LTM4600HVEV#PBF [Linear]

LTM4600HV - 10A, 28VIN High Efficiency DC/DC µModule (Power Module); Package: LGA; Pins: 104; Temperature Range: -40°C to 85°C;
LTM4600HVEV#PBF
型号: LTM4600HVEV#PBF
厂家: Linear    Linear
描述:

LTM4600HV - 10A, 28VIN High Efficiency DC/DC µModule (Power Module); Package: LGA; Pins: 104; Temperature Range: -40°C to 85°C

文件: 总24页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4600  
10A High Efficiency  
DC/DC µModule  
U
DESCRIPTIO  
FEATURES  
TheLTM®4600isacomplete10A,DC/DCstepdownpower  
supply. Included in the package are the switching control-  
ler, power FETs, inductor, and all support components.  
Operating over an input voltage range of 4.5V to 20V, the  
LTM4600 supports an output voltage range of 0.6V to 5V,  
setbyasingleresistor. Thishighefficiencydesigndelivers  
10Acontinuouscurrent(14Apeak), needingnoheatsinks  
or airflow to meet power specifications. Only bulk input  
and output capacitors are needed to finish the design.  
Complete Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 20V  
10A DC, 14A Peak Output Current  
Parallel Two µModule™ DC/DC Converters for 20A  
Output Current  
0.6V to 5V Output Voltage  
1.5% Output Voltage Regulation  
Ultrafast Transient Response  
Current Mode Control  
Pb-Free (e4) RoHS Compliant Package with Gold-  
The low profile package (2.8mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and an  
adaptiveon-timecurrentmodearchitectureenablesavery  
fast transient response to line and load changes without  
sacrificing stability. Fault protection features include  
integrated overvoltage and short circuit protection with  
a defeatable shutdown timer. A built-in soft-start timer is  
adjustable with a small capacitor.  
Pad Finish  
Up to 92% Efficiency  
Programmable Soft-Start  
Output Overvoltage Protection  
Optional Short-Circuit Shutdown Timer  
Small Footprint, Low Profile (15mm × 15mm ×  
2.8mm) Surface Mount LGA Package  
U
APPLICATIO S  
TheLTM4600ispackagedinathermallyenhanced,compact  
(15mm × 15mm) and low profile (2.8mm) over-molded  
Land Grid Array (LGA) package suitable for automated  
assembly by standard surface mount equipment. The  
LTM4600 is Pb-free and RoHS compliant.  
Telecom and Networking Equipment  
Servers  
Industrial Equipment  
Point of Load Regulation  
, LTC, LT and LTM are registered trademarks of Linear Technology Corporation.  
µModule is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 5481178,  
6100678, 6580258, 5847554, 6304066.  
U
Efficiency vs Load Current  
with 12VIN (FCB = 0)  
TYPICAL APPLICATIO  
100  
90  
10A µModule Power Supply with 4.5V to 20V Input  
V
1.5V  
10A  
OUT  
80  
V
IN  
4.5V TO 20V  
V
V
IN  
OUT  
C
C
70  
IN  
OUT  
LTM4600  
60  
50  
V
OSET  
PGND SGND  
66.5k  
40  
30  
20  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
4600 TA01a  
2
4
8
0
10  
12  
6
LOAD CURRENT (A)  
4600 TA01b  
4600fa  
1
LTM4600  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
FCB, EXTV , PGOOD, RUN/SS, V .......... –0.3V to 6V  
CC  
OUT  
V , SV , f ............................................ –0.3V to 20V  
IN  
OSET  
IN ADJ  
COMP  
V
, COMP............................................. –0.3V to 2.7V  
V
IN  
SGND  
RUN/SS  
FCB  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –45°C to 125°C  
PGOOD  
PGND  
V
OUT  
LGA PACKAGE  
104-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W,  
JMAX  
JA JC  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
ORDER PART NUMBER  
LGA PART MARKING  
LTM4600EV#PBF  
LTM4600IV#PBF  
LTM4600EV  
LTM4600IV  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. External CIN = 120µF, COUT = 200µF/Ceramic per typical  
application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input DC Voltage  
Output Voltage  
4.5  
20  
V
IN(DC)  
V
FCB = 0V  
OUT(DC)  
V
= 5V or 12V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.470  
1.50  
1.50  
1.522  
1.530  
V
V
IN  
OUT  
Input Specifications  
V
Under Voltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.4  
4
V
IN(UVLO)  
OUT  
I
= 0A. V  
= 1.5V, FCB = 0  
OUT  
INRUSH(VIN)  
OUT  
V
= 5V  
= 12V  
0.6  
0.7  
A
A
IN  
IN  
V
I
Input Supply Bias Current  
I
= 0A, EXTV Open  
OUT CC  
Q(VIN)  
V
= 12V, V  
= 12V, V  
= 1.5V, FCB = 5V  
1.2  
42  
mA  
mA  
mA  
mA  
µA  
IN  
IN  
IN  
IN  
OUT  
OUT  
V
V
V
= 1.5V, FCB = 0V  
= 5V, V  
= 5V, V  
= 1.5V, FCB = 5V  
= 1.5V, FCB = 0V  
1.0  
52  
OUT  
OUT  
Shutdown, RUN = 0.8V, V = 12V  
35  
75  
IN  
I
Input Supply Current  
V
V
V
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 10A  
= 10A  
1.52  
3.13  
3.64  
A
A
A
S(VIN)  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 10A  
OUT  
OUT  
4600fa  
2
LTM4600  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Specifications  
I
Output Continuous Current Range  
V
IN  
= 12V, V = 1.5V  
OUT  
0
10  
A
OUTDC  
(See Output Current Derating Curves for  
Different V , V  
and T )  
A
IN OUT  
ΔV /ΔV  
Line Regulation Accuracy  
V
V
= 1.5V, I = 0A, FCB = 0V,  
OUT  
0.15  
0.3  
%
OUT  
IN  
OUT  
IN  
= 4.5V to 20V  
ΔV /ΔI  
OUT OUT  
Load Regulation Accuracy  
V
OUT  
= 1.5V, I = 0A to 10A, FCB = 0V  
OUT  
V
V
= 5V  
= 12V (Note 3)  
1
1.5  
%
%
IN  
IN  
V
Output Ripple Voltage  
Output Ripple Voltage Frequency  
Turn-On Time  
V
V
V
= 12V, V  
= 1.5V, I  
= 0A, FCB = 0V  
10  
15  
mV  
P-P  
OUT(AC)  
IN  
OUT  
OUT  
fs  
= 1.5V, I  
= 5A, FCB = 0V  
= 10A  
800  
kHz  
OUT  
OUT  
OUT  
t
= 1.5V, I  
IN  
IN  
START  
OUT  
V
= 12V  
= 5V  
0.5  
0.7  
ms  
ms  
V
ΔV  
OUTLS  
Voltage Drop for Dynamic Load Step  
V
C
= 1.5V, Load Step: 0A/µs to 5A/µs  
= 3 • 22µF 6.3V, 470µF 4V Pos Cap,  
36  
mV  
OUT  
OUT  
See Table 2  
t
I
Settling Time for Dynamic Load Step  
Output Current Limit  
Load: 10% to 90% to 10% of Full Load  
25  
µs  
SETTLE  
Output Voltage in Foldback  
OUTPK  
V
V
= 12V, V  
= 1.5V  
14  
14  
A
A
IN  
IN  
OUT  
= 5V, V  
= 1.5V  
OUT  
Control Stage  
V
Voltage at V  
Pin  
I
= 0A, V = 1.5V  
OUT  
0.591  
0.594  
0.6  
0.6  
0.609  
0.606  
V
V
OSET  
OSET  
OUT  
V
RUN ON/OFF Threshold  
0.8  
–0.5  
0.8  
1.5  
–1.2  
1.8  
2
–3  
3
V
µA  
RUN/SS  
I
I
Soft-Start Charging Current  
Soft-Start Discharging Current  
V
V
= 0V  
= 4V  
RUN(C)/SS  
RUN(D)/SS  
RUN/SS  
RUN/SS  
µA  
V
– SV  
EXTV = 0V, FCB = 0V  
100  
16  
mV  
mA  
IN  
IN  
CC  
I
Current into EXTV Pin  
EXTV = 5V, FCB = 0V, V  
= 1.5V,  
EXTVCC  
CC  
CC  
= 0A  
OUT  
I
OUT  
R
Resistor Between V  
and FB Pins  
OUT  
100  
0.6  
–1  
kΩ  
V
FBHI  
V
FCB  
Forced Continuous Threshold  
Forced Continuous Pin Current  
0.57  
0.63  
–2  
I
V
= 0.6V  
µA  
FCB  
FCB  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7.5  
10  
–10  
2
12.5  
%
%
%
V
OSETH  
OSET  
OSET  
Falling  
–7.5  
–12.5  
OSETL  
Returning  
OSET(HYS)  
OSET  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGL  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4600E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4600I is guaranteed and tested  
over the –40°C to 85°C temperature range.  
Note 3: Test assumes current derating verses temperature.  
4600fa  
3
LTM4600  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 17 for all curves)  
Efficiency vs Load Current  
with 18VIN (FCB = 0)  
Efficiency vs Load Current  
with 5VIN (FCB = 0)  
Efficiency vs Load Current  
with 12V
IN
(FCB = 0)  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
80  
70  
60  
50  
40  
30  
70  
60  
50  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
40  
30  
20  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
0.6V  
1.2V  
1.5V  
2.5V  
OUT  
OUT  
OUT  
OUT  
2
4
8
0
10  
12  
8
12  
2
4
8
6
0
2
4
6
10  
0
10  
12  
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4600 G03  
4600 G01  
4600 G02  
Efficiency vs Load Current  
with Different FCB Settings  
1.2V Transient Response  
1.5V Transient Response  
90  
80  
70  
60  
50  
40  
30  
20  
FCB > 0.7V  
V
= 50mV/DIV  
OUT  
FCB = GND  
I
= 5A/DIV  
OUT  
4600 G05  
4600 G06  
25µs/DIV  
1.2V AT 5A/µs LOAD STEP  
= 3 • 22µF 6.3V CERAMICS  
25µs/DIV  
V
V
= 12V  
OUT  
1.5V AT 5A/µs LOAD STEP  
OUT  
IN  
= 1.5V  
C
OUT  
C
= 3 • 22µF 6.3V CERAMICS  
470µF 4V SANYO POS CAP  
C3 = 100pF  
470µF 4V SANYO POS CAP  
C3 = 100pF  
0.1  
10  
1
LOAD CURRENT (A)  
4600 G04  
1.8V Transient Response  
2.5V Transient Response  
3.3V Transient Response  
4600 G07  
4600 G08  
4600 G09  
25µs/DIV  
25µs/DIV  
25µs/DIV  
1.8V AT 5A/µs LOAD STEP  
OUT  
2.5V AT 5A/µs LOAD STEP  
OUT  
3.3V AT 5A/µs LOAD STEP  
OUT  
C
= 3 • 22µF 6.3V CERAMICS  
470µF 4V SANYO POS CAP  
C3 = 100pF  
C
= 3 • 22µF 6.3V CERAMICS  
470µF 4V SANYO POS CAP  
C3 = 100pF  
C
= 3 • 22µF 6.3V CERAMICS  
470µF 4V SANYO POS CAP  
C3 = 100pF  
4600fa  
4
LTM4600  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 17 for all curves)  
Short-Circuit Protection,  
IOUT = 0A  
Start-Up, IOUT = 10A  
(Resistive Load)  
Start-Up, IOUT = 0A  
V
V
OUT  
(0.5V/DIV)  
OUT  
(0.5V/DIV)  
V
OUT  
(0.5V/DIV)  
I
I
IN  
IN  
I
IN  
(0.5A/DIV)  
(0.5A/DIV)  
(0.2A/DIV)  
4600 G11  
4600 G12  
4600 G10  
200µs/DIV  
20µs/DIV  
200µs/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
IN  
IN  
= 1.5V  
= 1.5V  
= 1.5V  
OUT  
OUT  
= 200µF  
= 2× 200µF/X5R  
NO EXTERNAL SOFT-START CAPACITOR  
= 200µF  
OUT  
OUT  
NO EXTERNAL SOFT-START CAPACITOR  
NO EXTERNAL SOFT-START CAPACITOR  
Short-Circuit Protection,  
I
OUT
= 10A  
VIN to VOUT Stepdown Ratio  
5.5  
f
= OPEN  
ADJ  
5V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
V
OUT  
(0.5V/DIV)  
I
3.3V  
IN  
(0.5A/DIV)  
2.5V  
1.8V  
4600 G13  
2.0  
1.5  
1.0  
0.5  
0
20µs/DIV  
1.5V  
V
V
C
= 12V  
IN  
= 1.5V  
OUT  
OUT  
1.2V  
= 2× 200µF/X5R  
NO EXTERNAL SOFT-START CAPACITOR  
0.6V  
10  
(V)  
20  
0
5
15  
V
IN  
SEE FREQUENCY ADJUSTMENT DISCUSSION  
FOR 12V TO 5V  
AND 5V TO 3.3V  
IN  
OUT  
IN OUT  
CONVERSION  
4600 G14  
4600fa  
5
LTM4600  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
V
(Bank 1): Power Input Pins. Apply input voltage  
SGND (Pin D23): Signal Ground Pin. All small-signal  
components should connect to this ground, which in turn  
connects to PGND at one point.  
IN  
between these pins and GND pins. Recommend placing  
input decoupling capacitance directly between V pins  
and GND pins.  
IN  
RUN/SS (Pin F23): Run and Soft-Start Control. Forcing  
this pin below 0.8V will shut down the power supply.  
Inside the power module, there is a 1000pF capacitor  
which provides approximately 0.7ms soft-start time with  
200µF output capacitance. Additional soft-start time can  
be achieved by adding additional capacitance between the  
RUN/SSandSGNDpins. Theinternalshort-circuitlatchoff  
can be disabled by adding a resistor between this pin and  
f
(Pin A15): A 110k resistor from V to this pin sets  
IN  
ADJ  
the one-shot timer current, thereby setting the switching  
frequency. The LTM4600 switching frequency is typically  
850kHz. An external resistor to ground can be selected to  
reducetheone-shottimercurrent,thuslowertheswitching  
frequency to accommodate a higher duty cycle step down  
requirement. See the applications section.  
the V pin. This pullup resistor must supply a minimum  
IN  
SV (PinA17):SupplyPinforInternalPWMController.Leave  
this pin open or add additional decoupling capacitance.  
IN  
5µA pull up current.  
FCB (Pin G23): Forced Continuous Input. Grounding this  
pin enables forced continuous mode operation regardless  
of load conditions. Tying this pin above 0.63V enables  
discontinuousconductionmodetoachievehighefficiency  
operation at light loads. There is an internal 4.75K resistor  
between the FCB and SGND pins.  
EXTV (Pin A19): External 5V supply pin for controller. If  
CC  
left open or grounded, the internal 5V linear regulator will  
power the controller and MOSFET drivers. For high input  
voltage applications, connecting this pin to an external  
5V will reduce the power loss in the power module. The  
EXTV voltage should never be higher than V .  
CC  
IN  
PGOOD (Pin J23): Output Voltage Power Good Indicator.  
When the output voltage is within 10% of the nominal  
voltage, the PWRGD is open drain output. Otherwise, this  
pin is pulled to ground.  
V
(Pin A21): The Negative Input of The Error Amplifier.  
OSET  
Internally,thispinisconnectedtoV witha100kprecision  
OUT  
resistor.Differentoutputvoltagescanbeprogrammedwith  
additional resistors between the V  
and SGND pins.  
OSET  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
COMP (Pin B23): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.8V corresponding to zero  
sense voltage (zero current).  
V
OUT  
(Bank 3): Power Output Pins. Apply output load  
between these pins and GND pins. Recommend placing  
High Frequency output decoupling capacitance directly  
between these pins and GND pins.  
TOP VIEW  
2
3
4
5
6
7
16  
17  
18  
19  
A
C
E
1
20  
21  
22  
23  
24  
B
D
F
COMP  
SGND  
RUN/SS  
FCB  
9
10  
14  
11  
15  
V
IN  
8
BANK 1  
13  
12  
25  
32  
G
J
26  
33  
27  
34  
28  
35  
29  
36  
30  
37  
31  
38  
H
K
PGOOD  
48  
59  
39  
50  
61  
40  
51  
62  
41  
52  
63  
42  
53  
64  
43  
54  
65  
44  
55  
66  
45  
56  
67  
46  
57  
68  
47  
58  
69  
49  
60  
71  
PGND  
BANK 2  
L
M
N
70  
73  
84  
95  
74  
85  
96  
75  
86  
97  
76  
87  
98  
77  
88  
99  
78  
89  
79  
90  
80  
91  
81  
92  
72  
83  
94  
82  
93  
P
R
T
V
OUT  
BANK 3  
100  
101  
102  
103  
104  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
4600 PN01  
4600fa  
6
LTM4600  
W
W
SI PLIFIED BLOCK DIAGRA  
SV  
IN  
RUN/SS  
LTM4600  
V
V
4.5V TO 20V  
IN  
1000pF  
C
1.5µF  
IN  
PGOOD  
Q1  
COMP  
FCB  
INT  
COMP  
1.5V/10A MAX  
OUT  
C
OUT  
4.75k  
15µF  
6.3V  
CONTROLLER  
f
ADJ  
PGND  
Q2  
10Ω  
SGND  
EXTV  
CC  
100k  
0.5%  
V
OSET  
R6  
66.5k  
4600 F01  
Figure 1. Simplified LTM4600 Block Diagram  
U
W U  
DECOUPLI G REQUIRE E TS  
TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 10A  
20  
µF  
IN  
OUT  
(V = 4.5V to 15V, V  
= 1.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 15V, V = 1.5V)  
I
= 10A, Refer to Table 2 in the  
100  
200  
µF  
OUT  
OUT  
Applications Information Section  
IN  
OUT  
4600fa  
7
LTM4600  
U
OPERATIO  
µModule Description  
10% window around the regulation point. Furthermore,  
in an overvoltage condition, internal top FET Q1 is turned  
off and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4600 is a standalone non-isolated synchronous  
switching DC/DC power supply. It can deliver up to 10A of  
DC output current with only bulk external input and output  
capacitors. This module provides a precisely regulated  
outputvoltageprogrammableviaoneexternalresistorfrom  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both Q1 and Q2. Releasing the  
pin allows an internal 1.2µA current source to charge up  
the softstart capacitor. When this voltage reaches 1.5V,  
the controller turns on and begins switching.  
0.6V to 5.0V , not to exceed 80% of the input voltage.  
DC  
DC  
The input voltage range is 4.5V to 20V. A simplified block  
diagram is shown in Figure 1 and the typical application  
schematic is shown in Figure 17.  
At low load current the module works in continuous cur-  
rent mode by default to achieve minimum output voltage  
ripple. It can be programmed to operate in discontinuous  
current mode for improved light load efficiency when the  
FCB pin is pulled up above 0.8V and no higher than 6V.  
The FCB pin has a 4.75k resistor to ground, so a resistor  
TheLTM4600containsanintegratedLTCconstanton-time  
current-mode regulator, ultra-low R  
FETs with fast  
DS(ON)  
switchingspeedandintegratedSchottkydiode.Thetypical  
switching frequency is 800kHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4600 module has sufficient stability margins and  
good transient performance under a wide range of operat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors (X5R or X7R).  
to V can set the voltage on the FCB pin.  
IN  
When EXTV pin is grounded or open, an integrated 5V  
CC  
linear regulator powers the controller and MOSFET gate  
drivers. If a minimum 4.7V external bias supply is ap-  
Current mode control provides cycle-by-cycle fast current  
limit.Inaddition,foldbackcurrentlimitingisprovidedinan  
over-currentconditionwhileV drops.Also,theLTM4600  
has defeatable short circuit latch off. Internal overvolt-  
age and undervoltage comparators pull the open-drain  
PGOOD output low if the output feedback voltage exits a  
plied on the EXTV pin, the internal regulator is turned  
CC  
off, and an internal switch connects EXTV to the gate  
CC  
driver voltage. This eliminates the linear regulator power  
FB  
loss with high input voltage, reducing the thermal stress  
on the controller. The maximum voltage on EXTV pin is  
CC  
6V. The EXTV voltage should never be higher than the  
CC  
V voltage. Also EXTV must be sequenced after V .  
IN  
CC  
IN  
4600fa  
8
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
The typical LTM4600 application circuit is shown in Figure  
17. External component selection is primarily determined  
by the maximum load current and output voltage.  
down when Q  
is on and Q is off. If the output  
UP  
DOWN  
voltage V needs to be margined up/down by M%, the  
O
resistor values of R and R  
the following equations:  
can be calculated from  
UP  
DOWN  
Output Voltage Programming and Margining  
(RSET RUP)•VO (1+ M%)  
(RSET RUP)+100kΩ  
The PWM controller of the LTM4600 has an internal  
0.6V 1%referencevoltage.Asshownintheblockdiagram,  
= 0.6V  
a100k/0.5%internalfeedbackresistorconnectsV  
and  
OUT  
pin to SGND  
RSET VO (1M%)  
RSET + (100kRDOWN  
FB pins. Adding a resistor R from V  
SET  
OSET  
= 0.6V  
)
pin programs the output voltage:  
100k +RSET  
VO = 0.6V •  
Input Capacitors  
RSET  
The LTM4600 µModule should be connected to a low  
ac-impedance DC source. High frequency, low ESR input  
capacitors are required to be placed adjacent to the mod-  
Table 1 shows the standard vaules of 1% R  
for typical output voltages:  
Table 1.  
resistor  
SET  
ule. In Figure 20, the bulk input capacitor C is selected  
IN  
for its ability to handle the large RMS current into the  
converter. For a buck converter, the switching duty-cycle  
can be estimated as:  
R
SET  
Open 100  
0.6 1.2  
66.5  
1.5  
49.9  
1.8  
43.2  
2
31.6  
2.5  
22.1  
3.3  
13.7  
5
(kΩ)  
V
(V)  
O
VO  
V
IN  
Voltagemarginingisthedynamicadjustmentoftheoutput  
voltage to its worst case operating range in production  
testing to stress the load circuitry, verify control/protec-  
tion functionality of the board and improve the system  
reliability. Figure 2 shows how to implement margining  
function with the LTM4600. In addition to the feedback  
D =  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IO(MAX)  
η%  
ICIN(RMS)  
=
D(1D)  
resistor R , several external components are added.  
SET  
Turn off both transistor Q and Q  
margining. When Q is on and Q  
voltage is margined up. The output voltage is margined  
to disable the  
UP  
DOWN  
In the above equation, η% is the estimated efficiency of  
the power module. C1 can be a switcher-rated electrolytic  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitors. Note the capacitor ripple current  
ratings are often based on only 2000 hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
is off, the output  
UP  
DOWN  
V
OUT  
LTM4600  
R
R
DOWN  
Q
100k  
DOWN  
2N7002  
V
OSET  
PGND  
SGND  
R
SET  
UP  
In Figure 16, the input capacitors are used as high fre-  
quency input decoupling capacitors. In a typical 10A  
output application, 1-2 pieces of very low ESR X5R or  
X7R, 10µF ceramic capacitors are recommended. This  
decoupling capacitor should be placed directly adjacent  
Q
UP  
2N7002  
4600 F02  
Figure 2.  
4600fa  
9
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
the module input pins in the PCB layout to minimize the  
trace inductance and high frequency AC noise.  
Soft-Start and Latchoff with the RUN/SS pin  
The RUN/SS pin provides a means to shut down the  
LTM4600 as well as a timer for soft-start and over-cur-  
rent latchoff. Pulling the RUN/SS pin below 0.8V puts  
Output Capacitors  
The LTM4600 is designed for low output voltage ripple.  
the LTM4600 into a low quiescent current shutdown (I  
Q
ThebulkoutputcapacitorsC ischosenwithlowenough  
≤ 75µA). Releasing the pin allows an internal 1.2µA cur-  
rent source to charge up the timing capacitor CSS. Inside  
LTM4600, there is an internal 1000pF capacitor from  
RUN/SS pin to ground. If RUN/SS pin has an external  
capacitor CSS_EXT to ground, the delay before starting  
is about:  
OUT  
effectiveseriesresistance(ESR)tomeettheoutputvoltage  
ripple and transient requirements. C  
can be low ESR  
OUT  
tantalumcapacitor, lowESRpolymercapacitororceramic  
capacitor (X5R or X7R). The typical capacitance is 200µF  
if all ceramic output capacitors are used. The internally  
optimized loop compensation provides sufficient stability  
margin for all ceramic capacitors applications. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spike is required. Refer to Table 2 for an output capaci-  
tance matrix for each output voltage Droop, peak to peak  
deviation and recovery time during a 5A/µs transient with  
a specific output capacitance.  
1.5V  
1.2µA  
tDELAY  
=
(CSS_EXT +1000pF)  
When the voltage on RUN/SS pin reaches 1.5V, the  
LTM4600 internal switches are operating with a clamping  
of the maximum output inductor current limited by the  
RUN/SSpintotalsoft-startcapacitance.AstheRUN/SSpin  
voltage rises to 3V, the soft-start clamping of the inductor  
current is released.  
Fault Conditions: Current Limit and Over current  
Foldback  
V to V  
Stepdown Ratios  
IN  
OUT  
The LTM4600 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only in  
steady state operation, but also in transient.  
There are restrictions in the maximum V to V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
These contraints are shown in the Typical Performance  
To further limit current in the event of an over load condi-  
tion,theLTM4600providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
Characteristics curves labeled “V to V  
Stepdown  
IN  
OUT  
Ratio”. Note that additional thermal de-rating may apply.  
See the Thermal Considerations and Output Current De-  
Rating sections of this data sheet.  
4600fa  
10  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 2. Output Voltage Response Verses Component Matrix (Refer to Figure 17)  
TYPICAL MEASURED VALUES  
C
OUT1  
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
TDK  
C4532X5R0J107MZ (100UF,6.3V)  
JMK432BJ107MU-T ( 100µF, 6.3V)  
JMK316BJ226ML-T501 ( 22µF, 6.3V)  
SANYO POS CAP  
SANYO POS CAP  
SANYO POS CAP  
6TPE330MIL (330µF, 6.3V)  
2R5TPE470M9 (470µF, 2.5V)  
4TPE470MCL (470µF, 4V)  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
C
C3  
V
IN  
(V)  
DROOP  
(mV)  
PEAK TO PEAK  
RECOVERY TIME  
(µs)  
LOAD STEP  
(A/µs)  
OUT  
IN  
IN  
OUT1  
OUT2  
COMP  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
(BULK)  
(CERAMIC)  
(BULK)  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
(mV)  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
3 × 22µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
2 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
4 × 100µF 6.3V  
4 × 100µF 6.3V  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
35  
35  
40  
49  
35  
35  
40  
49  
36  
37  
44  
61  
36  
37  
44  
54  
40  
44  
46  
62  
40  
44  
44  
62  
48  
56  
57  
60  
48  
51  
56  
70  
64  
66  
82  
100  
52  
64  
64  
76  
188  
159  
68  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
30  
20  
20  
20  
30  
20  
20  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
35  
25  
30  
35  
30  
25  
25  
25  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
70  
5
80  
5
98  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
68  
70  
80  
98  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
75  
5
79  
5
84  
5
118  
75  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
79  
89  
108  
81  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
5
88  
5
91  
5
128  
81  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
85  
91  
125  
103  
113  
116  
115  
103  
102  
113  
159  
126  
132  
166  
200  
106  
129  
126  
144  
375  
320  
470µF 4V  
330µF 6.3V  
470µF 4V  
NONE  
5
5
5
470µF 4V  
470µF 4V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
7
330µF 6.3V  
470µF 4V  
470µF 4V  
NONE  
7
7
7
470µF 4V  
470µF 4V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
NONE  
5
NONE  
4600fa  
11  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
After the controller has been started and given adequate  
time to charge up the output capacitor, CSS is used as a  
short-circuittimer.AftertheRUN/SSpinchargesabove4V,  
if the output voltage falls below 75% of its regulated value,  
then a short-circuit fault is assumed. A 1.8µA current then  
beginsdischargingCSS.Ifthefaultconditionpersistsuntil  
the RUN/SS pin drops to 3.5V, then the controller turns  
off both power MOSFETs, shuting down the converter  
permanently. The RUN/SS pin must be actively pulled  
down to ground in order to restart operation.  
to defeat latchoff. Any pull-up network must be able to  
maintain RUN/SS above 4V maximum latchoff threshold  
andovercomethe4µAmaximumdischargecurrent.Figure  
3 shows a conceptual drawing of V  
short circuit.  
during startup and  
RUN  
V
RUN/SS  
4V  
3.5V  
3V  
1.5V  
The over-current protection timer requires the soft-start  
timing capacitor CSS be made large enough to guarantee  
thattheoutputisinregulationbythetimeCSShasreached  
the 4V threshold. In general, this will depends upon the  
size of the output capacitance, output voltage and load  
current characteristic. A minimum external soft-start  
capacitor can be estimated from:  
SHORT-CIRCUIT  
LATCH ARMED  
t
SHORT-CIRCUIT  
LATCHOFF  
SOFT-START  
OUTPUT  
OVERLOAD  
HAPPENS  
CLAMPING  
OF I RELEASED  
L
V
O
75%V  
O
CSS_EXT +1000pF > COUT VOUT (103[F /VS])  
t
SWITCHING  
STARTS  
4600 F03  
Generally 0.1µF is more than sufficient.  
Figure 3. RUN/SS Pin Voltage During Startup and  
Short-Circuit Protection  
Since the load current is already limited by the current  
mode control and current foldback circuitry during a  
shortcircuit,over-currentlatchoffoperationisNOTalways  
needed or desired, especially the output has large amount  
of capacitance or the load draw huge current during start  
up. The latchoff feature can be overridden by a pull-up  
currentgreaterthan5µAbutlessthan8AtotheRUN/SS  
pin. The additional current prevents the discharge of CSS  
during a fault and also shortens the soft-start period. Us-  
V
V
IN  
IN  
500k  
LTM4600  
RUN/SS  
PGND SGND  
4600 F04  
Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up  
Resistor to VIN  
ing a resistor from RUN/SS pin to V is a simple solution  
IN  
4600fa  
12  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
Enable  
cident, ratiometric and offset tracking for V rising and  
falling can be implemented with different sets of resistor  
values. See the LTC2923 data sheet for more details.  
O
The RUN/SS pin can be driven from logic as shown in  
Figure 5. This function allows the LTM4600 to be turned  
on or off remotely. The ON signal can also control the  
sequence of the output voltage.  
EXTV Connection  
CC  
An internal low dropout regulator produces an internal 5V  
supply that powers the control circuitry and FET drivers.  
Therefore, if the system does not have a 5V power rail,  
RUN/SS  
LTM4600  
ON  
the LTM4600 can be directly powered by V . The gate  
IN  
driver current through LDO is about 18mA. The internal  
PGND SGND  
LDO power dissipation can be calculated as:  
2N7002  
4600 F05  
P
= 18mA • (V – 5V)  
IN  
LDO_LOSS  
Figure 5. Enable Circuit with External Logic  
The LTM4600 also provides an external gate driver volt-  
age pin EXTV . If there is a 5V rail in the system, it is  
CC  
Output Voltage Tracking  
recommended to connect EXTV pin to the external 5V  
CC  
For the applications that require output voltage tracking,  
several LTM4600 modules can be programmed by the  
power supply tracking controller such as the LTC2923.  
Figure 6 shows a typical schematic with LTC2923. Coin-  
rail. Whenever the EXTV pin is above 4.7V, the internal  
CC  
5V LDO is shut off and an internal 50mA P-channel switch  
connectstheEXTV tointernal5V. Internal5Vissupplied  
CC  
from EXTV until this pin drops below 4.5V. Do not apply  
CC  
more than 6V to the EXTV pin and ensure that EXTV  
CC  
CC  
Q1  
V
IN  
DC/DC  
3.3V  
< V . The following list summaries the possible connec-  
IN  
5V  
tions for EXTV :  
CC  
V
V
IN  
1. EXTV grounded. Internal 5V LDO is always powered  
CC  
IN  
from the internal 5V regulator.  
R
V
GATE  
RAMP  
FB1  
ONB  
CC  
LTM4600  
V
V
1.8V  
ON  
OSET  
OUT  
2. EXTV connected to an external supply. Internal LDO  
CC  
R
ONA  
49.9k  
LTC2923  
is shut off. A high efficiency supply compatible with the  
MOSFET gate drive requirements (typically 5V) can im-  
prove overall efficiency. With this connection, it is always  
STATUS  
SDO  
RAMPBUF  
TRACK1  
TRACK2  
V
V
IN  
R
R
TB1  
TA1  
required that the EXTV voltage can not be higher than  
IN  
CC  
R
TB2  
LTM4600  
V
V pin voltage.  
IN  
V
FB2  
1.5V  
OSET  
OUT  
GND  
R
66.5k  
TA2  
Discontinuous Operation and FCB Pin  
4600 F06  
The FCB pin determines whether the internal bottom  
MOSFET remains on when the inductor current reverses.  
Thereisaninternal4.75kpullingdownresistorconnecting  
this pin to ground. The default light load operation mode  
is forced continuous (PWM) current mode. This mode  
provides minimum output voltage ripple.  
Figure 6. Output Voltage Tracking with the LTC2923 Controller  
4600fa  
13  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
In the application where the light load efficiency is im-  
portant, tying the FCB pin above 0.6V threshold enables  
discontinuous operation where the bottom MOSFET turns  
offwheninductorcurrentreverses.Therefore,theconduc-  
tion loss is minimized and light load efficient is improved.  
The penalty is that the controller may skip cycle and the  
output voltage ripple increases at light load.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 8 and 13 can be used  
in coordination with the load current derating curves in  
Figures 9 to 12, and Figures 14 to 15 for calculating an  
approximate θ for the module with various heatsink-  
JA  
ing methods. Thermal models are derived from several  
temperature measurements at the bench, and thermal  
modelinganalysis.ApplicationNote103providesadetailed  
explanationoftheanalysisforthethermalmodels, andthe  
derating curves. Tables 3 and 4 provide a summary of the  
Paralleling Operation with Load Sharing  
TwoormoreLTM4600modulescanbeparalleledtoprovide  
higher than 10A output current. Figure 7 shows the neces-  
saryinterconnectionbetweentwoparalleledmodules.The  
OPTI-LOOP™ current mode control ensures good current  
sharing among modules to balance the thermal stress.  
The new feedback equation for two or more LTM4600s  
in parallel is:  
equivalent θ for the noted conditions. These equivalent  
JA  
θ
JA  
parameters are correlated to the measure values, and  
improvedwithair-flow.Thecasetemperatureismaintained  
at 100°C or below for the derating curves. This allows for  
4W maximum power dissipation in the total module with  
top and bottom heatsinking, and 2W power dissipation  
through the top of the module with an approximate θ  
JC  
100k  
between 6°C/W to 9°C/W. This equates to a total of 124°C  
+RSET  
N
VOUT = 0.6V •  
at the junction of the device.  
RSET  
Safety Considerations  
where N is the number of LTM4600s in parallel.  
TheLTM4600modulesdonotprovideisolationfromV to  
OUT  
with a rating twice the maximum input current should be  
provided to protect each unit from catastrophic failure.  
IN  
V
V
V
V
OUT  
IN  
IN  
OUT  
V
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
(20A  
)
MAX  
LTM4600  
PGND COMP  
V
SGND  
OSET  
R
SET  
COMP  
V
SGND  
OSET  
V
LTM4600  
V
OUT  
IN  
PGND  
4600 F07  
Figure 7. Parallel Two µModules with Load Sharing  
OPTI-LOOP is a trademark of Linear Technology Corporation.  
4600fa  
14  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
9
10  
9
V
= 1.5V  
V
V
= 5V  
V
V
= 5V  
OUT  
IN  
O
IN  
O
= 1.5V  
= 1.5V  
8
8
7
7
12V LOSS  
6
6
5V LOSS  
5
0 LFM  
200 LFM  
400 LFM  
5
0 LFM  
200 LFM  
400 LFM  
4
4
0
2
4
6
8
10  
50  
60  
70  
80  
90  
50  
60  
70  
80  
90  
100  
OUTPUT CURRENT (A)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4600 F08  
4600 F09  
4600 F10  
Figure 8. Power Loss vs Load Current  
Figure 9. No Heatsink  
Figure 10. BGA Heatsink  
10  
10  
9
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 12V  
OUT  
V
V
= 12V  
V
= 12V  
IN  
IN  
O
IN  
O
= 3.3V  
= 1.5V  
V
= 1.5V  
9
8
7
6
5
4
8
7
6
5
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
4
3
0
2
4
6
8
10  
50 55 60 65 70 75 80 85 90  
AMBIENT TEMPERATURE (°C)  
4600 F11  
50  
60  
70  
80  
90  
100  
OUTPUT CURRENT (A)  
AMBIENT TEMPERATURE (°C)  
4600 F13  
4600 F12  
Figure 11. No Heatsink  
Figure 12. BGA Heatsink  
Figure 13. Power Loss vs Load Current  
10  
9
10  
V
V
= 12V  
= 3.3V  
V
V
= 12V  
= 3.3V  
IN  
O
IN  
O
9
8
7
6
5
4
8
7
6
5
4
3
2
0 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
1
400 LFM  
0
40  
50  
60  
70  
80  
90  
40  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4600 F14  
4600 F15  
Figure 14. No Heatsink  
Figure 15. BGA Heatsink  
4600fa  
15  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 3. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
15.2  
14  
Figures 9, 11  
Figure 8  
200  
400  
0
None  
Figures 9, 11  
Figure 8  
None  
12  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
Figure 8  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
13.9  
11.3  
10.25  
Figure 8  
200  
400  
Figure 8  
Table 4. 3.3V Output  
DERATING CURVE  
Figure 14  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 13  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
JA  
(°C/W)  
12  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figure 14  
12  
12  
12  
12  
12  
Figure 13  
200  
400  
0
None  
Figure 14  
Figure 13  
None  
Figure 15  
Figure 13  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
Figure 15  
Figure 13  
200  
400  
Figure 15  
Figure 13  
4600fa  
16  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
Layout Checklist/Example  
Frequency Adjustment  
The LTM4600 is designed to typically operate at 800kHz  
across most input and output conditions. The f pin is  
The high integration of the LTM4600 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
ADJ  
typically left open or decoupled with an optional 1000pf  
capacitor. Theswitchingfrequencyhasbeenoptimizedfor  
maintainingconstantoutputripplenoiseovertheoperating  
ranges.Theswitchingfrequencywillincreaseuptotypically  
1.2MHz for 5V and 3.3V outputs to limit increase output  
ripple noise. The switching frequency can be adjusted  
lower to accommodate high duty cycle requirements like  
5V to 3.3V, and 12V to 5V. There are limitations to input  
voltage range for the higher duty cycle designs that limit  
the internal inductor ripple current so that the inductor will  
not saturate at higher load current. Examples:  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise  
• Place a dedicated power ground layer underneath  
the unit  
LTM4600 minimum on-time = 100ns  
LTM4600 minimum off-time = 400ns  
Equations for setting frequency:  
• To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers  
• Do not put via directly on pad  
I
= V – 0.7V/110k; for 12V input, I = 103µA  
IN ON  
ON  
• Use a separated SGND ground copper area for compo-  
nents connected to signal pins. Connect the SGND to  
PGND underneath the unit  
frequency = (I /[2.4V • 10pF]) • DC; DC = duty cycle,  
ON  
duty cycle is (V /V )  
OUT IN  
t = t + t , t = on-time, t = off-time of the  
OFF  
ON  
OFF ON  
Figure 16 gives a good example of the recommended  
layout.  
switching period; t = 1/frequency  
t
must be greater than 400ns, or t – t > 400ns.  
OFF  
ON  
V
SGND  
IN  
t
= DC • t  
ON  
1MHz frequency or 1µs period is chosen for 12V to 5V.  
t
t
= 0.41 • 1µs 410ns  
ON  
C
IN  
= 1µs – 410ns 590ns  
OFF  
t
and t are above the minimums with adquate guard  
OFF  
ON  
band.  
PGND  
Using the frequency = (I /[2.4V • 10pF]) • DC, solve for  
ON  
I
= (1MHz • 2.4V • 10pF) • (1/0.41) 58µA. I current  
ON  
ON  
calculated from 12V input was 103µA, so a resistor from  
V
OUT  
f
to ground = (0.7V/15k) = 46µA. 103µA – 46µA =  
ADJ  
57µA, sets the adequate I current for proper frequency  
LOAD  
ON  
range for the higher duty cycle conversion of 12V to  
TOP LAYER  
4600 F16  
5V. Input voltage range is limited to 9V to 16V. Higher  
Figure 16. Recommended PCB Layout  
input voltages can be used without the 15k on f . The  
ADJ  
4600fa  
17  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
inductor ripple current gets too high above 16V, and the  
t
= 2µs – 1.32ns 760ns  
OFF  
400ns minimum off-time is limited below 9V.  
t
and t are above the minimums with adquate guard  
OFF  
ON  
band.  
Equations for setting frequency:  
I
= V – 0.7V/110k; for 5V input, I = 39µA  
IN ON  
Using the frequency = (I /[2.4V • 10pF]) • DC, solve for  
ON  
ON  
I
= (450kHz • 2.4V • 10pF) • (1/0.66) 16µA. I current  
ON  
ON  
frequency = (I /[2.4V • 10pF]) • DC; DC = duty cycle,  
duty cycle is (V /V )  
ON  
OUT IN  
calculated from5V input was39µA, so a resistorfrom f  
ADJ  
to ground = (0.7V/30.1k) = 23µA. 39µA – 23µA = 16µA,  
t = t + t , t = on-time, t = off-time of the  
OFF  
switching period; t = 1/frequency  
sets the adequate I current for proper frequency range  
ON  
OFF ON  
ON  
for the higher duty cycle conversion of 5V to 3.3V. Input  
voltagerangeislimitedto4.5Vto7V.Higherinputvoltages  
t
must be greater than 400ns, or t – t > 400ns.  
ON  
OFF  
can be used without the 30.1k on f . The inductor ripple  
ADJ  
t
= DC • t  
ON  
current gets too high above 7V, and the 400ns minimum  
off-time is limited below 4.5V.  
~450kHz frequency or 2.22µs period is chosen for 5V to  
3.3V. Frequency range is about 450kHz to 650kHz from  
4.5V to 7V input.  
t
= 0.66 • 2.22µs 1.46ns  
ON  
5V to 3.3V at 8A  
R1  
30.1k  
4.5V TO 7V  
C5  
100pF  
C3  
10µF  
25V  
C1  
10µF  
25V  
V
f
ADJ  
IN  
3.3V AT 8A EFFICIENCY = 93%  
EXTV  
FCB  
V
CC  
OUT  
+
C2  
22µF  
C4  
330µF  
6.3V  
V
OSET  
R2  
22.1k  
1%  
LTM4600EV  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4600 F18  
5V TO 3.3V AT 8A WITH f  
= 30.1k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POS CAP, 6TPE330MIL  
ADJ  
12V to 5V at 8A  
R1  
15k  
9V TO 16V  
C5  
100pF  
C3  
10µF  
25V  
C1  
10µF  
25V  
V
f
ADJ  
IN  
5V AT 8A  
EFFICIENCY = 93%  
EXTV  
CC  
V
OUT  
+
C2  
22µF  
C4  
330µF  
6.3V  
FCB  
V
OSET  
R2  
13.7k  
1%  
LTM4600EV  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4600 F19  
12V TO 5V AT 8A WITH f  
= 15k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POS CAP, 6TPE330MIL  
ADJ  
4600fa  
18  
LTM4600  
U
W U U  
APPLICATIO S I FOR ATIO  
VIN to VOUT Stepdown Ratio for 12VIN  
to 5VOUT and 5VIN to 3.3VOUT  
5.0  
3.3V: f  
= 30.1k  
ADJ  
4.5 5V: f  
= 15k  
ADJ  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V AT 8A  
5V AT 8A  
0.5  
0
1
3
5
7
9
11 13 15 17  
V
(V)  
IN  
4600 F20  
U
TYPICAL APPLICATIO  
V
IN  
+
C
(BULK)  
C
(CER)  
IN  
IN  
5V TO 20V  
GND  
150µF  
10µF  
V
IN  
2x  
(MULTIPLE PINS)  
EXTV  
V
V
OUT  
CC  
OUT  
(MULTIPLE PINS)  
C3  
100pF  
SV  
IN  
C
+
OUT1  
C
OUT2  
22µF  
6.3V  
×3  
f
ADJ  
470µF  
V
REFER TO  
TABLE 2  
V
OSET  
OUT  
LTM4600  
COMP  
FCB  
REFER TO  
TABLE 2  
RUN/SS  
PGOOD  
0.6V TO 5V  
SGND  
REFER TO STEP DOWN  
RATIO GRAPH  
PGND  
(MULTIPLE PINS)  
C4  
OPT  
R1  
66.5k  
REFER TO  
TABLE 1  
GND  
4600 F17  
Figure 17. Typical Application, 5V to 20V Input, 0.6V to 5V Output, 10A Max  
4600fa  
19  
LTM4600  
U
TYPICAL APPLICATIO  
Parallel Operation and Load Sharing  
4.5V TO 20V  
V
= 0.6V • ([100k/N] + R )/R  
SET SET  
OUT  
WHERE N = 2  
C8  
10µF  
25V  
C7  
10µF  
25V  
V
f
ADJ  
IN  
2.5V  
EXTV  
FCB  
V
CC  
OUT  
+
C9  
C10  
470µF  
4V  
V
22µF  
OSET  
x3  
LTM4600  
R4  
15.8k  
1%  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
SGND  
2.5V AT 20A  
RUN/SOFT-START  
C4  
220pF  
C3  
10µF  
25V  
C1  
10µF  
V
f
ADJ  
IN  
25V  
2.5V  
R1  
EXTV  
V
CC  
OUT  
+
C2  
22µF  
x3  
C5  
470µF  
4V  
FCB  
V
OSET  
LTM4600  
RUN  
SV  
IN  
100k  
COMP  
PGOOD  
PGND  
SGND  
C1, C3, C7, C8: TDK C3216X5R1E106MT  
C2, C9: TAIYO YUDEN, JMK316BJ226ML-T501  
C5, C10: SANYO POS CAP, 4TPE470MCL  
4600 TA02  
Current Sharing Between Two  
LTM4600 Modules  
12  
10  
8
12V  
IN  
OUT  
MAX  
2.5V  
20A  
I
OUT2  
I
OUT1  
6
4
2
0
0
10  
15  
20  
25  
5
TOTAL LOAD  
4600 TA03  
4600fa  
20  
LTM4600  
U
PACKAGE DESCRIPTIO  
Z
b b b  
Z
6 . 9 8 6 5  
5 . 7 1 4 2  
6 . 3 5 0 0  
3 . 8 1 0 0  
1 . 2 7 0 0  
5 . 0 8 0 0  
4 . 4 4 4 2  
3 . 1 7 4 2  
1 . 9 0 4 2  
2 . 5 4 0 0  
0 . 0 0 0 0  
0 . 6 3 4 2  
0 . 0 0 0 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
0 . 6 3 5 8  
1 . 2 7 0 0  
3 . 8 1 0 0  
6 . 3 5 0 0  
1 . 9 0 5 8  
3 . 1 7 5 8  
2 . 5 4 0 0  
5 . 0 8 0 0  
4 . 4 4 5 8  
5 . 7 1 5 8  
6 . 9 4 2 1  
4600fa  
21  
LTM4600  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
-
B1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C1  
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
D1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
F1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G1 PGND  
H1  
-
-
-
-
-
-
IN  
IN  
IN  
A2  
-
B2  
C2  
D2  
E2  
F2  
G2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H2  
H3  
H4  
H5  
H6  
A3  
V
-
B3  
C3  
D3  
E3  
F3  
G3  
IN  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
A5  
V
-
B5  
C5  
D5  
E5  
F5  
G5  
IN  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
A7  
V
-
B7  
C7  
D7  
E7  
F7  
G7  
H7 PGND  
H8  
H9 PGND  
H10  
H11 PGND  
H12  
H13 PGND  
H14  
H15 PGND  
H16  
H17 PGND  
IN  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
-
A9  
V
-
B9  
C9  
D9  
E9  
F9  
G9  
IN  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
-
IN  
IN  
IN  
IN  
IN  
IN  
V
-
IN  
-
V
-
IN  
-
f
ADJ  
-
-
A17 SV  
IN  
A18  
-
H18  
H19  
H20  
H21  
H22  
H23  
-
-
-
-
-
-
A19 EXTV  
CC  
A20  
A21  
A22  
A23  
-
V
-
OSET  
-
B23 COMP  
D23 SGND  
F23 RUN/SS G23 FCB  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME PIN NAME  
PIN NAME  
J1 PGND  
K1  
K2  
K3  
K4  
K5  
K6  
-
-
-
-
-
-
L1  
-
M1  
M2 PGND  
M3  
M4 PGND  
M5  
M6 PGND  
M7  
M8 PGND  
M9  
-
N1  
-
P1  
-
R1  
-
T1  
-
J2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L2 PGND  
N2 PGND  
P2  
V
-
R2  
V
-
T2  
V
-
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
J3  
L3  
L4 PGND  
L5  
L6 PGND  
L7  
L8 PGND  
L9  
L10 PGND  
L11  
L12 PGND  
L13  
L14 PGND  
L15  
L16 PGND  
L17  
L18 PGND  
L19  
L20 PGND  
L21  
L22 PGND  
L23  
-
-
N3  
N4 PGND  
N5  
N6 PGND  
N7  
N8 PGND  
N9  
N10 PGND  
N11  
N12 PGND  
N13  
N14 PGND  
N15  
N16 PGND  
N17  
N18 PGND  
N19  
N20 PGND  
N21  
N22 PGND  
N23  
-
P3  
R3  
T3  
J4  
P4  
V
-
R4  
V
-
T4  
V
-
J5  
-
-
-
P5  
R5  
T5  
J6  
P6  
V
-
R6  
V
-
T6  
V
-
J7  
K7 PGND  
K8  
-
-
-
P7  
R7  
T7  
J8  
P8  
V
-
R8  
V
-
T8  
V
-
J9  
K9 PGND  
K10  
-
-
-
P9  
R9  
T9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
M10 PGND  
M11 -  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
V
-
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
V
-
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
V
-
K11 PGND  
-
-
K12  
K13 PGND  
K14  
K15 PGND  
K16  
K17 PGND  
-
M12 PGND  
M13 -  
V
-
V
-
V
-
-
-
-
M14 PGND  
M15 -  
V
-
V
-
V
-
-
-
-
M16 PGND  
M17 -  
V
-
V
-
V
-
-
-
K18  
K19  
K20  
K21  
K22  
-
-
-
-
-
-
M18 PGND  
M19 -  
V
-
V
-
V
-
-
-
M20 PGND  
M21 -  
V
-
V
-
V
-
-
-
M22 PGND  
M23 -  
V
-
V
-
V
-
J23 PGOOD K23  
-
-
4600fa  
22  
LTM4600  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
G1  
PGND  
P2  
V
A3  
V
V
V
V
V
V
A15  
A17  
A19  
A21  
B23  
D23  
F23  
G23  
J23  
f
ADJ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
P4  
V
V
V
V
V
V
V
V
V
V
A5  
H7  
H9  
H11  
H13  
H15  
H17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SV  
IN  
P6  
P8  
A7  
A9  
A11  
A13  
EXTV  
V
CC  
P10  
P12  
P14  
P16  
P18  
P20  
P22  
OSET  
COMP  
B1  
V
IN  
SGND  
RUN/SS  
FCB  
J1  
PGND  
C10  
C12  
C14  
V
IN  
V
IN  
V
IN  
K7  
K9  
K11  
K13  
K15  
K17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
D1  
V
R2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
IN  
PGOOD  
R4  
E10  
E12  
E14  
V
IN  
V
IN  
V
IN  
R6  
R8  
R10  
R12  
R14  
R16  
R18  
R20  
R22  
L2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
F1  
V
IN  
L4  
L6  
L8  
L10  
L12  
L14  
L16  
L18  
L20  
L22  
T2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
T4  
T6  
T8  
T10  
T12  
T14  
T16  
T18  
T20  
T22  
M2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
M4  
M6  
M8  
M10  
M12  
M14  
M16  
M18  
M20  
M22  
N2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
N4  
N6  
N8  
N10  
N12  
N14  
N16  
N18  
N20  
N22  
4600fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4600  
U
TYPICAL APPLICATIO  
1.8V, 10A Regulator  
4.5V AT 20V  
C5  
100pF  
C2  
10µF  
25V  
C1  
10µF  
25V  
V
f
ADJ  
IN  
1.8V AT 10A  
EXTV  
FCB  
V
CC  
OUT  
+
C3  
22µF  
x3  
C4  
470µF  
4V  
V
OSET  
R1  
100k  
LTM4600  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
PGOOD  
R2  
49.9k  
1%  
SGND  
C1, C2: TDK C3216X5R1E106MT  
C3: TAIYO YUDEN, JMK316BJ226ML-T501  
C4: SANYO POS CAP, 4TPE470MCL  
4600 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable  
Reset Timer  
Monitors Four Supplies; Adjustable Reset Timer  
LTC2923  
Power Supply Tracking Controller  
Tracks Both Up and Down; Power Supply Sequencing  
LT3825/LT3837  
Synchronous Isolated Flyback  
Controllers  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4600fa  
LT 0206 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4600HVEV-PBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVEV-TRPBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVIV

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVIV#PBF

LTM4600HV - 10A, 28VIN High Efficiency DC/DC &#181;Module (Power Module); Package: LGA; Pins: 104; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4600HVIV-PBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVIV-TRPBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVMP

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization
Linear

LTM4600HVMPV

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVMPV#PBF

LTM4600HV - 10A, 28VIN High Efficiency DC/DC &#181;Module (Power Module); Package: LGA; Pins: 104; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4600HVMPV-PBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVMPV-TRPBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600IV

10A High Effi ciency DC/DC レModule
Linear