LTM2886IY-5I#PBF [Linear]

LTM2886 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Fixed ±5V and Adjustable 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C;
LTM2886IY-5I#PBF
型号: LTM2886IY-5I#PBF
厂家: Linear    Linear
描述:

LTM2886 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Fixed ±5V and Adjustable 5V Regulated Power; Package: BGA; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C

接口集成电路
文件: 总38页 (文件大小:987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2886  
2
SPI/Digital or I C µModule  
Isolator with Fixed 5V and  
Adjustable 5V Regulated Power  
DESCRIPTION  
FEATURES  
n
6-Channel Logic Isolator: 2500V  
for 1 Minute  
The LTM®2886 is a complete galvanic digital µModule®  
(micromodule) isolator. No external components are  
required. A single 3.3V or 5V supply powers both sides  
of the interface through an integrated, isolated DC/DC  
converter. A logic supply pin allows easy interfacing with  
different logic levels from 1.62V to 5.5V, independent of  
RMS  
File #E151738  
n
UL-CSA Recognized  
n
Isolated DC Power:  
n
3V to 5V Adjustable at Up to 100mA  
5V Fiꢀed at Up to 100mA  
n
n
n
n
n
No Eꢀternal Components Required  
2
SPI/Digital (LTM2886-S) or I C (LTM2886-I) Options the main supply.  
High Common Mode Transient Immunity: 30kV/μs  
2
Available options are compliant with SPI and I C (master  
mode only) specifications.  
High Speed Operation:  
n
10MHz Digital Isolation  
n
n
The isolated side includes fixed 5V and 5V adjustable  
power supplies, each capable of providing more than  
100mA of load current. The 5V adjustable supply may be  
programmed via an external voltage divider.  
4MHz/8MHz SPI Isolation  
2
400kHz I C Isolation  
n
n
n
n
n
n
3.3V (LTM2886-3) or 5V (LTM2886-5) Operation  
1.62V to 5.5V Logic Supply  
10kV ꢀSD ꢁHM Across the Isolation Harrier  
Coupled inductors and an isolation power transformer  
Maximum Continuous Working Voltage: 560V  
Low Current Shutdown Mode (<10µA)  
Low Profile (15mm × 11.25mm × 3.42mm) HGA Package  
PꢀAK  
provide 2500V  
of isolation between the input and out-  
RMS  
put logic interface. This device is ideal for systems where  
the ground loop is broken, allowing for a large common  
mode voltage range. Communication is uninterrupted for  
common mode transients greater than 30kV/μs.  
APPLICATIONS  
2
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of  
Analog Devices, Inc. All other trademarks are the property of their respective owners.  
Isolated SPI or I C Interfaces  
n
Industrial Systems  
n
Test and Measurement ꢀquipment  
Hreaking Ground Loops  
n
TYPICAL APPLICATION  
Isolated 4MHz SPI Interface  
LTM2886 Operating Through 50kV/µs CM Transients  
LTM2886-5S  
V
SCK  
SD0  
SCK2 = SD02  
CC2  
5V AT 100mA  
5V AT 100mA  
–5V AT 100mA  
V
CC  
AV  
5V  
CC2  
+
5V/DIV  
V
V
L
ON  
V
REPETITIVE  
COMMON MODE  
TRANSIENTS  
GND2 TO GND  
SDOE  
CS  
CS2  
SDI2  
SCK2  
CS  
SDI  
CS  
SDI  
SDI  
SCK  
SCK  
SCK  
200V/DIV  
2886 TA01b  
DO2  
SDO  
DO1  
I2  
SDO2  
I1  
20ns/DIV  
SDO  
SDO  
GND  
GND2  
2886 TA01a  
2886fb  
1
For more information www.linear.com/LTM2886  
LTM2886  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V
to GND .................................................. –0.3V to 6V  
Logic Outputs  
CC  
V to GND .................................................... –0.3V to 6V  
L
DO1, DO2, SDO to GND ..............–0.3V to (V + 0.3V)  
L
V
, AV  
to GND2 ................................... –0.3V to 6V  
O1, SCK2, SDI2, CS2,  
CC2  
CC2  
+
V to GND2 .................................................. –0.3V to 6V  
SCL2 to GND2 ........................–0.3V to (V  
+ 0.3V)  
CC2  
V to GND2 .................................................. 0.3V to –6V  
Operating Temperature Range (Note 4)  
Logic Inputs  
LTM2886C............................................... 0°C to 70°C  
LTM2886I ............................................–40°C to 85°C  
LTM2886......................................... –40°C to 125°C  
Maximum Internal Operating Temperature............ 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Hody Reflow Temperature ............................ 245°C  
DI1, SCK, SDI, CS, SCL, SDA, SDOE,  
ON to GND..................................–0.3V to (V + 0.3V)  
L
I1, I2, SDA2,  
SDO2 to GND2........................–0.3V to (V  
+ 0.3V)  
CC2  
PIN CONFIGURATION  
LTM2886-I  
LTM2886-S  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
DO2 DNC SCL SDA DI1 GND ON  
V
L
SDO DO2 SCK SDI CS SDOE ON  
V
L
A
B
C
D
E
F
A
B
C
D
E
F
DO1  
GND  
V
CC  
DO1  
GND  
V
CC  
G
H
J
G
H
J
I1  
GND2  
AV  
GND2  
I1  
GND2  
AV  
GND2  
CC2  
CC2  
K
L
K
L
+
+
I2 DNC SCL2 SDA2 O1  
BGA PACKAGE  
V
V
V
SDO2 I2 SCK2 SDI2 CS2  
V
V
V
CC2  
CC2  
BGA PACKAGE  
32-PIN (15mm × 11.25mm × 3.42mm)  
32-PIN (15mm × 11.25mm × 3.42mm)  
T
= 125°C, θ = 25.5°C/W, θ = 9.2°C/W,  
T
= 125°C, θ = 25.5°C/W, θ  
= 9.2°C/W,  
JMAX  
JA  
JC(HOTTOM)  
= 9.9°C/W  
JMAX  
JA  
JC(HOTTOM)  
= 9.9°C/W  
θ
= 16.6°C/W, θ  
θ
= 16.6°C/W, θ  
JC(TOP)  
JHOARD  
JC(TOP)  
JHOARD  
θ VALUꢀS DꢀTꢀRMINꢀD PꢀR JꢀSD51-9, WꢀIGꢁT = 1.2g  
θ VALUꢀS DꢀTꢀRMINꢀD PꢀR JꢀSD51-9, WꢀIGꢁT = 1.2g  
2886fb  
2
For more information www.linear.com/LTM2886  
LTM2886  
PRODUCT SELECTION GUIDE  
LTM2886 C  
Y
-3  
I
#PBF  
LEAD FREE DESIGNATOR  
PHF = Lead Free  
LOGIC OPTION  
2
I = Inter-IC (I C) Hus  
S = Serial Peripheral Interface (SPI) Hus  
INPUT VOLTAGE RANGE  
3 = 3V to 3.6V  
5 = 4.5V to 5.5V  
PACKAGE TYPE  
Y = Hall Grid Array (HGA)  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–40°C to 85°C)  
ꢁ = Automotive Temperature Range (–40°C to 125°C)  
PRODUCT PART NUMBER  
http://www.linear.com/product/LTM2886#orderinfo  
PART MARKING  
ORDER INFORMATION  
PAD OR BALL  
PACKAGE  
TYPE  
MSL INPUT VOLTAGE  
RATING RANGE  
LOGIC  
TEMPERATURE  
PART NUMBER  
FINISH  
DEVICE  
FINISH CODE  
OPTION RANGE  
LTM2886CY-3I#PHF  
LTM2886IY-3I#PHF  
LTM2886ꢁY-3I#PHF  
LTM2886CY-3S#PHF  
LTM2886IY-3S#PHF  
LTM2886ꢁY-3S#PHF  
LTM2886CY-5I#PHF  
LTM2886IY-5I#PHF  
LTM2886ꢁY-5I#PHF  
LTM2886CY-5S#PHF  
LTM2886IY-5S#PHF  
LTM2886ꢁY-5S#PHF  
0°C to 70°C  
2
LTM2886Y-3I  
I C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
3V to 3.6V  
LTM2886Y-3S  
LTM2886Y-5I  
LTM2886Y-5S  
SPI  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
SAC305 (RoꢁS)  
e1  
HGA  
3
2
I C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
4.5V to 5.5V  
SPI  
–40°C to 85°C  
–40°C to 125°C  
• Device temperature grade is indicated by a label on the  
shipping container.  
Recommended HGA PCH Assembly and Manufacturing Procedures: www.linear.  
com/HGA-assy  
• HGA Package and Tray Drawings: www.linear.com/packaging  
• Pad or ball finish code is per IPC/JꢀDꢀC J-STD-609.  
• Terminal Finish Part Marking: www.linear.com/leadfree  
This product is moisture sensitive. For more information, go to:  
www.linear.com/HGA-assy  
This product is not recommended for second side reflow. For  
more information, go to www.linear.com/HGA-assy  
2886fb  
3
For more information www.linear.com/LTM2886  
LTM2886  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2886-3 VCC = 3.3V, LTM2886-5 VCC = 5V, VL = 3.3V, and GND =  
GND2 = 0V, ON = VL unless otherwise noted. Specifications apply to all options unless otherwise noted.  
SYMBOL PARAMETER  
Input Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Supply Range  
Logic Supply Range  
Input Supply Current  
LTM2886-3  
LTM2886-5  
3
3.3  
5
3.6  
5.5  
V
V
CC  
4.5  
l
l
V
LTM2886-S  
LTM2886-I  
1.62  
3
5.5  
5.5  
V
V
L
5
l
l
l
I
I
ON = 0V  
LTM2886-3, No Load  
LTM2886-5, No Load  
0
25  
19  
10  
37  
27  
µA  
mA  
mA  
CC  
l
Logic Supply Current  
ON = 0V  
0
10  
10  
µA  
µA  
µA  
L
LTM2886-S, ON = V  
L
L
LTM2886-I, ON = V  
150  
Output Supplies  
l
V
Regulated Output Voltage  
No Load, AV  
OPꢀN  
CC2  
4.75  
3
5
5.25  
5.5  
V
V
CC2  
Output Voltage Operating Range (Note 2)  
l
l
l
Line Regulation  
Load Regulation  
ADJ Pin Voltage  
Voltage Ripple  
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
2
15  
7.5  
mV  
mV  
V
LOAD  
LOAD  
LOAD  
LOAD  
CC  
= 1mA to 100mA  
= 1mA to 100mA  
= 100mA (Note 2)  
100  
1.27  
1.15  
1.220  
1
mV  
RMS  
ꢀfficiency  
LTM2886-5, I  
= 100mA (Note 2)  
61  
%
LOAD  
I
Output Short Circuit Current  
Current Limit  
V
= 0V  
CC2  
150  
mA  
mA  
V
CC2  
l
l
l
l
ΔV  
= –5%  
90  
CC2  
+
V
Regulated Output Voltage  
Line Regulation  
Load Regulation  
Voltage Ripple  
No Load  
4.8  
5
2
5.2  
7.5  
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
mV  
mV  
LOAD  
LOAD  
LOAD  
CC  
= 1mA to 100mA  
= 100mA (Note 2)  
35  
1
150  
mV  
mV  
RMS  
ꢀfficiency  
LTM2886-5, I  
= 100mA (Note 2)  
61  
150  
%
LOAD  
+
+
I
Output Short Circuit Current  
Current Limit  
V = 0V  
mA  
mA  
V
+
l
l
l
l
ΔV = –5%  
90  
V
Regulated Output Voltage  
Line Regulation  
Load Regulation  
Voltage Ripple  
No Load  
–4.8  
–5  
5
–5.2  
15  
I
I
I
= –1mA, MIN ≤ V ≤ MAX  
mV  
mV  
LOAD  
LOAD  
LOAD  
CC  
= 1mA to 100mA  
= 100mA (Note 2)  
35  
1
150  
RMS  
ꢀfficiency  
LTM2886-5, I  
= 100mA (Note 2)  
61  
150  
%
LOAD  
I
Output Short-Circuit Current  
Current Limit  
V = 0V  
mA  
mA  
l
ΔV = 5%  
90  
2886fb  
4
For more information www.linear.com/LTM2886  
LTM2886  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2886-3 VCC = 3.3V, LTM2886-5 VCC = 5V, VL = 3.3V, and GND =  
GND2 = 0V, ON = VL unless otherwise noted. Specifications apply to all options unless otherwise noted.  
SYMBOL PARAMETER  
Logic/SPI  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
ITꢁ  
Input Threshold Voltage  
ON, DI1, SDOE, SCK, SDI, CS: 1.62V ≤ V < 2.35V  
0.25 • V  
0.33 • V  
0.75 • V  
0.67 • V  
V
V
V
L
L
L
L
L
ON, DI1, SDOE, SCK, SDI, CS: 2.35V ≤ V  
L
I1, I2, SDO2  
0.33 • V  
0.67 • V  
CC2  
CC2  
l
I
Input Current  
1
µA  
mV  
V
INL  
V
V
Input ꢁysteresis  
Output ꢁigh Voltage  
150  
ꢁYS  
Oꢁ  
l
DO1, DO2, SDO,  
V – 0.4  
L
I
I
= –1mA, 1.62V ≤ V < 3V,  
LOAD  
LOAD  
L
= –4mA, 3V ≤ V ≤ 5.5V  
L
l
l
O1, SCK2, SDI2, CS2, I  
= –4mA  
V
– 0.4  
CC2  
V
V
LOAD  
V
Output Low Voltage  
Short-Circuit Current  
DO1, DO2, SDO,  
0.4  
OL  
I
I
= 1mA, 1.62V ≤ V < 3V,  
LOAD  
LOAD  
L
= 4mA, 3V ≤ V ≤ 5.5V  
L
l
l
O1, SCK2, SDI2, CS2, I  
= 4mA  
0.4  
85  
V
LOAD  
I
0V ≤ (DO1, DO2, SDO) ≤ V  
0V ≤ (O1, SCK2, SDI2, CS2) ≤ V  
mA  
mA  
SC  
L
60  
CC2  
2
I C  
l
l
V
Low Level Input Voltage  
ꢁigh Level Input Voltage  
Input Current  
SCL, SDA  
SDA2  
0.3 • V  
V
V
IL  
L
0.3 • V  
CC2  
l
l
V
SCL, SDA  
SDA2  
0.7 • V  
V
V
Iꢁ  
L
0.7 • V  
CC2  
l
l
I
SCL, SDA = V or 0V  
1
1
µA  
µA  
INL  
L
SDA2 = V , SDA2 = V  
= 0V  
CC2  
CC2  
V
V
V
Input ꢁysteresis  
SCL, SDA  
SDA2  
0.05 • V  
V
V
ꢁYS  
Oꢁ  
L
0.05 • V  
CC2  
l
l
Output ꢁigh Voltage  
Output Low Voltage  
SCL2, I  
= –2mA  
V
– 0.4  
CC2  
L
V
V
LOAD  
DO2, I  
= –2mA  
V – 0.4  
LOAD  
l
l
l
l
l
SDA, I  
DO2, I  
= 3mA  
= 2mA  
= 2mA  
0.4  
0.4  
0.4  
0.45  
0.55  
V
V
V
V
V
OL  
LOAD  
LOAD  
LOAD  
SCL2, I  
SDA2, No Load, SDA = 0V, 4.5V ≤ V  
SDA2, No Load, SDA = 0V, 3V ≤ V  
< 5.5V  
CC2  
CC2  
< 4.5V  
0.3  
l
C
C
Input Pin Capacitance  
Hus Capacitive Load  
SCL, SDA, SDA2 (Note 2)  
10  
pF  
IN  
H
l
l
l
l
SCL2, Standard Speed (Note 2)  
SCL2, Fast Speed  
SDA, SDA2, SR ≥ 1V/µs, Standard Speed (Note 2)  
SDA, SDA2, SR ≥ 1V/µs, Fast Speed  
400  
200  
400  
200  
pF  
pF  
pF  
pF  
l
l
Minimum Hus Slew Rate  
Short-Circuit Current  
SDA, SDA2  
1
V/µs  
I
SDA2 = 0, SDA = V  
100  
mA  
mA  
mA  
mA  
mA  
SC  
L
0V ≤ SCL2 ≤ V  
30  
30  
CC2  
L
0V ≤ DO2 ≤ V  
SDA = 0, SDA2 = V  
6
CC2  
SDA = V , SDA2 = 0  
–1.8  
L
ESD (HBM) (Note 2)  
Isolation Houndary  
+
(V , V , V , GND2) to (V , V , GND)  
10  
kV  
CC2  
CC  
L
2886fb  
5
For more information www.linear.com/LTM2886  
LTM2886  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2886-3 VCC = 3.3V, LTM2886-5 VCC = 5V, VL = 3.3V, and GND =  
GND2 = 0V, ON = VL unless otherwise noted. Specifications apply to all options unless otherwise noted.  
SYMBOL PARAMETER  
Logic  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Maximum Data Rate  
10  
35  
Mꢁz  
ns  
DI1 O1, Ix DOx, C = 15pF (Note 3)  
L
t
t
, t  
Propagation Delay  
Rise Time  
C = 15pF (Figure 1)  
L
60  
100  
PꢁL PLꢁ  
l
l
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
R
L
LTM2886-I, DO2, C = 15pF (Figure 1)  
L
l
l
t
F
Fall Time  
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
L
LTM2886-I, DO2, C = 15pF (Figure 1)  
L
SPI  
l
l
Maximum Data Rate  
Hidirectional Communication (Note 3)  
Unidirectional Communication (Note 3)  
4
8
Mꢁz  
Mꢁz  
l
t
t
t
t
t
t
, t  
Propagation Delay  
Output Pulse Width Uncertainty  
Rise Time  
C = 15pF (Figure 1)  
35  
60  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
PꢁL PLꢁ  
L
SDO, SDI2, CS2 (Note 2)  
PWU  
l
l
l
l
C = 15pF (Figure 1)  
L
3
3
12.5  
12.5  
50  
R
F
Fall Time  
C = 15pF (Figure 1)  
L
t
Output ꢀnable Time  
Output Disable Time  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PZꢁ, PZL  
L
L
t
50  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PꢁZ, PLZ  
L
L
2
I C  
l
Maximum Data Rate  
Propagation Delay  
(Note 3)  
SCL SCL2, C = 15pF (Figure 1)  
400  
kꢁz  
l
l
l
t
, t  
150  
150  
300  
225  
250  
500  
ns  
ns  
ns  
PꢁL PLꢁ  
L
SDA SDA2, R = Open, C = 15pF (Figure 3)  
L
L
SDA2 SDA, R = 1.1kΩ, C = 15pF (Figure 3)  
L
L
t
t
t
Output Pulse Width Uncertainty  
Data ꢁold Time  
SDA, SDA2 (Note 2)  
50  
ns  
ns  
PWU  
ꢁD;DAT  
R
(Note 2)  
600  
l
l
l
Rise Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
300  
250  
250  
ns  
ns  
ns  
L
SDA, R = 1.1kΩ C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
l
l
t
F
Fall Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
250  
250  
250  
ns  
ns  
ns  
L
SDA, R = 1.1kΩ C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
t
SP  
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
Power Supply  
Power-Up Time  
l
l
l
0.6  
0.6  
0.6  
5
5
5
ms  
ms  
ms  
ON = to V  
(Min)  
CC2  
+
ON = to V (Min)  
ON = to V (Min)  
2886fb  
6
For more information www.linear.com/LTM2886  
LTM2886  
ISOLATION CHARACTERISTICS TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
Common Mode Transient Immunity  
Maximum Continuous Working Voltage  
1 Minute, Derived from 1 Second Test  
1 Second (Notes 5, 6)  
2500  
3000  
V
V
ISO  
RMS  
RMS  
LTM2886-3 V = 3.3V, LTM2885-5 V = 5V,  
30  
kV/µs  
CC  
CC  
V = ON = 3.3V, V = 1kV, Δt = 33ns (Note 2)  
L
CM  
V
(Notes 2, 5)  
560  
400  
V
PꢀAK  
,
IORM  
V
DC  
V
RMS  
Partial Discharge  
V
= 750V  
(Note 5)  
5
pC  
PD  
RMS  
CTI  
DTI  
Comparative Tracking Index  
Depth of ꢀrosion  
IꢀC 60112 (Note 2)  
IꢀC 60112 (Note 2)  
(Note 2)  
600  
V
RMS  
0.017  
0.06  
mm  
Distance Through Insulation  
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
mm  
Ω
9
(Notes 2, 5)  
10  
(Notes 2, 5)  
6
pF  
(Note 2)  
9.5  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. ꢀxposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This Module includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 2: Guaranteed by design and not subject to production test.  
Note 5: Device considered a 2-terminal device. Pin group A1 through H8  
shorted together and pin group K1 through L8 shorted together.  
Note 3: Maximum Data rate is guaranteed by other measured parameters  
and is not tested directly.  
Note 6: The rated dielectric insulation voltage should not be interpreted as  
a continuous voltage rating.  
TA = 25°C, LTM2886-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2886-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC Supply Current  
vs Temperature  
Isolated Supplies  
Isolated Supplies  
vs Equal Load Current  
vs Equal Load Current  
30  
25  
20  
15  
10  
5.50  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
5.50  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
NO LOAD, REFRESH DATA ONLY  
LTM2886-3  
LTM2886-5  
V
= 3.3V  
V
CC  
= 5V  
CC  
LTM2886-3  
= 3.3V  
V
CC  
LTM2886-5  
V
CC  
= 5V  
V
V
CC2  
CC2  
+
+
V
V
|V |  
10  
|V |  
–50 –25  
0
25  
50  
75 100 125  
0
20  
30  
40  
50  
60  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2886 G01  
2886 G02  
2886 G03  
2886fb  
7
For more information www.linear.com/LTM2886  
LTM2886  
TA = 25°C, LTM2886-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2886-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC2 Line Regulation  
vs Load Current  
V+ Line Regulation  
vs Load Current  
VLine Regulation  
vs Load Current  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.0  
LTM2886-3  
LTM2886-3  
LTM2886-3  
5.5  
5.0  
4.5  
4.0  
3.5  
V
CC  
V
CC  
V
CC  
= 3V  
= 3.3V  
= 3.6V  
V
CC  
V
CC  
V
CC  
= 3V  
= 3.3V  
= 3.6V  
V
CC  
V
CC  
V
CC  
= 3V  
= 3.3V  
= 3.6V  
3.0  
2.5  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2886 G04  
2886 G05  
2886 G06  
VCC2 Line Regulation  
vs Load Current  
V+ Line Regulation  
vs Load Current  
VLine Regulation  
vs Load Current  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
LTM2886-5  
LTM2886-5  
LTM2886-5  
V
CC  
V
CC  
V
CC  
= 4.5V  
= 5V  
= 5.5V  
V
CC  
V
CC  
V
CC  
= 4.5V  
= 5V  
= 5.5V  
V
CC  
V
CC  
V
CC  
= 4.5V  
= 5V  
= 5.5V  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2886 G08  
2886 G07  
2886 G09  
V+ Load Regulation  
vs Temperature  
VLoad Regulation  
vs Temperature  
VCC2 Load Regulation  
vs Temperature  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
LTM2886-3  
LTM2886-3  
LTM2886-3  
V
CC  
= 3.3V  
V
CC  
= 3.3V  
V = 3.3V  
CC  
+
+
I
I
= 1mA  
= 100mA  
I
I
= 1mA  
= 1mA  
= 100mA  
CC2  
I
I
= 100mA  
25  
TEMPERATURE (°C)  
CC2  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2886 G10  
2886 G11  
2886 G12  
2886fb  
8
For more information www.linear.com/LTM2886  
LTM2886  
TA = 25°C, LTM2886-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2886-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
V
CC2 Load Regulation  
V+ Load Regulation  
vs Temperature  
VLoad Regulation  
vs Temperature  
vs Temperature  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
LTM2886-5  
CC  
LTM2886-5  
CC  
LTM2886-5  
CC  
V
= 5V  
V
= 5V  
V
= 5V  
+
+
I
I
= 1mA  
= 100mA  
I
I
= 1mA  
= 100mA  
I
I
= 1mA  
CC2  
CC2  
= 100mA  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2886 G14  
2886 G15  
2886 G13  
VCC2 Voltage and ICC Current  
vs Load Current  
VCC2 Efficiency  
70  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
6
5
4
3
2
1
0
600  
500  
400  
300  
200  
100  
60  
EFFICIENCY  
VOLTAGE  
50  
40  
30  
20  
10  
0
POWER LOSS  
I
CC  
CURRENT  
LTM2886-3, V = 3.3V  
CC  
LTM2886-5, V = 5V  
CC  
LTM2886-3, V = 3.3V  
CC  
LTM2886-5, V = 5V  
CC  
0.0  
300  
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2886 G16  
2886 G17  
V+ Voltage and ICC Current  
vs Load Current  
V+ Efficiency  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6
5
4
3
2
1
0
600  
500  
400  
300  
200  
100  
0
EFFICIENCY  
VOLTAGE  
POWER LOSS  
I
CC  
CURRENT  
LTM2886-3, V = 3.3V  
LTM2886-3, V = 3.3V  
CC  
LTM2886-5, V = 5V  
CC  
CC  
LTM2886-5, V = 5V  
CC  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2886 G18  
2886 G19  
2886fb  
9
For more information www.linear.com/LTM2886  
LTM2886  
TA = 25°C, LTM2886-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2886-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
VVoltage and ICC Current  
vs Load Current  
VEfficiency  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6
5
4
3
2
1
0
600  
500  
400  
300  
200  
100  
0
EFFICIENCY  
VOLTAGE  
POWER LOSS  
I
CURRENT  
CC  
LTM2886-3, V = 3.3V  
LTM2886-3, V = 3.3V  
CC  
LTM2886-5, V = 5V  
CC  
CC  
LTM2886-5, V = 5V  
CC  
0
50  
100  
150  
200  
250 300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2886 G20  
2886 G21  
VCC2 Transient Response  
100mA Load Step  
V+ Transient Response  
100mA Load Step  
VTransient Response  
100mA Load Step  
0.5V/DIV  
0.5V/DIV  
0.5V/DIV  
50mA/DIV  
50mA/DIV  
50mA/DIV  
2886 G22  
2886 G23  
2886 G24  
100µs/DIV  
100µs/DIV  
100µs/DIV  
VCC2 Ripple  
V+ Ripple  
VRipple  
LOAD = 1mA  
LOAD = 1mA  
LOAD = 1mA  
LOAD = 100mA  
LOAD = 100mA  
LOAD = 100mA  
400ns/DIV  
2886 G27  
2886 G25  
2886 G26  
400ns/DIV  
400ns/DIV  
2886fb  
10  
For more information www.linear.com/LTM2886  
LTM2886  
TA = 25°C, LTM2886-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2886-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
V+ Noise  
VNoise  
V
CC2 Noise  
LOAD = 100mA  
LOAD = 100mA  
LOAD = 100mA  
2mV/DIV  
2mV/DIV  
2mV/DIV  
2886 G28  
2886 G29  
2886 G30  
1ms/DIV  
1ms/DIV  
1ms/DIV  
VCC Supply Current  
vs Single Channel Data Rate  
Logic Input Threshold  
vs VL Supply Voltage  
Logic Output Voltage  
vs Load Current  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
6
5
4
3
2
1
0
C
C
C
C
= 1nF  
V
= 5V  
L
L
L
L
CC  
= 330pF  
= 100pF  
= 20pF  
V
V
V
= 5.5V  
= 3.3V  
= 1.62V  
L
L
L
INPUT RISING  
INPUT FALLING  
1
2
3
4
5
6
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
8
9
10  
V
L
SUPPLY VOLTAGE (V)  
DATA RATE (Hz)  
|LOAD CURRENT| (mA)  
2886 G32  
2886 G31  
2886 G33  
Isolated Supply Efficiency with  
Equal Load Current  
Derating for 125°C Maꢀimum  
Internal Operating Temperature  
Power On Sequence  
600  
500  
400  
300  
200  
100  
0
70  
60  
1.4  
LTM2886-5, V = 5V  
L
ON  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
EFFICIENCY  
V
CC2  
2.5V/DIV  
1V/DIV  
50  
40  
30  
20  
10  
0
+
V
LTM2886-3, V = 3.3V  
CC  
LTM2886-5, V = 5V  
CC  
POWER LOSS  
BASED ON THERMAL IMAGING  
OF DEMO CIRCUIT 1790A  
LTM2886-3, V = 3.3V  
CC  
LTM2886-5, V = 5V  
CC  
+
V
V
CC2  
, V , V EQUALLY LOADED  
2886 G34  
0
25  
50  
75  
100  
125  
0
10 20 30 40 50 60 70 80 90 100  
100µs/DIV  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
2886 G36  
2886 G35  
2886fb  
11  
For more information www.linear.com/LTM2886  
LTM2886  
PIN FUNCTIONS (LTM2886-I)  
Logic Side  
The logic state on I2 translates to the same logic state on  
DO2. Do not float.  
DO2(A1):DigitalOutput,ReferencedtoV andGND.Logic  
L
DNC (L2): Do Not Connect. Pin connected internally.  
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
2
SCL2 (L3): Serial I C Clock Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SCL pin  
throughisolationbarrier. Clockisunidirectionalfromlogic  
to isolated side. SCL2 has a push-pull output stage, do not  
connect an external pull-up device. Under the condition  
of an isolation communication failure this output defaults  
to a high state.  
DNC (A2): Do Not Connect. Pin connected internally.  
2
SCL (A3): Serial I C Clock Input, Referenced to V and  
L
GND. Logic input connected to isolated side SCL2 pin  
throughisolationbarrier. Clockisunidirectionalfromlogic  
to isolated side. Do not float.  
2
SDA2 (L4): Serial I C Data Pin, Referenced to V  
and  
CC2  
2
SDA (A4): Serial I C Data Pin, Referenced to V and GND.  
L
GND2. Hidirectional logic pin connected to logic side SDA  
pin through isolation barrier. Output is biased high by a  
1.8mA current source. Do not connect an external pull-  
up device to SDA2. Under the condition of an isolation  
communication failure this output defaults to a high state.  
HidirectionallogicpinconnectedtoisolatedsideSDA2pin  
through isolation barrier. Under the condition of an isola-  
tion communication failure this pin is in a high impedance  
state. Do not float.  
DI1(A5):DigitalInput,ReferencedtoV andGND.Logicinput  
L
O1 (L5): Digital Output, Referenced to V  
and GND2.  
CC2  
connected to O1 through isolation barrier. The logic state on  
Logic output connected to DI1 through isolation barrier.  
Under the condition of an isolation communication failure  
O1 defaults to a high state.  
DI1 translates to the same logic state on O1. Do not float.  
GND (A6, B2 to B6): Circuit Ground.  
V
(L6): 3V to 5.5V Adjustable Isolated Supply Voltage.  
CC2  
ON (A7): ꢀnable, Referenced to V and GND. ꢀnables  
L
Internally generated from V by an isolated DC/DC con-  
CC  
power and data communication through the isolation  
barrier. If ON is high the part is enabled and power and  
communications are functional to the isolated side. If ON  
is low the logic side is held in reset, all digital outputs  
are in a high impedance state, and the isolated side is  
unpowered. Do not float.  
verter and regulated to 5V with no external components.  
Internally bypassed with 2.2µF.  
V (L7): –5V Nominal Isolated Supply Voltage. Internally  
generated from V by an isolated DC/DC converter and  
CC  
regulated to –5V with no external components. Internally  
bypassed with 2.2µF.  
V (A8): Logic Supply. Interface supply voltage for pins  
L
+
DI1, SCL, SDA, DO1, DO2, and ON. Operating voltage is  
V (L8): 5V Nominal Isolated Supply Voltage. Internally  
1.62V to 5.5V. Internally bypassed with 1µF.  
generated from V by an isolated DC/DC converter and  
CC  
regulated to 5V with no external components. Internally  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
L
bypassed with 2.2µF.  
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
I1 (K1): Digital Input, Referenced to V  
and GND2.  
CC2  
Logic input connected to DO1 through isolation barrier.  
The logic state on I1 translates to the same logic state on  
DO1. Do not float.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
to 3.6V for LTM2886-3 and 4.5V to 5.5V for LTM2886-5.  
GND2 (K2 to K5, K7, K8): Isolated Ground.  
Internally bypassed with 2.2µF.  
AV  
(K6): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
Isolated Side  
The adjust pin voltage is 1.22V referenced to GND2. See  
Applications Information section for details.  
I2 (L1): Digital Input, Referenced to V  
Logic input connected to DO2 through isolation barrier.  
and GND2.  
CC2  
2886fb  
12  
For more information www.linear.com/LTM2886  
LTM2886  
PIN FUNCTIONS (LTM2886-S)  
Logic Side  
Isolated Side  
SDO2 (L1): Serial SPI Digital Input, Referenced to V  
SDO (A1): Serial SPI Digital Output, Referenced to V  
CC2  
L
and GND2. Logic input connected to logic side SDO pin  
through isolation barrier. Do not float.  
and GND. Logic output connected to isolated side SDO2  
pin through isolation barrier. Under the condition of an  
isolation communication failure this output is in a high  
impedance state.  
I2 (L2): Digital Input, Referenced to V  
and GND2.  
CC2  
Logic input connected to DO2 through isolation barrier.  
The logic state on I2 translates to the same logic state on  
DO2. Do not float.  
DO2(A2):DigitalOutput,ReferencedtoV andGND.Logic  
L
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
SCK2 (L3): Serial SPI Clock Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SCK pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
SCK (A3): Serial SPI Clock Input, Referenced to V and  
L
GND. Logic input connected to isolated side SCK2 pin  
through isolation barrier. Do not float.  
SDI2 (L4): Serial SPI Data Output, Referenced to V  
CC2  
and GND2. Logic output connected to logic side SDI pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
SDI(A4):SerialSPIDataInput,ReferencedtoV andGND.  
L
Logic input connected to isolated side SDI2 pin through  
isolation barrier. Do not float.  
CS2 (L5): Serial SPI Chip Select, Referenced to V  
and  
CC2  
CS(A5):SerialSPIChipSelect,ReferencedtoV andGND.  
L
GND2.LogicoutputconnectedtologicsideCSpinthrough  
isolation barrier. Under the condition of an isolation com-  
munication failure this output defaults to a high state.  
Logic input connected to isolated side CS2 pin through  
isolation barrier. Do not float.  
SDOE (A6): Serial SPI Data Output ꢀnable, Referenced to  
V
(L6): 3V to 5.5V Adjustable Isolated Supply Voltage.  
CC2  
V and GND. A logic high on SDOE places the logic side  
L
Internally generated from V by an isolated DC/DC con-  
CC  
SDO pin in a high impedance state, a logic low enables  
verter and regulated to 5V with no external components.  
Internally bypassed with 2.2µF.  
the output. Do not float.  
ON(A7):ꢀnable,ReferencedtoV andGND.nablespower  
L
V (L7): –5V Nominal Isolated Supply Voltage. Internally  
anddatacommunicationthroughtheisolationbarrier.IfON  
is high the part is enabled and power and communications  
arefunctionaltotheisolatedside. IfONislowthelogicside  
is held in reset, all digital outputs are in a high impedance  
state, and the isolated side is unpowered. Do not float.  
generated from V by an isolated DC/DC converter and  
CC  
regulated to –5V with no external components. Internally  
bypassed with 2.2µF.  
+
V (L8): 5V Nominal Isolated Supply Voltage. Internally  
generated from V by an isolated DC/DC converter and  
CC  
V (A8): Logic Supply. Interface supply voltage for pins  
L
regulated to 5V with no external components. Internally  
SDI, SCK, SDO, SDOE, DO1, DO2, CS, and ON. Operating  
bypassed with 2.2µF.  
voltage is 1.62V to 5.5V. Internally bypassed with 1µF.  
I1 (K1): Digital Input, Referenced to V  
and GND2.  
CC2  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
L
Logic input connected to DO1 through isolation barrier.  
The logic state on I1 translates to the same logic state on  
DO1. Do not float.  
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
GND2 (K2 to K5, K7, K8): Isolated Ground.  
GND (B2 to B6): Circuit Ground.  
AV  
(K6): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
The adjust pin voltage is 1.22V Referenced to GND2. See  
Applications Information section for details.  
to 3.6V for LTM2886-3 and 4.5V to 5.5V for LTM2886-5.  
Internally bypassed with 2.2µF.  
2886fb  
13  
For more information www.linear.com/LTM2886  
LTM2886  
BLOCK DIAGRAMS  
(LTM2886-I)  
V
REG  
CC2  
2.2µF  
AV  
CC2  
+
V
REG  
REG  
CC  
V
2.2µF  
2.2µF  
V
L
2.2µF  
GND2  
1µF  
V
GND  
DC/DC  
CONVERTER  
ON  
DI1  
O1  
SDA  
SCL  
SDA2  
SCL2  
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
COMMUNI-  
CATIONS  
INTERFACE  
INTERFACE  
DO2  
DO1  
I2  
I1  
2886 BD  
2886fb  
14  
For more information www.linear.com/LTM2886  
LTM2886  
(LTM2886-S)  
V
REG  
CC2  
2.2µF  
AV  
CC2  
+
V
REG  
REG  
CC  
V
2.2µF  
2.2µF  
V
L
2.2µF  
GND2  
1µF  
DC/DC  
CONVERTER  
V
GND  
ON  
SDOE  
CS  
CS2  
SDI2  
SCK2  
I2  
SDI  
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
COMMUNI-  
CATIONS  
SCK  
DO2  
INTERFACE  
INTERFACE  
SDO  
DO1  
SDO2  
I1  
2886 BDa  
2886fb  
15  
For more information www.linear.com/LTM2886  
LTM2886  
TEST CIRCUITS  
V
L
INPUT  
½V  
L
0V  
OUTPUT  
t
t
PHL  
PLH  
C
L
INPUT  
V
OH  
90%  
10%  
10%  
90%  
OUTPUT  
½V  
CC2  
V
OL  
t
t
F
R
V
CC2  
INPUT  
½V  
CC2  
0V  
OUTPUT  
t
t
PHL  
PLH  
C
L
INPUT  
V
OH  
90%  
10%  
10%  
90%  
OUTPUT  
½V  
L
V
OL  
t
t
F
R
2886 F01  
Figure 1. Logic Timing Measurements  
V
L
OR 0V  
V
L
SDOE  
SDO  
SDO  
½V  
L
R
L
0V  
0V  
t
t
PHZ  
PZH  
V
OH  
SDO  
SDO2 OR  
V
CC2  
V
V
– 0.5V  
+ 0.5V  
OH  
½V  
C
L
t
L
0V  
t
PLZ  
SDOE  
PZL  
L
V
L
½V  
OL  
V
OL  
2886 F02  
Figure 2. Logic Enable/Disable Time  
V
L
V
L
R
L
SDA  
½V  
L
0V  
SDA2  
t
t
PLH  
PHL  
C
L
SDA  
V
OH  
30%  
70%  
30%  
SDA2  
½V  
CC2  
70%  
V
OL  
t
t
R
F
V
L
V
CC2  
R
L
SDA2  
SDA  
½V  
CC2  
0V  
SDA  
t
t
PLH  
PHL  
C
L
SDA2  
V
OH  
30%  
70%  
30%  
½V  
L
70%  
V
OL  
t
t
R
F
2886 F03  
Figure 3. I2C Timing Measurements  
2886fb  
16  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
Overview  
V Logic Supply  
L
The LTM2886 digital µModule isolator provides a  
galvanically-isolated robust logic interface, powered by  
an integrated, regulated DC/DC converter, complete with  
decoupling capacitors. The LTM2886 is ideal for use in  
networks where grounds can take on different voltages.  
Isolation in the LTM2886 blocks high voltage differences,  
eliminates ground loops and is extremely tolerant of com-  
mon mode transients between ground planes. ꢀrror-free  
operation is maintained through common mode events  
greater than 30kV/μs providing excellent noise isolation.  
A separate logic supply pin V allows the LTM2886 to in-  
L
terface with any logic signal from 1.62V to 5.5V as shown  
in Figure 4. Simply connect the desired logic supply to V  
.
L
There is no interdependency between V and V ; they  
CC  
L
may simultaneously operate at any voltage within their  
specified operating ranges and sequence in any order. V  
is bypassed internally by a 1µF capacitor.  
L
3V TO 3.6V LTM2886-3  
4.5V TO 5.5V LTM2886-5  
LTM2886-I  
V
CC2  
CC2  
V
V
CC  
L
Isolator µModule Technology  
AV  
+
ANY VOLTAGE FROM  
1.62V TO 5.5V  
V
The LTM2886 utilizes isolator µModule technology to  
translate signals and power across an isolation barrier.  
Signals on either side of the barrier are encoded into  
pulses and translated across the isolation boundary using  
coreless transformers formed in the µModule substrate.  
This system, complete with data refresh, error checking,  
safe shutdown on fail, and extremely high common mode  
immunity,providesarobustsolutionforbidirectionalsignal  
isolation. The µModule technology provides the means to  
combinetheisolatedsignalingwithmultipleregulatorsand  
apowerfulisolatedDC/DCconverterinonesmallpackage.  
V
ON  
DI1  
O1  
SDA  
SCL  
SDA2  
SCL2  
EXTERNAL  
DEVICE  
DO2  
DO1  
I2  
I1  
GND  
GND2  
2886 F04  
DC/DC Converter  
Figure 4. VCC and VL Are Independent  
The LTM2886 contains a fully integrated DC/DC converter,  
including the transformer, so that no external components  
are necessary. The logic side contains a full-bridge driver,  
running at 1.6Mꢁz, and is AC-coupled to a single trans-  
former primary. A series DC blocking capacitor prevents  
transformer saturation due to driver duty cycle imbal-  
ance. The transformer scales the primary voltage, and is  
rectified by a voltage quadrupler. This topology eliminates  
transformer saturation caused by secondary imbalances.  
Hot-Plugging Safely  
Caution must be exercised in applications where power is  
plugged into the LTM2886’s power supplies, V or V ,  
due to the integrated ceramic decoupling capacitors. The  
parasitic cable inductance along with the high Q char-  
acteristics of ceramic capacitors can cause substantial  
ringing which could exceed the maximum voltage ratings  
anddamagetheLTM2886. RefertoLinearTechnologyAp-  
plication Note 88, entitled Ceramic Input Capacitors Can  
Cause Overvoltage Transients for a detailed discussion  
and mitigation of this phenomenon.  
CC  
L
The quadrupler is grounded in the middle producing sym-  
metrical positive and negative voltage rails. The positive  
rail is post regulated with two low dropout regulators  
+
(LDOs) producing V  
and V , the negative rail also has  
CC2  
an LDO producing V .  
ꢀach voltage rail is capable of producing 100mA of output  
current,totaloutputpowercapabilityisapproximately1W.  
Allvoltagerailsarebypassedwith2.2µFceramiccapacitors.  
2886fb  
17  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
Isolated Supply Adjustable Operation  
Channel Timing Uncertainty  
The V  
isolated power rail is nominally 5V, but may be  
Multiplechannelsaresupportedacrosstheisolationbound-  
ary by encoding and decoding of the inputs and outputs.  
Up to three signals in each direction are assembled as a  
packet and transferred across the isolation barrier. The  
time required to transfer all 3 bits is 100ns maximum,  
and sets the limit for how often a signal can change on  
the opposite side of the barrier. ncoding transmission is  
independent for each data direction. The technique used  
assigns SCK or SCL on the logic side, and SDO2 or I2 on  
the isolated side, the highest priority such that there is  
no jitter on the associated output channels, only delay.  
This preemptive scheme will produce a certain amount of  
uncertainty on the other isolation channels. The resulting  
pulse width uncertainty on these low priority channels is  
typically 6ns, but may vary up to 50ns if the low priority  
channels are not encoded within the same high priority  
serial packet.  
CC2  
overdrivenbyaddingtwoexternalresistors.Theunadjusted  
output voltage represents the maximum for guaranteed  
performance. Figure 5 illustrates configuration for V  
CC2  
+
= 3.3V, V and V are fixed at 5V and –5V respectively.  
LTM2886-5S  
V
CC2  
3.3V  
V
V
CC  
L
AV  
5V  
CC2  
R2  
42.2k  
+
V
5V  
ON  
R1  
V
–5V  
24.9k  
SDOE  
CS  
CS2  
SDI2  
SCK2  
SDI  
SCK  
I2  
SDO2  
I1  
DO2  
SDO  
DO1  
Serial Peripheral Interface (SPI) Bus  
The LTM2886-S provides a SPI compatible isolated inter-  
face. The maximum data rate is a function of the inherent  
channel propagation delays, channel to channel pulse  
width uncertainty, and data direction requirements. Chan-  
nel timing is detailed in Figures 6 through 9 and Tables  
2 and 3. The SPI protocol supports four unique timing  
configurations defined by the clock polarity (CPOL) and  
clock phase (CPꢁA) summarized in Table 1.  
GND  
GND2  
2886 F05  
Figure 5. Adjustable Voltage Rails  
The output adjustment range for V  
output voltage is calculated by:  
is 3V to 5.5V. V  
CC2  
CC2  
V
CC2  
= 1.22V(1 + R2/R1)  
Table 1. SPI Mode  
CPOL CPHA  
DATA TO (CLOCK) RELATIONSHIP  
The value of R1 should be no greater than 24.9k to mini-  
0
0
1
1
0
1
0
1
Sample (Rising)  
Set-Up (Falling)  
Sample (Falling)  
Set-Up (Rising)  
Sample (Rising)  
mize errors in the output voltage caused by the AV pin  
CC2  
Set-Up (Rising)  
Sample (Falling)  
Set-Up (Falling)  
bias current.  
Operation at low output voltages may result in thermal  
shutdownduetolowdropoutregulatorpowerdissipation.  
The maximum data rate for bidirectional communication  
is 4Mꢁz, based on a synchronous system, as detailed in  
the timing waveforms. Slightly higher data rates may be  
achieved by skewing the clock duty cycle and minimiz-  
ing the SDO to SCK set-up time, however the clock rate  
is still dominated by the system propagation delays. A  
discussion of the critical timing paths relative to Figures 6  
and 7 follows.  
2886fb  
18  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
CS to SCK (master sample SDO, 1st SDO valid)  
t
10  
SDO2 data transition in response to SCK2  
t t  
0
≈50ns, CS to CS2 propagation delay  
t t ≈50ns, SDO2 to SDO propagation delay  
10 11  
1
t t  
Isolated slave device propagation  
(response time), asserts SDO2  
t t Set-up time for master SDO to SCK  
11 12  
1
1+  
Maximum data rate for single direction communication,  
master to slave, is 8Mꢁz, limited by the systems encod-  
ing/decodingschemeorpropagationdelay. Timingdetails  
for both variations of clock phase are shown in Figures 8  
and 9 and Table 3.  
t t  
1
≈50ns, SDO2 to SDO propagation delay  
Set-up time for master SDO to SCK  
3
5
t t  
3
• SDI to SCK (master data write to slave)  
t t  
≈50ns, SDI to SDI2 propagation delay  
≈50ns, SCK to SCK2 propagation delay  
Additional requirements to insure maximum data rate are:  
2
4
6
5
t t  
5
CS is transmitted prior to (asynchronous) or within  
the same (synchronous) data packet as SDI  
t t  
2
≥50ns, SDI to SCK, separate packet  
non-zero set-up time  
SDI and SCK set-up data transition occur within the  
same data packet. Referencing Figure 6, SDI can pre-  
t t  
4
≥50ns, SDI2 to SCK2, separate packet  
non-zero set-up time  
6
cede SCK by up to 13ns (t t ) or lag SCK by 3ns  
7
8
(t t ) and not violate this requirement. Similarly in  
8
9
• SDO to SCK (master sample SDO, subsequent  
SDO valid)  
Figure 8, SDI can precede SCK by up to 13ns (t t )  
4
5
or lag SCK by 3ns (t t ).  
5
6
t
8
set-up data transition SDI and SCK  
t t  
8
≈50ns, SDI to SDI2 and SCK to SCK2  
propagation delay  
10  
2886fb  
19  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
CPHA = 0  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
SDO  
INVALID  
SDO2  
t
0
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
t
10  
t
t
t
t
t
15  
t
t
9
11 12  
13  
14  
17  
18  
t
8
2886 F06  
Figure 6. SPI Timing, Bidirectional, CPHA = 0  
CPHA = 1  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
SDO  
INVALID  
SDO2  
t
0
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
t
10  
t
t
t
t
t
15  
t
t
t
9
11 12  
13  
14  
16 17  
18  
t
8
2886 F07  
Figure 7. SPI Timing, Bidirectional, CPHA = 1  
2886fb  
20  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
CPHA = 0  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
t
0
t
1
t
2
t
3
t
4
t
5
t
t
t
9
t
t
12  
7
8
11  
t
6
2886 F08  
Figure 8. SPI Timing, Unidirectional, CPHA = 0  
CPHA = 1  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
t
0
t
1
t
2
t
3
t
4
t
5
t
7
t
8
t
9
t
t
t
12  
10 11  
t
6
2886 F09  
Figure 9. SPI Timing, Unidirectional, CPHA = 1  
2886fb  
21  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
Table 2. Bidirectional SPI Timing Event Description  
TIME  
CPHA  
EVENT DESCRIPTION  
t
0
0, 1  
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns. Logic side slave data output  
enabled, initial data is not equivalent to slave device data output  
t to t  
t
to t  
18  
0, 1  
0, 1  
0
Propagation delay chip select, logic to isolated side, 50ns typical  
Slave device chip select output data enable  
0
1, 17  
t
1
t
2
Start of data transmission, data set-up  
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of slave data, isolated to logic side, 50ns typical  
Slave data output valid, logic side  
t to t  
0, 1  
0, 1  
0
1
3
t
3
t to t  
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Propagation delay of clock, logic to isolated side  
Isolated side data sample time  
2
4
1
t
5
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
5
6
t
6
t
8
Synchronous data and clock transition, logic side  
Data to clock delay, must be ≤13ns  
t to t  
7
8
t to t  
Clock to data delay, must be ≤3ns  
8
9
t to t  
8
Propagation delay clock and data, logic to isolated side  
Slave device data transition  
10  
t
t
t
t
t
10, 14  
to t  
to t  
t
to t  
15  
Propagation delay slave data, isolated to logic side  
Slave data output to sample clock set-up time  
10  
11  
13  
11, 14  
12  
Last data and clock transition logic side  
1
Last sample clock transition logic side  
t
to t  
0
Propagation delay data and clock, logic to isolated side  
Propagation delay clock, logic to isolated side  
13  
15  
14  
1
t
0
Last slave data output transition logic side  
1
Last slave data output and data transition, logic side  
Propagation delay data, logic to isolated side  
t
15  
t
17  
t
18  
to t  
1
16  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission. Disable slave data output logic side  
Chip select transition isolated side, slave data output disabled  
2
Inter-IC Communication (I C) Bus  
2
2
The LTM2886-I provides an I C compatible isolated in-  
ThetotalsetuptimereducestheI Cdataholdtime(t  
)
HD;DAT  
terface. Clock (SCL) is unidirectional, supporting master  
mode only, and data (SDA) is bidirectional. The maximum  
toamaximumof175ns,guaranteeingsufficientdatasetup  
time (t ).  
SU;ACK  
2
data rate is 400kHz which supports fast-mode I C. Timing  
The isolated side bidirectional serial data pin, SDA2,  
simplified schematic is shown in Figure 11. An internal  
1.8mA current source provides a pull-up for SDA2. Do not  
connect any other pull-up device to SDA2. This current  
source is sufficient to satisfy the system requirements for  
bus capacitances greater than 200pF in FAST mode and  
greater than 400pF in STANDARD mode.  
is detailed in Figure 10. The data rate is limited by the slave  
2
acknowledge setup time (t  
), consisting of the I C  
SU;DAT  
SU;ACK  
standardminimumsetuptime(t  
)of100ns,maximum  
clock propagation delay of 225ns, glitch filter and isolated  
data delay of 500ns maximum, and the combined isolated  
and logic data fall time of 300ns at maximum bus loading.  
2886fb  
22  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
Table 3. Unidirectional SPI Timing Event Description  
TIME  
CPHA  
0, 1  
0, 1  
0
EVENT DESCRIPTION  
t
0
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns  
Propagation delay chip select, logic to isolated side  
Start of data transmission, data set-up  
t to t  
0
1
3
t
2
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Clock propagation delay, clock and data transition  
Data to clock delay, must be ≤13ns  
t to t  
2
0
1
t
3
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
3
5
5
6
7
t to t  
4
t to t  
5
Clock to data delay, must be ≤3ns  
t to t  
5
Data and clock propagation delay  
t
8
Last clock and data transition  
1
Last clock transition  
t to t  
8
0
Clock and data propagation delay  
9
1
Clock propagation delay  
t to t  
9
1
Data propagation delay  
10  
t
11  
t
12  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission  
Chip select transition isolated side  
SLAVE ACK  
SDA  
SDA2  
SCL  
1
8
9
SCL2  
START  
STOP  
2886 F10  
t
PROP  
t
t
HD;DAT  
t
SU;DAT  
SU;ACK  
Figure 10. I2C Timing Diagram  
Additional proprietary circuitry monitors the slew rate on  
the SDA and SDA2 signals to manage directional control  
across the isolation barrier. Slew rates on both pins must  
be greater than 1V/µs for proper operation.  
1.8mA  
GLITCH FILTER  
TO  
LOGIC  
SIDE  
SDA2  
The logic side bidirectional serial data pin, SDA, requires a  
FROM  
LOGIC  
SIDE  
pull-up resistor or current source connected to V . Follow  
L
2886 F11  
the requirements in Figures 12 and 13 for the appropri-  
ate pull-up resistor on SDA that satisfies the desired rise  
Figure 11. Isolated SDA2 Pin Schematic  
time specifications and V maximum limits for FAST and  
OL  
STANDARD modes. The resistance curves represent the  
maximum resistance boundary; any value may be used  
to the left of the appropriate curve.  
2886fb  
23  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
30  
If these signals are wired off board, twist SCL2 with V  
CC2  
V
V
V
V
= 3V  
L
L
L
L
= 3.3V  
and/or GND2 and SDA2 with GND2 and/or V , do not  
CC2  
25  
20  
15  
10  
5
= 3.6V  
= 4.5V TO 5.5V  
twist SCL2 and SDA2 together. If coupling between SCL2  
and SDA2 is unavoidable, place the aforementioned RC  
filter at the SCL2 pin to reduce noise injection onto SDA2.  
Low Noise Applications  
+
For precision analog applications the V and V power  
rails may be filtered to improve the noise performance.  
Figure 14 shows the recommended component values to  
reduce noise at high frequencies. The selected inductor  
should be chosen such that the parasitic capacitance is  
low enough to keep the self resonant frequency greater  
than 10MHz. The plots of Figures 15 and 16 show the high  
0
10  
100  
(pF)  
1000  
C
BUS  
2886 F12  
Figure 12. Maximum Standard Speed Pull-Up Resistance on SDA  
+
frequency noise improvement for the V rail, the improve-  
10  
V
V
V
V
= 3V  
L
L
L
L
ment on the V rail will be nearly equivalent.  
9
8
7
6
5
4
3
2
1
0
= 3.3V  
= 3.6V  
Some applications may require the noise performance be  
improved in the 100Hz to 10kHz region. An additional LC  
filter stage may be added between the LTM2886 and the  
high frequency filter to lower the noise corner frequency.  
Using an inductance of 330µH and capacitance of 680µF  
reduces the noise corner to approximately 340Hz. The  
RMSnoiseatabandwidthof340Hzisapproximately22µV.  
= 4.5V TO 5.5V  
22µH  
LTM2886-5S  
10  
100  
(pF)  
1000  
B8  
A8  
L8  
L7  
+
+
V
V
FILTERED V  
FILTERED V  
5V  
V
V
C
CC  
L
BUS  
2886 F13  
22µH  
Figure 13. Maximum Fast Speed Pull-Up Resistance on SDA  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
ON  
CC2  
AV  
SDOE  
CS  
CC2  
The isolated side clock pin, SCL2, has a weak push-pull  
output driver; do not connect an external pull-up device.  
CS2  
SDI2  
SCK2  
I2  
10µF  
10µF  
SDI  
2
SCL2iscompatiblewithI Cdeviceswithoutclockstretch-  
SCK  
DO2  
SDO  
DO1  
GND  
ing. On lightly loaded connections, a 100pF capacitor  
from SCL2 to GND2 or RC lowpass filter (R = 500Ω,  
C = 100pF) can be used to increase the rise and fall times  
and minimize noise.  
SDO2  
I1  
GND2  
2886 F15  
Some consideration must be given to signal coupling  
between SCL2 and SDA2. Separate these signals on  
a printed circuit board or route with ground between.  
Figure 14. Filtered Voltage Rails for Low Noise Applications  
2886fb  
24  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
10  
Table 4. EMC Immunity Tests  
TEST  
LTM2886-5  
FREQUENCY  
FIELD STRENGTH  
10V/m  
LOAD = 50Ω  
EN 61000-4-3 Annex D  
80MHz to 1GHz  
1.4MHz to 2GHz  
2GHz to 2.7GHz  
50Hz and 60Hz  
60Hz  
1
3V/m  
1V/m  
EN 61000-4-8 Level 4  
EN 61000-4-8 Level 5  
EN 61000-4-9 Level 5  
*non IEC method  
30A/m  
NO LOAD  
0.1  
100A/m*  
1000A/m  
Pulse  
0.01  
0.01  
0.1  
1
10  
100 1000 10000  
FREQUENCY (kHz)  
PCB Layout  
2886 F15  
The high integration of the LTM2886 makes PCB layout  
very simple. However, to optimize its electrical isolation  
characteristics, EMI, and thermal performance, some  
layout considerations are necessary.  
Figure 15. V+ Output Noise Spectral Density Without Filter  
10  
LTM2886-5  
Under heavily loaded conditions V and GND current  
CC  
1
can exceed 300mA. Sufficient copper must be used  
on the PCB to insure resistive losses do not cause the  
supply voltage to drop below the minimum allowed  
LOAD = 50Ω  
NO LOAD  
0.1  
level. Similarly, the V  
and GND2 conductors must  
CC2  
be sized to support any external load current. These  
heavy copper traces will also help to reduce thermal  
stress and improve the thermal conductivity.  
0.01  
0.01  
0.1  
1
10  
100 1000 10000  
FREQUENCY (kHz)  
Input and output supply decoupling is not required,  
since these components are integrated within the  
package. An additional bulk capacitor with a value of  
6.8µF to 22µF is recommended. The high ESR of this  
capacitor reduces board resonances and minimizes  
voltage spikes caused by hot plugging of the supply  
voltage. For EMI sensitive applications, an additional  
low ESL ceramic capacitor of 1µF to 4.7µF, placed as  
close to the power and ground terminals as possible,  
is recommended. Alternatively, a number of smaller  
value parallel capacitors may be used to reduce ESL  
and achieve the same net capacitance.  
2886 F16  
Figure 16. V+ Output Noise Spectral Density With Filter  
RF, Magnetic Field Immunity  
TheisolatorµModuletechnologyusedwithintheLTM2886  
hasbeenindependentlyevaluated,andsuccessfullypassed  
the RF and magnetic field immunity testing requirements  
per European Standard EN 55024, in accordance with the  
following test standards:  
EN 61000-4-3  
EN 61000-4-8  
EN 61000-4-9  
Radiated, Radio-Frequency,  
Electromagnetic Field Immunity  
Do not place copper on the PCB between the inner  
columns of pads. This area must remain open to  
withstand the rated isolation voltage.  
Power Frequency Magnetic Field  
Immunity  
Pulsed Magnetic Field Immunity  
The use of solid ground planes for GND and GND2  
is recommended for non-EMI critical applications to  
optimize signal fidelity, thermal performance, and to  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCB layout recommendations.  
Specific limits per test are detailed in Table 5.  
minimize RF emissions due to uncoupled PCB trace  
2886fb  
25  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
conduction. The drawback of using ground planes,  
where EMI is of concern, is the creation of a dipole  
antenna structure which can radiate differential volt-  
agesformedbetweenGNDandGND2.Ifgroundplanes  
are used it is recommended to minimize their area,  
and use contiguous planes as any openings or splits  
can exacerbate RF emissions.  
The PCB layout in Figures 17 and 18 shows the low EMI  
demo board for the LTM2886. The demo board uses a  
combination of EMI mitigation techniques, including both  
embedded PCB bridge capacitance and discrete GND to  
GND2 capacitors. Two safety rated type Y2 capacitors are  
used in series, manufactured by MuRata, part number  
GA342QR7GF471KW01L. The embedded capacitor ef-  
fectively suppresses emissions above 400MHz, whereas  
the discrete capacitors are more effective below 400MHz.  
For large ground planes a small capacitance (≤330pF)  
from GND to GND2, either discrete or embedded  
within the substrate, provides a low impedance cur-  
rent return path for the module parasitic capacitance,  
minimizinganyhighfrequencydifferentialvoltagesand  
substantially reducing radiated emissions. Discrete  
capacitance will not be as effective due to parasitic  
ESL. In addition, voltage rating, leakage, and clear-  
ance must be considered for component selection.  
Embedding the capacitance within the PCB substrate  
provides a near ideal capacitor and eliminates com-  
ponent selection issues; however, the PCB must be  
four layers. Care must be exercised in applying either  
technique to ensure the voltage rating of the barrier  
is not compromised.  
EMI performance is shown in Figure 19, measured using  
a Gigahertz Transverse Electromagnetic (GTEM) cell and  
method detailed in IEC 61000-4-20, Testing and Measure-  
ment Techniques – Emission and Immunity Testing in  
Transverse Electromagnetic Waveguides.  
In applications without an embedded PCB substrate  
capacitance a slot may be added between the logic  
side and isolated side device pins. The slot extends  
the creepage path between terminals on the PCB side,  
andmayreduceleakagecausedbyPCBcontamination.  
The slot should be placed in the middle of the device  
and extend beyond the package perimeter.  
Figure 17. LTM2886 Low EMI Demo Board Layout  
2886fb  
26  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
Top Layer  
Inner Layer 2  
Inner Layer 1  
Bottom Layer  
Figure 18. LTM2886 Low EMI Demo Board Layout (DC1790A)  
2886fb  
27  
For more information www.linear.com/LTM2886  
LTM2886  
APPLICATIONS INFORMATION  
60  
50  
CISPR 22 CLASS B LIMIT  
40  
30  
20  
DC1790A-B  
10  
DC1790A-A  
0
DETECTOR = QuasiPeak  
RBW = 120kHz  
VBW = 300kHz  
SWEEP TIME = 17s  
# OF POINTS = 501  
–10  
–20  
–30  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (MHz)  
2886 F19  
Figure 19. LTM2886 Low EMI Demo Board Emissions  
TYPICAL APPLICATIONS  
5V  
5V  
0.1µF  
0.1µF  
5V  
LTM2886-5I  
1µF  
B8  
A8  
L8  
L7  
+
8
5V  
V
V
V
V
CC  
L
3
2
7
8
9
+
–5V  
1µF  
1
1/2 LTC2055  
+
10  
6
5V  
OUT  
LT1991  
G = 4  
1.7k 1.7k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B3  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K4  
1
2
3
4
V
ON  
CC2  
AV  
GND  
DI1  
CC2  
O1  
V
CC  
LTC2631A-LM12, DAC  
1.25V  
5
0.1µF  
1
2
3
4
8
7
6
5
4
SDA2  
SCL2  
DNC  
I2  
CA0  
SCL  
SDA  
GND  
R_SEL  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
2.5V F.S.  
–5V  
µC  
V
OUT  
REF  
5
6
+
V
CC  
GND  
7
I1  
1/2 LTC2055  
DAC  
GND2  
0.1µF  
RA1, 10k  
VISHAY, OSOPTA1002AT1  
5V  
0.1µF  
2.5V  
LTC2301, ADC  
10  
11  
12  
1
9
8
7
6
5
4
GND  
AD0 REFC  
V
DD  
0.1µF  
5
7
AD1  
GND  
SDA  
SCL  
V
REF  
3
2
5V  
IN  
+
IN  
2
4V F.S.  
0.1µF  
6
+
IN  
LT1218L  
3
1µF  
GND  
10µF  
ADC  
0.1µF  
4
–5V  
2886 F20  
Figure 20. Isolated I2C 12-Bit, 5V Analog Input and Output  
2886fb  
28  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
LTM2886-3S  
B8  
A8  
L8  
L7  
+
V
V
3.3V  
V
V
CC  
L
10k  
1nF  
74LVC1G123  
Cx  
Rx/Cx  
CLR  
A
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
CSB  
ON  
CC2  
CC2  
AV  
SDOE  
CS  
1µF  
CS2  
SDI2  
SCK2  
I2  
CSA  
B
Q
MOSI  
SCK  
SDI  
SCK  
DO2  
SDO  
DO1  
GND  
V
CC  
CSA  
CSB  
SDO2  
I1  
MISO  
µC  
GND2  
MOSI  
SCK  
MISO  
GND  
CSA  
CSB  
MOSI  
SCK  
2886 F21  
Figure 21. Isolated SPI Device Expansion  
LTM2886-5I  
B8  
A8  
L8  
+
10k 10k  
10k 10k 10k 10k 10k 10k  
V
V
5V  
V
V
CC  
L
0.01µF  
L7  
L6  
ALERT2  
10k 10k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B3  
V
1
16  
ON  
CC2  
ALERT2  
ALERT  
SDAIN  
GND  
SCLIN  
ENABLE  
SCL2  
SDA2  
ALERT1  
SDA1  
SCL2  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K4  
2
3
4
5
15  
14  
13  
12  
AV  
GND  
DI1  
CC2  
O1  
SDA2  
ALERT1  
SDA1  
SCL1  
ENABLE  
SDA  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
LTC4305  
SCLIN  
SCL1  
6
7
8
11  
10  
9
READY  
ADR2  
V
CC  
ALERT  
READY  
ADR0  
ADR1  
I1  
GND2  
2886 F22  
Figure 22. Isolated I2C Buffer with Dual Outputs  
2886fb  
29  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
LTM2886-5S  
B8  
A8  
L8  
+
V
V
5V  
V
V
CC  
L
1µF  
L7  
NTC THERMISTORS, MURATA NTSD1WD104, 100k  
–t° –t° –t° –t°  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
ON  
CC2  
AV  
SDOE  
CS  
CC2  
V
CC  
CS2  
SDI2  
SCK2  
I2  
Oz  
Oy  
Ox  
SDI  
LTC1799  
SCK  
DO2  
SDO  
DO1  
GND  
µC  
–t°  
–t°  
–t°  
–t°  
5
4
1
2
3
+
DG4051A  
X0  
V
1M  
OUT  
16  
3
13  
14  
15  
12  
1
Iy  
Ix  
SDO2  
I1  
GND  
V
X
A
B
C
CC  
3.01k  
X1  
X2  
X3  
X4  
DIV SET  
GND  
11  
10  
9
GND2  
6
5
ENABLE X5  
7
2
V
X6  
X7  
EE  
8
4
TEMPERATURE (°C) FREQUENCY (kHz)  
GND  
–40  
–30  
–20  
–10  
0
1.23  
1.46  
–t°  
–t°  
–t°  
–t°  
1.87  
2.58  
3.77  
LTC1799  
+
10  
5.67  
5
4
1
2
3
DG4051A  
20  
8.64  
V
OUT  
1M  
16  
3
13  
14  
15  
12  
1
–t°  
–t°  
–t°  
–t°  
30  
13.09  
19.53  
28.47  
40.65  
55.87  
74.45  
96.08  
119.83  
144.73  
169.36  
X0  
X1  
X2  
X3  
X4  
GND  
V
X
A
B
C
CC  
3.01k  
40  
DIV SET  
50  
11  
10  
9
60  
70  
80  
90  
100  
110  
120  
6
5
ENABLE X5  
7
2
V
X6  
X7  
EE  
8
4
GND  
2886 F23  
Figure 23. 16-Channel Isolated Temperature to Frequency Converter  
2886fb  
30  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
IRF7509  
100k  
SWITCHED 5V  
SWITCHED –5V  
LTM2886-5S  
B8  
A8  
L8  
L7  
+
IRF7509  
V
V
5V  
V
V
CC  
L
100k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
ON  
CC2  
IRF7509  
100k  
AV  
SDOE  
CS  
CC2  
IRLML2402  
100k  
–5V ENABLE  
5V ENABLE  
5V ENABLE  
5V UV  
CS2  
SDI2  
SCK2  
I2  
SWITCHED 5V  
SDI  
SCK  
DO2  
SDO  
DO1  
GND  
84.5k  
SDO2  
I1  
–5V UV  
5V UV  
GND2  
LTC2902  
COMP2  
COMP1 COMP4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
COMP3  
76.8k  
20k  
0.1µF  
V3  
V2  
V4  
V1  
CRT  
RST  
T0  
V
REF  
10k  
V
PG  
93.1k  
GND  
T1  
RDIS  
9.53k  
2886 F24  
Figure 24. Digitally Switched Triple Power Supply with Undervoltage Monitor  
2886fb  
31  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
0.1µF  
5V  
8
7
9
+
10  
6
6
6
6
LT1991  
G = 4  
5V OUTA  
5V OUTB  
5V OUTC  
1
2
3
5
0.1µF  
4
–5V  
5V  
0.1µF  
0.1µF  
0.1µF  
1.25V  
5V  
8
LTM2886-3S  
5
3
4
B8  
A8  
L8  
L7  
+
7
+
5V  
V
V
3.3V  
V
V
CC  
L
1
9
LTC2054  
2
1µF  
+
10  
–5V  
LT1991  
G = 4  
LTC2654-L16  
1
2
3
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
15  
6
5
V
REFOUT  
V
CC  
ON  
CC2  
CC2  
3
AV  
SDOE  
CS  
LDAC  
CS  
REFC  
V
5
CC  
7
2
0.1µF  
CS2  
SDI2  
SCK2  
I2  
CS  
V
4
OUTA  
OUTB  
OUTC  
OUTD  
9
4
MOSI  
SCK  
SDI  
SDI  
V
V
–5V  
8
13  
14  
1
SCK  
DO2  
SDO  
DO1  
GND  
SCK  
CLR  
SDO  
µC  
11  
10  
12  
V
0.1µF  
MISO  
SDO2  
I1  
REFLO  
0.1µF  
16  
GND  
5V  
8
PORSEL GND  
GND2  
7
9
+
10  
LT1991  
G = 4  
1
2
3
5
0.1µF  
4
–5V  
0.1µF  
5V  
8
7
9
+
10  
LT1991  
G = 4  
5V OUTD  
1
2
3
5
0.1µF  
4
–5V  
2886 F25  
Figure 25. Quad 16-Bit 5V Output Range DAC  
2886fb  
32  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
LTM2886-5I  
B8  
A8  
L8  
L7  
+
V
V
5V  
V
V
CC  
L
1µF  
10k  
10k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
ON  
CC2  
V
CC  
AV  
GND  
DI1  
CC2  
O1  
Ox  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
1x  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
µC  
10k  
GND  
I1  
GND2  
V
EE  
–48V RTN  
1k, ×4 IN SERIES  
1/4W EACH  
453k  
7
21  
8
9
22  
6
INTV  
V
IN  
FLTIN  
SCL  
UVL  
UVH  
ADIN2  
OV  
CC  
16.9k  
10  
11  
19  
20  
26  
1
5
SDAI  
SDAO  
ALERT  
ON  
4
3
SS  
2
LTC4261CGN  
TMR  
EN  
28  
27  
23  
PGI  
PGI0  
PG  
PWRGD2  
PWRGD1  
25  
24  
ADR1  
ADR0  
ADIN  
11.8k  
V
EE  
SENSE GATE DRAIN RAMP  
14 15 16 18  
13  
+
330µF  
100V  
1M  
1k  
100nF  
1µF  
220nF  
10Ω  
47nF  
V
OUT  
10nF  
100V  
0.1µF  
47nF  
10k  
0.1µF  
–48V INPUT  
IRF1310NS  
0.008Ω  
1%  
402k  
V
EE  
2886 F26  
Figure 26. –48V, 200W Hot Swap Controller with Isolated I2C Interface  
2886fb  
33  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
3.3V  
LTM2886-3S  
LTC6803-1  
CSO  
3.3k  
3.3k  
3.3k  
B8  
A8  
L8  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
+
3.3k  
V
V
CSI  
SDO  
SDI  
SCKI  
V
V
V
CC  
L
1µF  
2
SDOI  
L7  
3
SCKO  
4
+
V
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
5
V
C12  
S12  
C11  
S11  
C10  
S10  
C9  
ON  
CC2  
MODE  
6
AV  
SDOE  
CS  
GPIO2  
GPIO1  
WDT  
NC  
V
CC2  
CC  
7
1µF  
1µF  
CS2  
SDI2  
SCK2  
I2  
CS  
8
SDI  
MOSI  
SCK  
µC  
9
SCK  
DO2  
SDO  
DO1  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
MISO  
GND  
TOS  
SDO2  
I1  
V
V
V
V
REG  
100k  
100k  
74LVC3G07  
S9  
REF  
GND2  
C8  
TEMP2  
TEMP1  
S8  
NC  
C7  
V
S7  
100k  
100k  
S1  
C1  
S2  
C2  
S3  
C3  
C6  
S6  
C5  
S5  
C4  
S4  
2886 F27  
Figure 27. 12-Cell Battery Stack Monitor with Isolated SPI Interface and Low Power Shutdown  
LTM2886-3I  
B8  
A8  
L8  
L7  
+
0.02Ω  
V
V
3.3V  
V
V
CC  
48V  
V
OUT  
L
1µF  
10k  
+
SENSE SENSE  
V
IN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
ON  
SHDN  
100k AT 25°C, 1%  
CC2  
10k  
V
VISHAY 2381 6154.104  
CC  
AV  
GND  
DI1  
CC2  
O1  
SDA2  
SCL2  
DNC  
I2  
SDA  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
ADIN  
LTC4151  
µC  
SCL  
ADR0  
ADR1  
1.37k  
1%  
GND  
I1  
GND2  
GND  
3950  
T(°C)=  
273,40°C< T <150°C  
1000  
8.965+LN  
1  
N
ADIN  
N
IS THE DIGITAL CODE MEASURED  
ADIN  
BY THE ADC AT THE ADIN PIN  
2886 F28  
Figure 28. Isolated I2C Voltage, Current and Temperature Power Supply Monitor  
2886fb  
34  
For more information www.linear.com/LTM2886  
LTM2886  
TYPICAL APPLICATIONS  
LTM2886-5I  
B8  
L8  
L7  
+
V
V
5V  
V
V
CC  
A8  
L
10k  
0.1µF  
10k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
ON  
SHUTDOWN  
42.2k  
CC2  
0.1µF  
AV  
GND  
DI1  
CC2  
O1  
100k  
SHDN1 V  
DD  
ENABLE  
SDA  
RESET  
SDAIN  
SCL  
BYP  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SCLIN  
SDAOUT  
AUTO  
INT  
DETECT  
1/4 LTC4266  
INTERRUPT  
I1  
GND2  
AD0  
AD1  
24.9k  
AD2  
CMPD3003  
AD3  
V
EE  
DGND AGND  
SENSE GATE OUT  
Q1: FAIRCHILD IRFM120A OR PHILIPS PHT6NQ10T  
FB1, FB2: TDK MPZ2012S601A  
T1: PULSE H609NL OR COILCRAFT ETH1-230LD  
SMAJ58A  
1µF  
0.25Ω  
Q1  
–48V  
S1B  
S1B  
0.22µF  
FB1  
FB2  
RJ45  
CONNECTOR  
1
T1  
2
3
4
5
6
7
8
10nF  
10nF  
75Ω  
75Ω  
PHY  
(NETWORK  
PHYSICAL  
LAYER  
CHIP)  
10nF  
10nF  
75Ω  
75Ω  
1nF  
2886 F29  
Figure 29. One Complete Isolated Powered Ethernet Port  
2886fb  
35  
For more information www.linear.com/LTM2886  
LTM2886  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM2886#packaging for the most recent package drawings.  
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2886fb  
36  
For more information www.linear.com/LTM2886  
LTM2886  
REVISION HISTORY  
REV  
DATE  
03/17 Added UL-CSA File Number  
07/17 Changed MIN limits for t  
DESCRIPTION  
PAGE NUMBER  
A
1
2
B
(SPI and I C)  
6
6
PWU  
Changed MAX limits for Power-Up Time  
2886fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
37  
LTM2886  
TYPICAL APPLICATION  
14-Bit Isolated High Speed Bipolar ADC  
LTM2886-3S  
B8  
L8  
L7  
+
V
3.3V  
V
V
CC  
A8  
L
LTC1417, ADC  
1µF  
V
2.048V INꢀPT ꢁANGꢂ  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
+
AIN  
V
V
DD  
SS  
10µF  
0.1µF  
10µF  
0.1µF  
+
+
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K4  
V
AIN  
V
ON  
CC2  
AV  
BUSY  
CONVST  
RD  
SDOE  
CS  
V
CC  
CC2  
ꢁꢂF  
ꢁꢂFC  
CS2  
SDI2  
SCK2  
I2  
OX  
OY  
AGND  
ꢂCLK  
SCLK  
CLKO  
SDI  
µC  
10µF 0.1µF  
1µF  
+
SHDN  
DGND  
DOPT  
SCK  
DO2  
SDO  
DO1  
GND  
SCK  
MISO  
IX  
SDO2  
I1  
GND  
GND2  
2886 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM2881  
Isolated RS485/RS422 µModule Transceiver with 20Mbps 2500V  
Integrated DC/DC Converter  
Isolation with Power in LGA/BGA Package  
RMS  
LTM2882  
LTM2883  
Dual Isolated RS232 µModule Transceiver with  
Integrated DC/DC Converter  
2500V  
Isolation with Power in LGA/BGA Package  
RMS  
RMS  
RMS  
2
SPI/Digital or I C µModule Isolator with Integrated 2500V  
DC/DC Converter  
Isolation with Adjustable 12.5V and 5V Power in BGA Package  
LTM2884  
LTM2889  
LTM2892  
LTC®1535  
LTC4310  
Isolated USB Transceiver with Power  
2500V  
, Auto Speed Selection, 1 to 2.5W Isolated Power  
Isolated CAN FD µModule Transceiver with Power 4Mbps 2500V  
Isolation with Power in BGA Package  
RMS  
2
SPI/Digital or I C µModule Isolator  
Isolated RS485 Transceiver  
3500V  
2500V  
Isolation without Power in 9mm × 6.25mm BGA Package  
RMS  
RMS  
Isolation with External Transformer Drive  
2
2
Hot-Swappable I C Isolators  
Bidirectional I C Communication, Low Voltage Level Shifting, 100kHz or  
400kHz Operation  
LTC6803-1, LTC6803-3, Multicell Battery Stack Monitor  
LTC6803-2, LTC6803-4  
LTC6803-1 Allows for Multiple Devices to be Daisy Chained, the LTC6803-2  
Allows for Parallel Communication Battery Stack Topologies  
2886fb  
LT 0717 REV B • PRINTED IN USA  
www.linear.com/LTM2886  
38  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY