)  
L
L
SDA2 SDA, R = 1.1kΩ, C = 15pF (Figure 3)  
L
L
t
t
t
Output Pulse Width Uncertainty  
Data Hold Time  
SDA, SDA2 (Note 2)  
50  
ns  
ns  
PWU  
HD;DAT  
R
(Note 2)  
600  
Rise Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
40  
250  
300  
250  
250  
ns  
ns  
ns  
ns  
L
l
l
l
SDA2, C = 200pF (Figure 3)  
L
SDA, R = 1.1kΩ, C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
l
l
t
t
Fall Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
250  
250  
250  
ns  
ns  
ns  
F
L
SDA, R = 1.1kΩ, C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
Pulse Width of Spikes  
Suppressed by Input Filter  
0
50  
ns  
SP  
Power Supply  
Power-Up Time  
l
l
l
0.6  
0.6  
0.6  
2
2
2.5  
ms  
ms  
ms  
ON = to V  
(Min)  
CC2  
+
ON = to V (Min)  
ON = to V (Min)  
ISOLATION CHARACTERISTICS TA = 25°Cꢀ  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
2500  
4400  
30  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
(Notes 5, 6, 7)  
1 Minute, Derived from 1 Second Test  
1 Second  
V
RMS  
ISO  
V
Common Mode Transient Immunity  
LTM2883-3 V = 3.3V, LTM2883-5 V = 5V,  
kV/µs  
CC  
CC  
V = ON = 3.3V, V = 1kV, Δt = 33ns (Note 2)  
L
CM  
V
Maximum Continuous Working Voltage  
(Notes 2, 5)  
560  
400  
V
PEAK  
RMS  
IORM  
V
Partial Discharge  
V
= 1050V  
(Notes 2, 5)  
5
pC  
PD  
PEAK  
CTI  
DTI  
Comparative Tracking Index  
Depth of Erosion  
IEC 60112 (Note 2)  
IEC 60112 (Note 2)  
(Note 2)  
600  
V
RMS  
0.017  
0.06  
mm  
Distance Through Insulation  
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
mm  
Ω
9
(Notes 2, 5)  
10  
(Notes 2, 5)  
6
pF  
(Note 2)  
9.48  
mm  
2883fd  
6
For more information www.linear.com/LTM2883  
LTM2883  
ISOLATION CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Continuous operation above specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 5: Device considered a 2-terminal device. Pin group A1 through B8  
shorted together and pin group K1 through L8 shorted together.  
Note 2: Guaranteed by design and not subject to production test.  
Note 6: The rated dielectric insulation voltage should not be interpreted as  
Note 3: Maximum data rate is guaranteed by other measured parameters  
and is not tested directly.  
a continuous voltage rating.  
Note 7: In accordance with UL1577, each device is proof tested for the  
Note 4: This module includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
2500V  
rating by applying the equivalent positive and negative peak  
RMS  
voltage multiplied by an acceleration factor of 1.2 for one second.  
2883fd  
7
For more information www.linear.com/LTM2883  
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
VCC Supply Current  
vs Temperature  
Isolated Supplies  
Isolated Supplies  
vs Equal Load Current  
ꢔꢕ  
vs Equal Load Current  
3ꢍ  
2ꢌ  
2ꢍ  
ꢓꢌ  
ꢓꢍ  
ꢔꢕ  
ꢔ2  
ꢔꢍ  
8
ꢑꢖ ꢏꢖꢅꢗꢘ ꢄꢁꢙꢄꢁꢎꢚ ꢗꢅꢀꢅ ꢖꢑꢐ  
ꢘ2883ꢙ3  
ꢚ 3ꢛ3ꢎ  
ꢘ2883ꢙꢗ  
ꢄꢄ  
ꢚ ꢗꢎ  
ꢄꢄ  
ꢔ2  
ꢔꢍ  
8
ꢂ2883ꢛ3  
ꢝ 3ꢞ3ꢜ  
ꢉꢉ  
ꢂ2883ꢛꢌ  
ꢝ ꢌꢜ  
ꢉꢉ  
ꢄꢄ2  
ꢄꢄ2  
2
2
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢕꢌ ꢓꢍꢍ ꢓ2ꢌ  
ꢔꢍ  
ꢔꢗ  
2ꢍ  
2ꢗ  
ꢔꢍ  
ꢔꢗ  
2ꢍ  
2ꢗ  
3ꢍ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢔꢍꢓ  
2883 ꢓꢍ2  
2883 ꢓꢍ3  
VCC2 Line Regulation  
vs Load Current  
V+ Line Regulation  
vs Load Current  
VLine Regulation  
vs Load Current  
ꢐꢑꢍ  
ꢒꢑꢒ  
ꢒꢑꢍ  
ꢓꢑꢒ  
ꢓꢑꢍ  
3ꢑꢒ  
3ꢑꢍ  
2ꢑꢒ  
ꢑ3ꢒꢍ  
ꢑ2ꢒꢓ  
ꢑ2ꢒꢍ  
ꢑꢑꢒꢓ  
ꢑꢑꢒꢍ  
ꢑꢍꢒꢓ  
ꢑꢍꢒꢍ  
ꢔꢒꢓ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅ  
ꢕ2883ꢖ3  
ꢘ2883ꢙ3  
ꢄꢄ2  
ꢗ2883ꢘ3  
ꢙ ꢗ ꢙ ꢍꢂ  
ꢗ ꢚ ꢗ ꢍꢂ  
ꢖ ꢙ ꢖ ꢃꢈ  
ꢊꢊ2  
ꢀꢄꢃꢂꢃ  
ꢀꢄꢃꢂꢅ  
ꢀꢄꢄꢂꢃ  
ꢀꢄꢄꢂꢅ  
ꢀꢄ2ꢂꢃ  
ꢀꢄ2ꢂꢅ  
ꢀꢄ3ꢂꢃ  
ꢊꢊ  
ꢊꢊ  
ꢊꢊ  
ꢊꢊ  
ꢖ 3ꢓ  
ꢖ 3ꢂꢄꢅꢓ  
ꢖ 3ꢂ3ꢓ  
ꢖ 3ꢂꢕꢓ  
ꢄꢄ  
ꢄꢄ  
ꢄꢄ  
ꢄꢄ  
ꢗ 3ꢎ  
ꢗ 3ꢒꢑꢓꢎ  
ꢗ 3ꢒ3ꢎ  
ꢗ 3ꢒꢕꢎ  
ꢙ 3ꢎ  
ꢙ 3ꢑ3ꢎ  
ꢙ 3ꢑꢐꢎ  
ꢄꢄ  
ꢄꢄ  
ꢄꢄ  
ꢔꢒꢍ  
ꢔꢍ  
2ꢍ  
3ꢍ  
ꢓꢍ  
ꢑꢍ  
2ꢍ  
3ꢍ  
ꢖꢍ  
ꢓꢍ  
ꢕꢍ  
ꢄꢃ  
2ꢃ  
3ꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢆꢇꢈꢉ ꢊꢋꢌꢌꢍꢎꢏ ꢐꢑꢈꢒ  
2883 ꢏꢍꢓ  
2883 ꢐꢍꢓ  
2883 ꢔꢃꢕ  
VCC2 Line Regulation  
vs Load Current  
V+ Line Regulation  
vs Load Current  
VLine Regulation  
vs Load Current  
ꢑ3ꢒꢍ  
ꢑ2ꢒꢓ  
ꢑ2ꢒꢍ  
ꢑꢑꢒꢓ  
ꢑꢑꢒꢍ  
ꢑꢍꢒꢓ  
ꢑꢍꢒꢍ  
ꢔꢒꢓ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅ  
ꢐꢑꢍ  
ꢒꢑꢒ  
ꢒꢑꢍ  
ꢓꢑꢒ  
ꢓꢑꢍ  
3ꢑꢒ  
3ꢑꢍ  
2ꢑꢒ  
ꢙ2883ꢚꢓ  
ꢘ2883ꢙꢅ  
ꢗ2883ꢘꢒ  
ꢗ ꢛ ꢗ ꢍꢂ  
ꢖ ꢚ ꢖ ꢃꢈ  
ꢖ ꢙ ꢖ ꢍꢂ  
ꢄꢄ2  
ꢊꢊ2  
ꢀꢄꢃꢂꢃ  
ꢀꢄꢃꢂꢅ  
ꢀꢄꢄꢂꢃ  
ꢀꢄꢄꢂꢅ  
ꢀꢄ2ꢂꢃ  
ꢀꢄ2ꢂꢅ  
ꢀꢄ3ꢂꢃ  
ꢊꢊ  
ꢊꢊ  
ꢊꢊ  
ꢊꢊ  
ꢖ ꢕꢂꢅꢓ  
ꢖ ꢕꢂꢗꢅꢓ  
ꢖ ꢅꢓ  
ꢖ ꢅꢂꢅꢓ  
ꢄꢄ  
ꢄꢄ  
ꢄꢄ  
ꢄꢄ  
ꢗ ꢖꢒꢓꢎ  
ꢗ ꢖꢒꢘꢓꢎ  
ꢗ ꢓꢎ  
ꢖ ꢓꢑꢒꢎ  
ꢖ ꢒꢎ  
ꢖ ꢒꢑꢒꢎ  
ꢄꢄ  
ꢄꢄ  
ꢄꢄ  
ꢗ ꢓꢒꢓꢎ  
ꢔꢒꢍ  
ꢑꢍ  
2ꢍ  
3ꢍ  
ꢖꢍ  
ꢓꢍ  
ꢕꢍ  
ꢄꢃ  
2ꢃ  
3ꢃ  
ꢕꢃ  
ꢔꢍ  
2ꢍ  
3ꢍ  
ꢓꢍ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢆꢇꢈꢉ ꢊꢋꢌꢌꢍꢎꢏ ꢐꢑꢈꢒ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢐꢍ8  
2883 ꢔꢃꢁ  
2883 ꢏꢍꢕ  
2883fd  
8
For more information www.linear.com/LTM2883  
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
V+ Load Regulation  
vs Temperature  
VLoad Regulation  
vs Temperature  
VCC2 Load Regulation  
vs Temperature  
ꢓ2ꢔ8  
ꢓ2ꢔꢕ  
ꢓ2ꢔꢖ  
ꢓ2ꢔꢌ  
ꢓ2ꢔꢗ  
ꢓ2ꢔ3  
ꢓ2ꢔ2  
ꢌꢒ2ꢍ  
ꢌꢒꢓꢌ  
ꢌꢒꢓꢍ  
ꢌꢒꢍꢌ  
ꢌꢒꢍꢍ  
ꢔꢒꢕꢌ  
ꢔꢒꢕꢍ  
ꢋꢒ2ꢓ2  
ꢋꢒ2ꢓ3  
ꢋꢒ2ꢓꢔ  
ꢋꢒ2ꢓꢌ  
ꢋꢒ2ꢓꢕ  
ꢋꢒ2ꢓꢖ  
ꢋꢒ2ꢓ8  
ꢙ ꢓꢛꢅ  
ꢂ2883ꢗ3  
ꢘ ꢒꢙꢅ  
ꢂ2883ꢚ3  
ꢙ ꢌꢛꢅ  
ꢘ 3ꢒ3ꢎ  
ꢘ ꢒꢌꢙꢅ  
ꢘ 3ꢓ3ꢎ  
ꢉꢉ  
ꢉꢉ  
ꢉꢉ2  
ꢙ ꢓꢍꢛꢅ  
ꢙ ꢓꢌꢛꢅ  
ꢙ 2ꢍꢛꢅ  
ꢘ ꢙ ꢘ ꢍꢅ  
ꢘ ꢗ ꢘ ꢍꢅ  
ꢂ2883ꢘ3  
ꢙ 3ꢔ3ꢎ  
ꢘ ꢓꢛꢅ  
ꢉꢉ  
ꢉꢉ2  
ꢉꢉ2  
ꢉꢉ2  
ꢙ ꢚ ꢙ ꢍꢅ  
ꢘ 2ꢍꢛꢅ  
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢕꢌ ꢓꢍꢍ ꢓ2ꢌ  
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢖꢌ ꢓꢍꢍ ꢓ2ꢌ  
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢖꢌ ꢒꢍꢍ ꢒ2ꢌ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
2883 ꢒꢓ2  
2883 ꢑꢓꢍ  
2883 ꢑꢒꢔ  
V+ Load Regulation  
vs Temperature  
VCC2 Load Regulation  
vs Temperature  
VLoad Regulation  
vs Temperature  
ꢌꢒ2ꢍ  
ꢌꢒꢓꢌ  
ꢌꢒꢓꢍ  
ꢌꢒꢍꢌ  
ꢌꢒꢍꢍ  
ꢔꢒꢕꢌ  
ꢔꢒꢕꢍ  
ꢓ2ꢔꢕ  
ꢓ2ꢔꢖ  
ꢓ2ꢔꢌ  
ꢓ2ꢔꢗ  
ꢓ2ꢔ3  
ꢓ2ꢔ2  
ꢓ2ꢔꢓ  
ꢋꢒ2ꢓ2  
ꢋꢒ2ꢓ3  
ꢋꢒ2ꢓꢔ  
ꢋꢒ2ꢓꢌ  
ꢋꢒ2ꢓꢕ  
ꢂ2883ꢗꢌ  
ꢙ ꢓꢚꢅ  
ꢘ ꢒꢙꢅ  
ꢘ 2ꢍꢙꢅ  
ꢂ2883ꢚꢌ  
ꢘ ꢌꢎ  
ꢙ ꢌꢚꢅ  
ꢉꢉ2  
ꢘ ꢌꢎ  
ꢉꢉ  
ꢉꢉ  
ꢘ ꢙ ꢘ ꢍꢅ  
ꢙ ꢓꢍꢚꢅ  
ꢙ ꢓꢌꢚꢅ  
ꢙ 2ꢍꢚꢅ  
ꢘ ꢗ ꢘ ꢍꢅ  
ꢂ2883ꢛꢌ  
ꢘ ꢓꢛꢅ  
ꢘ 2ꢍꢛꢅ  
ꢙ ꢌꢎ  
ꢉꢉ2  
ꢉꢉ2  
ꢉꢉ  
ꢉꢉ2  
ꢙ ꢘ ꢙ ꢍꢅ  
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢖꢌ ꢓꢍꢍ ꢓ2ꢌ  
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢕꢌ ꢓꢍꢍ ꢓ2ꢌ  
ꢋꢌꢍ ꢋ2ꢌ  
2ꢌ  
ꢌꢍ  
ꢖꢌ ꢒꢍꢍ ꢒ2ꢌ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
2883 ꢑꢓꢓ  
2883 ꢒꢓ3  
2883 ꢑꢒꢌ  
VCC2 Voltage and ICC Current  
vs Load Current  
VCC2 Efficiency  
ꢕꢍ  
ꢘꢍ  
ꢗꢍ  
3ꢍ  
2ꢍ  
ꢖꢍ  
ꢍꢙꢕ  
ꢍꢙꢘ  
ꢍꢙꢗ  
ꢍꢙ3  
ꢍꢙ2  
ꢍꢙꢖ  
3
2
ꢒꢔꢍ  
ꢒ2ꢔ  
ꢒꢍꢍ  
ꢕꢔ  
ꢛ2883ꢜ3ꢝ ꢞ ꢟ 3ꢙ3ꢞ  
ꢄꢄ  
ꢛ2883ꢜꢘꢝ ꢞ ꢟ ꢘꢞ  
ꢄꢄ  
ꢙ ꢐ ꢙ ꢍꢂ  
ꢎꢁꢏꢇ  
ꢇꢎꢎꢏꢄꢏꢇꢈꢄꢐ  
ꢄꢅꢆꢆꢇꢈꢉ  
ꢄꢄ  
ꢔꢍ  
ꢒꢁꢓꢇꢆ ꢀꢁꢔꢔ  
2ꢔ  
ꢖ2883ꢗ3ꢘ ꢎ ꢙ 3ꢚ3ꢎ  
ꢄꢄ  
ꢖ2883ꢗꢔꢘ ꢎ ꢙ ꢔꢎ  
ꢄꢄ  
ꢟ ꢏ ꢟ ꢍꢂ  
ꢗꢍ  
ꢖꢍ  
2ꢍ  
3ꢍ  
ꢒꢍ  
2ꢍ  
3ꢍ  
ꢓꢍ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢚꢖꢕ  
2883 ꢏꢒꢕ  
2883fd  
9
For more information www.linear.com/LTM2883  
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
V+ Voltage and ICC Current  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
V+ Efficiency  
vs Load Current  
ꢕꢍ  
ꢘꢍ  
ꢗꢍ  
3ꢍ  
2ꢍ  
ꢖꢍ  
ꢖꢙ2  
ꢖꢙꢍ  
ꢍꢙ8  
ꢍꢙꢕ  
ꢍꢙꢗ  
ꢍꢙ2  
ꢁꢃ  
ꢁ2  
ꢁꢀ  
8
3ꢂꢀ  
3ꢀꢀ  
2ꢂꢀ  
2ꢀꢀ  
ꢁꢂꢀ  
ꢁꢀꢀ  
ꢂꢀ  
ꢛ2883ꢜ3ꢝ ꢞ ꢟ 3ꢙ3ꢞ  
ꢚ ꢔ ꢚ ꢀꢆ  
ꢄꢄ  
ꢈꢈ2  
ꢑꢅꢓꢋ  
ꢛ2883ꢜꢘꢝ ꢞ ꢟ ꢘꢞ  
ꢄꢄ  
ꢇꢎꢎꢏꢄꢏꢇꢈꢄꢐ  
ꢈꢈ  
ꢈꢉꢊꢊꢋꢌꢍ  
ꢒꢁꢓꢇꢆ ꢀꢁꢔꢔ  
2
ꢗ2883ꢘ3ꢙ ꢑ ꢚ 3ꢛ3ꢑ  
ꢈꢈ  
ꢗ2883ꢘꢂꢙ ꢑ ꢚ ꢂꢑ  
ꢈꢈ  
ꢟ ꢏ ꢟ ꢍꢂ  
ꢄꢄ2  
ꢖꢍ  
2ꢍ  
3ꢍ  
ꢗꢍ  
ꢘꢍ  
ꢁꢀ  
2ꢀ  
3ꢀ  
ꢃꢀ  
ꢂꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢄꢅꢆꢇ ꢈꢉꢊꢊꢋꢌꢍ ꢎꢏꢆꢐ  
2883 ꢚꢖ8  
2883 ꢓꢁꢖ  
VVoltage and ICC Current  
vs Load Current  
VEfficiency  
ꢕꢍ  
ꢘꢍ  
ꢗꢍ  
3ꢍ  
2ꢍ  
ꢖꢍ  
ꢍꢙꢕ  
ꢍꢙꢘ  
ꢍꢙꢗ  
ꢍꢙ3  
ꢍꢙ2  
ꢍꢙꢖ  
ꢏꢒꢓꢍ  
ꢏꢒꢓꢕ  
32ꢍ  
28ꢍ  
2ꢗꢍ  
2ꢍꢍ  
ꢔꢖꢍ  
ꢔ2ꢍ  
8ꢍ  
ꢛ2883ꢜ3ꢝ ꢞ ꢟ 3ꢙ3ꢞ  
ꢛ2883ꢜꢘꢝ ꢞ ꢟ ꢘꢞ  
ꢄꢄ  
ꢘ2883ꢙ3ꢚ ꢎ ꢛ 3ꢓ3ꢎ  
ꢄꢄ  
ꢘ2883ꢙꢕꢚ ꢎ ꢛ ꢕꢎ  
ꢄꢄ  
ꢄꢄ  
ꢏꢔꢍꢓꢍ  
ꢏꢔꢍꢓꢕ  
ꢏꢔꢔꢓꢍ  
ꢏꢔꢔꢓꢕ  
ꢏꢔ2ꢓꢍ  
ꢏꢔ2ꢓꢕ  
ꢏꢔ3ꢓꢍ  
ꢇꢎꢎꢏꢄꢏꢇꢈꢄꢐ  
ꢄꢅꢆꢆꢇꢈꢉ  
ꢄꢄ  
ꢒꢁꢓꢇꢆ ꢀꢁꢔꢔ  
ꢗꢍ  
ꢎꢁꢐꢇ  
2ꢍ  
ꢖꢍ  
2ꢍ  
3ꢍ  
ꢔꢍ  
3ꢍ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢚ2ꢍ  
2883 ꢐ2ꢔ  
VCC2 Transient Response  
20mA Load Step  
V+ Transient Response  
20mA Load Step  
VTransient Response  
20mA Load Step  
ꢎ ꢀꢏꢐꢉꢊ  
ꢈꢈ2  
ꢀꢁꢁꢉꢇꢄꢅꢆꢇ  
2ꢁꢁꢉꢇꢄꢅꢆꢇ  
2ꢁꢁꢉꢇꢄꢅꢆꢇ  
ꢈꢈ2  
ꢀꢁꢉꢊꢄꢅꢆꢇ  
ꢀꢁꢉꢊꢄꢅꢆꢇ  
ꢀꢁꢉꢊꢄꢅꢆꢇ  
2883 ꢋ22  
2883 ꢋ23  
2883 ꢋ2ꢌ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
2883fd  
10  
For more information www.linear.com/LTM2883  
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
VCC2 Ripple  
V+ Ripple  
VRipple  
ꢊ ꢋꢈꢌ  
ꢆ ꢊ ꢋꢈꢌ  
2ꢈꢇꢄꢅꢆꢇ  
ꢀꢈꢇꢄꢅꢆꢇ  
ꢀꢈꢇꢄꢅꢆꢇ  
ꢊ 2ꢁꢈꢌ  
ꢊ 2ꢁꢈꢌ  
2883 ꢉ2ꢀ  
2883 ꢍ2ꢎ  
2883 ꢍ2ꢎ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
V
CC2 Noise  
V+ Noise  
VNoise  
2ꢁꢆꢃꢄꢅꢆ  
2ꢁꢆꢃꢄꢅꢆ  
2ꢁꢆꢃꢄꢅꢆ  
2883 ꢇ28  
2883 ꢇ2ꢈ  
2883 ꢇ3ꢈ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
VCC Supply Current  
vs Single Channel Data Rate  
Logic Input Threshold  
vs VL Supply Voltage  
Logic Output Voltage  
vs Load Current  
ꢐꢑ  
ꢒꢑ  
ꢔꢑ  
ꢓꢑ  
3ꢑ  
2ꢑ  
ꢉꢑ  
3ꢑꢒ  
3ꢑꢓ  
2ꢑꢒ  
2ꢑꢓ  
ꢍꢑꢒ  
ꢍꢑꢓ  
ꢓꢑꢒ  
ꢑꢒꢍ  
ꢕꢒꢍ  
ꢔꢒꢍ  
3ꢒꢍ  
2ꢒꢍ  
ꢓꢒꢍ  
ꢗ ꢉꢜꢝ  
ꢌꢌ2  
ꢗ ꢔꢋ  
ꢌꢌ  
ꢗ 33ꢑꢞꢝ  
ꢗ ꢉꢑꢑꢞꢝ  
ꢗ 2ꢑꢞꢝ  
ꢗ ꢘ ꢗ ꢘ ꢗ ꢑ  
ꢘ ꢕꢒꢕꢏ  
ꢘ 3ꢒ3ꢏ  
ꢘ ꢓꢒꢑ2ꢏ  
ꢖꢗꢄꢃꢇ ꢏꢖꢂꢖꢗꢉ  
ꢖꢗꢄꢃꢇ ꢘꢈꢁꢁꢖꢗꢉ  
ꢉꢊ  
ꢉꢑꢊ  
ꢉꢑꢑꢊ  
ꢉꢕ  
ꢉꢑꢕ  
ꢉꢑꢑꢕ  
2
3
2
3
8
ꢓꢍ  
ꢀꢁꢂꢁ ꢃꢁꢂꢄ ꢅꢆꢇꢈ  
ꢂꢃꢄꢄꢉꢊ ꢋꢀꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢖ3ꢉ  
2883 ꢉ32  
2883 ꢐ33  
2883fd  
11  
For more information www.linear.com/LTM2883  
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
VCC2 Cross Regulation  
vs V+, VLoad  
Power On Sequence  
ꢔꢕ2  
ꢘꢖ  
ꢘ3  
ꢘ2  
ꢘꢘ  
ꢘꢍ  
ꢛ2883ꢜ3  
ꢉꢊ  
ꢝ 3ꢕ3ꢎ  
ꢄꢄ  
ꢄꢄ2  
ꢝ ꢘꢔꢋꢂ  
ꢔꢕꢘ  
ꢌꢌ2  
ꢇꢆꢃꢄꢅꢆ  
ꢔꢕꢍ  
ꢖꢕꢗ  
ꢖꢕ8  
8
ꢄꢄ2  
2883 ꢍ3ꢎ  
2ꢀꢀꢁꢂꢃꢄꢅꢆ  
ꢘꢍ  
2ꢍ  
3ꢍ  
ꢖꢍ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢏ3ꢔ  
VCC2 Cross Regulation  
vs V+, VLoad  
Isolated Supply Efficiency with  
Equal Load Current  
ꢖꢗ2  
ꢖꢗꢁ  
ꢖꢗꢀ  
ꢂꢗꢘ  
ꢂꢗ8  
ꢁꢂ  
ꢁ3  
ꢁ2  
ꢁꢁ  
ꢁꢀ  
ꢕꢍ  
ꢘꢍ  
ꢗꢍ  
3ꢍ  
2ꢍ  
ꢖꢍ  
ꢖꢙꢍ  
ꢍꢙꢛ  
ꢍꢙ8  
ꢍꢙꢚ  
ꢍꢙꢕ  
ꢍꢙꢘ  
ꢍꢙꢗ  
ꢍꢙ3  
ꢍꢙ2  
ꢍꢙꢖ  
ꢛ2883ꢜꢖ  
ꢝ ꢖꢐ  
ꢇꢇ  
ꢇꢇ2  
ꢝ ꢁꢖꢎꢅ  
ꢇꢎꢎꢏꢄꢏꢇꢈꢄꢐ  
8
ꢒꢁꢓꢇꢆ ꢀꢁꢔꢔ  
ꢇꢇ2  
ꢝ2883ꢞ3ꢟ ꢠ ꢡ 3ꢙ3ꢠ  
ꢄꢄ  
ꢝ2883ꢞꢘꢟ ꢠ ꢡ ꢘꢠ  
ꢄꢄ  
ꢁꢀ  
2ꢀ  
3ꢀ  
ꢂꢀ  
ꢖꢍ  
ꢖꢘ  
2ꢍ  
2ꢘ  
ꢃꢄꢅꢆ ꢇꢈꢉꢉꢊꢋꢌ ꢍꢎꢅꢏ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
2883 ꢑ3ꢚ  
2883 ꢜ3ꢚ  
V+ Cross Regulation vs VLoad  
V+ Cross Regulation vs VLoad  
ꢔꢕ  
ꢔ3  
ꢔ2  
ꢔꢔ  
ꢔꢍ  
ꢔꢕ  
ꢔ3  
ꢔ2  
ꢔꢔ  
ꢔꢍ  
ꢚ2883ꢛ3  
ꢚ2883ꢛꢙ  
ꢎ ꢜ ꢙꢎ  
ꢄꢄ  
ꢜ 3ꢝ3ꢎ  
ꢄꢄ  
8
8
ꢏ ꢏ  
ꢎ ꢐ ꢞ ꢜ ꢔꢍꢋꢂ  
ꢎ ꢐ ꢝ ꢜ ꢔꢍꢋꢂ  
ꢒ ꢏ  
ꢎ ꢐ ꢞ ꢜ ꢔꢍꢋꢂ  
ꢎ ꢐ ꢝ ꢜ ꢔꢍꢋꢂ  
ꢏ ꢏ  
ꢎ ꢐ ꢞ ꢜ ꢔꢙꢋꢂ  
ꢎ ꢐ ꢝ ꢜ ꢔꢙꢋꢂ  
ꢒ ꢏ  
ꢎ ꢐ ꢞ ꢜ ꢔꢙꢋꢂ  
ꢔꢍ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢎ ꢐ ꢝ ꢜ ꢔꢙꢋꢂ  
ꢔꢍ ꢔꢙ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢔꢙ  
2ꢍ  
2ꢙ  
2ꢍ  
2ꢙ  
3ꢍ  
3ꢙ  
2883 ꢓ38  
2883 ꢓ3ꢗ  
2883fd  
12  
For more information www.linear.com/LTM2883  
LTM2883  
PIN FUNCTIONS (LTM2883-I)  
Logic Side  
The logic state on I2 translates to the same logic state on  
DO2. Do not float.  
DO2(A1):DigitalOutput,ReferencedtoV andGND.Logic  
L
DNC (L2): Do Not Connect Pin. Pin connected internally.  
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
2
SCL2 (L3): Serial I C Clock Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SCL pin  
through isolation barrier. Clock is unidirectional from logic  
to isolated side. SCL2 has a push-pull output stage, do not  
connect an external pull-up device. Under the condition of  
an isolation communication failure this output defaults to  
a high state.  
DNC (A2): Do Not Connect Pin. Pin connected internally.  
2
SCL (A3): Serial I C Clock Input, Referenced to V and  
L
GND. Logic input connected to isolated side SCL2 pin  
throughisolationbarrier.Clockisunidirectionalfromlogic  
to isolated side. Do not float.  
2
SDA2 (L4): Serial I C Data Pin, Referenced to V  
and  
CC2  
2
SDA (A4): Serial I C Data Pin, Referenced to V and GND.  
L
GND2. Bidirectional logic pin connected to logic side SDA  
pin through isolation barrier. Output is biased high by a  
1.8mA current source. Do not connect an external pull-  
up device to SDA2. Under the condition of an isolation  
communication failure this output defaults to a high state.  
BidirectionallogicpinconnectedtoisolatedsideSDA2pin  
through isolation barrier. Under the condition of an isola-  
tion communication failure this pin is in a high impedance  
state. Do not float.  
DI1 (A5): Digital Input, Referenced to V and GND. Logic  
L
O1 (L5): Digital Output, Referenced to V  
and GND2.  
CC2  
input connected to O1 through isolation barrier. The logic  
state on DI1 translates to the same logic state on O1. Do  
not float.  
Logic output connected to DI1 through isolation barrier.  
Under the condition of an isolation communication failure  
O1 defaults to a high state.  
GND (A6, B2 to B6): Circuit Ground.  
V
(L6): 5V Nominal Isolated Supply Voltage. Internally  
CC2  
generated from V by an isolated DC/DC converter and  
CC  
ON (A7): Enable. Enables power and data communica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional  
to the isolated side. If ON is low the logic side is held in  
reset, all digital outputs are in a high impedance state, and  
the isolated side is unpowered. Do not float.  
regulated to 5V. Internally bypassed with 2.2µF.  
V (L7):–12.5VNominalIsolatedSupplyVoltage.Internally  
generated from V by an isolated DC/DC converter and  
CC  
regulated to –12.5V. Internally bypassed with 1µF.  
+
V (L8):12.5VNominalIsolatedSupplyVoltage.Internally  
V (A8): Logic Supply. Interface supply voltage for pins  
generated from V by an isolated DC/DC converter and  
L
CC  
DI1, SCL, SDA, DO1, DO2, and ON. Operating voltage is  
regulated to 12.5V. Internally bypassed with 1µF.  
3V to 5.5V. Internally bypassed with 2.2µF.  
I1 (K1): Digital Input, Referenced to V  
and GND2.  
CC2  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
Logic input connected to DO1 through isolation barrier.  
The logic state on I1 translates to the same logic state on  
DO1. Do not float.  
L
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
GND2 (K2 to K5): Isolated Ground.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
AV  
(K6): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
to 3.6V for LTM2883-3 and 4.5V to 5.5V for LTM2883-5.  
The adjust pin voltage is 600mV referenced to GND2.  
Internally bypassed with 2.2µF.  
AV (K7): –12.5V Nominal Isolated Supply Voltage Adjust.  
The adjust pin voltage is –1.22V referenced to GND2.  
Isolated Side  
+
AV (K8): 12.5V Nominal Isolated Supply Voltage Adjust.  
I2 (L1): Digital Input, Referenced to V  
Logic input connected to DO2 through isolation barrier.  
and GND2.  
CC2  
The adjust pin voltage is 1.22V referenced to GND2.  
2883fd  
13  
For more information www.linear.com/LTM2883  
LTM2883  
PIN FUNCTIONS (LTM2883-S)  
Logic Side  
Isolated Side  
SDO2 (L1): Serial SPI Digital Input, Referenced to V  
and GND2. Logic input connected to logic side SDO pin  
through isolation barrier. Do not float.  
SDO (A1): Serial SPI Digital Output, Referenced to V  
CC2  
L
and GND. Logic output connected to isolated side SDO2  
pin through isolation barrier. Under the condition of an  
isolation communication failure this output is in a high  
impedance state.  
I2 (L2): Digital Input, Referenced to V  
and GND2.  
CC2  
Logic input connected to DO2 through isolation barrier.  
The logic state on I2 translates to the same logic state on  
DO2. Do not float.  
DO2(A2):DigitalOutput,ReferencedtoV andGND.Logic  
L
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
SCK2 (L3): Serial SPI Clock Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SCK pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
SCK (A3): Serial SPI Clock Input, Referenced to V and  
L
GND. Logic input connected to isolated side SCK2 pin  
through isolation barrier. Do not float.  
SDI2 (L4): Serial SPI Data Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SDI pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
SDI(A4):SerialSPIDataInput,ReferencedtoV andGND.  
L
Logic input connected to isolated side SDI2 pin through  
isolation barrier. Do not float.  
CS2 (L5): Serial SPI Chip Select, Referenced to V  
and  
CC2  
CS(A5):SerialSPIChipSelect,ReferencedtoV andGND.  
L
GND2.LogicoutputconnectedtologicsideCSpinthrough  
isolation barrier. Under the condition of an isolation com-  
munication failure this output defaults to a high state.  
Logic input connected to isolated side CS2 pin through  
isolation barrier. Do not float.  
SDOE (A6): Serial SPI Data Output Enable, Referenced to  
V
(L6): 5V Nominal Isolated Supply Voltage. Internally  
CC2  
V and GND. A logic high on SDOE places the logic side  
L
generated from V by an isolated DC/DC converter and  
CC  
SDO pin in a high impedance state, a logic low enables  
regulated to 5V. Internally bypassed with 2.2µF.  
the output. Do not float.  
V (L7):–12.5VNominalIsolatedSupplyVoltage.Internally  
ON (A7): Enable. Enables power and data communica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional  
to the isolated side. If ON is low the logic side is held in  
reset, all digital outputs are in a high impedance state, and  
the isolated side is unpowered. Do not float.  
generated from V by an isolated DC/DC converter and  
CC  
regulated to –12.5V. Internally bypassed with 1µF.  
+
V (L8):12.5VNominalIsolatedSupplyVoltage.Internally  
generated from V by an isolated DC/DC converter and  
CC  
regulated to 12.5V. Internally bypassed with 1µF.  
I1 (K1): Digital Input, Referenced to V  
and GND2.  
V (A8): Logic Supply. Interface supply voltage for pins  
CC2  
L
Logic input connected to DO1 through isolation barrier.  
The logic state on I1 translates to the same logic state on  
DO1. Do not float.  
SDI, SCK, SDO, DO1, DO2, CS, and ON. Operating voltage  
is 1.62V to 5.5V. Internally bypassed with 2.2µF.  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
L
GND2 (K2 to K5): Isolated Ground.  
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
AV  
(K6): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
The adjust pin voltage is 600mV Referenced to GND2.  
GND (B2 to B6): Circuit Ground.  
AV (K7): –12.5V Nominal Isolated Supply Voltage Adjust.  
The adjust pin voltage is –1.22V Referenced to GND2.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
+
to 3.6V for LTM2883-3 and 4.5V to 5.5V for LTM2883-5.  
AV (K8): 12.5V Nominal Isolated Supply Voltage Adjust.  
Internally bypassed with 2.2µF.  
The adjust pin voltage is 1.22V Referenced to GND2.  
2883fd  
14  
For more information www.linear.com/LTM2883  
LTM2883  
BLOCK DIAGRAM  
ꢔꢓꢉ  
ꢔꢓꢉ  
ꢇꢇ2  
ꢇꢇ2  
ꢇꢇ  
ꢌꢌꢍꢎ  
ꢌꢙꢎ  
2ꢃ2ꢄꢅ  
2ꢃ2ꢄꢅ  
ꢈꢆ  
2ꢃ2ꢄꢅ  
ꢉꢊꢁ2  
ꢉꢊꢁ  
ꢌꢙꢍꢎ  
ꢌꢛꢃ2ꢎ  
ꢌꢛꢃ2ꢎ  
ꢌꢙꢍꢎ  
ꢌꢄꢅ  
ꢈꢆ  
ꢔꢓꢉ  
ꢁꢇꢒꢁꢇ  
ꢇꢏꢊꢆꢓꢔꢕꢓꢔ  
ꢈꢆ  
ꢌꢄꢅ  
ꢏꢊ  
ꢔꢓꢉ  
ꢐꢑꢏꢋꢈꢕꢓꢁ  
ꢇꢏꢖꢖꢗꢊꢐꢘ  
ꢇꢈꢕꢐꢏꢊꢑ  
ꢐꢑꢏꢋꢈꢕꢓꢁ  
ꢇꢏꢖꢖꢗꢊꢐꢘ  
ꢇꢈꢕꢐꢏꢊꢑ  
ꢁꢐꢌ  
ꢏꢌ  
ꢑꢁꢈ2  
ꢑꢇꢋ2  
ꢐ2  
ꢐꢊꢕꢓꢔꢅꢈꢇꢓ  
ꢐꢊꢕꢓꢔꢅꢈꢇꢓ  
ꢑꢁꢈ  
ꢑꢇꢋ  
ꢁꢏ2  
ꢁꢏꢌ  
ꢐꢌ  
2882 ꢀꢁꢂ  
LTM2883-I  
ꢕꢔꢉ  
ꢕꢔꢉ  
ꢇꢇ  
ꢇꢇ2  
ꢇꢇ2  
ꢌꢌꢍꢎ  
ꢌꢚꢎ  
2ꢃ2ꢄꢅ  
2ꢃ2ꢄꢅ  
ꢈꢆ  
2ꢃ2ꢄꢅ  
ꢉꢊꢁ2  
ꢉꢊꢁ  
ꢌꢚꢍꢎ  
ꢌꢜꢃ2ꢎ  
ꢌꢜꢃ2ꢎ  
ꢌꢚꢍꢎ  
ꢌꢄꢅ  
ꢈꢆ  
ꢕꢔꢉ  
ꢁꢇꢓꢁꢇ  
ꢇꢏꢊꢆꢔꢕꢖꢔꢕ  
ꢈꢆ  
ꢌꢄꢅ  
ꢏꢊ  
ꢕꢔꢉ  
SDOE  
CS  
CS2  
ꢐꢁꢑ2  
ꢐꢇꢒ2  
ꢑ2  
ꢑꢐꢏꢋꢈꢖꢔꢁ  
ꢇꢏꢗꢗꢘꢊꢑꢙ  
ꢇꢈꢖꢑꢏꢊꢐ  
ꢑꢐꢏꢋꢈꢖꢔꢁ  
ꢇꢏꢗꢗꢘꢊꢑꢙ  
ꢇꢈꢖꢑꢏꢊꢐ  
ꢐꢁꢑ  
ꢐꢇꢒ  
ꢁꢏ2  
ꢐꢁꢏ  
ꢁꢏꢌ  
ꢑꢊꢖꢔꢕꢅꢈꢇꢔ  
ꢑꢊꢖꢔꢕꢅꢈꢇꢔ  
ꢐꢁꢏ2  
ꢑꢌ  
2883 ꢀꢁꢂ  
LTM2883-S  
2883fd  
15  
For more information www.linear.com/LTM2883  
LTM2883  
TEST CIRCUITS  
ꢀꢁꢂꢃꢄ  
ꢐꢑ  
ꢍꢑ  
ꢅꢃꢄꢂꢃꢄ  
ꢂꢉꢇ  
ꢂꢇꢉ  
ꢀꢁꢂꢃꢄ  
ꢅꢉ  
ꢌꢍꢎ  
ꢏꢍꢎ  
ꢏꢍꢎ  
ꢌꢍꢎ  
ꢅꢃꢄꢂꢃꢄ  
ꢐꢑ  
ꢆꢆ2  
ꢅꢇ  
ꢆꢆ2  
ꢍꢑ  
ꢀꢁꢂꢃꢄ  
ꢐꢑ  
ꢆꢆ2  
ꢅꢃꢄꢂꢃꢄ  
ꢂꢉꢇ  
ꢂꢇꢉ  
ꢀꢁꢂꢃꢄ  
ꢅꢉ  
ꢌꢍꢎ  
ꢏꢍꢎ  
ꢏꢍꢎ  
ꢌꢍꢎ  
ꢅꢃꢄꢂꢃꢄ  
ꢐꢑ  
ꢅꢇ  
2883 ꢋꢍꢏ  
Figure 1ꢀ Logic Timing Measurements  
ꢈꢐ ꢁꢇ  
SDOE  
ꢎꢏꢈ  
ꢎꢏꢈ  
ꢍꢇ  
ꢁꢇ  
ꢁꢇ  
ꢃꢅꢄ  
ꢃꢄꢅ  
ꢈꢅ  
ꢎꢏꢈ  
ꢎꢏꢈ2 ꢈꢐ  
ꢑꢑ2  
ꢌ ꢁꢊꢋꢇ  
ꢉ ꢁꢊꢋꢇ  
ꢈꢅ  
ꢍꢇ  
ꢁꢇ  
ꢃꢆꢄ  
SDOE  
ꢃꢄꢆ  
ꢍꢇ  
ꢈꢆ  
ꢈꢆ  
2883 ꢀꢁ2  
Figure 2ꢀ Logic Enable/Disable Time  
ꢌꢍꢎ  
ꢈꢉ  
ꢆꢉ  
ꢌꢍꢎ2  
ꢁꢃꢂ  
ꢁꢂꢃ  
ꢌꢍꢎ  
ꢋꢂ  
3ꢆꢇ  
ꢊꢆꢇ  
3ꢆꢇ  
ꢌꢍꢎ2  
ꢈꢉ  
ꢏꢏ2  
ꢊꢆꢇ  
ꢋꢃ  
ꢏꢏ2  
ꢆꢉ  
ꢌꢍꢎ2  
ꢌꢍꢎ  
ꢈꢉ  
ꢏꢏ2  
ꢌꢍꢎ  
ꢁꢃꢂ  
ꢁꢂꢃ  
ꢌꢍꢎ2  
ꢋꢂ  
3ꢆꢇ  
ꢊꢆꢇ  
3ꢆꢇ  
ꢈꢉ  
ꢊꢆꢇ  
ꢋꢃ  
2883 ꢄꢆ3  
Figure 3ꢀ I2C Timing Measurements  
2883fd  
16  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
Overview  
the 12.5V supply. A load current of 1.5mA is sufficient to  
improvestaticanddynamicloadregulationcharacteristics  
of the –12.5V output. The increased load allows the boost  
regulatortooperatecontinuouslyandinturnimprovesthe  
regulation of the inverting charge pump.  
The LTM2883 digital µModule isolator provides a  
galvanically-isolated robust logic interface, powered by  
an integrated, regulated DC/DC converter, complete with  
decoupling capacitors. The LTM2883 is ideal for use in  
networks where grounds can take on different voltages.  
Isolation in the LTM2883 blocks high voltage differences,  
eliminates ground loops and is extremely tolerant of com-  
mon mode transients between ground planes. Error-free  
operation is maintained through common mode events  
greater than 30kV/μs providing excellent noise isolation.  
The internal power solution is sufficient to provide a mini  
-
+
mum of 20mA of current from V  
and V , and 15mA  
CC2  
from V . V and V  
are each bypassed with 2.2µF  
ceramic capacitors, and V and V are bypassed with 1µF  
CC  
CC2  
+
ceramic capacitors.  
V Logic Supply  
L
Isolator µModule Technology  
A separate logic supply pin V allows the LTM2883 to in-  
L
terface with any logic signal from 1.62V to 5.5V as shown  
The LTM2883 utilizes isolator µModule technology to  
translate signals and power across an isolation barrier.  
Signalsoneithersideofthebarrierareencodedintopulses  
and translated across the isolation boundary using core-  
less transformers formed in the µModule substrate. This  
system, complete with data refresh, error checking, safe  
shutdown on fail, and extremely high common mode im-  
munity, provides a robust solution for bidirectional signal  
isolation. The µModule technology provides the means to  
combinetheisolatedsignalingwithmultipleregulatorsand  
apowerfulisolatedDC/DCconverterinonesmallpackage.  
in Figure 4. Simply connect the desired logic supply to V .  
L
There is no interdependency between V and V ; they  
CC  
L
may simultaneously operate at any voltage within their  
specified operating ranges and sequence in any order. V  
is bypassed internally by a 2.2µF capacitor.  
L
3ꢌ ꢆꢃ 3ꢑꢒꢌ ꢇ2883ꢈ3  
ꢂꢑꢓꢌ ꢆꢃ ꢓꢑꢓꢌ ꢇ2883ꢈꢓ  
ꢇ2883ꢈꢉ  
ꢗꢗ2  
ꢗꢗ2  
ꢗꢗ  
ꢊꢌ  
ꢊꢄꢋ ꢌꢃꢍꢎ ꢀꢏꢃꢇ  
ꢐꢑꢒ2ꢌ ꢆꢃ ꢓꢑꢓꢌ  
DC/DC Converter  
ꢊꢌ  
TheLTM2883containsafullyintegratedDC/DCconverter,  
includingthetransformer,sothatnoexternalcomponents  
are necessary. The logic side contains a full-bridge driver,  
running at 2MHz, and is AC-coupled to a single trans-  
former primary. A series DC blocking capacitor prevents  
transformersaturationduetodriverdutycycleimbalance.  
The transformer scales the primary voltage, and is recti-  
fied by a full-wave voltage doubler. This topology allows  
for a single diode drop, as in a center tapped full-wave  
bridge, and eliminates transformer saturation caused by  
secondary imbalances.  
ꢊꢌ  
ꢃꢄ  
SDOE  
CS  
CS2  
ꢉꢕꢖ2  
ꢉꢗꢘ2  
ꢉꢕꢖ  
ꢉꢗꢘ  
ꢎꢔꢆꢎꢏꢄꢊꢅ  
ꢕꢎꢌꢖꢗꢎ  
ꢕꢃ2  
ꢉꢕꢃ  
ꢕꢃꢐ  
ꢖ2  
ꢉꢕꢃ2  
ꢖꢐ  
ꢍꢄꢕ  
ꢍꢄꢕ2  
2883 ꢀꢁꢂ  
TheDC/DCconverterisconnectedtoalowdropoutregula-  
tor (LDO) to provide a regulated 5V output.  
Figure 4ꢀ VCC and VL Are Independent  
Hot-Plugging Safely  
Caution must be exercised in applications where power is  
plugged into the LTM2883’s power supplies, V or V ,  
due to the integrated ceramic decoupling capacitors. The  
An integrated boost converter generates a regulated 14V  
supply and a charge pumped –14V supply. These rails are  
regulatedto 12.5Vrespectivelybylowdropoutregulators.  
Performance of the –12.5V supply is enhanced by loading  
CC  
L
2883fd  
17  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
parasitic cable inductance along with the high Q char-  
acteristics of ceramic capacitors can cause substantial  
ringing which could exceed the maximum voltage ratings  
and damage the LTM2883. Refer to Analog Devices Ap-  
plication Note 88, entitled Ceramic Input Capacitors Can  
Cause Overvoltage Transients for a detailed discussion  
and mitigation of this phenomenon.  
Table 1ꢀ Voltage Adjustment Formula  
OUTPUT  
VOLTAGE  
RESISTOR (Ax TO Vx) TO RESISTOR (Ax TO GND2) TO  
REDUCE OUTPUT  
INCREASE OUTPUT  
ꢀꢀꢁ  
ꢃꢃ2 ꢄ ꢅ  
ꢀꢀꢁꢂ ꢃ ꢅ ꢁꢆꢇ  
V
ꢄꢄ2  
CC2  
ꢊ ꢅ ꢃꢄꢄ2  
ꢀꢁꢂꢃ ꢆꢄꢇ ꢀꢈ22  
ꢀ83ꢁ  
ꢄꢂꢅ ꢀ2ꢆꢇ  
+
V , V  
Isolated Supply Adjustable Operation  
ꢀ2ꢈꢁ ꢇ ꢆꢄꢇ  
The three isolated power rails may be adjusted by con-  
nection of a single resistor from the adjust pin of each  
output to its associated output voltage or to GND2. The  
pre-configured voltages represent the maximums for  
Channel Timing Uncertainty  
Multiplechannelsaresupportedacrosstheisolationbound-  
arybyencodinganddecodingoftheinputsandoutputs. Up  
to three signals in each direction are assembled as a serial  
packetandtransferredacrosstheisolationbarrier.Thetime  
required to transfer all 3 bits is 100ns maximum, and sets  
the limit for how often a signal can change on the opposite  
side of the barrier. Encoding transmission is independent  
for each data direction. The technique used assigns SCK  
or SCL on the logic side, and SDO2 or I2 on the isolated  
side, the highest priority such that there is no jitter on the  
associated output channels, only delay. This preemptive  
scheme will produce a certain amount of uncertainty on  
the other isolation channels. The resulting pulse width  
uncertainty on these low priority channels is typically 6ns,  
but may vary up to 44ns if the low priority channels are  
not encoded within the same high priority serial packet.  
guaranteed performance. Figure 5 illustrates configura-  
+
tion of the output power rails for V  
= 3.3V, V = 10V,  
CC2  
and V = –10V.  
ꢅ2883ꢆꢂꢇ  
ꢉꢉ2  
ꢉꢉ2  
3ꢗ3ꢈ  
ꢓꢁꢈ  
ꢉꢉ  
ꢓꢘꢙꢚ  
ꢂ3ꢁꢚ  
ꢂ3ꢁꢚ  
ꢐꢈ  
ꢂꢈ  
ꢐꢈ  
ꢎꢋ  
ꢒꢓꢁꢈ  
ꢐꢈ  
SDOE  
CS  
CS2  
ꢇꢌꢍ2  
ꢇꢉꢏ2  
ꢇꢌꢍ  
ꢇꢉꢏ  
ꢌꢎ2  
ꢇꢌꢎ  
ꢌꢎꢓ  
ꢍ2  
ꢇꢌꢎ2  
ꢍꢓ  
Serial Peripheral Interface (SPI) Bus  
ꢊꢋꢌ  
ꢊꢋꢌ2  
2883 ꢀꢁꢂ  
The LTM2883-S provides a SPI compatible isolated inter-  
face. The maximum data rate is a function of the inherent  
channel propagation delays, channel to channel pulse  
width uncertainty, and data direction requirements. Chan-  
nel timing is detailed in Figures 5 through 8 and Tables  
3 and 4. The SPI protocol supports four unique timing  
configurations defined by the clock polarity (CPOL) and  
clock phase (CPHA) summarized in Table 2.  
Figure 5ꢀ Adjustable Voltage Rails  
To decreasetheoutputvoltagearesistormustbeconnected  
from the output voltage pin to the associated adjust pin.  
To increase the output voltage connect a resistor to the  
adjust pin to GND2. Use the equations listed in Table 1  
tocalculatetheresistancesrequiredtoadjusteachoutput.  
Table 2ꢀ SPI Mode  
TheoutputvoltageadjustmentrangeforV is3Vto5.5V.  
CC2  
CPOL CPHA  
DATA TO (CLOCK) RELATIONSHIP  
+
AdjustmentrangeforV andV is 1.22Vtoapproximately  
0
0
1
1
0
1
0
1
Sample (Rising)  
Set-Up (Falling)  
Sample (Falling)  
Set-Up (Rising)  
Sample (Rising)  
+
13.5V. Operation at low output voltages for V or V may  
result in thermal shutdown due to low dropout regulator  
power dissipation.  
Set-Up (Rising)  
Sample (Falling)  
Set-Up (Falling)  
2883fd  
18  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
The maximum data rate for bidirectional communication  
is 4MHz, based on a synchronous system, as detailed in  
the timing waveforms. Slightly higher data rates may be  
achieved by skewing the clock duty cycle and minimiz-  
ing the SDO to SCK set-up time, however the clock rate  
is still dominated by the system propagation delays. A  
discussion of the critical timing paths relative to Figure 6  
and 7 follows.  
CS to SCK (master sample SDO, 1st SDO valid)  
t t  
≈50ns, CS to CS2 propagation delay  
0
1
t t  
Isolated slave device propagation  
(response time), asserts SDO2  
1
1+  
t t  
≈50ns, SDO2 to SDO propagation delay  
Set-up time for master SDO to SCK  
1
3
t t  
3
5
ꢆꢉꢏꢐ ꢋ ꢁ  
CS SDOE  
CS2  
ꢃꢄꢎ  
ꢃꢄꢎ2  
ꢃꢆꢇ ꢈꢆꢉꢅꢊ ꢋ ꢁꢍ  
ꢃꢆꢇ2 ꢈꢆꢉꢅꢊ ꢋ ꢁꢍ  
ꢃꢆꢇ ꢈꢆꢉꢅꢊ ꢋ ꢌꢍ  
ꢃꢆꢇ2 ꢈꢆꢉꢅꢊ ꢋ ꢌꢍ  
ꢃꢄꢅ  
ꢎꢖꢗꢐꢊꢎꢄ  
ꢃꢄꢅ2  
ꢌꢁ  
2
3
ꢌꢌ ꢌ2  
ꢌ3  
ꢌꢒ  
ꢌꢓ  
ꢌꢔ  
ꢌ8  
8
2883 ꢀꢁꢂ  
Figure 6ꢀ SPI Timing, Bidirectional, CPHA = 0  
ꢆꢉꢏꢐ ꢋ ꢌ  
CS SDOE  
CS2  
ꢃꢄꢎ  
ꢃꢄꢎ2  
ꢃꢆꢇ ꢈꢆꢉꢅꢊ ꢋ ꢁꢍ  
ꢃꢆꢇ2 ꢈꢆꢉꢅꢊ ꢋ ꢁꢍ  
ꢃꢆꢇ ꢈꢆꢉꢅꢊ ꢋ ꢌꢍ  
ꢃꢆꢇ2 ꢈꢆꢉꢅꢊ ꢋ ꢌꢍ  
ꢃꢄꢅ  
ꢎꢖꢗꢐꢊꢎꢄ  
ꢃꢄꢅ2  
ꢌꢁ  
2
3
ꢌꢌ ꢌ2  
ꢌ3  
ꢌꢒ  
ꢌꢓ  
ꢌꢔ ꢌꢂ  
ꢌ8  
8
2883 ꢀꢁꢂ  
Figure 7ꢀ SPI Timing, Bidirectional, CPHA = 1  
2883fd  
19  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
• SDI to SCK (master data write to slave)  
• SDO to SCK (master sample SDO, subsequent  
SDO valid)  
t t  
≈50ns, SDI to SDI2 propagation delay  
≈50ns, SCK to SCK2 propagation delay  
2
4
6
5
t
set-up data transition SDI and SCK  
8
t t  
5
t t  
≈50ns, SDI to SDI2 and SCK to SCK2  
propagation delay  
8
10  
t t  
2
≥50ns, SDI to SCK, separate packet  
non-zero set-up time  
t
10  
SDO2 data transition in response to SCK2  
t t  
≥50ns, SDI2 to SCK2, separate packet  
non-zero set-up time  
4
6
t t ≈50ns, SDO2 to SDO propagation delay  
10  
11  
t t Set-up time for master SDO to SCK  
11  
12  
Table 3ꢀ Bidirectional SPI Timing Event Description  
TIME  
CPHA  
EVENT DESCRIPTION  
t
0
0, 1  
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns. Logic side slave data output  
enabled, initial data is not equivalent to slave device data output  
t to t  
t
to t  
18  
0, 1  
0, 1  
0
Propagation delay chip select, logic to isolated side, 50ns typical  
Slave device chip select output data enable  
0
1, 17  
t
1
t
2
Start of data transmission, data set-up  
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of slave data, isolated to logic side, 50ns typical  
Slave data output valid, logic side  
t to t  
0, 1  
0, 1  
0
1
3
t
3
t to t  
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Propagation delay of clock, logic to isolated side  
Isolated side data sample time  
2
4
1
t
5
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
5
6
t
6
t
8
Synchronous data and clock transition, logic side  
Data to clock delay, must be ≤13ns  
t to t  
7
8
t to t  
8
Clock to data delay, must be ≤3ns  
9
t to t  
8
Propagation delay clock and data, logic to isolated side  
Slave device data transition  
10  
t
t
t
t
t
10, 14  
to t  
to t  
t
to t  
15  
Propagation delay slave data, isolated to logic side  
Slave data output to sample clock set-up time  
10  
11  
13  
11, 14  
12  
Last data and clock transition logic side  
1
Last sample clock transition logic side  
t
to t  
to t  
0
Propagation delay data and clock, logic to isolated side  
Propagation delay clock, logic to isolated side  
13  
15  
14  
1
t
0
Last slave data output transition logic side  
1
Last slave data output and data transition, logic side  
Propagation delay data, logic to isolated side  
t
15  
t
17  
t
18  
1
16  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission. Disable slave data output logic side  
Chip select transition isolated side, slave data output disabled  
2883fd  
20  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
Maximum data rate for single direction communication,  
master to slave, is 8MHz, limited by the systems encod-  
ing/decodingschemeorpropagationdelay. Timingdetails  
for both variations of clock phase are shown in Figures 8  
and 9 and Table 4.  
• SDI and SCK set-up data transition occur within the  
same data packet. Referencing Figure 6, SDI can pre-  
cede SCK by up to 13ns (t t ) or lag SCK by 3ns  
7
8
(t t ) and not violate this requirement. Similarly in  
8
9
Figure 8, SDI can precede SCK by up to 13ns (t t )  
4
5
or lag SCK by 3ns (t t ).  
5
6
Additional requirements to insure maximum data rate are:  
2
CS is transmitted prior to (asynchronous) or within the  
Inter-IC Communication (I C) Bus  
same (synchronous) data packet as SDI  
2
The LTM2883-I provides an I C compatible isolated in-  
terface, Clock (SCL) is unidirectional, supporting master  
mode only, and data (SDA) is bidirectional. The maximum  
ꢃꢆꢎꢏ ꢉ ꢁ  
CS SDOE  
CS2  
ꢂꢌꢍ  
ꢂꢌꢍ2  
ꢂꢃꢄ ꢅꢃꢆꢇꢈ ꢉ ꢁꢋ  
ꢂꢃꢄ2 ꢅꢃꢆꢇꢈ ꢉ ꢁꢋ  
ꢂꢃꢄ ꢅꢃꢆꢇꢈ ꢉ ꢊꢋ  
ꢂꢃꢄ2 ꢅꢃꢆꢇꢈ ꢉ ꢊꢋ  
3
ꢊ2  
2
8
ꢊꢊ  
2883 ꢀꢁ8  
Figure 8ꢀ SPI Timing, Unidirectional, CPHA = 0  
ꢄꢇꢏꢐ ꢊ ꢋ  
CS SDOE  
CS2  
ꢃꢍꢎ  
ꢃꢍꢎ2  
ꢃꢄꢅ ꢆꢄꢇꢈꢉ ꢊ ꢁꢌ  
ꢃꢄꢅ2 ꢆꢄꢇꢈꢉ ꢊ ꢁꢌ  
ꢃꢄꢅ ꢆꢄꢇꢈꢉ ꢊ ꢋꢌ  
ꢃꢄꢅ2 ꢆꢄꢇꢈꢉ ꢊ ꢋꢌ  
3
ꢋ2  
2
8
ꢋꢁ ꢋꢋ  
2883 ꢀꢁꢂ  
Figure 9ꢀ SPI Timing, Unidirectional, CPHA = 1  
2883fd  
21  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
Table 4ꢀ Unidirectional SPI Timing Event Description  
TIME  
CPHA  
0, 1  
0, 1  
0
EVENT DESCRIPTION  
t
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns  
Propagation delay chip select, logic to isolated side  
Start of data transmission, data set-up  
0
t to t  
0
1
3
t
2
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Clock propagation delay, clock and data transition  
Data to clock delay, must be ≤13ns  
t to t  
2
0
1
t
3
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
3
5
5
6
7
t to t  
4
t to t  
5
Clock to data delay, must be ≤3ns  
t to t  
5
Data and clock propagation delay  
t
8
Last clock and data transition  
1
Last clock transition  
t to t  
0
Clock and data propagation delay  
8
9
1
Clock propagation delay  
t to t  
1
Data propagation delay  
9
10  
t
11  
t
12  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission  
Chip select transition isolated side  
2
1.8mA current source provides a pull-up for SDA2. Do not  
connect any other pull-up device to SDA2. This current  
source is sufficient to satisfy the system requirements for  
bus capacitances greater than 200pF in FAST mode and  
greater than 400pF in STANDARD mode.  
data rate is 400kHz which supports fast-mode I C. Timing  
is detailed in Figure 10. The data rate is limited by the slave  
2
acknowledge setup time (t  
), consisting of the I C  
SU;ACK  
standardminimumsetuptime(t  
)of100ns,maximum  
SU;DAT  
clock propagation delay of 225ns, glitch filter and isolated  
data delay of 350ns maximum, and the combined isolated  
and logic data fall time of 500ns at maximum bus load-  
Additional proprietary circuitry monitors the slew rate on  
the SDA and SDA2 signals to manage directional control  
across the isolation barrier. Slew rates on both pins must  
be greater than 1V/μs for proper operation.  
2
ing. The total setup time reduces the I C data hold time  
(t  
) to a maximum of 125ns, guaranteeing sufficient  
HD;DAT  
data setup time (t  
).  
SU;ACK  
The logic side bidirectional serial data pin, SDA, requires a  
The isolated side bidirectional serial data pin, SDA2,  
simplified schematic is shown in Figure 11. An internal  
pull-up resistor or current source connected to V . Follow  
L
ꢃꢈꢅꢒꢓ ꢅꢇꢑ  
ꢃꢄꢅ  
ꢃꢄꢅ2  
ꢃꢇꢈ  
8
ꢃꢇꢈ2  
ꢃꢉꢅꢊꢉ  
ꢃꢉꢍꢌ  
2883 ꢀꢁꢂ  
ꢌꢊꢍꢌ  
ꢐꢄꢏꢄꢅꢉ  
ꢃꢎꢏꢄꢅꢉ  
ꢃꢎꢏꢅꢇꢑ  
Figure 10ꢀ I2C Timing Diagram  
2883fd  
22  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
The isolated side clock pin, SCL2, has a weak push-pull  
output driver; do not connect an external pull-up device.  
ꢁꢅ8ꢆꢄ  
ꢋꢊꢌꢏꢍꢐ ꢀꢌꢎꢇ  
ꢏꢈ  
ꢊꢈꢋꢌꢍ  
2
SCL2iscompatiblewithI Cdeviceswithoutclockstretch-  
ꢂꢌꢃꢎ  
ꢂꢃꢄ2  
ing. On lightly loaded connections, a 100pF capacitor  
from SCL2 to GND2 or RC low-pass filter (R = 500Ω C =  
100pF) can be used to increase the rise and fall times and  
minimize noise.  
ꢀꢇꢈꢉ  
ꢊꢈꢋꢌꢍ  
ꢂꢌꢃꢎ  
2883 ꢀꢁꢁ  
Some consideration must be given to signal coupling  
between SCL2 and SDA2. Separate these signals on a  
printed circuit board or route with ground between. If  
Figure 11ꢀ Isolated SDA2 Pin Schematic  
the requirements in Figures 12 and 13 for the appropri-  
ate pull-up resistor on SDA that satisfies the desired rise  
these signals are wired off board, twist SCL2 with V  
CC2  
time specifications and V maximum limits for FAST and  
and/or GND2 and SDA2 with GND2 and/or V , do not  
OL  
CC2  
STANDARD modes. The resistance curves represent the  
maximum resistance boundary; any value may be used  
to the left of the appropriate curve.  
twist SCL2 and SDA2 together. If coupling between SCL2  
and SDA2 is unavoidable, place the aforementioned RC  
filter at the SCL2 pin to reduce noise injection onto SDA2.  
30  
RF, Magnetic Field Immunity  
V = 3V  
V = 3.3V  
25  
20  
15  
10  
5
V = 3.6V  
V = 4.5V TO 5.5V  
TheisolatorµModuletechnologyusedwithintheLTM2883  
hasbeenindependentlyevaluated,andsuccessfullypassed  
the RF and magnetic field immunity testing requirements  
per European Standard EN 55024, in accordance with the  
following test standards:  
EN 61000-4-3  
EN 61000-4-8  
EN 61000-4-9  
Radiated, Radio-Frequency,  
Electromagnetic Field Immunity  
0
Power Frequency Magnetic Field  
Immunity  
10  
100  
(pF)  
1000  
C
BUS  
2883 F12  
Pulsed Magnetic Field Immunity  
Figure 12ꢀ Maximum Standard Speed Pull-Up Resistance on SDA  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCB layout recommendations.  
Specific limits per test are detailed in Table 5.  
10  
V = 3V  
9
8
7
6
5
4
3
2
1
0
V = 3.3V  
V = 3.6V  
V = 4.5V TO 5.5V  
Table 5ꢀ  
TEST  
FREQUENCY  
80MHz to 1GHz  
1.4MHz to 2GHz  
2GHz to 2.7GHz  
50Hz and 60Hz  
60Hz  
FIELD STRENGTH  
10V/m  
EN 61000-4-3 Annex D  
3V/m  
1V/m  
EN 61000-4-8 Level 4  
EN 61000-4-8 Level 5  
EN 61000-4-9 Level 5  
*non IEC method  
30A/m  
100A/m*  
1000A/m  
10  
100  
(pF)  
1000  
Pulse  
C
BUS  
2883 F13  
Figure 13ꢀ Maximum Fast Speed Pull-Up Resistance on SDA  
2883fd  
23  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
PCB Layout  
anyhighfrequencydifferentialvoltagesandsubstantially  
reducing radiated emissions. Discrete capacitance will  
notbeaseffectiveduetoparasiticESL.Inaddition,volt-  
age rating, leakage, and clearance must be considered  
for component selection. Embedding the capacitance  
withinthePCBsubstrateprovidesanearidealcapacitor  
and eliminates component selection issues; however,  
the PCB must be 4 layers. Care must be exercised in  
applying either technique to insure the voltage rating  
of the barrier is not compromised.  
The high integration of the LTM2883 makes PCB layout  
very simple. However, to optimize its electrical isolation  
characteristics, EMI, and thermal performance, some  
layout considerations are necessary.  
• Under heavily loaded conditions V and GND current  
CC  
can exceed 300mA. Sufficient copper must be used  
on the PCB to insure resistive losses do not cause the  
supply voltage to drop below the minimum allowed  
level. Similarly, the V  
and GND2 conductors must  
CC2  
The PCB layout in Figures 14a and 14b shows the low  
EMI demo board for the LTM2883. The demo board uses  
a combination of EMI mitigation techniques, including  
both embedded PCB bridge capacitance and discrete GND  
to GND2 capacitors. Two safety rated type Y2 capacitors  
are used in series, manufactured by MuRata, part number  
GA342QR7GF471KW01L. The embedded capacitor ef-  
fectively suppresses emissions above 400MHz, whereas  
the discrete capacitors are more effective below 400MHz.  
be sized to support any external load current. These  
heavy copper traces will also help to reduce thermal  
stress and improve the thermal conductivity.  
• Inputandoutputdecouplingisnotrequired,sincethese  
components are integrated within the package. An ad-  
ditional bulk capacitor with a value of 6.8µF to 22µF is  
recommended. The high ESR of this capacitor reduces  
boardresonancesandminimizesvoltagespikescaused  
by hot plugging of the supply voltage. For EMI sensitive  
applications,anadditionallowESLceramiccapacitorof  
1µF to 4.7µF, placed as close to the power and ground  
terminalsaspossible, isrecommended. Alternatively, a  
numberofsmallervalueparallelcapacitorsmaybeused  
to reduce ESL and achieve the same net capacitance.  
EMI performance is shown in Figure 15, measured using  
a Gigahertz Transverse Electromagnetic (GTEM) cell and  
method detailed in IEC 61000-4-20, Testing and Measure-  
ment Techniques – Emission and Immunity Testing in  
Transverse Electromagnetic Waveguides.  
• Do not place copper on the PCB between the inner col-  
umnsofpads. Thisareamustremainopentowithstand  
the rated isolation voltage.  
• The use of solid ground planes for GND and GND2  
is recommended for non-EMI critical applications to  
optimize signal fidelity, thermal performance, and to  
minimize RF emissions due to uncoupled PCB trace  
conduction. The drawback of using ground planes,  
where EMI is of concern, is the creation of a dipole  
antennastructurewhichcanradiatedifferentialvoltages  
formed between GND and GND2. If ground planes are  
used it is recommended to minimize their area, and  
use contiguous planes as any openings or splits can  
exacerbate RF emissions.  
• For large ground planes a small capacitance (≤330pF)  
from GND to GND2, either discrete or embedded within  
the substrate, provides a low impedance current return  
path for the module parasitic capacitance, minimizing  
TECHNOLOGY  
Figure 14aꢀ LTM2883 Low EMI Demo Board Layout  
2883fd  
24  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
Top Layer  
Inner Layer 2  
Inner Layer 1  
Bottom Layer  
Figure 14bꢀ LTM2883 Low EMI Demo Board Layout (DC1748A)  
2883fd  
25  
For more information www.linear.com/LTM2883  
LTM2883  
APPLICATIONS INFORMATION  
ꢕꢍ  
ꢘꢍ  
ꢆꢧꢦꢢꢁ 22 ꢆꢫꢩꢦꢦ ꢏ ꢫꢧꢉꢧꢛ  
ꢚꢆꢔꢖꢙ8ꢩꢪꢏ  
ꢙꢍ  
3ꢍ  
2ꢍ  
ꢔꢍ  
ꢚꢆꢔꢖꢙ8ꢩꢪꢩ  
ꢚꢂꢛꢂꢆꢛꢜꢁ ꢝ ꢃꢞꢟꢠꢡꢢꢣꢟꢤ  
ꢁꢏꢥ ꢝ ꢔ2ꢍꢤꢊꢋ  
ꢑꢏꢥ ꢝ 3ꢍꢍꢤꢊꢋ  
ꢦꢥꢂꢂꢢ ꢛꢧꢉꢂ ꢝ ꢔꢖꢠ  
ꢨ ꢜꢀ ꢢꢜꢧꢅꢛꢦ ꢝ ꢘꢍꢔ  
ꢎꢔꢍ  
ꢎ2ꢍ  
ꢎ3ꢍ  
ꢔꢍꢍ 2ꢍꢍ 3ꢍꢍ ꢙꢍꢍ ꢘꢍꢍ ꢕꢍꢍ ꢖꢍꢍ 8ꢍꢍ ꢗꢍꢍꢍꢍ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
2883 ꢀꢔꢘ  
Figure 15ꢀ LTM2883 Low EMI Demo Board Emissions  
TYPICAL APPLICATIONS  
ꢗꢟꢁꢏꢀ  
ꢁ2ꢟꢇꢉ  
ꢅ2883ꢆꢇꢈ  
ꢗꢟꢁꢏꢀ  
ꢁꢏꢀ  
ꢌ8  
ꢊ8  
ꢃ8  
ꢎ8  
ꢃꢍ  
ꢎꢍ  
ꢃꢂ  
ꢎꢂ  
8
ꢁ2ꢟꢇꢉ  
ꢊꢉ  
ꢇꢉ  
ꢑꢑ  
3
2
ꢁꢏꢀ  
8
ꢁꢡ2 ꢑ2ꢗꢇꢇ  
ꢙꢁ2ꢟꢇꢉ  
ꢇꢉ  
ꢁꢟꢍꢠ  
ꢊꢉ  
ꢁꢗ  
ꢊꢍ  
ꢊꢂ  
ꢊꢇ  
ꢊꢋ  
ꢊ3  
ꢊ2  
ꢊꢁ  
ꢌꢁ  
ꢌ2  
ꢝꢔ  
ꢑꢑ2  
ꢁꢛꢛꢁ  
ꢓ ꢢ 8  
ꢁꢟꢍꢠ  
ꢁꢗꢉ ꢝꢞꢄ  
2
3
ꢊꢉ  
ꢓꢔꢒ  
ꢒꢈꢁ  
ꢑꢑ2  
ꢝꢁ  
ꢑꢑ  
ꢃꢇ  
ꢃꢋ  
ꢃ3  
ꢃ2  
ꢃꢁ  
ꢎꢁ  
ꢎ2  
ꢑ2ꢂ3ꢁꢊꢆꢃꢅꢁ2ꢘ ꢒꢊꢑ  
ꢁꢟ2ꢇꢉ  
2
3
8
ꢐꢒꢊ2  
ꢐꢑꢃ2  
ꢒꢔꢑ  
ꢈ2  
ꢑꢊꢗ  
ꢐꢑꢃ  
ꢐꢒꢊ  
ꢓꢔꢒ  
ꢕꢜꢐꢖꢃ  
ꢐꢒꢊ  
ꢐꢑꢃ  
ꢐꢒꢊ  
ꢐꢑꢃ  
ꢒꢔꢑ  
ꢒꢝ2  
ꢒꢝꢁ  
ꢓꢔꢒ  
2ꢟꢇꢉ ꢟꢐꢟ  
ꢗꢟꢁꢏꢀ  
ꢏꢑ  
ꢝꢞꢄ  
ꢙꢁ2ꢟꢇꢉ  
ꢕꢖꢀ  
ꢑꢑ  
ꢓꢔꢒ  
ꢈꢁ  
ꢁꢡ2 ꢑ2ꢗꢇꢇ  
ꢓꢔꢒ2  
2883 ꢀꢁꢂ  
ꢗꢟꢁꢏꢀ  
ꢁ2ꢟꢇꢉ  
ꢗꢟꢁꢏꢀ  
2ꢟꢇꢉ  
ꢑ23ꢗꢁꢘ ꢊꢒꢑ  
ꢁꢗ  
ꢁꢁ  
ꢁ2  
8
ꢓꢔꢒ  
ꢊꢒꢗ ꢕꢖꢀꢑ  
ꢒꢒ  
ꢗꢟꢁꢏꢀ  
8
ꢁꢗ  
ꢊꢒꢁ  
ꢓꢔꢒ  
ꢐꢒꢊ  
ꢐꢑꢃ  
ꢁꢗꢏꢀ  
ꢁꢏꢀ  
ꢗꢟꢁꢏꢀ  
ꢕꢖꢀ  
ꢈꢔ  
2
ꢁꢛꢛꢁ  
ꢓ ꢢ ꢗꢟ2  
ꢈꢔ  
ꢋꢉ ꢟꢐꢟ  
3
ꢁꢗꢉ ꢈꢔ  
ꢓꢔꢒ  
2  
3
ꢗꢟꢁꢏꢀ  
ꢙꢁ2ꢟꢇꢉ  
Figure 16ꢀ Isolated I2C 12-Bit, 10V Analog Input and Output  
2883fd  
26  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
ꢈ2883ꢉ3ꢊ  
ꢖ8  
ꢐ8  
ꢆ8  
ꢏ8  
ꢆꢂ  
ꢏꢂ  
ꢆꢕ  
ꢏꢕ  
ꢐꢋ  
3ꢛ3ꢋ  
ꢌꢌ  
ꢁꢞꢟ  
ꢁꢝꢀ  
ꢂꢔꢋꢌꢁꢍꢁ23  
ꢐꢋ  
ꢌꢘ  
ꢗꢘꢙꢌꢘ  
ꢌꢆꢗ  
ꢐꢂ  
ꢐꢕ  
ꢐꢓ  
ꢐꢔ  
ꢐ3  
ꢐ2  
ꢐꢁ  
ꢖꢁ  
ꢖ2  
CSꢁ  
ꢃꢄ  
ꢌꢌ2  
ꢌꢌ2  
ꢐꢋ  
SDOE  
CS  
ꢆꢓ  
ꢆꢔ  
ꢆ3  
ꢆ2  
ꢆꢁ  
ꢏꢁ  
ꢏ2  
ꢁꢜꢀ  
CS2  
ꢊꢎꢅ2  
ꢊꢌꢏ2  
ꢅ2  
CSꢀ  
ꢈꢃꢊꢅ  
ꢊꢌꢏ  
ꢊꢎꢅ  
ꢊꢌꢏ  
ꢎꢃ2  
ꢊꢎꢃ  
ꢎꢃꢁ  
ꢍꢄꢎ  
ꢌꢌ  
CSꢀ  
CSꢁ  
ꢊꢎꢃ2  
ꢅꢁ  
ꢈꢅꢊꢃ  
ꢜꢌ  
ꢍꢄꢎ2  
2883 ꢀꢁꢂ  
ꢈꢃꢊꢅ  
ꢊꢌꢏ  
ꢈꢅꢊꢃ  
ꢍꢄꢎ  
CSꢀ  
CSꢁ  
ꢈꢃꢊꢅ  
ꢊꢌꢏ  
Figure 17ꢀ Isolated SPI Device Expansion  
LTM2883-5I  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
L
AV  
10k  
10k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
CC2  
AV  
GND  
DI1  
8.66k  
137Ω  
CC2  
O1  
10k  
10k  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
ENABLE  
SDA  
1
2
3
4
5
10  
SDA2  
SCL2  
DNC  
I2  
SDAOUT  
SDA  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SDAIN  
SCLIN  
CONN  
ADDR  
GND  
9
8
7
6
SCLIN  
SCLOUT  
SCLOUT  
LTC4302-1  
V
CC  
GPIO2  
GPIO1  
GPIO2  
GPIO1  
I1  
GND2  
2883 F18  
Figure 18ꢀ Isolated I2C Buffer with Programmable Outputs  
2883fd  
27  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
ꢈ2883ꢉꢊꢋ  
ꢖ8  
ꢑ8  
ꢆ8  
ꢐ8  
ꢆꢗ  
ꢐꢗ  
ꢆꢕ  
ꢐꢕ  
ꢑꢌ  
ꢊꢌ  
ꢍꢍ  
ꢁꢘꢀ  
ꢑꢌ  
ꢄꢇꢍ ꢇꢞꢟꢠꢈꢅꢋꢇꢃꢠꢋꢡ ꢈꢢꢠꢑꢇꢑ ꢄꢇꢋꢏꢁꢣꢏꢁꢝꢔꢡ ꢁꢝꢝꢤ  
ꢓꢥꢦ ꢓꢥꢦ ꢓꢥꢦ ꢓꢥꢦ  
ꢑꢗ  
ꢑꢕ  
ꢑꢊ  
ꢑꢔ  
ꢑ3  
ꢑ2  
ꢑꢁ  
ꢖꢁ  
ꢖ2  
ꢃꢄ  
ꢍꢍ2  
ꢍꢍ2  
ꢑꢌ  
SDOE  
CS  
ꢍꢍ  
ꢆꢊ  
ꢆꢔ  
ꢆ3  
ꢆ2  
ꢆꢁ  
ꢐꢁ  
ꢐ2  
CS2  
ꢋꢏꢅ2  
ꢋꢍꢐ2  
ꢅ2  
ꢃꢚ  
ꢃꢛ  
ꢃꢙ  
ꢋꢏꢅ  
ꢍꢁꢗꢂꢂ  
ꢋꢍꢐ  
ꢏꢃ2  
ꢋꢏꢃ  
ꢏꢃꢁ  
ꢎꢄꢏ  
ꢘꢍ  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢓꢥꢦ  
2
3
ꢏꢎꢔꢝꢊꢁꢑ  
ꢜꢝ  
ꢁꢈ  
ꢃꢢꢇ  
ꢁꢕ  
3
ꢁ3  
ꢁꢔ  
ꢁꢊ  
ꢁ2  
ꢅꢛ  
ꢅꢙ  
ꢋꢏꢃ2  
ꢅꢁ  
ꢎꢄꢏ  
ꢍꢍ  
3ꢧꢝꢁꢤ  
ꢜꢁ  
ꢜ2  
ꢜ3  
ꢜꢔ  
ꢏꢅꢌ ꢋꢟꢇ  
ꢎꢄꢏ  
ꢁꢁ  
ꢁꢝ  
ꢎꢄꢏ2  
2883 ꢀꢁꢂ  
ꢟꢄꢑꢖꢆꢟ ꢜꢊ  
2
ꢜꢕ  
ꢜꢗ  
ꢟꢟ  
8
TEMPERATURE (°C) FREQUENCY (kHz)  
ꢎꢄꢏ  
ꢓꢔꢝ  
ꢓ3ꢝ  
ꢓ2ꢝ  
ꢓꢁꢝ  
ꢁꢧ23  
ꢁꢧꢔꢕ  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢁꢧ8ꢗ  
2ꢧꢊ8  
3ꢧꢗꢗ  
ꢍꢁꢗꢂꢂ  
ꢁꢝ  
ꢊꢧꢕꢗ  
2
3
ꢏꢎꢔꢝꢊꢁꢑ  
2ꢝ  
8ꢧꢕꢔ  
ꢃꢢꢇ  
ꢁꢈ  
ꢁꢕ  
3
ꢁ3  
ꢁꢔ  
ꢁꢊ  
ꢁ2  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢓꢥꢦ  
ꢓꢥꢦ  
3ꢝ  
ꢁ3ꢧꢝꢂ  
ꢁꢂꢧꢊ3  
28ꢧꢔꢗ  
ꢔꢝꢧꢕꢊ  
ꢊꢊꢧ8ꢗ  
ꢗꢔꢧꢔꢊ  
ꢂꢕꢧꢝ8  
ꢁꢁꢂꢧ83  
ꢁꢔꢔꢧꢗ3  
ꢁꢕꢂꢧ3ꢕ  
ꢜꢝ  
ꢜꢁ  
ꢜ2  
ꢜ3  
ꢜꢔ  
ꢎꢄꢏ  
ꢍꢍ  
3ꢧꢝꢁꢤ  
ꢔꢝ  
ꢏꢅꢌ ꢋꢟꢇ  
ꢊꢝ  
ꢁꢁ  
ꢁꢝ  
ꢕꢝ  
ꢗꢝ  
8ꢝ  
ꢂꢝ  
ꢁꢝꢝ  
ꢁꢁꢝ  
ꢁ2ꢝ  
ꢟꢄꢑꢖꢆꢟ ꢜꢊ  
2
ꢜꢕ  
ꢜꢗ  
ꢟꢟ  
8
ꢎꢄꢏ  
Figure 19ꢀ 16-Channel Isolated Temperature to Frequency Converter  
2883fd  
28  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
ꢄꢞꢀꢜꢉꢁꢝ  
ꢓꢁꢁꢡ  
ꢊꢘꢄꢆꢌꢙꢖꢎ ꢓ2ꢔꢉꢋ  
ꢊꢘꢄꢆꢌꢙꢖꢎ ꢒꢓ2ꢔꢉꢋ  
ꢇ2883ꢈꢉꢊ  
ꢗ8  
ꢐ8  
ꢅ8  
ꢏ8  
ꢅꢜ  
ꢏꢜ  
ꢅꢛ  
ꢏꢛ  
ꢄꢞꢀꢜꢉꢁꢝ  
ꢐꢋ  
ꢉꢋ  
ꢌꢌ  
ꢓꢁꢁꢡ  
ꢐꢋ  
ꢐꢜ  
ꢐꢛ  
ꢐꢉ  
ꢐꢚ  
ꢐ3  
ꢐ2  
ꢐꢓ  
ꢗꢓ  
ꢗ2  
ꢂꢃ  
ꢌꢌ2  
ꢌꢌ2  
ꢄꢞꢀꢜꢉꢁꢝ  
ꢓꢁꢁꢡ  
ꢐꢋ  
SDOE  
CS  
ꢅꢉ  
ꢅꢚ  
ꢅ3  
ꢅ2  
ꢅꢓ  
ꢏꢓ  
ꢏ2  
ꢄꢞꢅꢇꢅ2ꢚꢁ2  
ꢓꢁꢁꢡ  
ꢒꢓ2ꢔꢉꢋ ꢖꢃꢐꢗꢅꢖ  
ꢓ2ꢔꢉꢋ ꢖꢃꢐꢗꢅꢖ  
ꢉꢋ ꢖꢃꢐꢗꢅꢖ  
ꢓ2ꢔꢉꢋ ꢕꢋ  
CS2  
ꢊꢎꢄ2  
ꢊꢌꢏ2  
ꢄ2  
ꢊꢘꢄꢆꢌꢙꢖꢎ ꢉꢋ  
ꢊꢎꢄ  
ꢊꢌꢏ  
ꢎꢂ2  
ꢊꢎꢂ  
ꢎꢂꢓ  
ꢍꢃꢎ  
22ꢛꢡ  
ꢊꢎꢂ2  
ꢄꢓ  
ꢒꢓ2ꢔꢉꢋ ꢕꢋ  
ꢉꢋ ꢕꢋ  
ꢍꢃꢎ2  
2883 ꢀ2ꢁ  
ꢌ2ꢝꢁ2  
ꢌꢂꢇꢟ2  
ꢌꢂꢇꢟꢓ ꢌꢂꢇꢟꢚ  
2
3
8
ꢓꢛ  
ꢓꢉ  
ꢓꢚ  
ꢓ3  
ꢓ2  
ꢓꢓ  
ꢓꢁ  
ꢌꢂꢇꢟ3  
ꢓꢝꢛꢡ  
2ꢁꢡ  
ꢁꢔꢓꢠꢀ  
ꢋ3  
ꢋ2  
ꢋꢚ  
ꢋꢓ  
ꢌꢞꢆ  
ꢀSꢂ  
ꢆꢁ  
ꢞꢖꢀ  
ꢓꢁꢡ  
ꢝ3ꢔꢓꢡ  
ꢝꢔꢉ3ꢡ  
ꢟꢍ  
ꢍꢃꢎ  
ꢆꢓ  
ꢀDꢁS  
Figure 20ꢀ Digitally Switched Triple Power Supply with Undervoltage Monitor  
2883fd  
29  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
ꢜꢂꢁꢑꢅ  
ꢁ2ꢂꢃꢄ  
8
ꢁꢜ  
ꢁꢛꢛꢁ  
ꢕ ꢟ 8  
ꢁꢜꢄ ꢓꢘꢇꢋ  
ꢁꢜꢄ ꢓꢘꢇꢎ  
ꢁꢜꢄ ꢓꢘꢇꢒ  
2
3
ꢜꢂꢁꢑꢅ  
ꢀꢁ2ꢂꢃꢄ  
ꢜꢂꢁꢑꢅ  
ꢃꢄ  
ꢜꢂꢁꢑꢅ  
ꢜꢂꢁꢑꢅ  
ꢁꢂ2ꢃꢄ  
ꢁ2ꢂꢃꢄ  
ꢈ2883ꢉ3ꢊ  
3
ꢎ8  
ꢋ8  
ꢆ8  
ꢐ8  
ꢆꢏ  
ꢐꢏ  
ꢆꢍ  
ꢐꢍ  
8
ꢁ2ꢂꢃꢄ  
ꢋꢄ  
3ꢂ3ꢄ  
ꢒꢒ  
ꢒ2ꢜꢃꢌ  
2
ꢁꢑꢅ  
ꢁꢜ  
ꢀꢁ2ꢂꢃꢄ  
ꢁꢛꢛꢁ  
ꢕ ꢟ 8  
ꢒ2ꢍꢃꢌꢉꢆꢁꢍ  
ꢋꢄ  
2
3
ꢋꢏ  
ꢋꢍ  
ꢋꢃ  
ꢋꢌ  
ꢋ3  
ꢋ2  
ꢋꢁ  
ꢎꢁ  
ꢎ2  
ꢁꢃ  
ꢙꢚꢅꢓꢘꢇ  
ꢒꢒ  
ꢓꢖ  
ꢒꢒ2  
ꢒꢒ2  
3
ꢋꢄ  
SDOE  
CS  
ꢀDꢂC  
CS  
ꢙꢚꢅꢒ  
ꢒꢒ  
ꢆꢃ  
ꢆꢌ  
ꢆ3  
ꢆ2  
ꢆꢁ  
ꢐꢁ  
ꢐ2  
2
ꢜꢂꢁꢑꢅ  
CS2  
ꢊꢗꢔ2  
ꢊꢒꢐ2  
ꢔ2  
CS  
ꢓꢘꢇꢋ  
ꢓꢘꢇꢎ  
ꢓꢘꢇꢒ  
ꢓꢘꢇꢗ  
ꢈꢓꢊꢔ  
ꢊꢒꢐ  
ꢊꢗꢔ  
ꢊꢗꢔ  
ꢀꢁ2ꢂꢃꢄ  
8
ꢁ3  
ꢁꢌ  
ꢊꢒꢐ  
ꢗꢓ2  
ꢊꢗꢓ  
ꢗꢓꢁ  
ꢕꢖꢗ  
ꢊꢒꢐ  
Cꢀꢁ  
ꢊꢗꢓ  
ꢑꢒ  
ꢁꢁ  
ꢁꢜ  
ꢁ2  
ꢜꢂꢁꢑꢅ  
ꢈꢔꢊꢓ  
ꢊꢗꢓ2  
ꢔꢁ  
ꢙꢚꢅꢆꢓ  
ꢜꢂꢁꢑꢅ  
ꢁꢍ  
ꢕꢖꢗ  
ꢁ2ꢂꢃꢄ  
ꢝꢓꢙꢊꢚꢆ ꢕꢖꢗ  
ꢕꢖꢗ2  
2883 ꢅ2ꢁ  
8
ꢁꢜ  
ꢁꢛꢛꢁ  
ꢕ ꢟ 8  
2
3
ꢜꢂꢁꢑꢅ  
ꢀꢁ2ꢂꢃꢄ  
ꢜꢂꢁꢑꢅ  
ꢁ2ꢂꢃꢄ  
8
ꢁꢜ  
ꢁꢛꢛꢁ  
ꢕ ꢟ 8  
ꢁꢜꢄ ꢓꢘꢇꢗ  
2
3
ꢜꢂꢁꢑꢅ  
ꢀꢁ2ꢂꢃꢄ  
Figure 21. Quad 16-Bit 10V Output Range DAC  
2883fd  
30  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
LTM2883-5I  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
L
1µF  
10k  
10k  
AV  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
CC2  
V
CC  
AV  
GND  
DI1  
CC2  
O1  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
Ox  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
Ix  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
µC  
10k  
GND  
I1  
GND2  
V
EE  
–48V RTN  
1k, ×4 IN SERIES  
1/4W EACH  
453k  
7
21  
8
9
22  
6
INTV  
V
IN  
ꢃꢄ  
SCL  
UVL  
UVH  
ADIN2  
OV  
CC  
16.9k  
10  
11  
19  
20  
26  
1
5
SDAI  
SDAO  
ꢅꢁEꢆꢂ  
ON  
4
3
SS  
2
LTC4261CGN  
TMR  
Eꢄ  
28  
27  
23  
ꢇꢈꢃ  
PGI0  
ꢇꢈ  
ꢇꢉꢆꢈD2  
ꢇꢉꢆꢈDꢊ  
25  
24  
ADR1  
ADR0  
ADIN  
11.8k  
V
SENSE GATE DRAIN RAMP  
14 15 16 18  
EE  
13  
+
330µF  
100V  
1M  
1k  
100nF  
1µF  
220nF  
10Ω  
47nF  
V
10nF  
100V  
OUT  
0.1µF  
47nF  
10k  
0.1µF  
–48V INPUT  
IRF1310NS  
0.008Ω  
1%  
402k  
V
EE  
2883 F22  
Figure 22. –48V, 200W Hot Swap Controller with Isolated I2C Interface  
2883fd  
31  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
3ꢜ3ꢈ  
ꢅ2883ꢆ3ꢇ  
ꢉꢓ8ꢖ3ꢆꢐ  
CSO  
3ꢜ3ꢞ  
3ꢜ3ꢞ  
3ꢜ3ꢞ  
ꢔ8  
ꢍ8  
ꢃ8  
ꢌ8  
ꢃꢕ  
ꢌꢕ  
ꢃꢓ  
ꢌꢓ  
ꢒꢒ  
ꢒ3  
ꢒ2  
ꢒꢐ  
ꢒꢖ  
3ꢙ  
38  
3ꢕ  
3ꢓ  
3ꢑ  
3ꢒ  
33  
32  
3ꢐ  
3ꢖ  
2ꢙ  
28  
2ꢕ  
2ꢓ  
2ꢑ  
2ꢒ  
23  
3ꢜ3ꢞ  
ꢍꢈ  
CSꢀ  
ꢇꢋꢀ  
ꢇꢋꢂ  
ꢇꢉꢌꢂ  
ꢉꢉ  
ꢐꢚꢛ  
2
ꢇꢋꢀꢂ  
3
ꢇꢉꢌꢀ  
ꢍꢈ  
ꢍꢕ  
ꢍꢓ  
ꢍꢑ  
ꢍꢒ  
ꢍ3  
ꢍ2  
ꢍꢐ  
ꢔꢐ  
ꢔ2  
ꢉꢐ2  
ꢇꢐ2  
ꢉꢐꢐ  
ꢇꢐꢐ  
ꢉꢐꢖ  
ꢇꢐꢖ  
ꢉꢙ  
ꢀꢁ  
ꢉꢉ2  
ꢉꢉ2  
ꢅꢀꢋꢗ  
ꢍꢈ  
SDOE  
CS  
ꢊꢘꢂꢀ2  
ꢊꢘꢂꢀꢐ  
ꢁDꢂ  
ꢃꢃ  
ꢉꢉ  
ꢃꢑ  
ꢃꢒ  
ꢃ3  
ꢃ2  
ꢃꢐ  
ꢌꢐ  
ꢌ2  
ꢐꢚꢛ  
ꢐꢚꢛ  
CS2  
ꢇꢋꢂ2  
ꢇꢉꢌ2  
ꢂ2  
CS  
8
ꢅꢀꢇꢂ  
ꢇꢉꢌ  
ꢇꢋꢂ  
ꢚꢉ  
ꢇꢉꢌ  
ꢋꢀ2  
ꢇꢋꢀ  
ꢋꢀꢐ  
ꢊꢁꢋ  
ꢐꢖ  
ꢐꢐ  
ꢐ2  
ꢐ3  
ꢐꢒ  
ꢐꢑ  
ꢐꢓ  
ꢐꢕ  
ꢐ8  
ꢐꢙ  
2ꢖ  
2ꢐ  
22  
ꢅꢂꢇꢀ  
ꢊꢁꢋ  
ꢄꢀꢇ  
ꢇꢋꢀ2  
ꢂꢐ  
ꢝꢗꢊ  
ꢐꢖꢖꢞ  
ꢐꢖꢖꢞ  
ꢕꢒꢉ3ꢊꢖꢕ  
ꢇꢙ  
ꢝꢗꢛ  
ꢊꢁꢋ2  
2883 ꢛ23  
ꢉ8  
ꢄꢗꢅꢘ2  
ꢄꢗꢅꢘꢐ  
ꢇ8  
ꢁꢉ  
ꢉꢕ  
ꢇꢕ  
ꢐꢖꢖꢞ  
ꢐꢖꢖꢞ  
ꢇꢐ  
ꢉꢐ  
ꢇ2  
ꢉ2  
ꢇ3  
ꢉ3  
ꢉꢓ  
ꢇꢓ  
ꢉꢑ  
ꢇꢑ  
ꢉꢒ  
ꢇꢒ  
Figure 23. 12-Cell Battery Stack Monitor with Isolated SPI Interface and Low Power Shutdown  
LTM2883-3I  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
0.02Ω  
V
AV  
V
3.3V  
V
V
CC  
L
48V  
V
OUT  
1µF  
10k  
+
AV  
SENSE SENSE  
V
IN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
SꢀDꢁ  
100k AT 25°C, 1%  
VISHAY 2381 6154.104  
CC2  
10k  
V
CC  
AV  
GND  
DI1  
CC2  
O1  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
SDA2  
SCL2  
DNC  
I2  
SDA  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
ADIN  
LTC4151  
µC  
SCL  
ADR0  
ADR1  
1.37k  
1%  
GND  
I1  
GND2  
2883 F24  
GND  
3950  
T(°C)=  
273,40°C< T <150°C  
1000  
8.965+LN  
1  
N
ADIN  
N
IS THE DIGITAL CODE MEASURED  
ADIN  
BY THE ADC AT THE ADIN PIN  
Figure 24. Isolated I2C Voltage, Current and Temperature Power Supply Monitor  
2883fd  
32  
For more information www.linear.com/LTM2883  
LTM2883  
TYPICAL APPLICATIONS  
LTM2883-5I  
B8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
A8  
L
10k  
0.1µF  
10k  
AV  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
SꢀꢁꢂDOꢃꢄ  
174k  
CC2  
0.1µF  
AV  
GND  
DI1  
100k  
CC2  
O1  
SꢀDꢄꢈ V  
DD  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
ENABLE  
SDA  
ꢆESEꢂ  
SDAIN  
SCL  
BYP  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SCLIN  
SDAOUT  
AUTO  
ꢅꢄꢂ  
DETECT  
1/4 LTC4266  
ꢅꢄꢂEꢆꢆꢁꢇꢂ  
I1  
GND2  
AD0  
AD1  
AD2  
CMPD3003  
AD3  
V
DGND AGND  
SENSE GATE OUT  
EE  
Q1: FAIRCHILD IRFM120A OR PHILIPS PHT6NQ10T  
FB1, FB2: TDK MPZ2012S601A  
T1: PULSE H609NL OR COILCRAFT ETH1-230LD  
SMAJ58A  
1µF  
0.25Ω  
Q1  
–48V  
S1B  
S1B  
0.22µF  
FB1  
FB2  
RJ45  
CONNECTOR  
T1  
1
2
3
4
5
6
7
8
10nF  
10nF  
75Ω  
75Ω  
PHY  
(NETWORK  
PHYSICAL  
LAYER  
CHIP)  
10nF  
10nF  
75Ω  
75Ω  
1nF  
2883 F25  
Figure 25. One Complete Isolated Powered Ethernet Port  
2883fd  
33  
For more information www.linear.com/LTM2883  
LTM2883  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM2883#packaging for the most recent package drawings.  
ꢶ ꢶ ꢮ ꢮ ꢮ  
ꢒ ꢇ ꢒ ꢒ ꢓ  
3 ꢇ ꢆ ꢦ ꢓ  
ꢆ ꢇ ꢕ ꢘ ꢓ  
ꢘ ꢇ ꢬ 3 ꢓ  
ꢘ ꢇ ꢬ 3 ꢓ  
ꢘ ꢇ ꢘ ꢘ ꢘ  
ꢆ ꢇ ꢕ ꢘ ꢓ  
3 ꢇ ꢆ ꢦ ꢓ  
ꢒ ꢇ ꢒ ꢒ ꢓ  
ꢥ ꢥ ꢥ  
2883fd  
34  
For more information www.linear.com/LTM2883  
LTM2883  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/12 Storage temperature range updated.  
2
B
8/13  
5/14  
Added CTI/DTI parameters and Notes 6, 7 to Isolation Characteristics table.  
6, 7  
C
Removed H-grade throughout data sheet.  
Changed Depth of Erosion parameter.  
1-36  
6
Changed overtemperature protection threshold.  
7
D
11/17 Added H-Grade; removed Obsolete mark from H-Grade.  
2, 3  
2
Raised Maximum Internal Operating Temperature, Storage Temperature Range, and package T  
Updated graphs showing performance characteristics vs temperature.  
.
JMAX  
8, 9  
2883fd  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license is graninted by implication or otherr.wise u/Lnder any patent or patent rights of Analog Devices.  
For more formation www.linea com TM2883  
35  
LTM2883  
TYPICAL APPLICATION  
Precision 4mA to 20mA Sink/Source with Current Monitor  
LTM2883-3S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
12.5V  
SINK  
3.3V  
V
V
CC  
L
LTC2641, DAC  
1µF  
1
2
3
4
8
7
6
5
7
LTC1050  
4
1µF  
GND  
REF  
CS  
3
2
75k  
+
AV  
V
DD  
1k  
6
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
Si1555DL_N  
V
ON  
SCK  
DIN  
V
OUT  
CC2  
CC2  
AV  
Cꢀꢁ  
SDOE  
CS  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
CS2  
SDI2  
SCK2  
I2  
CS  
0.1µF  
0.01µF  
SDI  
MOSI  
SCK  
µC  
SCK  
DO2  
SDO  
DO1  
GND  
5V  
10  
MISO  
11  
+
GND  
SDO2  
I1  
14  
3
LTC1100  
G = 10  
15Ω  
0.1%  
100k  
15  
3V  
6
GND2  
2883 TA02  
LTC2452, ADC  
LT6660-3  
IN OUT  
2
7
3
1
3
7
1
8
4
6
5
2
V
REF  
CS  
CC  
+
IN  
GND  
2
0.1µF  
SCK  
IN  
SOURCE  
RETURN  
0.1µF  
SDO GND  
–5V  
RELATED PARTS  
PART NUMBER  
LTM2881  
LTM2882  
LTC4310  
DESCRIPTION  
COMMENTS  
Isolated RS485/RS422 µModule Transceiver Plus Power 20Mbps 2500V  
Isolation with Power in LGA/BGA Package  
Isolation with Power in LGA/BGA Package  
RMS  
RMS  
Dual Isolated RS232 µModule Transceiver Plus Power  
20Mbps 2500V  
2
2
Hot-Swappable I C Isolators  
Bidirectional I C Communication, Low Voltage Level Shifting  
LTC6803  
Multistack Battery Monitor  
Individual Battery Cell Monitoring of High Voltage Battery Stacks, Multiple  
Devices Interconnected via SPI  
2
LTC2309/  
LTC2305/LTC2301  
12-Bit, 8-/2-/1-Channel, 14ksps SAR ADCs with I C  
5V, Internal Reference, Software Compatible Family  
2
LTC2631/LTC2630 Single 12-/10-/8-Bit I C or SPI V  
10ppm/°C Reference  
DACs with  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Rail-to-Rail Output  
OUT  
LTC2641/LTC2642 16-/14-/12-Bit V  
DACs  
1LSB INL/DNL, 0.5nV • s Glitch, 1μs Settling, 3mm × 3mm DFN  
OUT  
2
LTC2452/LTC2453 Ultra-Tiny 16-Bit Differential 5.5V Δ∑ ADCs, SPI/I C  
LTC1859/ 8-Channel 16-/14-/12-Bit, 100ksps, 10V SoftSpan™  
LTC1858/LTC1857 SAR ADCs with SPI  
2LSB INL, 50nA Sleep Current, Tiny 3mm × 2mm DFN-8 or TSOT Packages  
5V Supply, Up to 10V Configurable Unipolar/Bipolar Input Range, Pin  
Compatible Family in SSOP-28 package  
LTC2487/LTC2486 16-Bit 2- or 4-Channel Δ∑ ADCs with Easy Drive™ Inputs 16-Bit and 24-Bit Δ∑ ADC Family, Up to 16 Input Channels and Integrated  
2
and I C/SPI Interface  
Temperature Sensor  
2
LTC4303/LTC4304 Hot Swappable I C Bus Buffers  
2.7V to 5.5V Supply, Rise Time Acceleration, Stuck Bus Protection,  
15kV ESD  
LTC1100  
LT1991  
Zero-Drift Instrumentation Amplifier  
Fixed Gain of 10 or 100  
Gain Range –13 to +14  
3V/5V/ 5V Supply  
Precision, Pin Configurable Gain Difference Amplifier  
LTC2054/LTC2055 Micropower Zero-Drift Op Amps  
2
LTC4151  
LTC4261  
High Voltage I C Current and Voltage Monitor  
Wide Operating Range: 7V to 80V  
2
Negative Voltage Hot Swap Controller with ADC and I C Floating Topology Allows Very High Voltage Operation  
Monitoring  
LTC1799  
LTC6990  
LTM2892  
Wide Frequency Range Silicon Oscillator  
TimerBlox™ Voltage Controlled Oscillator  
1kHz to 30MHz  
488Hz to 2MHz  
2
SPI/Digital or I C Isolated µModule  
3500V  
Isolation, 6 Channels  
RMS  
2883fd  
LT 1117 REV D • PRINTED IN USA  
www.linear.com/LTM2883  
36  
ANALOG DEVICES, INC. 2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY