LTM2883 [Linear]

SPI/Digital or I2C μModule Isolator with Adjustable ±12.5V and 5V Regulated Power; SPI /数字或I2C μModule隔离器,可调节为± 12.5V和5V稳压电源
LTM2883
型号: LTM2883
厂家: Linear    Linear
描述:

SPI/Digital or I2C μModule Isolator with Adjustable ±12.5V and 5V Regulated Power
SPI /数字或I2C μModule隔离器,可调节为± 12.5V和5V稳压电源

文件: 总36页 (文件大小:759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2883  
2
SPI/Digital or I C µModule  
Isolator with Adjustable 12.5V  
and 5V Regulated Power  
DescripTion  
FeaTures  
n
UL Rated 6-Channel Logic Isolator: 2500V  
The LTM®2883 is a complete galvanic digital µModule®  
isolator.Noexternalcomponentsarerequired.Asingle3.3V  
or 5V supply powers both sides of the interface through  
an integrated, isolated DC/DC converter. A logic supply  
pin allows easy interfacing with different logic levels from  
1.62V to 5.5V, independent of the main supply.  
RMS  
UL Recognized  
File #E151738  
®
n
Isolated Adjustable DC Power:  
3V to 5V at Up to 30mA  
12ꢀ5V at Up to 20mA  
n
n
n
n
No External Components Required  
2
SPI (LTM2883-S) or I C (LTM2883-I) Options  
High Common Mode Transient Immunity: 30kV/μs  
High Speed Operation:  
2
Available options are compliant with SPI and I C (master  
mode only) specifications.  
The isolated side includes 12.5V and 5V nominal power  
supplies, each capable of providing more than 20mA of  
loadcurrent.Eachsupplymaybeadjustedfromitsnominal  
value using a single external resistor.  
10MHz Digital Isolation  
4MHz/8MHz SPI Isolation  
2
400kHz I C Isolation  
n
n
n
n
n
n
3.3V (LTM2883-3) or 5V (LTM2883-5) Operation  
1.62V to 5.5V Logic Supply  
Coupled inductors and an isolation power transformer  
10kV ESD HBM Across the Isolation Barrier  
provide 2500V  
of isolation between the input and out-  
RMS  
Common Mode Working Voltage: 560V  
Low Current Shutdown Mode (<10µA)  
PEAK  
put logic interface. This device is ideal for systems where  
the ground loop is broken, allowing for a large common  
mode voltage range. Communication is uninterrupted for  
common mode transients greater than 30kV/μs.  
Low Profile (15mm × 11.25mm × 3.42mm)  
BGA Package  
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks  
and Easy Drive, Hot Swap, SoftSpan and TimerBlox are trademarks of Linear Technology  
Corporation. All other trademarks are the property of their respective owners.  
applicaTions  
2
n
Isolated SPI or I C Interfaces  
n
Industrial Systems  
Test and Measurement Equipment  
n
n
Breaking Ground Loops  
Typical applicaTion  
Isolated 4MHz SPI Interface  
LTM2883-5S  
V
CC2  
LTM2883 Operating Through 35kV/µs CM Transient  
5V AT 20mA  
V
CC  
AV  
5V  
CC2  
SCK  
SD0  
SCK2 = SD02  
+
V
V
L
12.5V AT 20mA  
–12.5V AT 15mA  
+
AV  
V
ON  
2V/DIV  
2V/DIV  
AV  
SDOE  
CS  
CS2  
SDI2  
SCK2  
REPETITIVE  
COMMON MODE  
TRANSIENTS  
CS  
SDI  
CS  
SDI  
SDI  
SCK  
SCK  
SCK  
DO2  
SDO  
DO1  
I2  
SDO2  
I1  
200V/DIV  
SDO  
SDO  
2883 TA01b  
20ns/DIV  
GND  
GND2  
2883 TA01a  
2883f  
1
LTM2883  
absoluTe MaxiMuM raTings  
(Note 1)  
V
to GND .................................................. –0.3V to 6V  
Logic Outputs  
CC  
V to GND .................................................... –0.3V to 6V  
L
DO1, DO2, SDO to GND ..............–0.3V to (V + 0.3V)  
L
+
V
, AV , AV to GND2 ........................... –0.3V to 6V  
O1, SCK2, SDI2, CS2,  
SCL2 to GND2 ........................–0.3V to (V  
Operating Temperature Range (Note 4)  
CC2  
CC2  
+
V to GND2 ................................................ –0.3V to 16V  
+ 0.3V)  
CC2  
V , AV to GND2 .........................................0.3V to –16V  
Logic Inputs  
LTM2883C .........................................0°C ≤ T ≤ 70°C  
A
A
DI1, SCK, SDI, CS, SCL, SDA, SDOE,  
LTM2883I ..................................... –40°C ≤ T ≤ 85°C  
ON to GND..................................–0.3V to (V + 0.3V)  
LTM2883H...................................–40°C ≤ T ≤ 105°C  
L
A
I1, I2, SDA2,  
SDO2 to GND2........................–0.3V to (V  
Maximum Internal Operating Temperature............ 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Body Reflow Temperature ............................ 245°C  
+ 0.3V)  
CC2  
pin conFiguraTion  
LTM2883-I  
LTM2883-S  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
DO2 DNC SCL SDA DI1 GND ON  
V
L
SDO DO2 SCK SDI CS SDOE ON  
V
L
A
B
C
D
E
F
A
B
C
D
E
F
DO1  
GND  
V
DO1  
GND  
V
CC  
CC  
G
H
J
G
H
J
+
+
I1  
GND2  
AV  
AV  
AV  
I1  
GND2  
AV  
AV  
AV  
CC2  
CC2  
K
L
K
L
+
+
I2 DNC SCL2 SDA2 O1  
BGA PACKAGE  
V
V
V
SDO2 I2 SCK2 SDI2 CS2  
V
V
V
CC2  
CC2  
BGA PACKAGE  
32-PIN (15mm × 11.25mm × 3.42mm)  
32-PIN (15mm × 11.25mm × 3.42mm)  
T
= 125°C, θ = 30°C/W, θ = 15.7°C/W,  
T
= 125°C, θ = 30°C/W, θ  
= 15.7°C/W,  
JMAX  
JA  
JC(BOTTOM)  
= 14.5°C/W  
JMAX  
JA  
JC(BOTTOM)  
= 14.5°C/W  
θ
= 25°C/W, θ  
θ
= 25°C/W, θ  
JC(TOP)  
JBOARD  
JC(TOP)  
JBOARD  
θ VALUES DETERMINED PER JESD51-9, WEIGHT = 1.2g  
θ VALUES DETERMINED PER JESD51-9, WEIGHT = 1.2g  
2883f  
2
LTM2883  
orDer inForMaTion  
LTM2883 C  
Y
-3  
S
#PBF  
LEAD FREE DESIGNATOR  
PBF = Lead Free  
LOGIC OPTION  
2
I = Inter-IC (I C) Bus  
S = Serial Peripheral Interface (SPI) Bus  
INPUT VOLTAGE RANGE  
3 = 3V to 3.6V  
5 = 4.5V to 5.5V  
PACKAGE TYPE  
Y = Ball Grid Array (BGA)  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–40°C to 85°C)  
H = Automotive Temperature Range (–40°C to 105°C)  
PRODUCT PART NUMBER  
proDucT selecTion guiDe  
PART NUMBER  
LTM2883-3I  
LTM2883-3S  
LTM2883-5I  
LTM2883-5S  
PART MARKING*  
LTM2883Y-3I  
LTM2883Y-3S  
LTM2883Y-5I  
LTM2883Y-5S  
PACKAGE  
INPUT VOLTAGE  
3V to 3.6V  
LOGIC OPTION  
2
BGA  
Inter-IC Bus (I C)  
BGA  
3V to 3.6V  
Serial Peripheral Interface Bus (SPI)  
2
BGA  
4.5V to 5.5V  
4.5V to 5.5V  
Inter-IC Bus (I C)  
BGA  
Serial Peripheral Interface Bus (SPI)  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
This product is moisture sensitive. For more information go to: http://www.linear.com/packaging/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
Input Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Supply Range  
Logic Supply Range  
Input Supply Current  
LTM2883-3  
LTM2883-5  
3
3.3  
5
3.6  
5.5  
V
V
CC  
4.5  
l
l
V
L
LTM2883-S  
LTM2883-I  
1.62  
3
5.5  
5.5  
V
V
5
l
l
l
I
I
ON = 0V  
0
25  
19  
10  
35  
28  
µA  
mA  
mA  
CC  
LTM2883-3, ON = V , No Load  
L
L
LTM2883-5, ON = V , No Load  
l
Logic Supply Current  
ON = 0V  
0
10  
10  
µA  
µA  
µA  
L
LTM2883-S, ON = V  
L
L
LTM2883-I, ON = V  
150  
2883f  
3
LTM2883  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
Output Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Regulated Output Voltage  
Output Voltage Operating Range  
Line Regulation  
No Load  
(Note 2)  
4.75  
3
5
5.25  
5.5  
V
V
CC2  
l
l
l
I
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
25  
8
100  
80  
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
Load Regulation  
= 100µA to 20mA  
= 100µA to 20mA  
= 20mA (Note 2)  
= 20mA (Note 2)  
= 0V  
ADJ Pin Voltage  
585  
600  
1
615  
Voltage Ripple  
mV  
RMS  
Efficiency  
45  
45  
%
I
Output Short Circuit Current  
Current Limit  
V
mA  
mA  
V
CC2  
CC2  
l
l
l
l
l
ΔV  
= –5%  
20  
12  
CC2  
+
V
Regulated Output Voltage  
Line Regulation  
No Load  
12.5  
5
13  
30  
I
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
Load Regulation  
= 100µA to 20mA  
= 100µA to 20mA  
= 20mA (Note 2)  
= 20mA (Note 2)  
200  
1.260  
ADJ Pin Voltage  
1.170  
1.220  
3
Voltage Ripple  
mV  
RMS  
Efficiency  
45  
%
LOAD  
+
+
I
Output Short Circuit Current  
Current Limit  
V = 0V  
70  
mA  
mA  
V
+
l
l
l
ΔV = 0.5V  
20  
V
Regulated Output Voltage  
Line Regulation  
No Load  
–12  
–12.5  
4
–13  
15  
I
= –1mA, MIN ≤ V ≤ MAX  
mV  
LOAD  
CC  
Load Regulation  
I
I
= 100µA to 15mA  
35  
mV  
mV  
LOAD  
LOAD  
l
l
= 100µA to 15mA, H-Grade  
35  
–1.220  
2
150  
ADJ Pin Voltage  
Voltage Ripple  
I
I
I
= 100µA to 15mA  
= 15mA (Note 2)  
= 15mA (Note 2)  
–1.184  
10  
–1.256  
mV  
LOAD  
LOAD  
mV  
RMS  
Efficiency  
45  
%
LOAD  
I
Output Short-Circuit Current  
Current Limit  
V = 0V  
30  
mA  
mA  
+
l
ΔV = 0.5V, V = 1.5mA  
15  
Logic/SPI  
l
l
l
V
ITH  
Input Threshold Voltage  
ON, DI1, SDOE, SCK, SDI, CS 1.62V ≤ V < 2.35V  
0.25 • V  
0.33 • V  
0.75 • V  
0.67 • V  
V
V
V
L
L
L
L
L
ON, DI1, SDOE, SCK, SDI, CS 2.35V ≤ V  
L
I1, I2, SDO2  
0.33 • V  
0.67 • V  
CC2  
CC2  
l
I
Input Current  
1
µA  
mV  
V
INL  
V
V
Input Hysteresis  
Output High Voltage  
(Note 2)  
150  
HYS  
OH  
l
DO1, DO2, SDO  
V – 0.4  
L
I
I
= –1mA, 1.62V ≤ V < 3V  
= –4mA, 3V ≤ V ≤ 5.5V  
LOAD  
LOAD  
L
L
l
l
O1, SCK2, SDI2, CS2, I  
= –4mA  
V
CC2  
– 0.4  
V
V
LOAD  
V
Output Low Voltage  
Short-Circuit Current  
DO1, DO2, SDO  
0.4  
OL  
I
I
= 1mA, 1.62V ≤ V < 3V  
LOAD  
LOAD  
L
= 4mA, 3V ≤ V ≤ 5.5V  
L
l
l
O1, SCK2, SDI2, CS2, I  
= 4mA  
0.4  
85  
V
LOAD  
I
0V ≤ (DO1, DO2, SDO) ≤ V  
0V ≤ (O1, SCK2, SDI2, CS2) ≤ V  
mA  
mA  
SC  
L
60  
CC2  
2883f  
4
LTM2883  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C  
l
l
V
Low Level Input Voltage  
High Level Input Voltage  
SCL, SDA  
SDA2  
0.3 • V  
V
V
IL  
L
0.3 • V  
CC2  
l
l
V
SCL, SDA  
SDA2  
0.7 • V  
V
V
IH  
L
0.7 • V  
CC2  
l
I
Input Current  
SCL, SDA = V or 0V  
1
µA  
INL  
L
V
V
V
Input Hysteresis  
SCL, SDA  
SDA2  
0.05 • V  
mV  
mV  
HYS  
L
0.05 • V  
CC2  
l
l
Output High Voltage  
Output Low Voltage  
SCL2, I  
= –2mA  
V
– 0.4  
CC2  
L
V
V
OH  
LOAD  
DO2, I  
= –2mA  
V – 0.4  
LOAD  
l
l
l
l
l
SDA, V = 3V, I  
= 3mA  
= 2mA  
0.4  
0.4  
0.4  
0.45  
0.55  
V
V
V
V
V
OL  
L
LOAD  
LOAD  
= 2mA  
DO2, V = 3V, I  
L
SCL2, I  
LOAD  
SDA2, No Load, SDA = 0V, 4.5V ≤ V  
< 5.5V  
CC2  
CC2  
SDA2, No Load, SDA = 0V, 3V < V  
< 4.5V  
0.3  
l
C
C
Input Pin Capacitance  
Bus Capacitive Load  
SCL, SDA, SDA2 (Note 2)  
10  
pF  
IN  
B
l
l
l
l
SCL2, Standard Speed (Note 2)  
SCL2, Fast Speed  
SDA, SDA2, SR ≥ 1V/μs, Standard Speed (Note 2)  
SDA, SDA2, SR ≥ 1V/μs, Fast Speed  
400  
200  
400  
200  
pF  
pF  
pF  
pF  
l
l
Minimum Bus Slew Rate  
Short-Circuit Current  
SDA, SDA2  
1
V/µs  
I
SDA2 = 0, SDA = V  
100  
mA  
mA  
mA  
mA  
mA  
SC  
L
0V ≤ SCL2 ≤ V  
30  
30  
CC2  
L
0V ≤ DO2 ≤ V  
SDA = 0, SDA2 = V  
6
CC2  
SDA = V , SDA2 = 0  
–1.8  
L
ESD (HBM) (Note 2)  
Isolation Boundary  
+
(V , V , V , GND2) to (V , V , GND)  
10  
kV  
CC2  
CC  
L
swiTching characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
Logic  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Maximum Data Rate  
10  
35  
MHz  
ns  
Ix DOx, C = 15pF (Note 3)  
L
t
t
, t  
Propagation Delay  
Rise Time  
C = 15pF (Figure 1)  
L
60  
100  
PHL PLH  
l
l
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
R
L
LTM2883-I, DO2, C = 15pF (Figure 1)  
L
l
l
t
F
Fall Time  
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
L
LTM2883-I, DO2, C = 15pF (Figure 1)  
L
SPI  
l
l
Maximum Data Rate  
Bidirectional Communication (Note 3)  
Unidirectional Communication (Note 3)  
4
8
MHz  
MHz  
l
t
t
, t  
Propagation Delay  
C = 15pF (Figure 1)  
35  
60  
100  
50  
ns  
ns  
PHL PLH  
L
Output Pulse Width Uncertainty  
SDI2, CS2 (Note 2)  
–20  
PWU  
2883f  
5
LTM2883  
swiTching characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ LTM2883-3 VCC = 3ꢀ3V, LTM2883-5 VCC = 5V, VL = 3ꢀ3V, and GND =  
GND2 = 0V, ON = VL unless otherwise notedꢀ Specifications apply to all options unless otherwise notedꢀ  
SYMBOL PARAMETER  
CONDITIONS  
C = 15pF (Figure 1)  
MIN  
TYP  
3
MAX  
12.5  
12.5  
50  
UNITS  
ns  
l
l
l
l
t
t
t
t
Rise Time  
R
F
L
Fall Time  
C = 15pF (Figure 1)  
L
3
ns  
, t  
Output Enable Time  
Output Disable Time  
ns  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PZH PZL  
L
L
, t  
50  
ns  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PHZ PLZ  
L
L
2
I C  
l
Maximum Data Rate  
Propagation Delay  
(Note 3)  
SCL SCL2, C = 15pF (Figure 1)  
400  
–20  
kHz  
l
l
l
t
, t  
150  
150  
200  
225  
250  
350  
ns  
ns  
ns  
PHL PLH  
L
SDA SDA2, R = Open, C = 15pF (Figure 3)  
L
L
SDA2 SDA, R = 1.1kΩ, C = 15pF (Figure 3)  
L
L
t
t
t
Output Pulse Width Uncertainty  
Data Hold Time  
SDA, SDA2 (Note 2)  
50  
ns  
ns  
PWU  
HD;DAT  
R
(Note 2)  
600  
Rise Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
40  
250  
300  
250  
250  
ns  
ns  
ns  
ns  
L
l
l
l
SDA2, C = 200pF (Figure 3)  
L
SDA, R = 1.1kΩ, C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
l
l
t
t
Fall Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
250  
250  
250  
ns  
ns  
ns  
F
L
SDA, R = 1.1kΩ, C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
Pulse Width of Spikes  
Suppressed by Input Filter  
0
50  
ns  
SP  
Power Supply  
Power-Up Time  
l
l
l
0.6  
0.6  
0.6  
2
2
2.5  
ms  
ms  
ms  
ON = to V  
(Min)  
CC2  
+
ON = to V (Min)  
ON = to V (Min)  
isolaTion characTerisTics TA = 25°Cꢀ  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
2500  
4400  
30  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
1 Minute, Derived from 1 Second Test  
1 Second (Note 5)  
V
RMS  
ISO  
V
Common Mode Transient Immunity  
Maximum Working Insulation Voltage  
LTM2883-3 V = 3.3V, LTM2883-5 V = 5V,  
kV/µs  
CC  
CC  
V = ON = 3.3V, V = 1kV, Δt = 33ns (Note 2)  
L
CM  
V
(Notes 2, 5)  
560  
400  
V
PEAK  
IORM  
V
RMS  
Partial Discharge  
V
= 1050V  
(Notes 2, 5)  
PEAK  
5
pC  
PD  
9
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
(Notes 2, 5)  
(Notes 2, 5)  
(Note 2)  
10  
Ω
pF  
6
9.48  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This module includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 2: Guaranteed by design and not subject to production test.  
Note 5: Device considered a 2-terminal device. Pin group A1 through B8  
shorted together and pin group K1 through L8 shorted together.  
Note 3: Maximum data rate is guaranteed by other measured parameters  
and is not tested directly.  
2883f  
6
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
Typical perForMance characTerisTics  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
VCC Supply Current  
vs Temperature  
Isolated Supplies  
Isolated Supplies  
vs Equal Load Current  
vs Equal Load Current  
30  
25  
20  
15  
10  
14  
12  
10  
8
14  
12  
10  
8
NO LOAD, REFRESH DATA ONLY  
LTM2883-3  
= 3.3V  
LTM2883-5  
V
V
CC  
= 5V  
CC  
LTM2883-3  
= 3.3V  
V
CC  
LTM2883-5  
V
= 5V  
CC  
6
6
4
4
V
V
V
V
V
V
CC2  
+
CC2  
+
2
2
0
0
–50 –25  
0
25  
50  
75 100 125  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G01  
2883 G02  
2883 G03  
VCC2 Line Regulation  
vs Load Current  
V+ Line Regulation  
vs Load Current  
VLine Regulation  
vs Load Current  
6.0  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
–9.0  
–9.5  
LTM2883-3  
LTM2883-3  
CC2  
LTM2883-3  
+
+
I
= I = 0A  
I
= I = 0A  
I
= I = 0A  
CC2  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
–10.0  
–10.5  
–11.0  
–11.5  
–12.0  
–12.5  
–13.0  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V  
= 3.15V  
= 3.3V  
= 3.6V  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V  
= 3.15V  
= 3.3V  
= 3.6V  
V
V
V
= 3V  
= 3.3V  
= 3.6V  
CC  
CC  
CC  
9.0  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G04  
2883 G05  
2883 G06  
VCC2 Line Regulation  
vs Load Current  
V+ Line Regulation  
vs Load Current  
VLine Regulation  
vs Load Current  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
–9.0  
–9.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
LTM2883-5  
LTM2883-5  
+
LTM2883-5  
+
I
= I = 0A  
I
= I = 0A  
I
= I = 0A  
CC2  
CC2  
–10.0  
–10.5  
–11.0  
–11.5  
–12.0  
–12.5  
–13.0  
V
CC  
V
CC  
V
CC  
V
CC  
= 4.5V  
= 4.75V  
= 5V  
= 5.5V  
V
CC  
V
CC  
V
CC  
V
CC  
= 4.5V  
= 4.75V  
= 5V  
V
= 4.5V  
= 5V  
= 5.5V  
CC  
CC  
CC  
V
= 5.5V  
V
9.0  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G08  
2883 G09  
2883 G07  
2883f  
7
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
Typical perForMance characTerisTics  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
V+ Load Regulation  
VLoad Regulation  
vs Temperature  
VCC2 Load Regulation  
vs Temperature  
vs Temperature  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
–12.2  
+
I
I
I
I
I
= 1mA  
LTM2883-3  
I
I
= 1mA  
= 15mA  
LTM2883-3  
+
+
+
+
= 5mA  
V
= 3.3V  
V
CC2  
= 3.3V  
CC  
CC  
+
+
= 10mA  
= 15mA  
= 20mA  
I
= I = 0A  
–12.3  
–12.4  
–12.5  
–12.6  
–12.7  
–12.8  
I
= I = 0A  
LTM2883-3  
V
I
= 3.3V  
I
I
= 1mA  
= 20mA  
CC  
CC2  
CC2  
CC2  
= I = 0A  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2883 G12  
2883 G10  
2883 G14  
V+ Load Regulation  
vs Temperature  
VCC2 Load Regulation  
vs Temperature  
VLoad Regulation  
vs Temperature  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
–12.2  
–12.3  
–12.4  
–12.5  
–12.6  
+
LTM2883-5  
I
I
I
I
I
= 1mA  
I
I
= 1mA  
= 20mA  
LTM2883-5  
+
+
+
+
V
= 5V  
= 5mA  
V
CC2  
= 5V  
CC  
CC  
+
+
I
= I = 0A  
= 10mA  
= 15mA  
= 20mA  
I
= I = 0A  
LTM2883-5  
I
I
= 1mA  
= 20mA  
V
I
= 5V  
CC2  
CC2  
CC  
CC2  
= I = 0A  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2883 G11  
2883 G13  
2883 G15  
VCC2 Voltage and ICC Current  
vs Load Current  
VCC2 Efficiency  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
6
5
4
3
2
1
0
150  
125  
100  
75  
+
LTM2883-3, V = 3.3V  
CC  
LTM2883-5, V = 5V  
CC  
I
= I = 0A  
VOLTAGE  
EFFICIENCY  
I
CURRENT  
CC  
50  
POWER LOSS  
25  
LTM2883-3, V = 3.3V  
CC  
+
LTM2883-5, V = 5V  
CC  
I
= I = 0A  
40  
0
0
10  
20  
30  
0
10  
20  
30  
40  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G16  
2883 G17  
2883f  
8
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
Typical perForMance characTerisTics  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
V+ Voltage and ICC Current  
vs Load Current  
V+ Efficiency  
60  
50  
40  
30  
20  
10  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
14  
12  
10  
8
350  
300  
250  
200  
150  
100  
50  
LTM2883-3, V = 3.3V  
LTM2883-5, V = 5V  
I
= I = 0A  
CC  
CC  
CC2  
VOLTAGE  
EFFICIENCY  
I
CC  
CURRENT  
6
POWER LOSS  
4
2
LTM2883-3, V = 3.3V  
CC  
LTM2883-5, V = 5V  
CC  
I
= I = 0A  
CC2  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G18  
2883 G19  
VVoltage and ICC Current  
vs Load Current  
VEfficiency  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–9.0  
–9.5  
320  
280  
240  
200  
160  
120  
80  
LTM2883-3, V = 3.3V  
LTM2883-5, V = 5V  
CC  
LTM2883-3, V = 3.3V  
CC  
LTM2883-5, V = 5V  
CC  
CC  
–10.0  
–10.5  
–11.0  
–11.5  
–12.0  
–12.5  
–13.0  
EFFICIENCY  
I
CURRENT  
CC  
POWER LOSS  
40  
VOLTAGE  
20  
0
0
10  
20  
30  
0
10  
30  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G20  
2883 G21  
VCC2 Transient Response  
20mA Load Step  
V+ Transient Response  
20mA Load Step  
VTransient Response  
20mA Load Step  
+
I
= 1.5mA  
+
V
V
V
CC2  
100mV/DIV  
200mV/DIV  
200mV/DIV  
+
I
I
I
CC2  
10mA/DIV  
10mA/DIV  
10mA/DIV  
2883 G22  
2883 G23  
2883 G24  
100µs/DIV  
100µs/DIV  
100µs/DIV  
2883f  
9
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
Typical perForMance characTerisTics  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
VCC2 Ripple  
V+ Ripple  
VRipple  
+
I
= 1mA  
I
= 1mA  
2mV/DIV  
5mV/DIV  
5mV/DIV  
+
I
= 20mA  
I
= 20mA  
2883 G25  
2883 G26  
2883 G27  
500ns/DIV  
500ns/DIV  
500ns/DIV  
V
CC2 Noise  
V+ Noise  
VNoise  
2mV/DIV  
2mV/DIV  
2mV/DIV  
2883 G28  
2883 G29  
2883 G30  
1ms/DIV  
1ms/DIV  
1ms/DIV  
VCC Supply Current  
vs Single Channel Data Rate  
Logic Input Threshold  
vs VL Supply Voltage  
Logic Output Voltage  
vs Load Current  
70  
60  
50  
40  
30  
20  
10  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
C
C
C
C
= 1nF  
V
CC2  
= 5V  
L
L
L
L
CC  
+
= 330pF  
= 100pF  
= 20pF  
I
= I = I = 0  
V
V
V
= 5.5V  
= 3.3V  
= 1.62V  
L
L
L
INPUT RISING  
INPUT FALLING  
1k  
10k  
100k  
1M  
10M  
100M  
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
DATA RATE (Hz)  
V
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
L
2883 G31  
2883 G32  
2883 G33  
2883f  
10  
LTM2883  
TA = 25°C, LTM2883-3 VCC = 3ꢀ3V,  
Typical perForMance characTerisTics  
LTM2883-5 VCC = 5V, VL = 3ꢀ3V, GND = GND2 = 0V, ON = VL unless otherwise notedꢀ  
VCC2 Cross Regulation  
vs V+, VLoad  
Power On Sequence  
5.2  
14  
13  
12  
11  
10  
9
LTM2883-3  
ON  
V
= 3.3V  
CC  
CC2  
+
I
= 15mA  
V
5.1  
V
CC2  
5V/DIV  
5.0  
4.9  
4.8  
8
V
V
V
V
CC2  
+
7
6
2883 G34  
200µs/DIV  
0
10  
20  
30  
40  
LOAD CURRENT (mA)  
2883 G35  
VCC2 Cross Regulation  
vs V+, VLoad  
Isolated Supply Efficiency with  
Equal Load Current  
5.2  
5.1  
5.0  
4.9  
4.8  
14  
13  
12  
11  
10  
9
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
LTM2883-5  
V
I
= 5V  
CC  
CC2  
= 15mA  
EFFICIENCY  
8
POWER LOSS  
V
CC2  
+
7
LTM2883-3, V = 3.3V  
CC  
LTM2883-5, V = 5V  
CC  
V
V
6
0
10  
20  
30  
40  
0
5
10  
15  
20  
25  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2883 G36  
2883 G37  
V+ Cross Regulation vs VLoad  
V+ Cross Regulation vs VLoad  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
LTM2883-3  
LTM2883-5  
V = 5V  
CC  
V
= 3.3V  
CC  
8
8
+ +  
+
+
+
+
+
V , I = 10mA  
V , I = 10mA  
– +  
V , I = 10mA  
V , I = 10mA  
+
+ +  
7
7
V , I = 15mA  
V , I = 15mA  
– +  
V , I = 15mA  
10  
LOAD CURRENT (mA)  
V , I = 15mA  
10 15  
LOAD CURRENT (mA)  
6
6
0
5
15  
20  
25  
0
5
20  
25  
30  
35  
2883 G38  
2883 G39  
2883f  
11  
LTM2883  
pin FuncTions (LTM2883-I)  
Logic Side  
The logic state on I2 translates to the same logic state on  
DO2. Do not float.  
DO2(A1):DigitalOutput,ReferencedtoV andGND.Logic  
L
DNC (L2): Do Not Connect Pin. Pin connected internally.  
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
2
SCL2 (L3): Serial I C Clock Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SCL pin  
through isolation barrier. Clock is unidirectional from logic  
to isolated side. SCL2 has a push-pull output stage, do not  
connect an external pull-up device. Under the condition of  
an isolation communication failure this output defaults to  
a high state.  
DNC (A2): Do Not Connect Pin. Pin connected internally.  
2
SCL (A3): Serial I C Clock Input, Referenced to V and  
L
GND. Logic input connected to isolated side SCL2 pin  
throughisolationbarrier. Clockisunidirectionalfromlogic  
to isolated side. Do not float.  
2
SDA2 (L4): Serial I C Data Pin, Referenced to V  
and  
CC2  
2
SDA (A4): Serial I C Data Pin, Referenced to V and GND.  
L
GND2. Bidirectional logic pin connected to logic side SDA  
pin through isolation barrier. Output is biased high by a  
1.8mA current source. Do not connect an external pull-  
up device to SDA2. Under the condition of an isolation  
communication failure this output defaults to a high state.  
BidirectionallogicpinconnectedtoisolatedsideSDA2pin  
through isolation barrier. Under the condition of an isola-  
tion communication failure this pin is in a high impedance  
state. Do not float.  
DI1 (A5): Digital Input, Referenced to V and GND. Logic  
L
O1 (L5): Digital Output, Referenced to V  
and GND2.  
CC2  
input connected to O1 through isolation barrier. The logic  
state on DI1 translates to the same logic state on O1. Do  
not float.  
Logic output connected to DI1 through isolation barrier.  
Under the condition of an isolation communication failure  
O1 defaults to a high state.  
GND (A6, B2 to B6): Circuit Ground.  
V
(L6): 5V Nominal Isolated Supply Voltage. Internally  
CC2  
generated from V by an isolated DC/DC converter and  
CC  
ON (A7): Enable. Enables power and data communica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional  
to the isolated side. If ON is low the logic side is held in  
reset, all digital outputs are in a high impedance state, and  
the isolated side is unpowered. Do not float.  
regulated to 5V. Internally bypassed with 2.2µF.  
V (L7):–12.5VNominalIsolatedSupplyVoltage.Internally  
generated from V by an isolated DC/DC converter and  
CC  
regulated to –12.5V. Internally bypassed with 1µF.  
+
V (L8):12.5VNominalIsolatedSupplyVoltage.Internally  
V (A8): Logic Supply. Interface supply voltage for pins  
generated from V by an isolated DC/DC converter and  
L
CC  
DI1, SCL, SDA, DO1, DO2, and ON. Operating voltage is  
regulated to 12.5V. Internally bypassed with 1µF.  
3V to 5.5V. Internally bypassed with 2.2µF.  
I1 (K1): Digital Input, Referenced to V  
and GND2.  
CC2  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
Logic input connected to DO1 through isolation barrier.  
The logic state on I1 translates to the same logic state on  
DO1. Do not float.  
L
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
GND2 (K2 to K5): Isolated Ground.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
AV  
(K6): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
to 3.6V for LTM2883-3 and 4.5V to 5.5V for LTM2883-5.  
The adjust pin voltage is 600mV referenced to GND2.  
Internally bypassed with 2.2µF.  
AV (K7): –12.5V Nominal Isolated Supply Voltage Adjust.  
The adjust pin voltage is –1.22V referenced to GND2.  
Isolated Side  
+
AV (K8): 12.5V Nominal Isolated Supply Voltage Adjust.  
The adjust pin voltage is 1.22V referenced to GND2.  
I2 (L1): Digital Input, Referenced to V  
Logic input connected to DO2 through isolation barrier.  
and GND2.  
CC2  
2883f  
12  
LTM2883  
pin FuncTions (LTM2883-S)  
Logic Side  
Isolated Side  
SDO2 (L1): Serial SPI Digital Input, Referenced to V  
SDO (A1): Serial SPI Digital Output, Referenced to V  
CC2  
L
and GND2. Logic input connected to logic side SDO pin  
through isolation barrier. Do not float.  
and GND. Logic output connected to isolated side SDO2  
pin through isolation barrier. Under the condition of an  
isolation communication failure this output is in a high  
impedance state.  
I2 (L2): Digital Input, Referenced to V  
and GND2.  
CC2  
Logic input connected to DO2 through isolation barrier.  
The logic state on I2 translates to the same logic state on  
DO2. Do not float.  
DO2(A2):DigitalOutput,ReferencedtoV andGND.Logic  
L
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
SCK2 (L3): Serial SPI Clock Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SCK pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
SCK (A3): Serial SPI Clock Input, Referenced to V and  
L
GND. Logic input connected to isolated side SCK2 pin  
through isolation barrier. Do not float.  
SDI2 (L4): Serial SPI Data Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SDI pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
SDI(A4):SerialSPIDataInput,ReferencedtoV andGND.  
L
Logic input connected to isolated side SDI2 pin through  
isolation barrier. Do not float.  
CS2 (L5): Serial SPI Chip Select, Referenced to V  
and  
CC2  
CS(A5):SerialSPIChipSelect,ReferencedtoV andGND.  
L
GND2.LogicoutputconnectedtologicsideCSpinthrough  
isolation barrier. Under the condition of an isolation com-  
munication failure this output defaults to a high state.  
Logic input connected to isolated side CS2 pin through  
isolation barrier. Do not float.  
SDOE (A6): Serial SPI Data Output Enable, Referenced to  
V
(L6): 5V Nominal Isolated Supply Voltage. Internally  
CC2  
V and GND. A logic high on SDOE places the logic side  
L
generated from V by an isolated DC/DC converter and  
CC  
SDO pin in a high impedance state, a logic low enables  
regulated to 5V. Internally bypassed with 2.2µF.  
the output. Do not float.  
V (L7):–12.5VNominalIsolatedSupplyVoltage.Internally  
ON (A7): Enable. Enables power and data communica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional  
to the isolated side. If ON is low the logic side is held in  
reset, all digital outputs are in a high impedance state, and  
the isolated side is unpowered. Do not float.  
generated from V by an isolated DC/DC converter and  
CC  
regulated to –12.5V. Internally bypassed with 1µF.  
+
V (L8):12.5VNominalIsolatedSupplyVoltage.Internally  
generated from V by an isolated DC/DC converter and  
CC  
regulated to 12.5V. Internally bypassed with 1µF.  
I1 (K1): Digital Input, Referenced to V  
and GND2.  
V (A8): Logic Supply. Interface supply voltage for pins  
CC2  
L
Logic input connected to DO1 through isolation barrier.  
The logic state on I1 translates to the same logic state on  
DO1. Do not float.  
SDI, SCK, SDO, DO1, DO2, CS, and ON. Operating voltage  
is 1.62V to 5.5V. Internally bypassed with 2.2µF.  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
L
GND2 (K2 to K5): Isolated Ground.  
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
AV  
(K6): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
The adjust pin voltage is 600mV Referenced to GND2.  
GND (B2 to B6): Circuit Ground.  
AV (K7): –12.5V Nominal Isolated Supply Voltage Adjust.  
The adjust pin voltage is –1.22V Referenced to GND2.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
+
to 3.6V for LTM2883-3 and 4.5V to 5.5V for LTM2883-5.  
AV (K8): 12.5V Nominal Isolated Supply Voltage Adjust.  
Internally bypassed with 2.2µF.  
The adjust pin voltage is 1.22V Referenced to GND2.  
2883f  
13  
LTM2883  
block DiagraM  
REG  
REG  
V
V
CC2  
CC2  
CC  
110k  
15k  
2.2µF  
2.2µF  
V
L
AV  
2.2µF  
GND2  
GND  
+
V
150k  
16.2k  
16.2k  
150k  
1µF  
+
AV  
REG  
DC/DC  
CONVERTER  
AV  
1µF  
ON  
REG  
V
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
COMMUNI-  
CATIONS  
DI1  
O1  
SDA2  
SCL2  
I2  
INTERFACE  
INTERFACE  
SDA  
SCL  
DO2  
DO1  
I1  
2882 BDa  
LTM2883-I  
REG  
REG  
V
V
V
CC  
L
CC2  
CC2  
110k  
15k  
2.2µF  
2.2µF  
AV  
2.2µF  
GND2  
GND  
+
V
150k  
16.2k  
16.2k  
150k  
1µF  
+
AV  
REG  
DC/DC  
CONVERTER  
AV  
1µF  
ON  
REG  
V
SDOE  
CS  
CS2  
SDI2  
SCK2  
I2  
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
COMMUNI-  
CATIONS  
SDI  
SCK  
DO2  
SDO  
DO1  
INTERFACE  
INTERFACE  
SDO2  
I1  
2883 BDb  
LTM2883-S  
2883f  
14  
LTM2883  
TesT circuiTs  
V
L
INPUT  
½V  
L
0V  
OUTPUT  
t
t
PHL  
PLH  
C
L
INPUT  
V
OH  
90%  
10%  
10%  
90%  
OUTPUT  
½V  
CC2  
V
OL  
t
t
F
R
V
CC2  
0V  
INPUT  
½V  
CC2  
OUTPUT  
t
t
PHL  
PLH  
C
L
INPUT  
V
OH  
90%  
10%  
10%  
90%  
OUTPUT  
½V  
L
V
OL  
t
t
F
R
2883 F01  
Figure 1ꢀ Logic Timing Measurements  
V
L
OR 0V  
V
L
SDOE  
SDO  
SDO  
½V  
L
R
L
0V  
0V  
t
t
PHZ  
PZH  
V
OH  
SDO  
SDO2 OR  
V
CC2  
V
V
– 0.5V  
+ 0.5V  
OH  
½V  
C
L
t
L
0V  
t
PLZ  
SDOE  
PZL  
L
V
L
½V  
OL  
V
OL  
2883 F02  
Figure 2ꢀ Logic Enable/Disable Time  
V
L
V
L
R
L
SDA  
½V  
L
0V  
SDA2  
t
t
PLH  
PHL  
C
L
SDA  
V
OH  
30%  
70%  
30%  
SDA2  
½V  
CC2  
70%  
V
OL  
t
t
R
F
V
L
V
CC2  
0V  
R
L
SDA2  
SDA  
½V  
CC2  
SDA  
t
t
PLH  
PHL  
C
L
SDA2  
V
OH  
30%  
70%  
30%  
½V  
L
70%  
V
OL  
t
t
R
F
2883 F03  
Figure 3ꢀ I2C Timing Measurements  
2883f  
15  
LTM2883  
applicaTions inForMaTion  
Overview  
Performance of the –12.5V supply is enhanced by loading  
the 12.5V supply. A load current of 1.5mA is sufficient to  
improvestaticanddynamicloadregulationcharacteristics  
of the –12.5V output. The increased load allows the boost  
regulatortooperatecontinuouslyandinturnimprovesthe  
regulation of the inverting charge pump.  
The LTM2883 digital µModule isolator provides a gal-  
vanically-isolated robust logic interface, powered by an  
integrated, regulated DC/DC converter, complete with  
decoupling capacitors. The LTM2883 is ideal for use in  
networks where grounds can take on different voltages.  
Isolation in the LTM2883 blocks high voltage differences,  
eliminates ground loops and is extremely tolerant of com-  
mon mode transients between ground planes. Error-free  
operation is maintained through common mode events  
greater than 30kV/μs providing excellent noise isolation.  
The internal power solution is sufficient to provide a mini-  
+
and V , and 15mA  
mum of 20mA of current from V  
CC2  
from V . V and V  
are each bypassed with 2.2µF  
ceramic capacitors, and V and V are bypassed with 1µF  
CC  
CC2  
+
ceramic capacitors.  
V Logic Supply  
L
Isolator µModule Technology  
A separate logic supply pin V allows the LTM2883 to in-  
The LTM2883 utilizes isolator µModule technology to  
translate signals and power across an isolation barrier.  
Signals on either side of the barrier are encoded into  
pulses and translated across the isolation boundary using  
coreless transformers formed in the µModule substrate.  
This system, complete with data refresh, error checking,  
safe shutdown on fail, and extremely high common mode  
immunity, provides a robust solution for bidirectional  
signal isolation. The µModule technology provides the  
means to combine the isolated signaling with multiple  
regulators and a powerful isolated DC/DC converter in  
one small package.  
L
terface with any logic signal from 1.62V to 5.5V as shown  
in Figure 4. Simply connect the desired logic supply to V .  
L
There is no interdependency between V and V ; they  
CC  
L
may simultaneously operate at any voltage within their  
specified operating ranges and sequence in any order. V  
is bypassed internally by a 2.2µF capacitor.  
L
3V TO 3.6V LTM2883-3  
4.5V TO 5.5V LTM2883-5  
LTM2883-S  
V
CC2  
CC2  
V
V
CC  
L
AV  
+
ANY VOLTAGE FROM  
1.62V TO 5.5V  
V
+
AV  
V
DC/DC Converter  
AV  
The LTM2883 contains a fully integrated DC/DC converter,  
including the transformer, so that no external components  
are necessary. The logic side contains a full-bridge driver,  
running at 2MHz, and is AC-coupled to a single trans-  
former primary. A series DC blocking capacitor prevents  
transformersaturationduetodriverdutycycleimbalance.  
The transformer scales the primary voltage, and is recti-  
fied by a full-wave voltage doubler. This topology allows  
for a single diode drop, as in a center tapped full-wave  
bridge, and eliminates transformer saturation caused by  
secondary imbalances.  
ON  
SDOE  
CS  
CS2  
SDI2  
SCK2  
SDI  
SCK  
EXTERNAL  
DEVICE  
DO2  
SDO  
DO1  
I2  
SDO2  
I1  
GND  
GND2  
2883 F04  
Figure 4ꢀ VCC and VL Are Independent  
TheDC/DCconverterisconnectedtoalowdropoutregula-  
tor (LDO) to provide a regulated 5V output.  
Hot-Plugging Safely  
Caution must be exercised in applications where power  
or V ,  
An integrated boost converter generates a regulated 14V  
supply and a charge pumped –14V supply. These rails are  
regulatedto 12.5Vrespectivelybylowdropoutregulators.  
is plugged into the LTM2883’s power supplies, V  
CC  
L
due to the integrated ceramic decoupling capacitors. The  
2883f  
16  
LTM2883  
applicaTions inForMaTion  
parasitic cable inductance along with the high Q char-  
acteristics of ceramic capacitors can cause substantial  
ringing which could exceed the maximum voltage ratings  
and damage the LTM2883. Refer to Linear Technology Ap-  
plication Note 88, entitled Ceramic Input Capacitors Can  
Cause Overvoltage Transients for a detailed discussion  
and mitigation of this phenomenon.  
Table 1ꢀ Voltage Adjustment Formula  
OUTPUT  
VOLTAGE  
RESISTOR (Ax TO Vx) TO RESISTOR (Ax TO GND2) TO  
REDUCE OUTPUT  
INCREASE OUTPUT  
110k V – 0.6  
(
)
66k  
VCC2 – 5  
CC2  
V
CC2  
5 – VCC2  
150k V+,V– 1.22  
(
)
183k  
V+,V– 12.5  
+
V , V  
12.5 – V+,V–  
Isolated Supply Adjustable Operation  
The three isolated power rails may be adjusted by con-  
nection of a single resistor from the adjust pin of each  
output to its associated output voltage or to GND2. The  
pre-configured voltages represent the maximums for  
Channel Timing Uncertainty  
Multiplechannelsaresupportedacrosstheisolationbound-  
arybyencodinganddecodingoftheinputsandoutputs. Up  
to three signals in each direction are assembled as a serial  
packetandtransferredacrosstheisolationbarrier. Thetime  
required to transfer all 3 bits is 100ns maximum, and sets  
the limit for how often a signal can change on the opposite  
side of the barrier. Encoding transmission is independent  
for each data direction. The technique used assigns SCK or  
SCL on the logic side, and SDO2 or I2 on the isolated side,  
the highest priority such that there is no jitter on the associ-  
ated output channels, only delay. This preemptive scheme  
will produce a certain amount of uncertainty on the other  
isolationchannels.Theresultingpulsewidthuncertaintyon  
these low priority channels is typically 6ns, but may vary  
up to 44ns if the low priority channels are not encoded  
within the same high priority serial packet.  
guaranteed performance. Figure 5 illustrates configura-  
+
tion of the output power rails for V  
= 3.3V, V = 10V,  
CC2  
and V = –10V.  
LTM2883-5S  
V
CC2  
CC2  
3.3V  
10V  
V
V
CC  
L
174k  
530k  
530k  
AV  
5V  
+
V
+
AV  
V
ON  
–10V  
AV  
SDOE  
CS  
CS2  
SDI2  
SCK2  
SDI  
SCK  
DO2  
SDO  
DO1  
I2  
SDO2  
I1  
Serial Peripheral Interface (SPI) Bus  
GND  
GND2  
2883 F05  
The LTM2883-S provides a SPI compatible isolated inter-  
face. The maximum data rate is a function of the inherent  
channel propagation delays, channel to channel pulse  
width uncertainty, and data direction requirements. Chan-  
nel timing is detailed in Figures 5 through 8 and Tables  
3 and 4. The SPI protocol supports four unique timing  
configurations defined by the clock polarity (CPOL) and  
clock phase (CPHA) summarized in Table 2.  
Figure 5ꢀ Adjustable Voltage Rails  
Todecreasetheoutputvoltagearesistormustbeconnected  
from the output voltage pin to the associated adjust pin.  
To increase the output voltage connect a resistor to the  
adjust pin to GND2. Use the equations listed in Table 1  
tocalculatetheresistancesrequiredtoadjusteachoutput.  
Table 2ꢀ SPI Mode  
TheoutputvoltageadjustmentrangeforV is3Vto5.5V.  
CC2  
CPOL CPHA  
DATA TO (CLOCK) RELATIONSHIP  
+
AdjustmentrangeforV andV is 1.22Vtoapproximately  
0
0
1
1
0
1
0
1
Sample (Rising)  
Set-Up (Falling)  
Sample (Falling)  
Set-Up (Rising)  
Sample (Rising)  
+
13.5V. Operation at low output voltages for V or V may  
result in thermal shutdown due to low dropout regulator  
power dissipation.  
Set-Up (Rising)  
Sample (Falling)  
Set-Up (Falling)  
2883f  
17  
LTM2883  
applicaTions inForMaTion  
The maximum data rate for bidirectional communication  
is 4MHz, based on a synchronous system, as detailed in  
the timing waveforms. Slightly higher data rates may be  
achieved by skewing the clock duty cycle and minimiz-  
ing the SDO to SCK set-up time, however the clock rate  
is still dominated by the system propagation delays. A  
discussion of the critical timing paths relative to Figure 6  
and 7 follows.  
CS to SCK (master sample SDO, 1st SDO valid)  
t
0
t
1
t  
t  
≈50ns, CS to CS2 propagation delay  
1
Isolated slave device propagation  
(response time), asserts SDO2  
1+  
t
t
t  
t  
≈50ns, SDO2 to SDO propagation delay  
Set-up time for master SDO to SCK  
1
3
3
5
CPHA = 0  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
SDO  
INVALID  
SDO2  
t
0
t
t
t
t
t
5
t
6
t
7
t
9
t
10  
t
t
t
t
t
t
t
1
2
3
4
11 12  
13  
14  
15  
17  
18  
t
8
2883 F06  
Figure 6ꢀ SPI Timing, Bidirectional, CPHA = 0  
CPHA = 1  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
SDO  
INVALID  
SDO2  
t
0
t
t
t
t
t
5
t
6
t
7
t
9
t
10  
t
t
t
t
t
t
t
t
1
2
3
4
11 12  
13  
14  
15  
16 17  
18  
t
8
2883 F07  
Figure 7ꢀ SPI Timing, Bidirectional, CPHA = 1  
2883f  
18  
LTM2883  
applicaTions inForMaTion  
• SDI to SCK (master data write to slave)  
• SDO to SCK (master sample SDO, subsequent  
SDO valid)  
t
2
t
5
t
2
t  
t  
t  
≈50ns, SDI to SDI2 propagation delay  
≈50ns, SCK to SCK2 propagation delay  
4
6
5
t
8
t
8
set-up data transition SDI and SCK  
t  
≈50ns, SDI to SDI2 and SCK to SCK2  
propagation delay  
10  
≥50ns, SDI to SCK, separate packet  
non-zero set-up time  
t
10  
t
10  
t
11  
SDO2 data transition in response to SCK2  
t
4
t  
≥50ns, SDI2 to SCK2, separate packet  
non-zero set-up time  
6
t ≈50ns, SDO2 to SDO propagation delay  
11  
t Set-up time for master SDO to SCK  
12  
Table 3ꢀ Bidirectional SPI Timing Event Description  
TIME  
CPHA  
EVENT DESCRIPTION  
t
0
0, 1  
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns. Logic side slave data output  
enabled, initial data is not equivalent to slave device data output  
t to t  
t
to t  
18  
0, 1  
0, 1  
0
Propagation delay chip select, logic to isolated side, 50ns typical  
Slave device chip select output data enable  
0
1, 17  
t
1
t
2
Start of data transmission, data set-up  
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of slave data, isolated to logic side, 50ns typical  
Slave data output valid, logic side  
t to t  
0, 1  
0, 1  
0
1
3
4
t
3
t to t  
2
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Propagation delay of clock, logic to isolated side  
Isolated side data sample time  
1
t
5
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
5
6
t
6
t
8
Synchronous data and clock transition, logic side  
Data to clock delay, must be ≤13ns  
t to t  
7
8
t to t  
8
Clock to data delay, must be ≤3ns  
9
t to t  
8
Propagation delay clock and data, logic to isolated side  
Slave device data transition  
10  
t
t
t
t
t
10, 14  
to t  
to t  
t
to t  
15  
Propagation delay slave data, isolated to logic side  
Slave data output to sample clock set-up time  
10  
11  
13  
11, 14  
12  
Last data and clock transition logic side  
1
Last sample clock transition logic side  
t
to t  
0
Propagation delay data and clock, logic to isolated side  
Propagation delay clock, logic to isolated side  
13  
15  
14  
1
t
0
Last slave data output transition logic side  
1
Last slave data output and data transition, logic side  
Propagation delay data, logic to isolated side  
t
15  
t
17  
t
18  
to t  
1
16  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission. Disable slave data output logic side  
Chip select transition isolated side, slave data output disabled  
2883f  
19  
LTM2883  
applicaTions inForMaTion  
Maximum data rate for single direction communication,  
master to slave, is 8MHz, limited by the systems encod-  
ing/decodingschemeorpropagationdelay. Timingdetails  
for both variations of clock phase are shown in Figures 8  
and 9 and Table 4.  
• SDI and SCK set-up data transition occur within the  
same data packet. Referencing Figure 6, SDI can pre-  
cede SCK by up to 13ns (t t ) or lag SCK by 3ns  
7
8
(t t ) and not violate this requirement. Similarly in  
8
9
Figure 8, SDI can precede SCK by up to 13ns (t t )  
4
5
or lag SCK by 3ns (t t ).  
5
6
Additional requirements to insure maximum data rate  
are:  
2
Inter-IC Communication (I C) Bus  
CS is transmitted prior to (asynchronous) or within the  
2
The LTM2883-I provides an I C compatible isolated inter-  
face,Clock(SCL)isunidirectional,supportingmastermode  
only, and data (SDA) is bidirectional. The maximum data  
same (synchronous) data packet as SDI  
CPHA = 0  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
t
0
t
t
t
3
t
4
t
5
t
t
t
9
t
t
12  
1
2
7
8
11  
t
6
2883 F08  
Figure 8ꢀ SPI Timing, Unidirectional, CPHA = 0  
CPHA = 1  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
t
0
t
t
t
3
t
4
t
5
t
t
t
9
t
t
t
12  
1
2
7
8
10 11  
t
6
2883 F09  
Figure 9ꢀ SPI Timing, Unidirectional, CPHA = 1  
2883f  
20  
LTM2883  
applicaTions inForMaTion  
Table 4ꢀ Unidirectional SPI Timing Event Description  
TIME  
CPHA  
0, 1  
0, 1  
0
EVENT DESCRIPTION  
t
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns  
Propagation delay chip select, logic to isolated side  
Start of data transmission, data set-up  
0
t to t  
0
1
3
t
2
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Clock propagation delay, clock and data transition  
Data to clock delay, must be ≤13ns  
t to t  
2
0
1
t
3
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
3
5
5
6
7
t to t  
4
t to t  
5
Clock to data delay, must be ≤3ns  
t to t  
5
Data and clock propagation delay  
t
8
Last clock and data transition  
1
Last clock transition  
t to t  
8
0
Clock and data propagation delay  
9
1
Clock propagation delay  
t to t  
9
1
Data propagation delay  
10  
t
11  
t
12  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission  
Chip select transition isolated side  
2
1.8mA current source provides a pull-up for SDA2. Do not  
connect any other pull-up device to SDA2. This current  
source is sufficient to satisfy the system requirements for  
bus capacitances greater than 200pF in FAST mode and  
greater than 400pF in STANDARD mode.  
rate is 400kHz which supports fast-mode I C. Timing is  
detailed in Figure 10. The data rate is limited by the slave  
2
acknowledge setup time (t  
), consisting of the I C  
SU;ACK  
standardminimumsetuptime(t  
)of100ns,maximum  
SU;DAT  
clock propagation delay of 225ns, glitch filter and isolated  
data delay of 350ns maximum, and the combined isolated  
and logic data fall time of 500ns at maximum bus load-  
Additional proprietary circuitry monitors the slew rate on  
the SDA and SDA2 signals to manage directional control  
across the isolation barrier. Slew rates on both pins must  
be greater than 1V/μs for proper operation.  
2
ing. The total setup time reduces the I C data hold time  
(t  
) to a maximum of 125ns, guaranteeing sufficient  
HD;DAT  
data setup time (t  
).  
SU;ACK  
The logic side bidirectional serial data pin, SDA, requires a  
The isolated side bidirectional serial data pin, SDA2,  
simplified schematic is shown in Figure 11. An internal  
pull-up resistor or current source connected to V . Follow  
L
SLAVE ACK  
SDA  
SDA2  
SCL  
1
8
9
SCL2  
START  
STOP  
2883 F10  
t
PROP  
t
t
HD;DAT  
t
SU;DAT  
SU;ACK  
Figure 10ꢀ I2C Timing Diagram  
2883f  
21  
LTM2883  
applicaTions inForMaTion  
The isolated side clock pin, SCL2, has a weak push-pull  
output driver; do not connect an external pull-up device.  
1.8mA  
GLITCH FILTER  
TO  
LOGIC  
2
SCL2iscompatiblewithI Cdeviceswithoutclockstretch-  
SIDE  
SDA2  
ing. On lightly loaded connections, a 100pF capacitor  
from SCL2 to GND2 or RC low-pass filter (R = 500Ω C =  
100pF) can be used to increase the rise and fall times and  
minimize noise.  
FROM  
LOGIC  
SIDE  
2883 F11  
Some consideration must be given to signal coupling  
between SCL2 and SDA2. Separate these signals on a  
printed circuit board or route with ground between. If  
Figure 11ꢀ Isolated SDA2 Pin Schematic  
the requirements in Figures 12 and 13 for the appropri-  
ate pull-up resistor on SDA that satisfies the desired rise  
these signals are wired off board, twist SCL2 with V  
CC2  
time specifications and V maximum limits for FAST and  
and/or GND2 and SDA2 with GND2 and/or V , do not  
OL  
CC2  
STANDARD modes. The resistance curves represent the  
maximum resistance boundary; any value may be used  
to the left of the appropriate curve.  
twist SCL2 and SDA2 together. If coupling between SCL2  
and SDA2 is unavoidable, place the aforementioned RC  
filter at the SCL2 pin to reduce noise injection onto SDA2.  
30  
RF, Magnetic Field Immunity  
V = 3V  
V = 3.3V  
25  
20  
15  
10  
5
V = 3.6V  
V = 4.5V TO 5.5V  
TheisolatorµModuletechnologyusedwithintheLTM2883  
hasbeenindependentlyevaluated,andsuccessfullypassed  
the RF and magnetic field immunity testing requirements  
per European Standard EN 55024, in accordance with the  
following test standards:  
EN 61000-4-3  
EN 61000-4-8  
EN 61000-4-9  
Radiated, Radio-Frequency,  
Electromagnetic Field Immunity  
0
Power Frequency Magnetic Field  
Immunity  
10  
100  
(pF)  
1000  
C
BUS  
2883 F12  
Pulsed Magnetic Field Immunity  
Figure 12ꢀ Maximum Standard Speed Pull-Up Resistance on SDA  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCB layout recommendations.  
Specific limits per test are detailed in Table 5.  
10  
V = 3V  
9
8
7
6
5
4
3
2
1
0
V = 3.3V  
V = 3.6V  
V = 4.5V TO 5.5V  
Table 5ꢀ  
TEST  
FREQUENCY  
80MHz to 1GHz  
1.4MHz to 2GHz  
2GHz to 2.7GHz  
50Hz and 60Hz  
60Hz  
FIELD STRENGTH  
10V/m  
EN 61000-4-3 Annex D  
3V/m  
1V/m  
EN 61000-4-8 Level 4  
EN 61000-4-8 Level 5  
EN 61000-4-9 Level 5  
*non IEC method  
30A/m  
100A/m*  
1000A/m  
10  
100  
(pF)  
1000  
Pulse  
C
BUS  
2883 F13  
Figure 13ꢀ Maximum Fast Speed Pull-Up Resistance on SDA  
2883f  
22  
LTM2883  
applicaTions inForMaTion  
PCB Layout  
anyhighfrequencydifferentialvoltagesandsubstantially  
reducing radiated emissions. Discrete capacitance will  
notbeaseffectiveduetoparasiticESL.Inaddition,volt-  
age rating, leakage, and clearance must be considered  
for component selection. Embedding the capacitance  
withinthePCBsubstrateprovidesanearidealcapacitor  
and eliminates component selection issues; however,  
the PCB must be 4 layers. Care must be exercised in  
applying either technique to insure the voltage rating  
of the barrier is not compromised.  
The high integration of the LTM2883 makes PCB layout  
very simple. However, to optimize its electrical isolation  
characteristics, EMI, and thermal performance, some  
layout considerations are necessary.  
• Under heavily loaded conditions V and GND current  
CC  
can exceed 300mA. Sufficient copper must be used  
on the PCB to insure resistive losses do not cause the  
supply voltage to drop below the minimum allowed  
level. Similarly, the V  
and GND2 conductors must  
CC2  
The PCB layout in Figures 14a and 14b shows the low  
EMI demo board for the LTM2883. The demo board uses  
a combination of EMI mitigation techniques, including  
both embedded PCB bridge capacitance and discrete GND  
to GND2 capacitors. Two safety rated type Y2 capacitors  
are used in series, manufactured by MuRata, part number  
GA342QR7GF471KW01L. The embedded capacitor ef-  
fectively suppresses emissions above 400MHz, whereas  
the discrete capacitors are more effective below 400MHz.  
be sized to support any external load current. These  
heavy copper traces will also help to reduce thermal  
stress and improve the thermal conductivity.  
• Inputandoutputdecouplingisnotrequired,sincethese  
components are integrated within the package. An ad-  
ditional bulk capacitor with a value of 6.8µF to 22µF is  
recommended. The high ESR of this capacitor reduces  
boardresonancesandminimizesvoltagespikescaused  
by hot plugging of the supply voltage. For EMI sensitive  
applications,anadditionallowESLceramiccapacitorof  
1µF to 4.7µF, placed as close to the power and ground  
terminals as possible, is recommended. Alternatively, a  
numberofsmallervalueparallelcapacitorsmaybeused  
to reduce ESL and achieve the same net capacitance.  
EMI performance is shown in Figure 15, measured using  
a Gigahertz Transverse Electromagnetic (GTEM) cell and  
method detailed in IEC 61000-4-20, Testing and Measure-  
ment Techniques – Emission and Immunity Testing in  
Transverse Electromagnetic Waveguides.  
• Do not place copper on the PCB between the inner col-  
umnsofpads. Thisareamustremainopentowithstand  
the rated isolation voltage.  
• The use of solid ground planes for GND and GND2  
is recommended for non-EMI critical applications to  
optimize signal fidelity, thermal performance, and to  
minimize RF emissions due to uncoupled PCB trace  
conduction. The drawback of using ground planes,  
where EMI is of concern, is the creation of a dipole  
antennastructurewhichcanradiatedifferentialvoltages  
formed between GND and GND2. If ground planes are  
used it is recommended to minimize their area, and  
use contiguous planes as any openings or splits can  
exacerbate RF emissions.  
• For large ground planes a small capacitance (≤330pF)  
from GND to GND2, either discrete or embedded within  
the substrate, provides a low impedance current return  
path for the module parasitic capacitance, minimizing  
TECHNOLOGY  
Figure 14aꢀ LTM2883 Low EMI Demo Board Layout  
2883f  
23  
LTM2883  
applicaTions inForMaTion  
Top Layer  
Inner Layer 2  
Inner Layer 1  
Bottom Layer  
Figure 14bꢀ LTM2883 Low EMI Demo Board Layout (DC1748A)  
2883f  
24  
LTM2883  
applicaTions inForMaTion  
60  
50  
CISPR 22 CLASS B LIMIT  
DC1748A-B  
40  
30  
20  
10  
DC1748A-A  
0
DETECTOR = QuasiPeak  
RBW = 120kHz  
VBW = 300kHz  
SWEEP TIME = 17s  
# OF POINTS = 501  
–10  
–20  
–30  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (MHz)  
2883 F15  
Figure 15ꢀ LTM2883 Low EMI Demo Board Emissions  
Typical applicaTions  
0.1µF  
12.5V  
7
LTM2883-5I  
0.1µF  
1µF  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
8
12.5V  
V
AV  
V
5V  
V
V
CC  
3
2
+
L
1µF  
1
8
9
1/2 LTC2055  
–12.5V  
5V  
1.7k  
AV  
10  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
4
V
ON  
CC2  
6
LT1991  
G = 8  
1.7k  
10V OUT  
1
2
3
AV  
GND  
DI1  
CC2  
O1  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
LTC2631A-LM12, DAC  
1.25V  
+
1
2
3
4
8
7
6
5
SDA2  
SCL2  
DNC  
I2  
CA0  
SCL  
SDA  
GND  
R_SEL  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
5
2.5V F.S.  
0.1µF  
4
µC  
V
OUT  
–12.5V  
REF  
5
6
+
V
CC  
GND  
7
I1  
1/2 LTC2055  
GND2  
2883 F16  
0.1µF  
12.5V  
7
0.1µF  
2.5V  
LTC2301, ADC  
10  
11  
12  
1
9
8
7
6
5
4
GND  
AD0 REFC  
V
DD  
0.1µF  
8
9
AD1  
GND  
SDA  
SCL  
V
10µF  
1µF  
0.1µF  
REF  
10  
IN  
2
6
LT1991  
G = 0.2  
+
IN  
1
4V F.S.  
3
10V IN  
GND  
2
+
3
5
0.1µF  
4
–12.5V  
Figure 16ꢀ Isolated I2C 12-Bit, 10V Analog Input and Output  
2883f  
25  
LTM2883  
Typical applicaTions  
LTM2883-3S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
3.3V  
V
V
CC  
L
10k  
1nF  
74VC1G123  
AV  
Cx  
Rx/Cx  
CLR  
A
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
CSB  
ON  
CC2  
CC2  
AV  
SDOE  
CS  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
1µF  
CS2  
SDI2  
SCK2  
I2  
CSA  
B
Q
MOSI  
SCK  
SDI  
SCK  
DO2  
SDO  
DO1  
GND  
V
CC  
CSA  
CSB  
SDO2  
I1  
MISO  
µC  
GND2  
2883 F17  
MOSI  
SCK  
MISO  
GND  
CSA  
CSB  
MOSI  
SCK  
Figure 17ꢀ Isolated SPI Device Expansion  
2883f  
26  
LTM2883  
Typical applicaTions  
LTM2883-5I  
B8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
L
A8  
AV  
10k  
10k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
CC2  
AV  
GND  
DI1  
8.66k  
137Ω  
CC2  
O1  
10k  
10k  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
ENABLE  
SDA  
1
2
3
4
5
10  
9
SDA2  
SCL2  
DNC  
I2  
SDAOUT  
SCLOUT  
SDA  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SDAIN  
SCLIN  
CONN  
ADDR  
GND  
SCLIN  
SCLOUT  
8
LTC4302-1  
V
CC  
7
GPIO2  
GPIO1  
GPIO2  
GPIO1  
6
I1  
GND2  
2883 F18  
Figure 18ꢀ Isolated I2C Buffer with Programmable Outputs  
2883f  
27  
LTM2883  
Typical applicaTions  
LTM2883-5S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
L
1µF  
AV  
NTC THERMISTORS, MURATA NTSD1WD104, 100k  
–t° –t° –t° –t°  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
CC2  
CC2  
AV  
SDOE  
CS  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
CS2  
SDI2  
SCK2  
I2  
Oz  
Oy  
Ox  
SDI  
LTC1799  
SCK  
DO2  
SDO  
DO1  
GND  
µC  
–t°  
–t°  
–t°  
–t°  
5
4
1
2
3
+
DG4051A  
X0  
V
1M  
OUT  
16  
3
13  
14  
15  
12  
1
Iy  
Ix  
SDO2  
I1  
GND  
V
X
A
B
C
CC  
3.01k  
X1  
X2  
X3  
X4  
DIV SET  
GND  
11  
10  
9
GND2  
2883 F19  
6
5
ENABLE X5  
7
2
V
X6  
X7  
EE  
8
4
TEMPERATURE (°C) FREQUENCY (kHz)  
GND  
–40  
–30  
–20  
–10  
0
1.23  
1.46  
–t°  
–t°  
–t°  
–t°  
1.87  
2.58  
3.77  
LTC1799  
+
10  
5.67  
5
4
1
2
3
DG4051A  
20  
8.64  
V
OUT  
1M  
16  
3
13  
14  
15  
12  
1
–t°  
–t°  
–t°  
–t°  
30  
13.09  
19.53  
28.47  
40.65  
55.87  
74.45  
96.08  
119.83  
144.73  
169.36  
X0  
X1  
X2  
X3  
X4  
GND  
V
X
A
B
C
CC  
3.01k  
40  
DIV SET  
50  
11  
10  
9
60  
70  
80  
90  
100  
110  
120  
6
5
ENABLE X5  
7
2
V
X6  
X7  
EE  
8
4
GND  
Figure 19ꢀ 16-Channel Isolated Temperature to Frequency Converter  
2883f  
28  
LTM2883  
Typical applicaTions  
IRF7509  
100k  
SWITCHED 12.5V  
SWITCHED –12.5V  
LTM2883-5S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
IRF7509  
V
AV  
V
5V  
V
V
CC  
L
100k  
AV  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
CC2  
CC2  
IRF7509  
100k  
AV  
SDOE  
CS  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
IRLML2402  
100k  
–12.5V ENABLE  
12.5V ENABLE  
5V ENABLE  
12.5V UV  
CS2  
SDI2  
SCK2  
I2  
SWITCHED 5V  
SDI  
SCK  
DO2  
SDO  
DO1  
GND  
226k  
SDO2  
I1  
–12.5V UV  
5V UV  
GND2  
2883 F20  
LTC2902  
COMP2  
COMP1 COMP4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
COMP3  
196k  
20k  
0.1µF  
V3  
V2  
V4  
V1  
CRT  
RST  
T0  
V
REF  
10k  
V
93.1k  
9.53k  
PG  
GND  
T1  
RDIS  
Figure 20ꢀ Digitally Switched Triple Power Supply with Undervoltage Monitor  
2883f  
29  
LTM2883  
Typical applicaTions  
0.1µF  
12.5V  
7
8
9
+
10  
6
6
6
6
LT1991  
G = 8  
10V OUTA  
10V OUTB  
10V OUTC  
1
2
3
5
0.1µF  
4
–12.5V  
0.1µF  
5V  
0.1µF  
0.1µF  
1.25V  
12.5V  
LTM2883-3S  
5
3
4
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
7
8
9
+
12.5V  
V
AV  
V
3.3V  
V
V
CC  
L
1
LTC2054  
2
1µF  
+
10  
–12.5V  
LT1991  
G = 8  
LTC2654-L16  
AV  
1
2
3
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
15  
6
5
V
REFOUT  
V
CC  
ON  
CC2  
CC2  
3
AV  
SDOE  
CS  
LDAC  
CS  
REFC  
V
5
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
7
2
0.1µF  
CS2  
SDI2  
SCK2  
I2  
CS  
V
4
OUTA  
OUTB  
OUTC  
OUTD  
9
4
MOSI  
SCK  
SDI  
SDI  
V
V
–12.5V  
8
13  
14  
1
SCK  
DO2  
SDO  
DO1  
GND  
SCK  
CLR  
SDO  
µC  
11  
10  
12  
V
0.1µF  
MISO  
SDO2  
I1  
REFLO  
0.1µF  
16  
GND  
12.5V  
PORSEL GND  
GND2  
2883 F21  
7
8
9
+
10  
LT1991  
G = 8  
1
2
3
5
0.1µF  
4
–12.5V  
0.1µF  
12.5V  
7
8
9
+
10  
LT1991  
G = 8  
10V OUTD  
1
2
3
5
0.1µF  
4
–12.5V  
Figure 21ꢀ Quad 16-Bit 10V Output Range DAC  
2883f  
30  
LTM2883  
Typical applicaTions  
LTM2883-5I  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
L
1µF  
10k  
10k  
AV  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
CC2  
V
CC  
AV  
GND  
DI1  
CC2  
O1  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
Ox  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
Ix  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
µC  
10k  
GND  
I1  
GND2  
V
EE  
–48V RTN  
1k, ×4 IN SERIES  
1/4W EACH  
453k  
7
21  
8
9
22  
6
INTV  
V
IN  
FLTIN  
SCL  
UVL  
UVH  
ADIN2  
OV  
CC  
16.9k  
10  
11  
19  
20  
26  
1
5
SDAI  
SDAO  
ALERT  
ON  
4
3
SS  
2
LTC4261CGN  
TMR  
EN  
28  
27  
23  
PGI  
PGI0  
PG  
PWRGD2  
PWRGD1  
25  
24  
ADR1  
ADR0  
ADIN  
11.8k  
V
SENSE GATE DRAIN RAMP  
14 15 16 18  
EE  
13  
+
330µF  
100V  
1M  
1k  
100nF  
1µF  
220nF  
10Ω  
47nF  
V
10nF  
100V  
OUT  
0.1µF  
47nF  
10k  
0.1µF  
–48V INPUT  
IRF1310NS  
0.008Ω  
1%  
402k  
V
EE  
2883 F22  
Figure 22ꢀ –48V, 200W Hot Swap Controller with Isolated I2C Interface  
2883f  
31  
LTM2883  
Typical applicaTions  
3.3V  
LTM2883-3S  
LTC6803-1  
CSO  
3.3k  
3.3k  
3.3k  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
+
+
3.3k  
V
AV  
V
CSI  
SDO  
SDI  
SCKI  
V
V
V
CC  
L
1µF  
2
SDOI  
3
SCKO  
4
+
AV  
V
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
5
V
C12  
S12  
C11  
S11  
C10  
S10  
C9  
ON  
CC2  
CC2  
MODE  
6
AV  
SDOE  
CS  
GPIO2  
GPIO1  
WDT  
MM  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
7
1µF  
1µF  
CS2  
SDI2  
SCK2  
I2  
CS  
8
SDI  
MOSI  
SCK  
µC  
9
SCK  
DO2  
SDO  
DO1  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
MISO  
GND  
TOS  
SDO2  
I1  
V
V
V
V
REG  
100k  
100k  
74LVC3G07  
S9  
REF  
GND2  
2883 F23  
C8  
TEMP2  
TEMP1  
S8  
NC  
C7  
V
S7  
100k  
100k  
S1  
C1  
S2  
C2  
S3  
C3  
C6  
S6  
C5  
S5  
C4  
S4  
Figure 23ꢀ 12-Cell Battery Stack Monitor with Isolated SPI Interface and Low Power Shutdown  
2883f  
32  
LTM2883  
Typical applicaTions  
LTM2883-3I  
B8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
0.02Ω  
V
AV  
V
3.3V  
V
V
CC  
48V  
V
OUT  
A8  
L
1µF  
10k  
+
AV  
SENSE SENSE  
V
IN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
SHDN  
100k AT 25°C, 1%  
VISHAY 2381 6154.104  
CC2  
10k  
V
CC  
AV  
GND  
DI1  
CC2  
O1  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
SDA2  
SCL2  
DNC  
I2  
SDA  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
ADIN  
LTC4151  
µC  
SCL  
ADR0  
ADR1  
1.37k  
1%  
GND  
I1  
GND2  
2883 F24  
GND  
3950  
T(°C)=  
273,40°C< T <150°C  
1000  
8.965+LN  
1  
N
ADIN  
N
IS THE DIGITAL CODE MEASURED  
ADIN  
BY THE ADC AT THE ADIN PIN  
Figure 24. Isolated I2C Voltage, Current and Temperature Power Supply Monitor  
2883f  
33  
LTM2883  
Typical applicaTions  
LTM2883-5I  
B8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
5V  
V
V
CC  
A8  
L
10k  
0.1µF  
10k  
AV  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
SHUTDOWN  
174k  
CC2  
0.1µF  
AV  
GND  
DI1  
100k  
CC2  
O1  
SHDN1 V  
DD  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
ENABLE  
SDA  
RESET  
SDAIN  
SCL  
BYP  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SCLIN  
SDAOUT  
AUTO  
INT  
DETECT  
1/4 LTC4266  
INTERRUPT  
I1  
GND2  
AD0  
AD1  
AD2  
CMPD3003  
AD3  
V
DGND AGND  
SENSE GATE OUT  
EE  
Q1: FAIRCHILD IRFM120A OR PHILIPS PHT6NQ10T  
FB1, FB2: TDK MPZ2012S601A  
T1: PULSE H609NL OR COILCRAFT ETH1-230LD  
SMAJ58A  
1µF  
0.25Ω  
Q1  
–48V  
S1B  
S1B  
0.22µF  
FB1  
FB2  
RJ45  
CONNECTOR  
1
T1  
2
3
4
5
6
7
8
10nF  
10nF  
75Ω  
75Ω  
PHY  
(NETWORK  
PHYSICAL  
LAYER  
CHIP)  
10nF  
10nF  
75Ω  
75Ω  
1nF  
2883 F25  
Figure 25. One Complete Isolated Powered Ethernet Port  
2883f  
34  
LTM2883  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2883f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
35  
LTM2883  
Typical applicaTion  
Precision 4mA to 20mA Sink/Source with Current Monitor  
LTM2883-3S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
+
+
V
AV  
V
12.5V  
SINK  
3.3V  
V
V
CC  
L
LTC2641, DAC  
1µF  
1
2
3
4
8
7
6
5
7
LTC1050  
4
1µF  
GND  
REF  
CS  
3
2
75k  
+
AV  
V
DD  
1k  
6
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
Si1555DL_N  
V
ON  
SCK  
DIN  
V
OUT  
CC2  
CC2  
AV  
CLR  
SDOE  
CS  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
CS2  
SDI2  
SCK2  
I2  
CS  
0.1µF  
0.01µF  
SDI  
MOSI  
SCK  
µC  
SCK  
DO2  
SDO  
DO1  
GND  
5V  
10  
MISO  
11  
+
GND  
SDO2  
I1  
14  
3
LTC1100  
G = 10  
15Ω  
0.1%  
100k  
15  
3V  
6
GND2  
2883 TA02  
LTC2452, ADC  
LT6660-3  
IN OUT  
2
7
3
1
3
7
1
8
4
6
5
2
V
REF  
CS  
CC  
+
IN  
GND  
2
0.1µF  
SCK  
IN  
SOURCE  
RETURN  
0.1µF  
SDO GND  
–5V  
relaTeD parTs  
PART NUMBER  
LTM2881  
DESCRIPTION  
COMMENTS  
Isolated RS485/RS422 µModule Transceiver Plus Power 20Mbps 2500V  
Isolation with Power in LGA/BGA Package  
Isolation with Power in LGA/BGA Package  
RMS  
RMS  
LTM2882  
Dual Isolated RS232 µModule Transceiver Plus Power  
20Mbps 2500V  
2
2
LTC4310  
Hot-Swappable I C Isolators  
Bidirectional I C Communication, Low Voltage Level Shifting  
LTC6803  
Multistack Battery Monitor  
Individual Battery Cell Monitoring of High Voltage Battery Stacks, Multiple  
Devices Interconnected via SPI  
2
LTC2309/LTC2305/ 12-Bit, 8-/2-/1-Channel, 14ksps SAR ADCs with I C  
5V, Internal Reference, Software Compatible Family  
LTC2301  
2
LTC2631/LTC2630 Single 12-/10-/8-Bit I C or SPI V  
10ppm/°C Reference  
DACs with  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Rail-to-Rail Output  
OUT  
LTC2641/LTC2642 16-/14-/12-Bit V  
DACs  
±1LSB INL/DNL, 0.5nV • s Glitch, 1μs Settling, 3mm × 3mm DFN  
OUT  
2
LTC2452/LTC2453 Ultra-Tiny 16-Bit Differential 5.5V ꢀΔ ADCs, SPI/I C  
2LSB INL, 50nA Sleep Current, Tiny 3mm × 2mm DFN-8 or TSOT Packages  
LTC1859/LTC1858/ 8-Channel 16-/14-/12-Bit, 100ksps, 10V SoftSpanꢁ  
5V Supply, Up to 10V Configurable Unipolar/Bipolar Input Range, Pin  
Compatible Family in SSOP-28 package  
LTC1857  
SAR ADCs with SPI  
LTC2487/LTC2486 16-Bit 2- or 4-Channel ꢀΔ ADCs with Easy Driveꢁ Inputs 16-Bit and 24-Bit ꢀΔ ADC Family, Up to 16 Input Channels and Integrated  
2
and I C/SPI Interface  
Temperature Sensor  
2
LTC4303/LTC4304 Hot Swappable I C Bus Buffers  
2.7V to 5.5V Supply, Rise Time Acceleration, Stuck Bus Protection,  
15kV ESD  
LTC1100  
LT1991  
Zero-Drift Instrumentation Amplifier  
Fixed Gain of 10 or 100  
Precision, Pin Configurable Gain Difference Amplifier  
Gain Range –13 to +14  
LTC2054/LTC2055 Micropower Zero-Drift Op Amps  
3V/5V/ 5V Supply  
2
LTC4151  
LTC4261  
High Voltage I C Current and Voltage Monitor  
Wide Operating Range: 7V to 80V  
Floating Topology Allows Very High Voltage Operation  
Negative Voltage Hot Swapꢁ Controller with ADC and  
I C Monitoring  
2
LTC1799  
LTC6990  
Wide Frequency Range Silicon Oscillator  
TimerBloxꢁ Voltage Controlled Oscillator  
1kHz to 30MHz  
488Hz to 2MHz  
2883f  
LT 0912 • PRINTED IN USA  
36 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY