LTM2887CY-3I#PBF [Linear]

LTM2887 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Dual Adjustable 5V Regulators; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C;
LTM2887CY-3I#PBF
型号: LTM2887CY-3I#PBF
厂家: Linear    Linear
描述:

LTM2887 - SPI/Digital or I<sup>2</sup>C &#181;Module Isolator with Dual Adjustable 5V Regulators; Package: BGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C

接口集成电路
文件: 总38页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2887  
2
SPI/Digital or I C µModule  
Isolator with Dual Adjustable  
5V Regulators  
FEATURES  
DESCRIPTION  
6-Channel Logic Isolator: 2500V  
for 1 Minute  
The LTM®2887 is a complete galvanic digital µModule®  
(micromodule) isolator. No external components are  
required. A single 3.3V or 5V supply powers both sides  
of the interface through an integrated, isolated DC/DC  
converter. A logic supply pin allows easy interfacing with  
different logic levels from 1.62V to 5.5V, independent of  
the main supply.  
n
RMS  
File #E151738  
n
UL-CSA Recognized  
n
Isolated DC Power:  
n
1.8V to 5V Logic Supply at Up to 100mA  
0.6V to 5V Auxiliary Supply at Up to 100mA  
n
n
n
n
n
No External Components Required  
2
SPI/Digital (LTM2887-S) or I C (LTM2887-I) Options  
High Common Mode Transient Immunity: 30kV/μs  
High Speed Operation:  
2
Available options are compliant with SPI and I C (master  
mode only) specifications.  
n
10MHz Digital Isolation  
n
n
Theisolatedsideincludestwo5Vnominalpowersupplies,  
including programmable current limit, each capable of  
providing more than 100mA of load current. The supplies  
may be adjusted from their nominal value using a single  
external resistor.  
4MHz/8MHz SPI Isolation  
2
400kHz I C Isolation  
n
n
n
n
n
n
3.3V (LTM2887-3) or 5V (LTM2887-5) Operation  
1.62V to 5.5V Logic Supply  
10kV ꢀSD ꢁHM Across the Isolation Harrier  
Maximum Continuous Working Voltage: 560V  
Low Current Shutdown Mode (<10µA)  
PꢀAK  
Coupled inductors and an isolation power transformer  
provide 2500V  
of isolation between the input and out-  
RMS  
Low Profile 15mm × 11.25mm × 3.42mm HGA Package  
put logic interface. This device is ideal for systems where  
the ground loop is broken, allowing for a large common  
mode voltage range. Communication is uninterrupted for  
common mode transients greater than 30kV/μs.  
APPLICATIONS  
2
n
Isolated SPI or I C Interfaces  
n
Industrial Systems  
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of  
Analog Devices, Inc. All other trademarks are the property of their respective owners.  
n
Test and Measurement ꢀquipment  
n
Hreaking Ground Loops  
TYPICAL APPLICATION  
Isolated 4MHz SPI Interface  
LTM2887 Operating Through 50kV/µs CM Transients  
LTM2887-5S  
SCK  
SD0  
SCK2 = SD02  
V
AV  
IV  
CC2  
CC2  
CC2  
5V AT 100mA  
V
CC  
5V  
5V/DIV  
1.15k  
V
L
V
L2  
L2  
L2  
ON  
3.3V AT 100mA  
AV  
IV  
27.4k  
REPETITIVE  
COMMON MODE  
TRANSIENTS  
GND2 TO GND  
1.15k  
SDOE  
CS  
CS2  
SDI2  
SCK2  
6.04k  
CS  
SDI  
CS  
SDI  
SDI  
SCK  
SCK  
SCK  
200V/DIV  
2887 TA01b  
20ns/DIV  
DO2  
SDO  
DO1  
I2  
SDO2  
I1  
SDO  
SDO  
GND  
GND2  
2887 TA01a  
2887fb  
1
For more information www.linear.com/LTM2887  
LTM2887  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V
to GND .................................................. –0.3V to 6V  
Logic Outputs  
CC  
V to GND .................................................... –0.3V to 6V  
L
DO1, DO2, SDO to GND ..............–0.3V to (V + 0.3V)  
L
V
CC2  
, AV , IV to GND2......................... –0.3V to 6V  
O1, SCK2, SDI2, CS2,  
CC2  
CC2  
V , AV , IV to GND2 .............................. –0.3V to 6V  
SCL2 to GND2 ..........................–0.3V to (V + 0.3V)  
L2  
L2  
L2  
L2  
Logic Inputs  
DI1, SCK, SDI, CS, SCL, SDA, SDOE,  
Operating Temperature Range (Note 4)  
LTM2887C ............................................... 0°C to 70°C  
LTM2887I ............................................–40°C to 85°C  
LTM2887......................................... –40°C to 125°C  
Maximum Internal Operating Temperature............ 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Hody Reflow Temperature ............................ 245°C  
ON to GND..................................–0.3V to (V + 0.3V)  
L
I1, I2, SDA2,  
SDO2 to GND2..........................–0.3V to (V + 0.3V)  
L2  
PIN CONFIGURATION  
LTM2887-I  
LTM2887-S  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
DO2 DNC SCL SDA DI1 GND ON  
V
L
SDO DO2 SCK SDI CS SDOE ON  
V
L
A
B
C
D
E
F
A
B
C
D
E
F
DO1  
GND  
V
DO1  
GND  
V
CC  
CC  
G
H
J
G
H
J
I1  
GND2  
AV  
L2  
IV AV  
L2  
I1  
GND2  
AV IV AV  
L2 L2 CC2  
CC2  
K
L
K
L
I2 DNC SCL2 SDA2 O1  
BGA PACKAGE  
V
IV  
V
SDO2 I2 SCK2 SDI2 CS2  
V
IV V  
CC2 CC2  
L2  
CC2 CC2  
L2  
BGA PACKAGE  
32-PIN (15mm × 11.25mm × 3.42mm)  
32-PIN (15mm × 11.25mm × 3.42mm)  
T
= 125°C, θ = 23.9°C/W, θ = 8.1°C/W,  
T
= 125°C, θ = 23.9°C/W, θ  
= 8.1°C/W,  
JMAX  
JA  
JCbottom  
JMAX  
JA  
JCbottom  
θ
= 18.1°C/W, θ = 9.3°C/W  
θ
= 18.1°C/W, θ = 9.3°C/W  
JCtop  
JH  
JCtop JH  
θ VALUꢀS DꢀTꢀRMINꢀD PꢀR JꢀSD51-9, WꢀIGꢁT = 1.2g  
θ VALUꢀS DꢀTꢀRMINꢀD PꢀR JꢀSD51-9, WꢀIGꢁT = 1.2g  
2887fb  
2
For more information www.linear.com/LTM2887  
LTM2887  
PRODUCT SELECTION GUIDE  
LTM2887 C  
Y
-3  
I
#PBF  
LEAD FREE DESIGNATOR  
PHF = Lead Free  
LOGIC OPTION  
2
I = Inter-IC (I C) Hus  
S = Serial Peripheral Interface (SPI) Hus  
INPUT VOLTAGE RANGE  
3 = 3V to 3.6V  
5 = 4.5V to 5.5V  
PACKAGE TYPE  
Y = Hall Grid Array (HGA)  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–40°C to 85°C)  
ꢁ = Automotive Temperature Range (–40°C to 125°C)  
PRODUCT PART NUMBER  
http://www.linear.com/product/LTM2887#orderinfo  
PART MARKING  
ORDER INFORMATION  
PAD OR BALL  
PACKAGE  
TYPE  
MSL INPUT VOLTAGE  
RATING RANGE  
LOGIC  
OPTION RANGE  
TEMPERATURE  
PART NUMBER  
FINISH  
DEVICE  
FINISH CODE  
LTM2887CY-3I#PHF  
LTM2887IY-3I#PHF  
LTM2887ꢁY-3I#PHF  
LTM2887CY-3S#PHF  
LTM2887IY-3S#PHF  
LTM2887ꢁY-3S#PHF  
LTM2887CY-5I#PHF  
LTM2887IY-5I#PHF  
LTM2887ꢁY-5I#PHF  
LTM2887CY-5S#PHF  
LTM2887IY-5S#PHF  
LTM2887ꢁY-5S#PHF  
0°C to 70°C  
2
LTM2887Y-3I  
I C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
3V to 3.6V  
LTM2887Y-3S  
LTM2887Y-5I  
LTM2887Y-5S  
SPI  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
SAC305 (RoꢁS)  
e1  
HGA  
3
2
I C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
4.5V to 5.5V  
SPI  
–40°C to 85°C  
–40°C to 125°C  
• Device temperature grade is indicated by a label on the  
shipping container.  
• Recommended HGA PCH Assembly and Manufacturing Procedures:  
www.linear.com/HGA-assy  
• Pad or ball finish code is per IPC/JꢀDꢀC J-STD-609.  
• Terminal Finish Part Marking: www.linear.com/leadfree  
• HGA Package and Tray Drawings: www.linear.com/packaging  
• This product is moisture sensitive. For more information, go to:  
www.linear.com/HGA-assy  
• This product is not recommended for second side reflow. For  
more information, go to www.linear.com/HGA-assy  
2887fb  
3
For more information www.linear.com/LTM2887  
LTM2887  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2887-3 VCC = 3.3V, LTM2887-5 VCC = 5V, VL = 3.3V, and GND =  
GND2 = 0V, ON = VL unless otherwise noted. Specifications apply to all options unless otherwise noted.  
SYMBOL PARAMETER  
Input Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Input Supply Range  
Logic Supply Range  
Input Supply Current  
LTM2887-3  
LTM2887-5  
3
4.5  
3.3  
5
3.6  
5.5  
V
V
CC  
l
l
V
L
LTM2887-S  
LTM2887-I  
1.62  
3
5.5  
5.5  
V
V
5
l
l
l
I
I
ON = 0V  
LTM2887-3, ON = V , No Load  
LTM2887-5, ON = V , No Load  
0
25  
19  
10  
30  
25  
µA  
mA  
mA  
CC  
L
L
l
Logic Supply Current  
ON = 0V  
LTM2887-S, ON = V  
LTM2887-I, ON = V  
0
10  
10  
µA  
µA  
µA  
L
L
150  
L
Output Supplies  
l
V
CC2  
Regulated Output Voltage  
Output Voltage Operating Range  
Line Regulation  
No Load, AV  
Open  
CC2  
4.75  
0.6  
5
5.25  
5.5  
6
V
V
(Note 2)  
l
l
l
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
1
45  
580  
1
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
Load Regulation  
= 1mA to 100mA  
= 1mA to 100mA  
= 100mA (Note 2)  
150  
620  
ADJ Pin Voltage  
540  
Voltage Ripple  
mV  
RMS  
ꢀfficiency  
LTM2887-5, I  
= 100mA (Note 2)  
62  
200  
%
LOAD  
I
Output Short Circuit Current  
Internal Current Limit  
V
CC2  
= 0V, IV = 0V  
CC2  
mA  
mA  
CC2  
l
ΔV  
CC2  
= –5%, IV  
= 0V  
100  
CC2  
l
l
l
ꢀxternal Programmed Current  
Limit  
V
CC2  
V
CC2  
V
CC2  
= 5V, R(IV  
= 5V, R(IV  
= 5V, R(IV  
to GND2) = 2.26k  
to GND2) = 1.5k  
to GND2) = 1.15k  
49  
71  
91  
53  
79  
103  
57  
87  
115  
mA  
mA  
mA  
CC2  
CC2  
CC2  
l
V
L2  
Regulated Output Voltage  
No Load, AV Open  
4.75  
5
5.25  
V
L2  
Output Voltage Operating Range  
LTM2887-I (Note 2)  
LTM2887-S (Note 2)  
3
1.8  
5.5  
5.5  
V
V
l
l
l
Line Regulation  
Load Regulation  
ADJ Pin Voltage  
Voltage Ripple  
I
I
I
I
= 1mA, MIN ≤ V ≤ MAX  
0.25  
25  
3
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
LOAD  
CC  
= 1mA to 100mA  
= 1mA to 100mA  
= 100mA (Note 2)  
100  
620  
540  
580  
1
mV  
RMS  
ꢀfficiency  
LTM2887-5, I  
= 100mA (Note 2)  
62  
%
LOAD  
I
L2  
Output Short Circuit Current  
Current Limit  
V
= 0V, IV = 0V  
200  
mA  
mA  
L2  
L2  
l
ΔV = –5%, IV = 0V  
100  
L2  
L2  
l
l
l
ꢀxternal Programmed Current  
Limit  
V
V
V
= 5V, R(IV to GND2) = 2.26k  
49  
71  
91  
53  
79  
103  
57  
87  
115  
mA  
mA  
mA  
L2  
L2  
L2  
L2  
= 5V, R(IV to GND2) = 1.5k  
L2  
= 5V, R(IV to GND2) = 1.15k  
L2  
Logic/SPI  
l
l
l
V
Input Threshold Voltage  
Input Current  
ON, DI1, SDOE, SCK, SDI, CS 1.62V ≤ V < 2.35V  
0.25 • V  
0.33 • V  
0.75 • V  
0.67 • V  
V
V
V
ITꢁ  
L
L
L
L
L
ON, DI1, SDOE, SCK, SDI, CS 2.35V ≤ V  
L
I1, I2, SDO2  
0.33 • V  
0.67 • V  
L2  
L2  
l
I
1
µA  
INL  
2887fb  
4
For more information www.linear.com/LTM2887  
LTM2887  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2887-3 VCC = 3.3V, LTM2887-5 VCC = 5V, VL = 3.3V, and GND =  
GND2 = 0V, ON = VL unless otherwise noted. Specifications apply to all options unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mV  
V
ꢁYS  
V
Oꢁ  
Input ꢁysteresis  
150  
l
Output ꢁigh Voltage  
DO1, DO2, SDO  
V – 0.4  
L
V
I
I
= –1mA, 1.62V ≤ V < 3V  
LOAD  
LOAD  
L
= –4mA, 3V ≤ V ≤ 5.5V  
L
l
l
O1, SCK2, SDI2, CS2, I  
= –4mA  
V
– 0.4  
L2  
V
V
LOAD  
V
Output Low Voltage  
Short-Circuit Current  
DO1, DO2, SDO  
0.4  
OL  
I
I
= 1mA, 1.62V ≤ V < 3V  
LOAD  
LOAD  
L
= 4mA, 3V ≤ V ≤ 5.5V  
L
l
l
O1, SCK2, SDI2, CS2, I  
= 4mA  
0.4  
85  
V
LOAD  
I
0V ≤ (DO1, DO2, SDO) ≤ V  
0V ≤ (O1, SCK2, SDI2, CS2) ≤ V  
mA  
mA  
SC  
L
60  
L2  
2
I C  
l
l
V
Low Level Input Voltage  
ꢁigh Level Input Voltage  
Input Current  
SCL, SDA  
SDA2  
0.3 • V  
V
V
IL  
L
0.3 • V  
L2  
l
l
V
SCL, SDA  
SDA2  
0.7 • V  
V
V
Iꢁ  
L
0.7 • V  
L2  
l
l
I
SCL, SDA = V or 0V  
1
1
µA  
µA  
INL  
L
SDA2 = V , SDA2 = V = 0V  
L2  
L2  
V
V
V
Input ꢁysteresis  
SCL, SDA  
SDA2  
0.05 • V  
mV  
mV  
ꢁYS  
Oꢁ  
L
0.05 • V  
L2  
l
Output ꢁigh Voltage  
Output Low Voltage  
SCL2, I  
= –2mA  
= –2mA  
V
– 0.4  
L2  
L
V
V
LOAD  
DO2, I  
V – 0.4  
LOAD  
l
l
l
l
l
SDA, I  
DO2, I  
= 3mA  
= 2mA  
= 2mA  
0.4  
0.4  
0.4  
0.45  
0.55  
V
V
V
V
V
OL  
LOAD  
LOAD  
SCL2, I  
LOAD  
SDA2, No Load, SDA = 0V, 4.5V ≤ V < 5.5V  
SDA2, No Load, SDA = 0V, 3V < V < 4.5V  
L2  
0.3  
L2  
l
C
C
Input Pin Capacitance  
Hus Capacitive Load  
SCL, SDA, SDA2 (Note 2)  
10  
pF  
IN  
H
l
l
l
l
SCL2, Standard Speed (Note 2)  
SCL2, Fast Speed  
SDA, SDA2, SR ≥ 1V/µs, Standard Speed (Note 2)  
SDA, SDA2, SR ≥ 1V/µs, Fast Speed  
400  
200  
400  
200  
pF  
pF  
pF  
pF  
l
l
Minimum Hus Slew Rate  
Short-Circuit Current  
SDA, SDA2  
1
V/µs  
I
SDA2 = 0, SDA = V  
0V ≤ SCL2 ≤ V  
0V ≤ DO2 ≤ V  
SDA = 0, SDA2 = V  
100  
mA  
mA  
mA  
mA  
mA  
SC  
L
30  
30  
6
L2  
L
L2  
SDA = V , SDA2 = 0  
–1.8  
L
ESD (HBM) (Note 2)  
Isolation Houndary  
(V , V , GND2) to (V , V , GND)  
10  
kV  
CC2 L2  
CC  
L
2887fb  
5
For more information www.linear.com/LTM2887  
LTM2887  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2887-3 VCC = 3.3V, LTM2887-5 VCC = 5V, VL = 3.3V, and GND =  
GND2 = 0V, ON = VL unless otherwise noted. Specifications apply to all options unless otherwise noted.  
SYMBOL PARAMETER  
Logic  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Maximum Data Rate  
10  
35  
Mꢁz  
ns  
DI1 O1, Ix DOx, C = 15pF (Note 3)  
L
t
t
, t  
Propagation Delay  
Rise Time  
C = 15pF (Figure 1)  
L
60  
100  
PꢁL PLꢁ  
l
l
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
R
L
LTM2887-I, DO2, C = 15pF (Figure 1)  
L
l
l
t
F
Fall Time  
C = 15pF (Figure 1)  
3
20  
12.5  
35  
ns  
ns  
L
LTM2887-I, DO2, C = 15pF (Figure 1)  
L
SPI  
l
l
Maximum Data Rate  
Hidirectional Communication (Note 3)  
Unidirectional Communication (Note 3)  
4
8
Mꢁz  
Mꢁz  
l
t
t
t
t
t
t
, t  
Propagation Delay  
Output Pulse Width Uncertainty  
Rise Time  
C = 15pF (Figure 1)  
35  
60  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
PꢁL PLꢁ  
L
SDO, SDI2, CS2 (Note 2)  
PWU  
l
l
l
l
C = 15pF (Figure 1)  
L
3
3
12.5  
12.5  
50  
R
F
Fall Time  
C = 15pF (Figure 1)  
L
, t  
Output ꢀnable Time  
Output Disable Time  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PZꢁ PZL  
L
L
, t  
50  
SDOE = , R = 1kΩ, C = 15pF (Figure 2)  
PꢁZ PLZ  
L
L
2
I C  
l
Maximum Data Rate  
Propagation Delay  
(Note 3)  
SCL SCL2, C = 15pF (Figure 1)  
400  
kꢁz  
l
l
l
t
, t  
150  
150  
300  
225  
250  
500  
ns  
ns  
ns  
PꢁL PLꢁ  
L
SDA SDA2, R = Open, C = 15pF (Figure 3)  
L
L
SDA2 SDA, R = 1.1kΩ, C = 15pF (Figure 3)  
L
L
t
t
t
Output Pulse Width Uncertainty  
Data ꢁold Time  
SDA, SDA2 (Note 2)  
50  
ns  
ns  
PWU  
ꢁD;DAT  
R
(Note 2)  
600  
l
l
l
Rise Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
300  
250  
250  
ns  
ns  
ns  
L
SDA, R = 1.1kΩ, C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
l
l
t
F
Fall Time  
SDA2, C = 200pF (Figure 3)  
40  
40  
250  
250  
250  
ns  
ns  
ns  
L
SDA, R = 1.1kΩ, C = 200pF (Figure 3)  
L
L
SCL2, C = 200pF (Figure 1)  
L
l
t
SP  
Pulse Width of Spikes  
0
50  
ns  
Suppressed by Input Filter  
Power Supply  
Power-Up Time  
l
l
3
3
5
5
ms  
ms  
ON = to V  
(Min)  
ON = to V (Min)  
CC2  
L2  
2887fb  
6
For more information www.linear.com/LTM2887  
LTM2887  
ISOLATION CHARACTERISTICS TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
Common Mode Transient Immunity  
Maximum Continuous Working Voltage  
1 Minute, Derived from 1 Second Test  
1 Second (Notes 5, 6)  
2500  
3000  
V
V
ISO  
RMS  
RMS  
LTM2887-3 V = 3.3V, LTM2887-5 V = 5V,  
30  
kV/µs  
CC  
CC  
V = ON = 3.3V, V = 1kV, Δt = 33ns (Note 2)  
L
CM  
V
(Notes 2, 5)  
560  
400  
V
,
DC  
IORM  
PꢀAK  
V
V
RMS  
Partial Discharge  
V
= 750V  
(Note 5)  
5
pC  
PD  
RMS  
9
Input to Output Resistance  
Comparative Tracking Index  
Depth of ꢀrosion  
(Notes 2, 5)  
10  
Ω
CTI  
DTI  
IꢀC 60112 (Note 2)  
IꢀC 60112 (Note 2)  
(Note 2)  
600  
V
RMS  
0.017  
0.06  
6
mm  
Distance Through Insulation  
Input to Output Capacitance  
Creepage Distance  
mm  
pF  
(Notes 2, 5)  
(Note 2)  
9.5  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. ꢀxposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This Module includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 2: Guaranteed by design and not subject to production test.  
Note 5: Device considered a 2-terminal device. Pin group A1 through H8  
shorted together and pin group K1 through L8 shorted together.  
Note 3: Maximum Data rate is guaranteed by other measured parameters  
and is not tested directly.  
Note 6: The rated dielectric insulation voltage should not be interpreted as  
a continuous voltage rating.  
2887fb  
7
For more information www.linear.com/LTM2887  
LTM2887  
TA = 25°C, LTM2887-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2887-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC Supply Current  
vs Temperature  
VCC2 and VL2 Voltage  
vs Equal Load Current  
VCC2 or VL2 Output Voltage  
vs Input Voltage and Load Current  
30  
25  
20  
15  
10  
5
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
NO LOAD, REFRESH DATA ONLY  
LTM2887-3  
= 3.3V  
V
CC  
LTM2887-5  
V
= 5V  
CC  
LTM2887-3, V = 3V  
CC  
LTM2887-3, V = 3.3V  
CC  
LTM2887-3, V = 3.3V  
CC  
LTM2887-5, V = 5V  
CC  
LTM2887-3, V = 3.6V  
CC  
–50 –25  
0
25  
50  
75 100 125  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2887 G01  
2887 G02  
2887 G03  
V
CC2 or VL2 Output Voltage  
VCC2 or VL2 Load Regulation  
vs Temperature  
V
CC2 or VL2 Load Regulation  
vs Input Voltage and Load Current  
vs Temperature  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
5.10  
5.05  
5.00  
4.95  
4.90  
5.10  
5.05  
5.00  
4.95  
4.90  
LTM2887-3  
= 3.3V  
LTM2887-5  
CC  
V
V
= 5V  
CC  
I
I
I
= 1mA  
= 10mA  
= 100mA  
I
= 1mA  
= 10mA  
= 100mA  
LOAD  
LOAD  
LOAD  
LTM2887-5, V = 4.5V  
LOAD  
CC  
I
I
LTM2887-5, V = 5V  
LOAD  
LOAD  
CC  
LTM2887-5, V = 5.5V  
CC  
0
50  
100  
150  
200  
250  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
TEMERATURE (°C)  
2887 G04  
2887 G05  
2887 G06  
V
CC2 or VL2 Voltage and VCC Input  
VCC2 or VL2 Efficiency  
Current vs Load Current  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
800  
700  
600  
500  
400  
300  
200  
100  
0.0  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOLTAGE  
EFFICIENCY  
CURRENT  
POWER LOSS  
LTM2887-3, V = 3.3V  
LTM2887-3, V = 3.3V  
CC  
LTM2887-5, V = 5V  
CC  
CC  
LTM2887-5, V = 5V  
CC  
0
25 50 75 100 125 150 175 200 225  
0
25 50 75 100 125 150 175 200 225  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2887 G08  
2887 G07  
2887fb  
8
For more information www.linear.com/LTM2887  
LTM2887  
TA = 25°C, LTM2887-3 VCC = 3.3V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTM2887-5 VCC = 5V, VL = 3.3V, GND = GND2 = 0V, ON = VL unless otherwise noted.  
V
CC2 or VL2 Transient Response  
100mA Load Step  
VCC2 or VL2 Ripple  
VCC2 or VL2 Noise  
LOAD = 1mA  
LOAD = 1mA  
0.2V/  
DIV  
5mV/  
DIV  
2mV/  
DIV  
LOAD = 100mA  
400ns/DIV  
LOAD = 100mA  
10ms/DIV  
50mA/  
DIV  
200µs/DIV  
2887 G09  
2887 G10  
2887 G11  
VCC Supply Current  
vs Single Channel Data Rate  
Logic Input Threshold  
vs VL Supply Voltage  
Logic Output Voltage  
vs Load Current  
6
5
4
3
2
1
0
70  
60  
50  
40  
30  
20  
10  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
C
C
C
= 1nF  
LTM2887-5  
L
L
L
L
= 330pF  
= 100pF  
= 20pF  
V
V
V
= 5.5V  
= 3.3V  
= 1.62V  
L
L
L
INPUT RISING  
INPUT FALLING  
0
1
2
3
4
5
6
7
8
9
10  
1k  
10k  
100k  
1M  
10M  
100M  
1
2
3
4
5
6
|LOAD CURRENT| (mA)  
DATA RATE (Hz)  
V
SUPPLY VOLTAGE (V)  
L
2887 G14  
2887 G12  
2887 G13  
V
CC2 and VL2 Efficiency with  
Derating for 125°C Maximum  
Internal Operating Temperature  
Power On Sequence  
Equal Load Current  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
600  
500  
400  
300  
200  
100  
0
ON  
EFFICIENCY  
V
CC2  
5V/DIV  
or V  
L2  
LTM2887-3, V = 3.3V  
CC  
LTM2887-5, V = 5V  
CC  
POWER LOSS  
BASED ON THERMAL IMAGING  
1V/DIV  
OF DEMO CIRCUIT 1791A  
LTM2887-3, V = 3.3V  
CC  
LTM2887-5, V = 5V  
CC  
V
CC2  
and V EQUALLY LOADED  
V
L
= 5V  
L2  
1ms/DIV  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
2887 G15  
2887 G16  
2887 G17  
2887fb  
9
For more information www.linear.com/LTM2887  
LTM2887  
PIN FUNCTIONS  
LTM2887-I Logic Side  
LTM2887-I Isolated Side  
I2 (L1): Digital Input, Referenced to V and GND2. Logic  
DO2(A1):DigitalOutput,ReferencedtoV andGND.Logic  
L2  
L
inputconnectedtoDO2throughisolationbarrier.Thelogic  
state on I2 translates to the same logic state on DO2. Do  
not float.  
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
DNC (L2): Do Not Connect. Pin connected internally.  
DNC (A2): Do Not Connect. Pin connected internally.  
2
2
SCL2 (L3): Serial I C Clock Output, Referenced to V and  
SCL (A3): Serial I C Clock Input, Referenced to V and  
L2  
L
GND2.LogicoutputconnectedtologicsideSCLpinthrough  
isolationbarrier.Clockisunidirectionalfromlogictoisolated  
side. SCL2 has a push-pull output stage, do not connect an  
external pull-up device. Under the condition of an isolation  
communication failure this output defaults to a high state.  
GND. Logic input connected to isolated side SCL2 pin  
throughisolationbarrier.Clockisunidirectionalfromlogic  
to isolated side. Do not float.  
2
SDA (A4): Serial I C Data Pin, Referenced to V and GND.  
L
HidirectionallogicpinconnectedtoisolatedsideSDA2pin  
through isolation barrier. Under the condition of an isola-  
tion communication failure this pin is in a high impedance  
state. Do not float.  
2
SDA2 (L4): Serial I C Data Pin, Referenced to V and  
L2  
GND2. Hidirectional logic pin connected to logic side SDA  
pin through isolation barrier. Output is biased high by a  
1.8mA current source. Do not connect an external pull-  
up device to SDA2. Under the condition of an isolation  
communication failure this output defaults to a high state.  
DI1 (A5): Digital Input, Referenced to V and GND. Logic  
L
input connected to O1 through isolation barrier. The logic  
state on DI1 translates to the same logic state on O1. Do  
not float.  
O1 (L5): Digital Output, Referenced to V and GND2.  
L2  
Logic output connected to DI1 through isolation barrier.  
Under the condition of an isolation communication failure  
O1 defaults to a high state.  
GND (A6, B2 to B6): Circuit Ground.  
ON (A7): ꢀnable, Referenced to V and GND. ꢀnables  
L
power and data communication through the isolation  
barrier. If ON is high the part is enabled and power and  
communications are functional to the isolated side. If ON  
is low the logic side is held in reset, all digital outputs  
are in a high impedance state, and the isolated side is  
unpowered. Do not float.  
V
(L6): 3V to 5.5V Adjustable Isolated Supply Voltage.  
L2  
Internally generated from V by an isolated DC/DC con-  
CC  
verter and regulated to 5V with no external components.  
Internally bypassed with 4.7µF.  
IV (L7): V precision current limit adjust pin. Current  
limit threshold is set by connecting a resistor between  
IV and GND2. For detailed information on how to set  
the current limit resistor value, see the Application Infor-  
mation section. If not used, tie IV  
bypassed with 10nF.  
CC2  
CC2  
V (A8): Logic Supply. Interface supply voltage for pins  
CC2  
L
DI1, SCL, SDA, DO1, DO2, and ON. Operating voltage is  
to GND2. Internally  
1.62V to 5.5V. Internally bypassed with 1µF.  
CC2  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
L
V
(L8): 0.6V to 5.5V Adjustable Isolated Supply Volt-  
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
CC2  
age. Internally generated from V by an isolated DC/DC  
CC  
converterandregulatedto5Vwithnoexternalcomponents.  
Internally bypassed with 4.7µF.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
I1 (K1): Digital Input, Referenced to V and GND2. Logic  
L2  
to 3.6V for LTM2887-3 and 4.5V to 5.5V for LTM2887-5.  
inputconnectedtoDO1throughisolationbarrier.Thelogic  
state on I1 translates to the same logic state on DO1. Do  
not float.  
Internally bypassed with 2.2µF.  
GND2 (K2 to K5): Isolated Ground.  
2887fb  
10  
For more information www.linear.com/LTM2887  
LTM2887  
PIN FUNCTIONS  
LTM2887-I Isolated Side  
communications are functional to the isolated side. If ON  
is low the logic side is held in reset, all digital outputs  
are in a high impedance state, and the isolated side is  
unpowered. Do not float.  
AV (K6): 5V Nominal Isolated Supply Voltage Adjust.  
L2  
The adjust pin voltage is 600mV referenced to GND2. See  
Applications Information section for details.  
V (A8): Logic Supply. Interface supply voltage for pins  
L
IV (K7): V precision current limit adjust pin. Current  
L2  
L2  
SDI, SCK, SDO, SDOE, DO1, DO2, CS, and ON. Operating  
limit threshold is set by connecting a resistor between  
voltage is 1.62V to 5.5V. Internally bypassed with 1µF.  
IV and GND2. For detailed information on how to set  
L2  
the current limit resistor value, see the Application Infor-  
DO1(B1):DigitalOutput,ReferencedtoV andGND.Logic  
L
mation section. If not used, tie IV to GND2. Internally  
L2  
output connected to I1 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
bypassed with 10nF.  
AV  
(K8): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
The adjust pin voltage is 600mV referenced to GND2. See  
Applications Information section for details.  
GND (B2 to B6): Circuit Ground.  
V
(B7 to B8): Supply Voltage. Operating voltage is 3V  
CC  
to 3.6V for LTM2887-3 and 4.5V to 5.5V for LTM2887-5.  
LTM2887-S Logic Side  
Internally bypassed with 2.2µF.  
SDO (A1): Serial SPI Digital Output, Referenced to V  
L
and GND. Logic output connected to isolated side SDO2  
pin through isolation barrier. Under the condition of an  
isolation communication failure this output is in a high  
impedance state.  
LTM2887-S Isolated Side  
SDO2 (L1): Serial SPI Digital Input, Referenced to V  
and GND2. Logic input connected to logic side SDO pin  
through isolation barrier. Do not float.  
L2  
DO2(A2):DigitalOutput,ReferencedtoV andGND.Logic  
L
I2 (L2): Digital Input, Referenced to V and GND2. Logic  
L2  
output connected to I2 through isolation barrier. Under  
the condition of an isolation communication failure this  
output is in a high impedance state.  
inputconnectedtoDO2throughisolationbarrier.Thelogic  
state on I2 translates to the same logic state on DO2. Do  
not float.  
SCK (A3): Serial SPI Clock Input, Referenced to V and  
L
SCK2 (L3): Serial SPI Clock Output, Referenced to V  
L2  
GND. Logic input connected to isolated side SCK2 pin  
and GND2. Logic output connected to logic side SCK pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
through isolation barrier. Do not float.  
SDI(A4):SerialSPIDataInput,ReferencedtoV andGND.  
L
Logic input connected to isolated side SDI2 pin through  
SDI2 (L4): Serial SPI Data Output, Referenced to V  
L2  
isolation barrier. Do not float.  
and GND2. Logic output connected to logic side SDI pin  
throughisolationbarrier.Undertheconditionofanisolation  
communication failure this output defaults to a low state.  
CS(A5):SerialSPIChipSelect,ReferencedtoV andGND.  
L
Logic input connected to isolated side CS2 pin through  
isolation barrier. Do not float.  
CS2 (L5): Serial SPI Chip Select, Referenced to V and  
L2  
GND2.LogicoutputconnectedtologicsideCSpinthrough  
isolation barrier. Under the condition of an isolation com-  
munication failure this output defaults to a high state.  
SDOE (A6): Serial SPI Data Output ꢀnable, Referenced to  
L
SDO pin in a high impedance state, a logic low enables  
the output. Do not float.  
V and GND. A logic high on SDOE places the logic side  
V (L6): 1.8V to 5.5V Adjustable Isolated Supply Voltage.  
L2  
Internally generated from V by an isolated DC/DC con-  
CC  
ON (A7): ꢀnable, Referenced to V and GND. ꢀnables  
L
verter and regulated to 5V with no external components.  
power and data communication through the isolation  
Internally bypassed with 4.7µF.  
barrier. If ON is high the part is enabled and power and  
2887fb  
11  
For more information www.linear.com/LTM2887  
LTM2887  
PIN FUNCTIONS  
LTM2887-S Isolated Side  
GND2 (K2 to K5): Isolated Ground.  
IV (L7): V precision current limit adjust pin. Current  
AV (K6): 5V Nominal Isolated Supply Voltage Adjust.  
The adjust pin voltage is 600mV Referenced to GND2. See  
Applications Information section for details..  
CC2  
CC2  
L2  
limit threshold is set by connecting a resistor between  
IV and GND2. For detailed information on how to set  
CC2  
the current limit resistor value, please see the Applica-  
IV (K7): V precision current limit adjust pin. Current  
L2  
L2  
tion Information section. If not used, tie IV  
Internally bypassed with 10nF.  
to GND2.  
CC2  
limit threshold is set by connecting a resistor between  
IV and GND2. For detailed information on how to set  
L2  
V
(L8): 0.6V to 5.5V Adjustable Isolated Supply Volt-  
the current limit resistor value, please see the Applica-  
CC2  
age. Internally generated from V by an isolated DC/DC  
tion Information section. If not used, tie IV to GND2.  
CC  
L2  
Internally bypassed with 10nF.  
converterandregulatedto5Vwithnoexternalcomponents.  
Internally bypassed with 4.7µF.  
AV  
(K8): 5V Nominal Isolated Supply Voltage Adjust.  
CC2  
Theadjustpinvoltageis600mVReferencedtoGND2. See  
Applications Information section for details.  
I1 (K1): Digital Input, Referenced to V and GND2. Logic  
L2  
inputconnectedtoDO1throughisolationbarrier.Thelogic  
state on I1 translates to the same logic state on DO1. Do  
not float.  
2887fb  
12  
For more information www.linear.com/LTM2887  
LTM2887  
BLOCK DIAGRAMS  
LTM2887-I  
IV  
CC2  
REG  
V
CC2  
4.7µF  
10nF  
AV  
CC2  
V
CC  
GND2  
IV  
V
L
2.2µF  
L2  
1µF  
REG  
V
L2  
GND  
ON  
4.7µF  
10nF  
DC/DC  
CONVERTER  
AV  
L2  
REG  
O1  
DI1  
SDA  
SCL  
SDA2  
SCL2  
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
COMMUNI-  
CATIONS  
INTERFACE  
INTERFACE  
DO2  
DO1  
I2  
I1  
2887 BDa  
2887fb  
13  
For more information www.linear.com/LTM2887  
LTM2887  
BLOCK DIAGRAMS  
LTM2887-S  
IV  
CC2  
REG  
V
CC2  
4.7µF  
10nF  
AV  
CC2  
V
CC  
GND2  
IV  
V
L
2.2µF  
L2  
1µF  
REG  
V
L2  
GND  
4.7µF  
10nF  
DC/DC  
CONVERTER  
AV  
L2  
ON  
SDOE  
CS  
REG  
CS2  
SDI2  
SCK2  
I2  
SDI  
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
SCK  
DO2  
SDO  
DO1  
COMMUNI-  
CATIONS  
INTERFACE  
INTERFACE  
SDO2  
I1  
2887 BDb  
2887fb  
14  
For more information www.linear.com/LTM2887  
LTM2887  
TEST CIRCUITS  
V
L
INPUT  
½V  
L
0V  
OUTPUT  
t
t
PHL  
PLH  
C
L
INPUT  
V
OH  
90%  
10%  
10%  
90%  
OUTPUT  
½V  
L2  
V
OL  
t
t
F
R
V
L2  
INPUT  
½V  
L2  
0V  
OUTPUT  
t
t
PHL  
PLH  
C
L
INPUT  
V
OH  
90%  
10%  
10%  
90%  
OUTPUT  
½V  
L
V
OL  
t
t
F
R
2887 F01  
Figure 1. Logic Timing Measurements  
V
L
OR 0V  
V
L
SDOE  
SDO  
SDO  
½V  
L
R
L
0V  
0V  
t
t
PHZ  
PZH  
V
OH  
SDO  
SDO2 OR  
V
L2  
V
V
– 0.5V  
+ 0.5V  
OH  
½V  
C
L
t
L
0V  
t
PLZ  
SDOE  
PZL  
L
V
L
½V  
OL  
V
OL  
2887 F02  
Figure 2. Logic Enable/Disable Time  
V
L
V
L
R
L
SDA  
½V  
L
0V  
SDA2  
t
t
PLH  
PHL  
C
L
SDA  
V
OH  
30%  
70%  
30%  
SDA2  
½V  
L2  
70%  
V
OL  
t
t
R
F
V
L
V
L2  
R
L
SDA2  
SDA  
½V  
L2  
0V  
SDA  
t
t
PLH  
PHL  
C
L
SDA2  
V
OH  
30%  
70%  
30%  
½V  
L
70%  
V
OL  
t
t
R
F
2887 F03  
Figure 3. I2C Timing Measurements  
2887fb  
15  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
Overview  
The internal power solution is sufficient to provide a  
minimum of 100mA of current from V and V . V  
CC2  
L2 CC  
The LTM2887 digital µModule isolator provides a  
galvanically-isolated robust logic interface, powered by  
an integrated, regulated DC/DC converter, complete with  
decoupling capacitors. The LTM2887 is ideal for use in  
networks where grounds can take on different voltages.  
Isolation in the LTM2887 blocks high voltage differences,  
eliminates ground loops and is extremely tolerant of com-  
mon mode transients between ground planes. ꢀrror-free  
operation is maintained through common mode events  
greater than 30kV/μs providing excellent noise isolation.  
is bypassed with 2.2µF, V  
with 4.7µF.  
and V are each bypassed  
CC2  
L2  
V Logic Supply  
L
A separate logic supply pin V allows the LTM2887 to in-  
L
terface with any logic signal from 1.62V to 5.5V as shown  
in Figure 4. Simply connect the desired logic supply to V .  
L
There is no interdependency between V and V ; they  
CC  
L
may simultaneously operate at any voltage within their  
specified operating ranges and sequence in any order. V  
is bypassed internally by a 1µF capacitor.  
L
Isolator µModule Technology  
The LTM2887 utilizes isolator µModule technology to  
translate signals and power across an isolation barrier.  
Signalsoneithersideofthebarrierareencodedintopulses  
and translated across the isolation boundary using core-  
less transformers formed in the µModule substrate. This  
system, complete with data refresh, error checking, safe  
shutdown on fail, and extremely high common mode im-  
munity, provides a robust solution for bidirectional signal  
isolation. The µModule technology provides the means to  
combinetheisolatedsignalingwithmultipleregulatorsand  
apowerfulisolatedDC/DCconverterinonesmallpackage.  
3V TO 3.6V LTM2887-3  
4.5V TO 5.5V LTM2887-5  
LTM2887-I  
V
AV  
IV  
CC2  
CC2  
CC2  
V
V
CC  
L
ANY VOLTAGE FROM  
1.62V TO 5.5V  
V
L2  
L2  
L2  
AV  
IV  
ON  
DI1  
O1  
SDA2  
SCL2  
SDA  
SCL  
EXTERNAL  
DEVICE  
DC/DC Converter  
DO2  
DO1  
I2  
I1  
TheLTM2887containsafullyintegratedDC/DCconverter,  
includingthetransformer,sothatnoexternalcomponents  
are necessary. The logic side contains a full-bridge driver,  
running at 1.6Mꢁz, and is AC-coupled to a single trans-  
former primary. A series DC blocking capacitor prevents  
transformersaturationduetodriverdutycycleimbalance.  
The transformer scales the primary voltage, and is recti-  
fied by a full-wave voltage doubler. This topology allows  
for a single diode drop, as in a center tapped full-wave  
bridge, and eliminates transformer saturation caused by  
secondary imbalances.  
GND  
GND2  
2887 F04  
Figure 4. VCC and VL Are Independent  
Hot-Plugging Safely  
Caution must be exercised in applications where power is  
plugged into the LTM2887’s power supplies, V or V ,  
CC  
L
due to the integrated ceramic decoupling capacitors. The  
parasitic cable inductance along with the high Q char-  
acteristics of ceramic capacitors can cause substantial  
ringing which could exceed the maximum voltage ratings  
anddamagetheLTM2887. RefertoLinearTechnologyAp-  
plication Note 88, entitled Ceramic Input Capacitors Can  
Cause Overvoltage Transients for a detailed discussion  
Three low dropout regulators (LDOs) are connected to  
the output of the voltage doubler. One LDO powers the  
internal circuitry and is not available externally. The other  
two LDOs provide regulated 5V nominally for the V and  
CC2  
V
outputs. V corresponds to the voltage levels on the  
L2  
L2  
isolated logic pins.  
and mitigation of this phenomenon.  
2887fb  
16  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
Isolated Supply Adjustable Operation  
maximum output power, insuring that either voltage rail  
does not collapse if the opposing rail is loaded beyond  
Thetwoisolatedpowerrailsmaybeadjustedbyconnection  
of external resistive dividers. The unadjusted output volt-  
agesrepresentthemaximumsforguaranteedperformance.  
Figure 5 illustrates configuration of the output power rails  
its capability. The current limit threshold (I  
) is set by  
to GND2:  
LIMIT  
or I  
CC2 VL2  
attaching a resistor (R  
) from IV  
IMAX  
R
IMAX  
= [119.22-(0.894 • (V , V ))]/I  
CC2 L2 LIMIT  
for V  
= 3.3V, and V = 2.5V.  
CC2  
L2  
The output adjustment range for V  
Output voltage is calculated by:  
is 0.6V to 5.5V.  
The accuracy of this equation for setting the resistor value  
is approximately 1%. Unit values are amps, volts, and  
ohms. Figure 5 shows the current limit programmed for  
CC2  
V
CC2  
= 0.6V(1 + R2/R1)  
75mA on V and 25mA on V . If the external program-  
CC2  
L2  
Adjustment range for V is 3V to 5.5V for the LTM2887-I,  
L2  
mable current limit is not needed, the IV  
must be connected to GND2. The current limit pins are  
pin or IV  
CC2  
L2  
and 1.8V to 5.5V for the LTM2887-S. Output voltage is  
calculated by:  
internally decoupled with 10nF capacitors.  
V
= 0.6V(1 + R5/R4)  
L2  
Channel Timing Uncertainty  
The value of R1 or R4 should be no greater than 6.04k to  
minimize errors in the output voltage caused by the adjust  
pin bias currents and internal voltage dividers.  
Multiplechannelsaresupportedacrosstheisolationbound-  
ary by encoding and decoding of the inputs and outputs.  
Up to three signals in each direction are assembled as a  
packet and transferred across the isolation barrier. The  
time required to transfer all 3 bits is 100ns maximum,  
and sets the limit for how often a signal can change on  
the opposite side of the barrier. ꢀncoding transmission is  
independent for each data direction. The technique used  
assigns SCK or SCL on the logic side, and SDO2 or I2 on  
the isolated side, the highest priority such that there is  
Operation at low output voltages may result in thermal  
shutdownduetolowdropoutregulatorpowerdissipation.  
Isolated Supply Programmable Current Limit  
The IV  
pin and IV pin allow programming of the  
L2  
CC2  
maximum current available from V  
and V respec-  
CC2  
L2  
tively. The current adjustments may be used to limit the  
2.5V AT 25mA  
3.3V AT 75mA  
LTM2887-5S  
V
AV  
IV  
CC2  
CC2  
CC2  
V
V
CC  
L
5V  
R2  
27.4k  
V
L2  
L2  
L2  
ON  
AV  
IV  
R5  
19.1k  
R3  
1.54k  
R1  
6.04k  
R6  
4.64k  
SDOE  
CS  
R4  
6.04k  
CS2  
SDI2  
SCK2  
SDI  
SCK  
DO2  
SDO  
DO1  
I2  
SDO2  
I1  
GND  
GND2  
2887 F05  
Figure 5. Adjustable Voltage Rails  
2887fb  
17  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
no jitter on the associated output channels, only delay.  
This preemptive scheme will produce a certain amount of  
uncertainty on the other isolation channels. The resulting  
pulse width uncertainty on these low priority channels is  
typically 6ns, but may vary up to 50ns if the low priority  
channels are not encoded within the same high priority  
serial packet.  
• SDI to SCK (master data write to slave)  
t t  
≈50ns, SDI to SDI2 propagation delay  
≈50ns, SCK to SCK2 propagation delay  
2
4
6
5
t t  
5
t t  
2
≥50ns, SDI to SCK, separate packet  
non-zero set-up time  
t t  
4
≥50ns, SDI2 to SCK2, separate packet  
non-zero set-up time  
6
Serial Peripheral Interface (SPI) Bus  
• SDO to SCK (master sample SDO, subsequent  
SDO valid)  
The LTM2887-S provides a SPI compatible isolated inter-  
face. The maximum data rate is a function of the inherent  
channel propagation delays, channel to channel pulse  
width uncertainty, and data direction requirements. Chan-  
nel timing is detailed in Figures 6 through 9 and Tables  
2 and 3. The SPI protocol supports four unique timing  
configurations defined by the clock polarity (CPOL) and  
clock phase (CPꢁA) summarized in Table 1.  
t
set-up data transition SDI and SCK  
8
t t  
8
≈50ns, SDI to SDI2 and SCK to SCK2  
propagation delay  
10  
t
10  
SDO2 data transition in response to SCK2  
t t ≈50ns, SDO2 to SDO propagation delay  
10  
11  
Table 1. SPI Mode  
t t Set-up time for master SDO to SCK  
11  
12  
CPOL CPHA  
DATA TO (CLOCK) RELATIONSHIP  
Maximum data rate for single direction communication,  
master to slave, is 8Mꢁz, limited by the systems encod-  
ing/decodingschemeorpropagationdelay. Timingdetails  
for both variations of clock phase are shown in Figures 8  
and 9 and Table 3.  
0
0
1
1
0
1
0
1
Sample (Rising)  
Set-Up (Falling)  
Sample (Falling)  
Set-Up (Rising)  
Sample (Rising)  
Set-Up (Rising)  
Sample (Falling)  
Set-Up (Falling)  
The maximum data rate for bidirectional communication  
is 4Mꢁz, based on a synchronous system, as detailed in  
the timing waveforms. Slightly higher data rates may be  
achieved by skewing the clock duty cycle and minimiz-  
ing the SDO to SCK set-up time, however the clock rate  
is still dominated by the system propagation delays. A  
discussion of the critical timing paths relative to Figure 6  
and 7 follows.  
Additional requirements to insure maximum data rate are:  
CS is transmitted prior to (asynchronous) or within the  
same (synchronous) data packet as SDI  
• SDI and SCK set-up data transition occur within the  
same data packet. Referencing Figure 6, SDI can pre-  
cede SCK by up to 13ns (t t ) or lag SCK by 3ns  
7
8
(t t ) and not violate this requirement. Similarly in  
8
9
Figure 8, SDI can precede SCK by up to 13ns (t t )  
4
5
CS to SCK (master sample SDO, 1st SDO valid)  
or lag SCK by 3ns (t t ).  
5
6
t t  
≈50ns, CS to CS2 propagation delay  
0
1
t t  
Isolated slave device propagation  
(response time), asserts SDO2  
1
1+  
t t  
≈50ns, SDO2 to SDO propagation delay  
Set-up time for master SDO to SCK  
1
3
t t  
3
5
2887fb  
18  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
CPHA = 0  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
SDO  
INVALID  
SDO2  
t
0
t
1
t
t
t
t
t
t
t
t
10  
t
t
t
t
t
t
t
2
3
4
5
6
7
9
11 12  
13  
14  
15  
17  
18  
t
8
2887 F06  
Figure 6. SPI Timing, Bidirectional, CPHA = 0  
CPHA = 1  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
SDO  
INVALID  
SDO2  
t
0
t
1
t
t
t
t
t
t
t
t
10  
t
t
t
t
t
t
t
t
2
3
4
5
6
7
9
11 12  
13  
14  
15  
16 17  
18  
t
8
2887 F07  
Figure 7. SPI Timing, Bidirectional, CPHA = 1  
2887fb  
19  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
CPHA = 0  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
t
0
t
t
t
3
t
4
t
5
t
t
t
9
t
t
12  
1
2
7
8
11  
t
6
2887 F08  
Figure 8. SPI Timing, Unidirectional, CPHA = 0  
CPHA = 1  
CS = SDOE  
CS2  
SDI  
SDI2  
SCK (CPOL = 0)  
SCK2 (CPOL = 0)  
SCK (CPOL = 1)  
SCK2 (CPOL = 1)  
t
0
t
t
t
3
t
4
t
5
t
t
t
9
t
t
t
12  
1
2
7
8
10 11  
t
6
2887 F09  
Figure 9. SPI Timing, Unidirectional, CPHA = 1  
2887fb  
20  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
Table 2. Bidirectional SPI Timing Event Description  
TIME  
CPHA  
EVENT DESCRIPTION  
t
0, 1  
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns. Logic side slave data output  
enabled, initial data is not equivalent to slave device data output  
0
t to t  
t
to t  
18  
0, 1  
0, 1  
0
Propagation delay chip select, logic to isolated side, 50ns typical  
Slave device chip select output data enable  
0
1, 17  
t
1
t
2
Start of data transmission, data set-up  
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of slave data, isolated to logic side, 50ns typical  
Slave data output valid, logic side  
t to t  
0, 1  
0, 1  
0
1
3
4
t
3
t to t  
2
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Propagation delay of clock, logic to isolated side  
Isolated side data sample time  
1
t
5
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
5
6
t
6
t
8
Synchronous data and clock transition, logic side  
Data to clock delay, must be ≤13ns  
t to t  
7
8
t to t  
8
Clock to data delay, must be ≤3ns  
9
t to t  
8
Propagation delay clock and data, logic to isolated side  
Slave device data transition  
10  
t
t
t
t
t
10, 14  
to t  
to t  
t
to t  
15  
Propagation delay slave data, isolated to logic side  
Slave data output to sample clock set-up time  
10  
11  
13  
11, 14  
12  
Last data and clock transition logic side  
1
Last sample clock transition logic side  
t
to t  
to t  
0
Propagation delay data and clock, logic to isolated side  
Propagation delay clock, logic to isolated side  
13  
15  
14  
1
t
0
Last slave data output transition logic side  
1
Last slave data output and data transition, logic side  
Propagation delay data, logic to isolated side  
t
15  
t
17  
t
18  
1
16  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission. Disable slave data output logic side  
Chip select transition isolated side, slave data output disabled  
2887fb  
21  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
Table 3. Unidirectional SPI Timing Event Description  
TIME  
CPHA  
0, 1  
0, 1  
0
EVENT DESCRIPTION  
t
Asynchronous chip select, may be synchronous to SDI but may not lag by more than 3ns  
Propagation delay chip select, logic to isolated side  
Start of data transmission, data set-up  
0
t to t  
0
1
3
t
2
1
Start of transmission, data and clock set-up. Data transition must be within –13ns to 3ns of clock edge  
Propagation delay of data, logic side to isolated side  
Propagation delay of data and clock, logic side to isolated side  
Logic side data sample time, half clock period delay from data set-up transition  
Clock propagation delay, clock and data transition  
Data to clock delay, must be ≤13ns  
t to t  
2
0
1
t
3
0, 1  
0, 1  
0, 1  
0, 1  
0, 1  
0
t to t  
3
5
5
6
7
t to t  
4
t to t  
5
Clock to data delay, must be ≤3ns  
t to t  
5
Data and clock propagation delay  
t
8
Last clock and data transition  
1
Last clock transition  
t to t  
8
0
Clock and data propagation delay  
9
1
Clock propagation delay  
t to t  
9
1
Data propagation delay  
10  
t
11  
t
12  
0, 1  
0, 1  
Asynchronous chip select transition, end of transmission  
Chip select transition isolated side  
2
Inter-IC Communication (I C) Bus  
standardminimumsetuptime(t )of100ns,maximum  
SU;DAT  
clock propagation delay of 225ns, glitch filter and isolated  
data delay of 500ns maximum, and the combined isolated  
and logic data fall time of 300ns at maximum bus load-  
2
The LTM2887-I provides an I C compatible isolated in-  
terface. Clock (SCL) is unidirectional, supporting master  
mode only, and data (SDA) is bidirectional. The maximum  
data rate is 400kꢁz which supports fast-mode I C. Timing  
is detailed in Figure 10. The data rate is limited by the slave  
2
ing. The total setup time reduces the I C data hold time  
2
(t  
) to a maximum of 175ns, guaranteeing sufficient  
ꢁD;DAT  
data setup time (t  
).  
2
SU;ACK  
acknowledge setup time (t  
), consisting of the I C  
SU;ACK  
SLAVE ACK  
SDA  
SDA2  
SCL  
1
8
9
SCL2  
START  
STOP  
2887 F10  
t
PROP  
t
t
t
SU;DAT  
HD;DAT  
SU;ACK  
Figure 10. I2C Timing Diagram  
2887fb  
22  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
The isolated side bidirectional serial data pin, SDA2,  
simplified schematic is shown in Figure 11. An internal  
1.8mA current source provides a pull-up for SDA2. Do not  
connect any other pull-up device to SDA2. This current  
source is sufficient to satisfy the system requirements for  
bus capacitances greater than 200pF in FAST mode and  
greater than 400pF in STANDARD mode.  
Some consideration must be given to signal coupling  
between SCL2 and SDA2. Separate these signals on a  
printed circuit board or route with ground between. If  
these signals are wired off board, twist SCL2 with V  
CC2  
and/or GND2 and SDA2 with GND2 and/or V , do not  
CC2  
twist SCL2 and SDA2 together. If coupling between SCL2  
and SDA2 is unavoidable, place the aforementioned RC  
filter at the SCL2 pin to reduce noise injection onto SDA2.  
1.8mA  
GLITCH FILTER  
30  
TO  
V = 3V  
LOGIC  
V = 3.3V  
SIDE  
SDA2  
25  
20  
15  
10  
5
V = 3.6V  
V = 4.5V TO 5.5V  
FROM  
LOGIC  
SIDE  
2887 F11  
Figure 11. Isolated SDA2 Pin Schematic  
Additional proprietary circuitry monitors the slew rate on  
the SDA and SDA2 signals to manage directional control  
across the isolation barrier. Slew rates on both pins must  
be greater than 1V/µs for proper operation.  
0
10  
100  
(pF)  
1000  
C
BUS  
2887 F12  
Figure 12. Maximum Standard Speed Pull-Up Resistance on SDA  
The logic side bidirectional serial data pin, SDA, requires a  
pull-up resistor or current source connected to V . Follow  
L
10  
V = 3V  
the requirements in Figures 12 and 13 for the appropri-  
9
8
7
6
5
4
3
2
1
0
V = 3.3V  
ate pull-up resistor on SDA that satisfies the desired rise  
V = 3.6V  
V = 4.5V TO 5.5V  
time specifications and V maximum limits for FAST and  
OL  
STANDARD modes. The resistance curves represent the  
maximum resistance boundary; any value may be used  
to the left of the appropriate curve.  
The isolated side clock pin, SCL2, has a weak push-pull  
output driver; do not connect an external pull-up device.  
2
SCL2iscompatiblewithI Cdeviceswithoutclockstretch-  
10  
100  
(pF)  
1000  
ing. On lightly loaded connections, a 100pF capacitor  
form SCL2 to GND2 or RC lowpass filter (R = 500Ω,  
C = 100pF) can be used to increase the rise and fall times  
and minimize noise.  
C
BUS  
2887 F13  
Figure 13. Maximum Fast Speed Pull-Up Resistance on SDA  
2887fb  
23  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
RF, Magnetic Field Immunity  
• Inputandoutputdecouplingisnotrequired,sincethese  
components are integrated within the package. An ad-  
ditional bulk capacitor with a value of 6.8µF to 22µF is  
recommended. The high ꢀSR of this capacitor reduces  
boardresonancesandminimizesvoltagespikescaused  
by hot plugging of the supply voltage. For ꢀMI sensitive  
applications,anadditionallowSLceramiccapacitorof  
1µF to 4.7µF, placed as close to the power and ground  
terminalsaspossible, isrecommended. Alternatively, a  
numberofsmallervalueparallelcapacitorsmaybeused  
to reduce ꢀSL and achieve the same net capacitance.  
TheisolatorµModuletechnologyusedwithintheLTM2887  
hasbeenindependentlyevaluated,andsuccessfullypassed  
the RF and magnetic field immunity testing requirements  
per ꢀuropean Standard ꢀN 55024, in accordance with the  
following test standards:  
ꢀN 61000-4-3  
ꢀN 61000-4-8  
ꢀN 61000-4-9  
Radiated, Radio-Frequency,  
ꢀlectromagnetic Field Immunity  
Power Frequency Magnetic Field  
Immunity  
• Do not place copper on the PCH between the inner col-  
umnsofpads. Thisareamustremainopentowithstand  
the rated isolation voltage.  
Pulsed Magnetic Field Immunity  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCH layout recommendations.  
Specific limits per test are detailed in Table 4.  
• The use of solid ground planes for GND and GND2  
is recommended for non-ꢀMI critical applications to  
optimize signal fidelity, thermal performance, and to  
minimize RF emissions due to uncoupled PCH trace  
conduction. The drawback of using ground planes,  
where ꢀMI is of concern, is the creation of a dipole  
antennastructurewhichcanradiatedifferentialvoltages  
formed between GND and GND2. If ground planes are  
used it is recommended to minimize their area, and  
use contiguous planes as any openings or splits can  
exacerbate RF emissions.  
Table 4. EMC Immunity Tests  
TEST  
FREQUENCY  
80Mꢁz to 1Gꢁz  
1.4Mꢁz to 2Gꢁz  
2Gꢁz to 2.7Gꢁz  
50ꢁz and 60ꢁz  
60ꢁz  
FIELD STRENGTH  
10V/m  
ꢀN 61000-4-3 Annex D  
3V/m  
1V/m  
ꢀN 61000-4-8 Level 4  
ꢀN 61000-4-8 Level 5  
ꢀN 61000-4-9 Level 5  
*non IꢀC method  
30A/m  
100A/m*  
1000A/m  
Pulse  
• For large ground planes a small capacitance (≤330pF)  
from GND to GND2, either discrete or embedded within  
the substrate, provides a low impedance current return  
path for the module parasitic capacitance, minimizing  
anyhighfrequencydifferentialvoltagesandsubstantially  
reducing radiated emissions. Discrete capacitance will  
notbeaseffectiveduetoparasiticSL.Inaddition,volt-  
age rating, leakage, and clearance must be considered  
for component selection. ꢀmbedding the capacitance  
withinthePCHsubstrateprovidesanearidealcapacitor  
and eliminates component selection issues; however,  
the PCH must be 4 layers. Care must be exercised in  
applying either technique to ensure the voltage rating  
of the barrier is not compromised.  
PCB Layout  
The high integration of the LTM2887 makes PCH layout  
very simple. ꢁowever, to optimize its electrical isolation  
characteristics, ꢀMI, and thermal performance, some  
layout considerations are necessary.  
• Under heavily loaded conditions V and GND current  
CC  
can exceed 300mA. Sufficient copper must be used  
on the PCH to insure resistive losses do not cause the  
supply voltage to drop below the minimum allowed  
level. Similarly, the V  
and GND2 conductors must  
CC2  
be sized to support any external load current. These  
heavy copper traces will also help to reduce thermal  
stress and improve the thermal conductivity.  
2887fb  
24  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
• In applications without an embedded PCH substrate  
capacitance a slot may be added between the logic  
side and isolated side device pins. The slot extends  
the creepage path between terminals on the PCH side,  
and may reduce leakage caused by PCH contamination.  
The slot should be placed in the middle of the device  
and extend beyond the package perimeter.  
The PCH layout in Figures 14 and 15 shows the low ꢀMI  
demo board for the LTM2887. The demo board uses a  
combination of ꢀMI mitigation techniques, including both  
embedded PCH bridge capacitance and discrete GND to  
GND2 capacitors. Two safety rated type Y2 capacitors are  
used in series, manufactured by MuRata, part number  
GA342QR7GF471KW01L. The embedded capacitor ef-  
fectively suppresses emissions above 400Mꢁz, whereas  
the discrete capacitors are more effective below 400Mꢁz.  
ꢀMI performance is shown in Figure 16, measured using  
a Gigahertz Transverse ꢀlectromagnetic (GTꢀM) cell and  
method detailed in IꢀC 61000-4-20, Testing and Measure-  
ment Techniques – ꢀmission and Immunity Testing in  
Transverse ꢀlectromagnetic Waveguides.  
Figure 14. LTM2887 Low EMI Demo Board Layout  
2887fb  
25  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
Top Layer  
Inner Layer 2  
Inner Layer 1  
Bottom Layer  
Figure 15. LTM2887 Low EMI Demo Board Layout (DC1791A)  
2887fb  
26  
For more information www.linear.com/LTM2887  
LTM2887  
APPLICATIONS INFORMATION  
60  
50  
CISPR 22 CLASS B LIMIT  
DC1791A-B  
40  
30  
20  
10  
DC1791A-A  
0
DETECTOR=QUASIPEAK  
RBW=120kHz  
VBW=300kHz  
SWEEP TIME=17s  
# of POINTS=501  
–10  
–20  
–30  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
2887 F16  
Figure 16. LTM2887 Low EMI Demo Board Emissions  
TYPICAL APPLICATIONS  
LTM2887-5I  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
V
AV  
IV  
5V  
V
V
CC2  
CC2  
CC2  
CC  
L
1µF  
1.7k  
IV  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B3  
V
ON  
1.7k  
AV  
GND  
DI1  
L2  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
LTC2631A-HZ12, DAC  
O1  
SDA2  
SCL2  
DNC  
I2  
1
2
3
4
8
7
6
5
CA1  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
CA0  
SCL  
SDA  
GND  
µC  
0V TO 4.096V OUT  
V
OUT  
REF  
V
CC  
GND  
I1  
0.1µF  
1µF  
GND2  
LTC2301, ADC  
10  
11  
12  
1
9
8
7
6
5
4
GND  
AD0 REFC  
V
DD  
0.1µF  
AD1  
GND  
SDA  
SCL  
V
REF  
IN  
2
+
IN  
0V TO 4.096V IN  
0.1µF  
3
10µF  
1µF  
GND  
2887 F17  
Figure 17. Isolated I2C 12-Bit, 0V to 4.096V Analog Input and Output  
2887fb  
27  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
LTM2887-3S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
V
3.3V  
V
V
CC2  
CC2  
CC2  
CC  
L
AV  
IV  
10k  
1nF  
74LVC1G123  
IV  
L2  
L2  
Cx  
Rx/Cx  
CLR  
A
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
CSB  
ON  
AV  
SDOE  
CS  
L2  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
1µF  
CS2  
SDI2  
SCK2  
I2  
CSA  
B
Q
MOSI  
SCK  
SDI  
SCK  
DO2  
SDO  
DO1  
GND  
V
CC  
CSA  
CSB  
SDO2  
I1  
MISO  
µC  
GND2  
MOSI  
SCK  
MISO  
GND  
CSA  
CSB  
MOSI  
SCK  
2887 F18  
Figure 18. Isolated SPI Device Expansion  
LTM2887-5I  
B8  
A8  
L8  
K8  
V
AV  
IV  
5V  
V
V
CC2  
CC2  
CC2  
CC  
10k 10k  
0.01µF  
1
10k 10k 10k 10k 10k 10k  
ALERT2  
L
L7  
K7  
L6  
K6  
IV  
L2  
L2  
10k  
10k  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B3  
16  
15  
14  
13  
12  
11  
10  
9
V
ALERT2  
SCL2  
SDA2  
SCL2  
ON  
2
3
4
5
6
7
8
AV  
ALERT  
SDAIN  
GND  
SDA2  
ALERT1  
SDA1  
SCL1  
GND  
DI1  
L2  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
O1  
SDA2  
SCL2  
DNC  
I2  
ENABLE  
SDA  
ALERT1  
SDA1  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
LTC4305  
SCLIN  
ENABLE  
SCL1  
SCLIN  
READY  
ADR2  
ALERT  
V
CC  
ADR0  
ADR1  
READY  
I1  
GND2  
2887 F19  
Figure 19. Isolated I2C Buffer with Dual Outputs  
2887fb  
28  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
LTM2887-5S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
V
AV  
IV  
5V  
V
V
CC2  
CC2  
CC2  
CC  
L
1µF  
IV  
NTC THERMISTORS, MURATA NTSD1WD104, 100k  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
–t°  
–t°  
–t°  
–t°  
AV  
SDOE  
CS  
L2  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
CS2  
SDI2  
SCK2  
I2  
Oz  
Oy  
Ox  
SDI  
LTC1799  
SCK  
DO2  
SDO  
DO1  
GND  
µC  
–t°  
–t°  
–t°  
–t°  
5
4
1
2
3
+
DG4051A  
X0  
V
1M  
OUT  
16  
3
13  
14  
15  
12  
1
Iy  
Ix  
SDO2  
I1  
GND  
V
X
A
B
C
CC  
3.01k  
X1  
X2  
X3  
X4  
DIV SET  
GND  
11  
10  
9
GND2  
6
5
ENABLE X5  
7
2
V
X6  
X7  
EE  
8
4
TEMPERATURE (°C) FREQUENCY (kHz)  
GND  
–40  
–30  
–20  
–10  
0
1.23  
1.46  
–t°  
–t°  
–t°  
–t°  
1.87  
2.58  
3.77  
LTC1799  
+
10  
5.67  
5
4
1
2
3
DG4051A  
20  
8.64  
V
OUT  
1M  
16  
3
13  
14  
15  
12  
1
–t°  
–t°  
–t°  
–t°  
30  
13.09  
19.53  
28.47  
40.65  
55.87  
74.45  
96.08  
119.83  
144.73  
169.36  
X0  
X1  
X2  
X3  
X4  
GND  
V
X
A
B
C
CC  
3.01k  
40  
DIV SET  
50  
11  
10  
9
60  
70  
80  
90  
100  
110  
120  
6
5
ENABLE X5  
7
2
V
X6  
X7  
EE  
8
4
GND  
2887 F20  
Figure 20. 16-Channel Isolated Temperature to Frequency Converter  
2887fb  
29  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
IRF7509  
LTM2887-5S  
B8  
100k  
L8  
K8  
L7  
K7  
L6  
K6  
SWITCHED 3.3V  
V
AV  
IV  
5V  
V
V
CC2  
CC2  
CC2  
CC  
A8  
L
1.15k  
1.15k  
27.4k  
IV  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
6.04k  
ON  
AV  
SDOE  
CS  
L2  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
CS2  
SDI2  
SCK2  
I2  
SDI  
3.3V ENABLE  
5V ENABLE  
IRF7509  
SCK  
DO2  
SDO  
DO1  
GND  
100k  
SDO2  
I1  
SWITCHED 5V  
3.3V UV  
5V UV  
GND2  
51.1k  
LTC2902  
COMP2  
COMP1 COMP4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
COMP3  
0.1µF  
V3  
V2  
V4  
V1  
10k  
CRT  
RST  
T0  
V
REF  
V
93.1k  
PG  
GND  
T1  
RDIS  
9.53k  
2887 F21  
Figure 21. Digitally Switched Dual Power Supply with Undervoltage Monitor  
2887fb  
30  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
LTM2887-3S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
V
AV  
IV  
3.3V  
V
V
CC2  
CC2  
CC2  
CC  
L
1µF  
LTC2654-H16  
IV  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
15  
6
5
V
REFOUT  
V
CC  
ON  
3
AV  
SDOE  
CS  
LDAC  
CS  
REFC  
L2  
V
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
7
2
CS2  
SDI2  
SCK2  
I2  
0V TO 4.096V OUTA  
CS  
V
OUTA  
OUTB  
OUTC  
OUTD  
9
4
MOSI  
SCK  
SDI  
SDI  
V
V
0V TO 4.096V OUTB  
0V TO 4.096V OUTC  
0V TO 4.096V OUTD  
8
13  
14  
1
SCK  
DO2  
SDO  
DO1  
GND  
SCK  
CLR  
SDO  
µC  
11  
10  
12  
V
MISO  
SDO2  
I1  
REFLO  
0.1µF  
0.1µF  
4
GND  
PORSEL GND  
GND2  
2887 F22  
Figure 22. Quad 16-Bit 0 to 4.096V Output Range DAC  
LTM2887-5S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
5V  
V
AV  
IV  
5V@200mA  
V
V
CC2  
CC2  
CC2  
CC  
L
IV  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
L2  
AV  
SDOE  
CS  
L2  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
CS2  
SDI2  
SCK2  
I2  
CS  
SDI  
CS  
SDI  
SDI  
SCK  
SCK  
SCK  
DO2  
SDO  
DO1  
GND  
SDO  
SDO2  
I1  
SDO  
GND2  
2887 F23  
Figure 23. Parallel Output Supplies for Higher Current  
2887fb  
31  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
LTM2887-5I  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
V
AV  
IV  
5V  
V
V
CC2  
CC2  
CC2  
CC  
L
1µF  
10k  
10k  
IV  
L2  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
V
CC  
AV  
GND  
DI1  
O1  
SDA2  
SCL2  
DNC  
I2  
Ox  
SDA  
SCL  
1x  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
µC  
10k  
GND  
I1  
GND2  
V
EE  
–48V RTN  
1k, ×4 IN SERIES  
1/4W EACH  
453k  
7
21  
8
9
22  
6
INTV  
V
IN  
FLTIN  
SCL  
UVL  
UVH  
ADIN2  
OV  
CC  
16.9k  
10  
11  
19  
20  
26  
1
5
SDAI  
SDAO  
ALERT  
ON  
4
3
SS  
2
LTC4261CGN  
TMR  
EN  
28  
27  
23  
PGI  
PGI0  
PG  
PWRGD2  
PWRGD1  
25  
24  
ADR1  
ADR0  
ADIN  
11.8k  
V
SENSE GATE DRAIN RAMP  
14 15 16 18  
EE  
13  
+
330µF  
100V  
1M  
1k  
100nF  
1µF  
220nF  
10Ω  
47nF  
V
10nF  
100V  
OUT  
0.1µF  
47nF  
10k  
0.1µF  
–48V INPUT  
IRF1310NS  
0.008Ω  
1%  
402k  
V
EE  
2887 F24  
Figure 24. –48V, 200W Hot Swap Controller with Isolated I2C Interface  
2887fb  
32  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
3.3V  
LTM2887-3S  
LTC6803-1  
3.3k  
3.3k  
3.3k  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
3.3k  
V
CSO  
SDOI  
SCKO  
CSI  
SDO  
SDI  
SCKI  
V
V
V
CC2  
CC2  
CC2  
CC  
L
1µF  
2
AV  
IV  
3
4
+
IV  
V
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
5
V
C12  
S12  
C11  
S11  
C10  
S10  
C9  
ON  
MODE  
6
AV  
SDOE  
CS  
GPIO2  
GPIO1  
WDT  
NC  
V
L2  
CC  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
7
1µF  
1µF  
CS2  
SDI2  
SCK2  
I2  
CS  
8
SDI  
MOSI  
SCK  
µC  
9
SCK  
DO2  
SDO  
DO1  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
MISO  
GND  
TOS  
SDO2  
I1  
V
V
V
V
REG  
100k  
100k  
74LVC3G07  
S9  
REF  
GND2  
C8  
TEMP2  
TEMP1  
S8  
NC  
C7  
V
S7  
100k  
100k  
S1  
C1  
S2  
C2  
S3  
C3  
C6  
S6  
C5  
S5  
C4  
S4  
2887 F25  
Figure 25. 12-Cell Battery Stack Monitor with Isolated SPI Interface and Low Power Shutdown  
2887fb  
33  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
LTM2887-3I  
B8  
L8  
K8  
L7  
K7  
L6  
K6  
0.02Ω  
V
AV  
IV  
3.3V  
V
V
CC2  
CC2  
CC2  
CC  
L
48V  
V
OUT  
A8  
1µF  
10k  
+
IV  
SENSE SENSE  
V
L2  
L2  
IN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
SHDN  
100k AT 25°C, 1%  
VISHAY 2381 6154.104  
10k  
V
CC  
AV  
GND  
DI1  
L2  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
O1  
SDA2  
SCL2  
DNC  
I2  
SDA  
SCL  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SDA  
ADIN  
LTC4151  
µC  
SCL  
ADR0  
ADR1  
1.37k  
1%  
GND  
I1  
GND2  
GND  
3950  
T(°C)=  
273,40°C < T < 150°C  
1000  
8.965+LN  
1  
N
ADIN  
N
IS THE DIGITAL CODE MEASURED  
ADIN  
2887 F26  
BY THE ADC AT THE ADIN PIN  
Figure 26. Isolated I2C Voltage, Current and Temperature Power Supply Monitor  
2887fb  
34  
For more information www.linear.com/LTM2887  
LTM2887  
TYPICAL APPLICATIONS  
LTM2887-5I  
B8  
L8  
K8  
L7  
K7  
L6  
K6  
V
5V  
V
V
CC2  
CC2  
CC2  
CC  
A8  
AV  
IV  
L
10k  
0.1µF  
10k  
IV  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
27.4k  
V
ON  
SHUTDOWN  
0.1µF  
AV  
GND  
DI1  
100k  
L2  
SHDN1 V  
DD  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
ENABLE  
SDA  
O1  
SDA2  
SCL2  
DNC  
I2  
RESET  
SDAIN  
SCL  
BYP  
SDA  
SCL  
DNC  
DO2  
DO1  
GND  
SCLIN  
SDAOUT  
AUTO  
INT  
DETECT  
1/4 LTC4266  
INTERRUPT  
I1  
GND2  
AD0  
AD1  
AD2  
6.04k  
CMPD3003  
AD3  
V
DGND AGND  
SENSE GATE OUT  
EE  
Q1: FAIRCHILD IRFM120A OR PHILIPS PHT6NQ10T  
FB1, FB2: TDK MPZ2012S601A  
T1: PULSE H609NL OR COILCRAFT ETH1-230LD  
SMAJ58A  
1µF  
0.25Ω  
Q1  
–48V  
S1B  
S1B  
0.22µF  
FB1  
FB2  
RJ45  
CONNECTOR  
T1  
1
2
3
4
5
6
7
8
10nF  
10nF  
75Ω  
75Ω  
PHY  
(NETWORK  
PHYSICAL  
LAYER  
CHIP)  
10nF  
10nF  
75Ω  
75Ω  
1nF  
2887 F27  
Figure 27. One Complete Isolated Powered Ethernet Port  
2887fb  
35  
For more information www.linear.com/LTM2887  
LTM2887  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM2887#packaging for the most recent package drawings.  
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2887fb  
36  
For more information www.linear.com/LTM2887  
LTM2887  
REVISION HISTORY  
REV  
DATE  
03/17 Added UL-CSA File Number  
07/17 Changed MIN limit for t  
DESCRIPTION  
PAGE NUMBER  
A
1
6
2
B
(SPI and I C)  
PWU  
2887fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
37  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM2887  
TYPICAL APPLICATION  
Isolated Dual Channel Simultaneous Sampling Analog to Digital Converter, Input Range 0V to 2.5V  
LTM2887-3S  
B8  
A8  
L8  
K8  
L7  
K7  
L6  
K6  
V
3.3V  
V
V
CC2  
CC2  
CC2  
CC  
L
AV  
IV  
1µF  
1.15k  
IV  
L2  
L2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
B2  
V
ON  
V
CC  
AV  
SDOE  
CS  
L2  
19.1k  
6.04k  
L5  
L4  
L3  
L2  
L1  
K1  
K2  
LTC1407A  
CS2  
SDI2  
SCK2  
I2  
Ox  
10  
9
1
2
3
4
5
+
+
SDI  
CONV  
SCK  
CH0  
CH0  
CH0  
CH0  
µC  
SCK  
DO2  
SDO  
DO1  
GND  
SCK  
8
SDO  
V
REF  
+
7
+
SDO2  
I1  
V
CH1  
CH1  
CH1  
CH1  
MISO  
GND  
DD  
6
GND  
10µF  
10µF  
GND2  
2887 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM2881  
Isolated RS485/RS422 µModule Transceiver with 20Mbps 2500V  
Integrated DC/DC Converter  
Isolation with Power in LGA/BGA Package  
RMS  
LTM2882  
LTM2883  
Dual Isolated RS232 µModule Transceiver with  
Integrated DC/DC Converter  
2500V  
Isolation with Power in LGA/BGA Package  
RMS  
2
SPI/Digital or I C µModule Isolator with Integrated 2500V  
DC/DC Converter  
Isolation with Adjustable 12.5V and 5V Power in BGA Package  
RMS  
LTM2884  
LTM2886  
Isolated USB Transceiver with Power  
2500V  
Auto Speed Selection, 1 to 2.5W Isolated Power  
RMS  
2
SPI/Digital or I C µModule Isolator with Integrated 2500V  
Isolation with Fixed 5V and Adjustable 5V Power in BGA  
RMS  
DC/DC Converter  
Package  
LTM2889  
LTM2892  
LTC®1535  
LTC4310  
Isolated CAN FD µModule Transceiver with Power 4Mbps 2500V  
Isolation with Power in BGA Package  
RMS  
2
SPI/Digital or I C µModule Isolator  
Isolated RS485 Transceiver  
3500V  
2500V  
Isolation without Power in 9mm × 6.25mm BGA Package  
RMS  
RMS  
Isolation with External Transformer Drive  
2
2
Hot-Swappable I C Isolators  
Bidirectional I C Communication, Low Voltage Level Shifting, 100kHz or  
400kHz Operation  
LTC6803-1, LTC6803-3, Multicell Battery Stack Monitor  
LTC6803-2, LTC6803-4  
LTC6803-1 Allows for Multiple Devices to be Daisy Chained, the LTC6803-2  
Allows for Parallel Communication Battery Stack Topologies  
2887fb  
LT 0717 REV B • PRINTED IN USA  
www.linear.com/LTM2887  
38  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY