LTM4601A-1 [Linear]

12A DC/DC μModules with PLL, Output Tracking and Margining; 12A DC / DC与PLL ,输出跟踪和裕度μModules
LTM4601A-1
型号: LTM4601A-1
厂家: Linear    Linear
描述:

12A DC/DC μModules with PLL, Output Tracking and Margining
12A DC / DC与PLL ,输出跟踪和裕度μModules

文件: 总28页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4601A/LTM4601A-1  
12A DC/DC µModules  
with PLL, Output Tracking  
and Margining  
FEATURES  
DESCRIPTION  
TheLTM®4601Aisacomplete12Astep-downswitchmode  
DC/DC power supply with onboard switching controller,  
MOSFETs, inductor and all support components. The  
μModule™ is housed in a small surface mount 15mm  
× 15mm × 2.8mm LGA package. The LTM4601A LGA  
package is designed with redundant mounting pads to  
enhance solder-joint strength for extended temperature  
cycling endurance. Operating over an input voltage range  
of 4.5 to 20V, the LTM4601A supports an output voltage  
range of 0.6V to 5V as well as output voltage tracking  
and margining. The high efficiency design delivers 12A  
continuouscurrent(14Apeak). Onlybulkinputandoutput  
capacitors are needed to complete the design.  
n
Complete Switch Mode Power Supply  
n
Wide Input Voltage Range: 4.5V to 20V  
n
12A DC Typical, 14A Peak Output Current  
n
0.6V to 5V Output Voltage  
Output Voltage Tracking and Margining  
n
n
Redundant Mounting Pads for Enhanced Solder-  
Joint Strength  
n
Parallel Multiple μModules for Current Sharing  
n
Differential Remote Sensing for Precision  
Regulation (LTM4601A Only)  
n
PLL Frequency Synchronization  
n
1.5ꢀ Total DC Error  
n
Current Foldback Protection (Disabled at Start-Up)  
n
Pb-Free (e4) RoHS Compliant Package with Gold  
The low profile (2.8mm) and light weight (1.7g) package  
easilymountsonthebacksideofPCboards. TheμModule  
can be synchronized with an external clock for reducing  
undesirable frequency harmonics and allows PolyPhase®  
operation for high load currents.  
Finish Pads  
n
UltraFast™ Transient Response  
n
Current Mode Control  
n
Up to 95% Efficiency at 5V , 3.3V  
IN  
OUT  
n
n
n
Programmable Soft-Start  
Anonboarddifferentialremotesenseamplifiercanbeused  
to accurately regulate an output voltage independent of  
load current. The onboard remote sense amplifier is not  
available in the LTM4601A-1.  
Output Overvoltage Protection  
Enhanced (15mm × 15mm × 2.8mm) Surface Mount  
LGA Package  
L, LT, LTC, LTM and PolyPhase are registered trademarks of Linear Technology Corporation.  
μModule and UltraFast are trademarks of Linear Technology Corporation. All other trademarks  
are the property of their respective owners. Protected by U.S. Patents including 5481178,  
5847554, 6304066, 6476589, 6580258, 6677210, 6774611.  
APPLICATIONS  
n
Telecom and Networking Equipment  
n
Servers  
TYPICAL APPLICATION  
Efficiency and Power Loss  
vs Load Current  
1.5V/12A Power Supply with 4.5V to 20V Input  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
CLOCK SYNC  
EFFICIENCY  
5V  
IN  
V
IN  
4.5V TO 20V  
TRACK/SS CONTROL  
V
PLLIN TRACK/SS  
V
1.5V  
12A  
IN  
OUT  
12V  
IN  
PGOOD  
V
OUT  
100pF  
V
FB  
ON/OFF  
RUN  
COMP  
INTV  
DRV  
MARG0  
MARG1  
MARGIN  
CONTROL  
12V  
IN  
C
OUT  
LTM4601A  
C
IN  
5V  
IN  
V
CC  
OUT_LCL  
DIFFV  
CC  
OUT  
+
MPGM  
SGND PGND  
V
V
OSNS  
POWER LOSS  
OSNS  
R1  
392k  
f
SET  
R
SET  
40.2k  
5% MARGIN  
0
2
4
6
8
10  
12  
14  
4601A TA01a  
LOAD CURRENT (A)  
4601A TA01b  
4601afb  
1
LTM4601A/LTM4601A-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
(See Table 5. Pin Assignment)  
INTV , DRV , V  
, V  
(V  
≤ 3.3V with  
CC  
CC OUT_LCL OUT OUT  
TOP VIEW  
DIFFV ).....................................................0.3V to 6V  
OUT  
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,  
PGOOD, f ..............................0.3V to INTV + 0.3V  
SET  
CC  
V
f
SET  
MARG0  
RUN .............................................................0.3V to 5V  
IN  
MTP1  
V , COMP................................................0.3V to 2.7V  
FB  
MARG1  
DRV  
CC  
INTV  
CC  
MTP2  
MTP3  
V .............................................................0.3V to 20V  
IN  
OSNS  
+
V
FB  
V
, V  
..........................0.3V to INTV + 0.3V  
OSNS CC  
PGND  
PGOOD  
Operating Temperature Range (Note 2)....–40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range...................55°C to 125°C  
SGND  
+
V
/NC2*  
OSNS  
DIFFV /NC3*  
OUT  
V
OUT  
V
V
OUT_LCL  
/NC1*  
OSNS  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 2.8mm)  
= 125°C, θ = 15°C/W, θ = 6°C/W,  
T
JMAX  
JA  
JC  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
*LTM4601A-1 ONLY  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4601AEV#PBF  
LTM4601AIV#PBF  
TRAY  
PART MARKING*  
LTM4601AV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LTM4601AEV#PBF  
LTM4601AIV#PBF  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
LTM4601AV  
–40°C to 85°C  
LTM4601AEV-1#PBF LTM4601AEV-1#PBF  
LTM4601AIV-1#PBF LTM4601AIV-1#PBF  
LTM4601AV-1  
LTM4601AV-1  
–40°C to 85°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
Input DC Voltage  
4.5  
20  
V
IN(DC)  
Output Voltage, Total Variation with  
Line and Load  
C
= 10μF ×3, C  
IN  
= 200μF, R = 40.2k  
OUT SET  
OUT(DC)  
IN  
1.478  
1.5  
3.2  
1.522  
4
V
V
V
= 5V to 20V, I  
= 0A to 12A (Note 5)  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
IN(UVLO)  
OUT  
I
= 0A. V  
= 1.5V  
OUT  
INRUSH(VIN)  
OUT  
V
= 5V  
0.6  
0.7  
A
A
IN  
IN  
V
= 12V  
4601afb  
2
LTM4601A/LTM4601A-1  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the 40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
V
= 12V, No Switching  
3.8  
38  
mA  
mA  
mA  
mA  
μA  
Q(VIN,NOLOAD)  
IN  
IN  
IN  
IN  
= 12V, V  
= 1.5V, Switching Continuous  
OUT  
= 5V, No Switching  
= 5V, V = 1.5V, Switching Continuous  
2.5  
42  
OUT  
Shutdown, RUN = 0, V = 12V  
22  
IN  
I
Input Supply Current  
V
V
V
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 12A  
= 12A  
1.81  
3.63  
4.29  
A
A
A
S(VIN)  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 12A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
IN  
No Load  
4.7  
0
5
5.3  
V
CC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 5)  
OUT  
12  
A
OUTDC  
IN  
l
= 1.5V, I  
= 0A, V from 4.5V to 20V  
0.3  
%
ΔV  
OUT(LINE)  
OUT  
OUT  
IN  
V
OUT  
OUT(LOAD)  
Load Regulation Accuracy  
Output Ripple Voltage  
V
= 1.5V, 0A to 12A (Note 5)  
IN  
IN  
ΔV  
OUT  
V
= 12V, with Remote Sense Amplifier  
= 12V (LTM4601A-1)  
l
l
0.25  
1
%
%
V
OUT  
V
V
I
= 0A, C  
= 2×, 100μF X5R Ceramic  
OUT  
OUT(AC)  
OUT  
20  
18  
mV  
mV  
V
V
= 12V, V  
= 1.5V  
OUT  
P-P  
P-P  
IN  
IN  
= 5V, V  
= 1.5V  
OUT  
f
Output Ripple Voltage Frequency  
I
= 5A, V = 12V, V = 1.5V  
OUT  
850  
kHz  
S
OUT  
IN  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
= 200μF, V  
= 12V  
= 1.5V, I  
= 1.5V, I  
= 0A  
ΔV  
OUT  
OUT  
OUT  
OUT(START)  
V
IN  
V
IN  
20  
20  
mV  
mV  
= 5V  
t
Turn-On Time, TRACK/SS = Open  
C
Load  
= 200μF, V  
OUT  
= 1A Resisitive  
START  
OUT  
OUT  
V
IN  
V
IN  
= 12V  
= 5V  
0.5  
0.5  
ms  
ms  
ΔV  
OUTLS  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load,  
= 2 × 22μF Ceramic, 470μF4V Sanyo  
C
OUT  
POSCAP  
V
IN  
V
IN  
= 12V  
= 5V  
35  
35  
mV  
mV  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50%, or 50% to 0% of Full Load  
SETTLE  
V
= 12V  
25  
μs  
IN  
Output Current Limit  
C
= 200μF, Table 2  
OUTPK  
OUT  
V
IN  
V
IN  
= 12V, V  
= 1.5V  
17  
17  
A
A
OUT  
= 5V, V  
= 1.5V  
OUT  
Remote Sense Amp (Note 3) (LTM4601A Only, Not Supported in the LTM4601A-1)  
+
V
, V  
Common Mode Input Voltage Range  
V
= 12V, RUN > 2V  
0
0
INTV – 1  
V
OSNS  
OSNS  
IN  
CC  
CM Range  
DIFFV Range Output Voltage Range  
V
= 12V, DIFF OUT Load = 100k  
INTV  
V
mV  
OUT  
IN  
CC  
V
Input Offset Voltage Magnitude  
1.25  
OS  
A
Differential Gain  
1
3
V/V  
V
GBP  
Gain-Bandwidth Product  
MHz  
4601afb  
3
LTM4601A/LTM4601A-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the 40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2
MAX  
UNITS  
V/μs  
kΩ  
SR  
Slew Rate  
+
R
IN  
Input Resistance  
Common Mode Rejection Mode  
V
to GND  
20  
OSNS  
CMRR  
100  
dB  
Control Stage  
l
V
Error Amplifier Input Voltage  
Accuracy  
I
= 0A, V  
= 1.5V  
0.594  
0.6  
0.606  
V
FB  
OUT  
OUT  
V
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Minimum On-Time  
1
1.5  
–1.5  
50  
1.9  
–2  
V
μA  
ns  
ns  
kΩ  
mA  
kΩ  
V
RUN  
I
t
t
V
= 0V  
–1  
SS/TRACK  
ON(MIN)  
OFF(MIN)  
SS/TRACK  
(Note 4)  
(Note 4)  
100  
400  
Minimum Off-Time  
250  
50  
R
PLLIN Input Resistance  
PLLIN  
I
Current into DRV Pin  
V
= 1.5V, I  
= 1A, DRV = 5V  
18  
25  
DRVCC  
CC  
OUT  
OUT  
CC  
R
Resistor Between V  
and V  
FB  
60.098  
60.4  
1.18  
1.4  
60.702  
FBHI  
OUT_LCL  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD Output  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7
10  
–10  
1.5  
13  
%
%
%
V
ΔV  
FB  
FBH  
Falling  
–7  
–13  
ΔV  
FBL  
FB  
Returning  
ΔV  
FB(HYS)  
FB  
V
PGL  
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4601AE/LTM4601AE-1 are guaranteed to meet  
performance specifications from 0°C to 85°C. Specifications over the  
40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM4601AI/LTM4601AI-1 are guaranteed and tested over the 40°C to  
85°C temperature range.  
Note 3: Remote sense amplifier recommended for ≤3.3V output.  
Note 4: 100% tested at wafer level only.  
Note 5: See Output Current Derating curves for different V , V  
and T .  
IN OUT  
A
4601afb  
4
LTM4601A/LTM4601A-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
(See Figure 18 for all curves)  
Efficiency vs Load Current  
with 20VIN  
Efficiency vs Load Current  
with 5VIN  
Efficiency vs Load Current  
with 12V
IN  
100  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
OUT  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
65  
60  
55  
50  
1.2V  
1.5V  
2.5V  
3.3V  
5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
5
10  
10  
LOAD CURRENT (A)  
15  
0
0
5
15  
10  
5
LOAD CURRENT (A)  
15  
0
LOAD CURRENT (A)  
4601A G01  
4601A G02  
4601A G03  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
V
V
OUT  
50mV/DIV  
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
I
OUT  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
5A/DIV  
4601A G05  
4601A G04  
4601A G06  
20μs/DIV  
20μs/DIV  
20μs/DIV  
1.5V AT 6A/μs LOAD STEP  
1.2V AT 6A/μs LOAD STEP  
1.8V AT 6A/μs LOAD STEP  
C
OUT  
= 3 • 22μF 6.3V CERAMICS  
C
OUT  
= 3 • 22μF 6.3V CERAMICS  
C
OUT  
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
2.5V Transient Response  
3.3V Transient Response  
V
OUT  
V
OUT  
50mV/DIV  
50mV/DIV  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
4601A G08  
4601A G07  
20μs/DIV  
20μs/DIV  
3.3V AT 6A/μs LOAD STEP  
2.5V AT 6A/μs LOAD STEP  
C
OUT  
= 3 • 22μF 6.3V CERAMICS  
C
OUT  
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
4601afb  
5
LTM4601A/LTM4601A-1  
TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 18 for all curves)  
Start-Up, IOUT = 12A  
(Resistive Load)  
Start-Up, IOUT = 0A  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
IN  
I
IN  
1A/DIV  
0.5A/DIV  
4601A G09  
4601A G10  
5ms/DIV  
2ms/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
IN  
IN  
= 1.5V  
= 1.5V  
OUT  
OUT  
OUT  
OUT  
= 470μF  
= 470μF  
3 s 22μF  
3 s 22μF  
SOFT-START = 10nF  
SOFT-START = 10nF  
VIN to VOUT Step-Down Ratio  
Track, IOUT = 12A  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.3V OUTPUT WITH  
130k ADDED FROM  
TRACK/SS  
0.5V/DIV  
V
TO f  
OUT  
SET  
V
5V OUTPUT WITH  
100k RESISTOR  
FB  
0.5V/DIV  
ADDED FROM f  
TO GND  
SET  
V
OUT  
1V/DIV  
5V OUTPUT WITH  
NO RESISTOR ADDED  
FROM f  
TO GND  
SET  
4601A G12  
2ms/DIV  
2.5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
V
V
C
= 12V  
IN  
= 1.5V  
OUT  
OUT  
= 470μF  
3 s 22μF  
SOFT-START = 10nF  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
4601A G11  
Short-Circuit Protection, IOUT = 0A  
Short-Circuit Protection, IOUT = 12A  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
I
IN  
IN  
1A/DIV  
1A/DIV  
4601A G13  
4601A G14  
50μs/DIV  
50μs/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
IN  
IN  
= 1.5V  
= 1.5V  
OUT  
OUT  
OUT  
OUT  
= 470μF  
= 470μF  
3 s 22μF  
3 s 22μF  
SOFT-START = 10nF  
SOFT-START = 10nF  
4601afb  
6
LTM4601A/LTM4601A-1  
PIN FUNCTIONS  
(See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be- INTV (Pin A7, D9): This pin is for additional decoupling  
IN  
CC  
tween these pins and PGND pins. Recommend placing of the 5V internal regulator. These pins are internally  
input decoupling capacitance directly between V pins connected. Pin A7 is a test pin.  
IN  
and PGND pins.  
PLLIN (Pin A8): External Clock Synchronization Input to  
V
(Bank 3): Power Output Pins. Apply output load the Phase Detector. This pin is internally terminated to  
OUT  
between these pins and PGND pins. Recommend placing SGND with a 50k resistor. Apply a clock above 2V and  
outputdecouplingcapacitancedirectlybetweenthesepins below INTV . See Applications Information.  
CC  
and PGND pins. Review the figure below.  
TRACK/SS (Pin A9): Output Voltage Tracking and Soft-  
PGND (Bank 2): Power ground pins for both input and Start Pin. When the module is configured as a master  
output returns.  
output, then a soft-start capacitor is placed on this pin  
to ground to control the master ramp rate. A soft-start  
capacitor can be used for soft-start turn on as a stand  
alone regulator. Slave operation is performed by putting  
a resistor divider from the master output to the ground,  
and connecting the center point of the divider to this pin.  
See Applications Information.  
V
(PinM12):(–)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the ground remote sense point. The  
remote sense amplifier is used for V ≤3.3V.  
OUT  
NC1 (Pin M12): No Connect On the LTM4601A-1.  
+
V
(PinJ12):(+)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the output remote sense point. The  
MPGM (Pins A12, B11): Programmable Margining Input.  
A resistor from this pin to ground sets a current that is  
equal to 1.18V/R. This current multiplied by 10kΩ will  
equal a value in millivolts that is a percentage of the 0.6V  
referencevoltage.SeeApplicationsInformation.Toparallel  
LTM4601As, each requires an individual MPGM resistor.  
Do not tie MPGM pins together. Both pins are internally  
connected. Pin A12 is a test pin.  
remote sense amplifier is used for V ≤3.3V.  
OUT  
NC2 (Pin J12): No Connect On the LTM4601A-1.  
DIFFV (Pin K12): Output of the Remote Sense Ampli-  
fier. This pin connects to the V  
OUT  
pin.  
OUT_LCL  
NC3 (Pin K12): No Connect On the LTM4601A-1.  
DRV (Pin E12): This pin normally connects to INTV  
CC  
CC  
for powering the internal MOSFET drivers. This pin can  
be biased up to 6V from an external supply with about  
50mA capability, or an external circuit shown in Figure 16.  
This improves efficiency at the higher input voltages by  
reducing power dissipation in the module.  
f
(Pins B12, C11): Frequency Set Internally to 850kHz.  
SET  
An external resistor can be placed from this pin to ground  
to increase frequency. This pin can be decoupled with a  
1000pF capacitor. See Applications Information for fre-  
quency adjustment. Both pins are internally connected.  
Pin B12 is a test pin.  
TOP VIEW  
V
(Pin F12): The Negative Input of the Error Amplifier.  
FB  
Internally, this pin is connected to V  
pin with a  
OUT_LCL  
A
60.4k precision resistor. Different output voltages can be  
V
B
C
D
E
f
SET  
MARG0  
IN  
MTP1  
BANK 1  
programmed with an additional resistor between V and  
FB  
MARG1  
DRV  
CC  
V
FB  
PGOOD  
SGND pins. See Applications Information.  
INTV  
CC  
MTP2  
MTP3  
F
MARG0 (Pin C12): This pin is the LSB logic input for the  
margining function. Together with the MARG1 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
PGND  
BANK 2  
G
H
J
SGND  
+
V
OSNS  
/NC2*  
DIFFV /NC3*  
OUT  
K
L
M
V
OUT  
V
OUT_LCL  
BANK 3  
V
/NC1*  
OSNS  
1
2
3
4
5
6
7
8 9 10 11 12  
*LTM4601A-1 ONLY  
4601afb  
7
LTM4601A/LTM4601A-1  
PIN FUNCTIONS  
(See Package Description for Pin Assignment)  
MARG1 (Pin D12): This pin is the MSB logic input for the  
margining function. Together with the MARG0 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
RUN (Pin A10): Run Control Pin. A voltage above 1.9V  
will turn on the module, and when below 1V, will turn off  
the module. A programmable UVLO function can be ac-  
complished with a resistor from V to this pin that has a  
IN  
5.1V zener to ground. Maximum pin voltage is 5V. Limit  
current into the RUN pin to less than 1mA.  
SGND (Pins H12, H11, G11): Signal Ground. These pins  
connect to PGND at output capacitor point. See Figure 15.  
V
(Pin L12): V  
connects directly to this pin  
OUT_LCL  
OUT  
to bypass the remote sense amplifier, or DIFFV  
con-  
OUT  
COMP (Pin A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
nects to this pin when remote sense amplifier is used.  
V
V
can be connected to V  
is internally connected to V  
on the LTM4601A-1,  
OUT_LCL  
OUT_LCL  
OUT  
OUT  
with 50Ω in the  
LTM4601A-1.  
MTP1,MTP2,MPT3(PinsC10,D10,D11):ExtraMounting  
Pads used for increased solder integrity strength. These  
pads must remain floating (electrical open circuit).  
PGOOD (Pins G12, F11): Output Voltage Power Good  
Indicator. Open-drain logic output that is pulled to ground  
when the output voltage is not within 10% of the regula-  
tion point, after a 25μs power bad mask timer expires.  
SIMPLIFIED BLOCK DIAGRAM  
V
IN  
V
OUT_LCL  
V
OUT  
1M  
R1  
>1.9V = ON  
<1V = OFF  
MAX = 5V  
(50Ω, LTM4601A-1)  
RUN  
PGOOD  
COMP  
V
UVLO  
FUNCTION  
IN  
4.5V TO 20V  
+
5.1V  
ZENER  
1.5μF  
C
IN  
R2  
60.4k  
INTERNAL  
COMP  
POWER CONTROL  
Q1  
Q2  
SGND  
V
1.5V  
12A  
OUT  
MARG1  
MARG0  
22μF  
V
FB  
50k 50k  
+
f
SET  
R
SET  
40.2k  
C
OUT  
39.2k  
PGND  
MPGM  
TRACK/SS  
PLLIN  
INTV  
CC  
10k  
10k  
C
V
V
SS  
OSNS  
NOT INCLUDED  
+
IN THE LTM4601A-1  
+
10k  
50k  
4.7μF  
OSNS  
+
V
V
= NC1  
= NC2  
= NC3  
OSNS  
OSNS  
INTV  
DRV  
CC  
10k  
DIFFV  
OUT  
CC  
DIFFV  
OUT  
4601A F01  
Figure 1. Simplified LTM4601A/LTM4601A-1 Block Diagram  
4601afb  
8
LTM4601A/LTM4601A-1  
DECOUPLING REQUIREMENTS  
TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
20  
30  
μF  
I
= 12A, 3× 10μF Ceramics  
IN  
OUT  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 20V, V = 1.5V)  
I
= 12A  
100  
200  
μF  
OUT  
IN  
OUT  
OPERATION  
Power Module Description  
and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
TheLTM4601Aisastandalonenonisolatedswitchingmode  
DC/DC power supply. It can deliver up to 12A of DC output  
current with few external input and output capacitors.  
This module provides precisely regulated output voltage  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both Q1 and Q2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
programmable via one external resistor from 0.6V to  
DC  
5.0V over a 4.5V to 20V wide input voltage. The typical  
DC  
When DRV pin is connected to INTV an integrated  
CC  
CC  
application schematic is shown in Figure 18.  
5V linear regulator powers the internal gate drivers. If a  
TheLTM4601Ahasanintegratedconstanton-timecurrent  
5V external bias supply is applied on the DRV pin, then  
CC  
mode regulator, ultralow R  
FETs with fast switch-  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
DS(ON)  
ing speed and integrated Schottky diodes. The typical  
switching frequency is 850kHz at full load. With current  
mode control and internal feedback loop compensation,  
theLTM4601Amodulehassufficientstabilitymarginsand  
good transient performance under a wide range of operat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors.  
The LTM4601A has a very accurate differential remote  
sense amplifier with very low offset. This provides for  
very accurate remote sense voltage measurement. The  
MPGM pin, MARG0 pin and MARG1 pin are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 select margining.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. Besides, foldback current limiting is provided in an  
overcurrentconditionwhileV drops.Internalovervoltage  
andundervoltagecomparatorspulltheopen-drainPGOOD  
output low if the output feedback voltage exits a 10%  
window around the regulation point. Furthermore, in an  
overvoltage condition, internal top FET Q1 is turned off  
FB  
The PLLIN pin provides frequency synchronization of the  
device to an external clock. The TRACK/SS pin is used for  
power supply tracking and soft-start programming.  
4601afb  
9
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
The typical LTM4601A application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
RPGM resistor on the MPGM pin programs the current.  
Calculate V  
:
OUT(MARGIN)  
V to V  
Step-Down Ratios  
IN  
OUT  
%VOUT  
100  
VOUT(MARGIN)  
=
• VOUT  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
where%V isthepercentageofV youwanttomargin,  
OUT  
OUT  
These constraints are shown in the Typical Performance  
and V  
is the margin quantity in volts:  
OUT(MARGIN)  
Characteristics curves labeled “V to V  
Step-Down  
OUT  
IN  
Ratio”.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
section of this data sheet.  
VOUT  
1.18V  
10k  
RPGM  
=
0.6V VOUT(MARGIN)  
where R  
is the resistor value to place on the MPGM  
PGM  
Output Voltage Programming and Margining  
pin to ground.  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 1M and a 60.4k 0.5%  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
internal feedback resistor connects V  
and V pins  
OUT  
FB  
together. The V  
pin is connected between the 1M  
OUT_LCL  
MARG1  
LOW  
MARG0  
LOW  
MODE  
and the 60.4k resistor. The 1M resistor is used to protect  
against an output overvoltage condition if the V  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
OUT_LCL  
LOW  
HIGH  
LOW  
pin is not connected to the output, or if the remote sense  
HIGH  
HIGH  
amplifier output is not connected to V . The output  
OUT_LCL  
HIGH  
voltagewilldefaultto0.6V. AddingaresistorR fromthe  
SET  
V
FB  
pin to SGND pin programs the output voltage:  
Input Capacitors  
60.4k +RSET  
LTM4601A module should be connected to a low AC  
impedance DC source. Input capacitors are required to  
be placed adjacent to the module. In Figure 18, the 10μF  
ceramic input capacitors are selected for their ability to  
handle the large RMS current into the converter. An input  
bulkcapacitorof100μFisoptional.This100μFcapacitoris  
onlyneedediftheinputsourceimpedanceiscompromised  
by long inductive leads or traces.  
V
OUT = 0.6V  
RSET  
Table 1. RSET Standard 1ꢀ Resistor Values vs VOUT  
R
SET  
(kΩ)  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
V
OUT  
(V)  
4601afb  
10  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
For a buck converter, the switching duty-cycle can be  
estimated as:  
the corresponding duty cycle and the number of phases to  
arrive at the correct ripple current value. For example, the  
2-phase parallel LTM4601A design provides 24A at 2.5V  
output from a 12V input. The duty cycle is DC = 2.5V/12V  
= 0.21. The 2-phase curve has a ratio of ~0.25 for a duty  
cycle of 0.21. This 0.25 ratio of RMS ripple current to a  
DC load current of 24A equals ~6A of input RMS ripple  
current for the external input capacitors.  
VOUT  
D=  
V
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IOUT(MAX)  
ICIN(RMS)  
=
D 1D  
(
)
Output Capacitors  
%  
The LTM4601A is designed for low output voltage ripple.  
In the above equation, η% is the estimated efficiency of  
The bulk output capacitors defined as C  
are chosen  
OUT  
the power module. C can be a switcher-rated electrolytic  
IN  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitor. Note the capacitor ripple current rat-  
ings are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
OUT  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitororaceramiccapacitor. Thetypicalcapacitanceis  
200μF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 5A/μs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
In Figure 18, the 10μF ceramic capacitors are together  
used as a high frequency input decoupling capacitor. In a  
typical 12A output application, three very low ESR, X5R or  
X7R, 10μF ceramic capacitors are recommended. These  
decoupling capacitors should be placed directly adjacent  
to the module input pins in the PCB layout to minimize  
the trace inductance and high frequency AC noise. Each  
10μF ceramic is typically good for 2A to 3A of RMS ripple  
current. Refer to your ceramics capacitor catalog for the  
RMS current ratings.  
0.6  
0.5  
1-PHASE  
2-PHASE  
0.4  
3-PHASE  
4-PHASE  
6-PHASE  
0.3  
12-PHASE  
Multiphase operation with multiple LTM4601A devices in  
parallelwilllowertheeffectiveinputRMSripplecurrentdue  
to the interleaving operation of the regulators. Application  
Note 77 provides a detailed explanation. Refer to Figure 2  
for the input capacitor ripple current requirement as a  
function of the number of phases. The figure provides a  
ratio of RMS ripple current to DC load current as function  
of duty cycle and the number of paralleled phases. Pick  
0.2  
0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
DUTY FACTOR (V /V  
)
OUT IN  
4601A F02  
Figure 2. Normalized Input RMS Ripple Current  
vs Duty Factor for One to Six Modules (Phases)  
4601afb  
11  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
Multiphase operation with multiple LTM4601A devices  
in parallel will lower the effective output ripple current  
due to the interleaving operation of the regulators. For  
example, each LTM4601A’s inductor current of a 12V to  
2.5V multiphase design can be read from the Inductor  
Ripple Current vs Duty Cycle graph (Figure 3). The large  
ripple current at low duty cycle and high output voltage  
can be reduced by adding an external resistor from f to  
SET  
ground which increases the frequency. If the duty cycle is  
DC = 2.5V/12V = 0.21, the inductor ripple current for 2.5V  
output at 21% duty cycle is ~6A in Figure 3.  
Figure 4 provides a ratio of peak-to-peak output ripple cur-  
rent to the inductor current as a function of duty cycle and  
the number of paralleled phases. Pick the corresponding  
dutycycleandthenumberofphasestoarriveatthecorrect  
output ripple current ratio value. If a 2-phase operation is  
chosen at a duty cycle of 21%, then 0.6 is the ratio. This  
0.6 ratio of output ripple current to inductor ripple of 6A  
equals 3.6A of effective output ripple current. Refer to Ap-  
plicationNote77foradetailedexplanationofoutputripple  
current reduction as a function of paralleled phases.  
12  
2.5V OUTPUT  
10  
5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
8
6
3.3V OUTPUT WITH  
130k ADDED FROM  
V
TO f  
OUT  
SET  
4
2
0
5V OUTPUT WITH  
100k ADDED FROM  
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output voltage ripple can be calculated with  
the known effective output ripple current. The equation:  
f
TO GND  
SET  
0
20  
40  
60  
80  
DUTY CYCLE (V /V  
)
OUT IN  
4601A F03  
Figure 3. Inductor Ripple Current vs Duty Cycle  
ΔV  
≈ (ΔI /(8 • f • m • C ) + ESR • ΔI ), where f  
OUT(P-P)  
L OUT L  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
O
4601A F04  
Figure 4. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI, Dlr = Each Phases Inductor Current  
4601afb  
12  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
is frequency and m is the number of parallel phases. This  
calculation process can be easily fulfilled using our Linear  
Technology μModule Design Tool.  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider. Figure 5  
shows an example of coincident tracking. Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 6 shows the coincident output  
tracking characteristics.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
LTM4601A has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
MASTER  
OUTPUT  
Tofurtherlimitcurrentintheeventofanoverloadcondition,  
the LTM4601A provides foldback current limiting. If the  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
R2  
60.4k  
TRACK CONTROL  
V
IN  
R1  
40.2k  
100k  
V
PLLIN TRACK/SS  
IN  
SLAVE OUTPUT  
PGOOD  
V
OUT  
Soft-Start and Tracking  
MPGM  
RUN  
COMP  
V
C
OUT  
FB  
MARG0  
MARG1  
V
OUT_LCL  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5μA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltagereferenceminusanymargindelta.Thiswillcontrol  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
LTM4601A  
C
IN  
INTV  
CC  
DRV  
DIFFV  
V
V
CC  
OUT  
+
OSNS  
OSNS  
f
SGND PGND  
SET  
R
SET  
40.2k  
4601A F05  
Figure 5. Coincident Tracking  
CSS  
1.5μA  
tSOFTSTART 0.8 • 0.6V – V  
OUT(MARGIN)ꢂ  
WhentheRUNpinfallsbelow1.5V, thentheSSpinisreset  
to allow for proper soft-start control when the regulator  
is enabled again. Current foldback and force continuous  
mode are disabled during the soft-start process. The  
soft-start function can also be used to control the output  
ramp up time, so that another regulator can be easily  
tracked to it.  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
Output Voltage Tracking  
4601A F06  
TIME  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
Figure 6. Coincident Output Tracking Characteristics  
4601afb  
13  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
Run Enable  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
The LTM4601A also provides the external gate driver  
The RUN pin can also be used as an undervoltage lockout  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
voltage pin DRV . If there is a 5V rail in the system, it is  
CC  
recommended to connect DRV pin to the external 5V  
CC  
rail. This is especially true for higher input voltages. Do  
not apply more than 6V to the DRV pin. A 5V output can  
CC  
R1+R2  
be used to power the DRV pin with an external circuit  
CC  
VUVLO  
=
1.5V  
R2  
as shown in Figure 16.  
See Figure 1, Simplified Block Diagram.  
Parallel Operation of the Module  
The LTM4601A device is an inherently current mode  
controlled device. Parallel modules will have very good  
current sharing. This will balance the thermals on the de-  
sign. Figure 19 shows a schematic of the parallel design.  
The voltage feedback equation changes with the variable  
N as modules are paralleled:  
Power Good  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
COMP Pin  
60.4k  
+RSET  
N
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Table 2 is provided for most application require-  
ments. A spice model will be provided for other control  
loop optimization.  
V
OUT = 0.6V  
RSET  
N is the number of paralleled modules.  
Figure 19 shows an LTM4601A and an LTM4601A-1 used  
in a parallel design. The 2nd LTM4601A device does  
not require the remote sense amplifier, therefore, the  
PLLIN  
LTM4601A-1 device is used. An LTM4601A device can be  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
to be locked to the rising edge of the external clock. The  
frequency range is 30% around the operating frequency  
of 850kHz. A pulse detection circuit is used to detect a  
clock on the PLLIN pin to turn on the phase-lock loop.  
The pulse width of the clock has to be at least 400ns and  
2V in amplitude. During the start-up of the regulator, the  
phase-lock loop function is disabled.  
+
used without the diff amp. V  
can be tied to ground  
OSNS  
and the V  
can be tied to INTV . DIFFV  
can float.  
OSNS  
CC  
OUT  
When using multiple LTM4601A-1 devices in parallel with  
an LTM4601A, limit the number to five for a total of six  
modules in parallel.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to 14 for calculating an approximate θ for the  
modulewithvariousheatsinkingmethods.Thermalmodels  
are derived from several temperature measurements at  
the bench and thermal modeling analysis. Thermal Ap-  
plication Note 103 provides a detailed explanation of the  
analysis for the thermal models and the derating curves.  
JA  
INTV and DRV Connection  
CC  
CC  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
for driving the internal power MOSFETs. Therefore, if the  
system does not have a 5V power rail, the LTM4601A  
can be directly powered by V . The gate driver current  
CC  
IN  
4601afb  
14  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
6
5
4
5.0  
4.5  
4.0  
3.5  
20V LOSS  
3.0  
12V LOSS  
2.5  
20V LOSS  
3
2.0  
12V LOSS  
2
1.5  
5V LOSS  
1.0  
1
0
0.5  
0
0
4
6
8
10  
12  
2
0
2
6
8
10  
12  
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4601A F08  
4601A F07  
Figure 7. 1.5V Power Loss  
Figure 8. 3.3V Power Loss  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
2
0
5V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
5V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601A F09  
4601A F10  
Figure 10. BGA Heat Sink 5VIN  
Figure 9. No Heat Sink 5VIN  
4601afb  
15  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
12V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
12V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
0
12V , 1.5V  
IN  
12V , 1.5V  
IN  
12V , 1.5V  
IN  
12V , 1.5V  
IN  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601A F12  
4601A F11  
Figure 11. No Heat Sink 12VIN  
Figure 12. BGA Heat Sink 12VIN  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
2
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
40  
60  
80  
100  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601A F13  
4601A F14  
Figure 14. 12VIN, 3.3VOUT, BGA Heat Sink  
Figure 13. 12VIN, 3.3VOUT, No Heat Sink  
4601afb  
16  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 18), 0A to 6A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TDK  
C4532X5R0J107MZ (100μF, 6.3V)  
JMK432BJ107MU-T ( 100μF, 6.3V)  
JMK316BJ226ML-T501 ( 22μF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE330MIL (330μF, 6.3V)  
2R5TPE470M9 (470μF, 2.5V)  
4TPE470MCL (470μF, 4V)  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
RECOVERY  
TIME (μs)  
LOAD STEP  
R
SET  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
(BULK)  
(CERAMIC)  
(BULK)  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
C
C3  
PEAK (mV)  
140  
70  
(A/μs)  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
(kΩ)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
COMP  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
NONE  
47pF  
5
70  
35  
30  
20  
20  
30  
30  
20  
20  
20  
35  
30  
30  
30  
35  
30  
25  
25  
30  
20  
30  
30  
30  
30  
30  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
30  
30  
30  
35  
35  
30  
25  
25  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
2 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
NONE 100pF  
NONE 22pF  
5
5
70  
140  
93  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
40  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
70  
140  
70  
35  
NONE  
22pF  
70  
140  
98  
NONE 100pF  
NONE 100pF  
49  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
48  
100  
109  
84  
NONE  
33pF  
5
54  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
44  
5
61  
118  
100  
109  
89  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
48  
NONE  
33pF  
54  
NONE 100pF  
NONE 100pF  
44  
54  
108  
100  
90  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
NONE  
47pF  
48  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 220pF  
NONE NONE  
NONE 100pF  
NONE 100pF  
NONE NONE  
NONE 220pF  
NONE 220pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 150pF  
NONE 100pF  
NONE 100pF  
5
44  
5
68  
140  
130  
120  
120  
140  
130  
103  
113  
116  
115  
103  
102  
113  
140  
240  
214  
214  
230  
214  
214  
214  
230  
375  
320  
5
65  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
60  
60  
68  
65  
470μF 4V  
330μF 6.3V  
470μF 4V  
NONE  
48  
5
56  
5
57  
5
60  
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
7
48  
51  
56  
70  
330μF 6.3V  
470μF 4V  
470μF 4V  
NONE  
120  
110  
110  
114  
110  
110  
110  
114  
188  
159  
7
7
7
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
NONE  
NONE  
NONE  
22pF  
22pF  
5
NONE  
4601afb  
17  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
Table 3. 1.5V Output at 12A  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
15.2  
14  
Figure 7  
200  
400  
0
None  
Figure 7  
None  
12  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13.9  
11.3  
10.25  
Figure 7  
200  
400  
Figure 7  
Table 4. 3.3V Output at 12A  
DERATING CURVE  
Figure 13  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
12  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figure 13  
12  
12  
12  
12  
12  
Figure 8  
200  
400  
0
None  
Figure 13  
Figure 8  
None  
Figure 14  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 14  
Figure 8  
200  
400  
Figure 14  
Figure 8  
Heat Sink Manufacturer  
Wakefield Engineering  
Aavid Thermalloy  
Part No: LTN20069  
Phone: 603-635-2800  
Phone: 603-224-9988  
Part No: 375424B00034G  
4601afb  
18  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
Tables 3 and 4 provide a summary of the equivalent θ  
JA  
for the noted conditions. These equivalent θ parameters  
IN  
OUT  
JA  
PCB conduction loss and thermal stress.  
are correlated to the measured values, and are improved  
withairow. Thecasetemperatureismaintainedat100°C  
or below for the derating curves. The maximum case  
temperature of 100°C is to allow for a rise of about 13°C  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
to 25°C inside the μModule with a thermal resistance θ  
JC  
• Place a dedicated power ground layer underneath the  
unit. Refer frequency synchronization source to power  
ground.  
from junction to case between 6°C/W to 9°C/W. This will  
maintain the maximum junction temperature inside the  
μModule below 125°C.  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
Safety Considerations  
The LTM4601A modules do not provide isolation from  
V
to V . There is no internal fuse. If required, a  
IN  
OUT  
• Do not put vias directly on pads unless they are capped.  
slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
Layout Checklist/Example  
Figure 15 gives a good example of the recommended  
layout.  
The high integration of LTM4601A makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
V
IN  
C
C
IN  
CONTROL  
IN  
• • • • • •  
• •  
• •  
CONTROL  
PGND  
• •  
• •  
• •  
• •  
• • • • • • • •  
SIGNAL  
GND  
CONTROL  
C• • • C• • •  
OUT  
OUT  
V
OUT  
4601A F15  
Figure 15. Recommended Layout  
4601afb  
19  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
Frequency Adjustment  
14A peak specified value. A 100k resistor is placed from  
to ground, and the parallel combination of 100k and  
f
SET  
The LTM4601A is designed to typically operate at 850kHz  
39.2k equates to 28k. The I  
calculation with 28k and  
fSET  
across most input conditions. The f pin is normally left  
SET  
20V input voltage equals 238μA. This equates to a t of  
ON  
open or decoupled with an optional 1000pF capacitor. The  
switching frequency has been optimized for maintaining  
constant output ripple noise over most operating ranges.  
The 850kHz switching frequency and the 400ns minimum  
off time can limit operation at higher duty cycles like 5V to  
3.3V, and produce excessive inductor ripple currents for  
lower duty cycle applications like 20V to 5V. The 5V and  
3.3V drop out curves are modified by adding an external  
200ns. This will increase the switching frequency from  
~886kHz to ~1.25MHz for the 20V to 5V conversion. The  
minimum on time is above 100ns at 20V input. Since  
the switching frequency is approximately constant over  
input and output conditions, then the lower input voltage  
range is limited to 10V for the 1.25MHz operation due to  
the 400ns minimum off time. Equation: t = (V /V )  
ON  
OUT IN  
• (1/Frequency) equates to a 400ns on time, and a 400ns  
resistor on the f  
pin to allow for lower input voltage  
SET  
offtime. TheV toV Step-DownRatiocurvereflects  
IN  
OUT  
operation, or higher input voltage operation.  
an operating range of 10V to 20V for 1.25MHz operation  
with a 100k resistor to ground, and an 8V to 16V operation  
Example for 5V Output  
for f floating. These modifications are made to provide  
SET  
LTM4601A minimum on time = 100ns;  
wider input voltage ranges for the 5V output designs while  
limiting the inductor ripple current, and maintaining the  
400ns minimum off time.  
t
= ((4.8 • 10pf)/I  
)
ON  
fSET  
LTM4601A minimum off time = 400ns; t = t – t ,  
OFF  
ON  
where t = 1/Frequency  
Example for 3.3V Output  
Duty Cycle = t /t or V /V  
ON  
OUT IN  
LTM4601A minimum on time = 100ns;  
Equations for setting frequency:  
t
= ((3.3 • 10pF)/I  
)
ON  
fSET  
I
t
= (V /(3 • R )), for 20V operation, I = 170μA,  
fSET  
fSET  
IN  
fSET  
LTM4601A minimum off time = 400ns;  
= t – t , where t = 1/Frequency  
= ((4.8 • 10pF)/I ), t = 282ns, where the internal  
ON  
R
fSET ON  
t
OFF  
ON  
is 39.2k. Frequency = (V /(V • t )) = (5V/(20  
fSET  
OUT IN ON  
Duty Cycle (DC) = t /t or V /V  
ON  
OUT IN  
• 282ns)) ≈ 886kHz. The inductor ripple current begins  
to get high at the higher input voltages due to a larger  
voltage across the inductor. This is noted in the “Induc-  
tor Ripple Current vs Duty Cycle” graph (Figure 3) where  
Equations for setting frequency:  
I
t
R
= (V /(3 • R )), for 20V operation, I  
= 170μA,  
fSET  
IN  
fSET  
fSET  
= ((3.3 • 10pf)/I ), t = 195ns, where the internal  
ON  
fSET ON  
I ≈ 10A at 25% duty cycle. The inductor ripple current  
L
is 39.2k. Frequency = (V /(V • t )) = (3.3V/(20  
fSET  
OUT IN ON  
can be lowered at the higher input voltages by adding an  
• 195ns)) ≈ 846kHz. The minimum on time and minimum  
off time are within specification at 195ns and 980ns. The  
4.5V minimum input for converting 3.3V output will not  
externalresistorfromf togroundtoincreasetheswitch-  
SET  
ing frequency. An 8A ripple current is chosen, and the total  
peak current is equal to 1/2 of the 8A ripple current plus  
the output current. The 5V output current is limited to 8A,  
so the total peak current is less than 12A. This is below the  
meet the minimum off-time specification of 400ns. t  
=
ON  
868ns, Frequency = 850kHz, t = 315ns.  
OFF  
4601afb  
20  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
Solution  
The I  
current needs to be 24μA for 540kHz operation.  
fSET  
A resistor can be placed from V  
to f  
to lower the  
OUT  
SET  
Lower the switching frequency at lower input voltages  
to allow for higher duty cycles, and meet the 400ns  
minimum off time at 4.5V input voltage. The off time  
should be about 500ns with 100ns guard band. The duty  
effective I  
current out of the f pin to 24μA. The f  
fSET  
SET SET  
= 3.3V, therefore 130k will  
pin is 4.5V/3 =1.5V and V  
OUT  
source 14μA into the f  
node and lower the I  
cur-  
SET  
fSET  
rent to 24μA. This enables the 540kHz operation and the  
4.5V to 20V input operation for down converting to 3.3V  
output. The frequency will scale from 540kHz to 1.1MHz  
over this input range. This provides for an effective output  
current of 8A over the input range.  
cycle for (3.3V/4.5) ≈ 73%. Frequency = (1 – DC)/t , or  
OFF  
(10.73)/500ns=540kHz.Theswitchingfrequencyneeds  
tobeloweredto540kHzat4.5Vinput. t =DC/frequency,  
ON  
or1.35μs.Thef pinvoltagecomplianceis1/3ofV ,and  
SET  
IN  
the I  
current equates to 38μA with the internal 39.2k.  
fSET  
V
OUT  
TRACK/SS CONTROL  
V
IN  
10V TO 20V  
REVIEW TEMPERATURE  
R2  
R4  
V
PLLIN TRACK/SS  
DERATING CURVE  
V
5V  
8A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C3  
C6 100pF  
+
MPGM  
RUN  
V
100μF  
6.3V  
SANYO POSCAP  
FB  
REFER TO  
TABLE 2  
MARG0  
MARG1  
COMP  
INTV  
DRV  
LTM4601A-1  
V
CC  
CC  
OUT_LCL  
NC3  
5% MARGIN  
NC1  
NC2  
R1  
392k  
1%  
C1  
10μF  
25V  
C2  
10μF  
25V  
f
SGND PGND  
SET  
R
R
SET  
8.25k  
fSET  
100k  
MARGIN CONTROL  
IMPROVE  
EFFICIENCY  
SOT-323  
FOR r12V INPUT  
CMSSH-3C  
4601A F16  
Figure 16. 5V at 8A Design Without Differential Amplifier  
4601afb  
21  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
V
OUT  
TRACK/SS CONTROL  
V
IN  
4.5V TO 16V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
10A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
PGOOD  
MPGM  
RUN  
V
FB  
C3  
MARG0  
MARG1  
V
OUT_LCL  
+
100μF  
COMP  
INTV  
DRV  
LTM4601A  
6.3V  
CC  
CC  
SANYO POSCAP  
DIFFV  
OUT  
+
C2  
V
V
OSNS  
10μF  
25V  
s3  
R1  
392k  
OSNS  
R
f
fSET  
SGND PGND  
SET  
R
SET  
130k  
13.3k  
5% MARGIN  
MARGIN CONTROL  
4601A F17  
Figure 17. 3.3V at 10A Design  
CLOCK SYNC  
C5  
0.01μF  
V
OUT  
V
IN  
4.5V TO 20V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
100k  
R4  
V
PLLIN TRACK/SS  
V
1.5V  
12A  
IN  
100k  
OUT  
PGOOD  
V
OUT  
C3 100pF  
+
C
C
OUT2  
470μF  
6.3V  
PGOOD  
MPGM  
RUN  
V
OUT1  
FB  
100μF  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
6.3V  
ON/OFF  
COMP  
INTV  
DRV  
LTM4601A  
CC  
CC  
DIFFV  
OUT  
+
+
C
IN  
R1  
392k  
V
V
OSNS  
BULK  
OPT  
REFER TO  
TABLE 2 FOR  
DIFFERENT  
OUTPUT  
OSNS  
C
IN  
f
10μF  
SGND PGND  
SET  
R
SET  
25V  
40.2k  
s3 CER  
VOLTAGE  
4601A F18  
5% MARGIN  
Figure 18. Typical 4.5V-20VIN, 1.5V at 12A Design  
4601afb  
22  
LTM4601A/LTM4601A-1  
APPLICATIONS INFORMATION  
60.4k  
+ R  
SET  
V
OUT  
N
V
= 0.6V  
OUT  
R
SET  
CLOCK SYNC  
0o PHASE  
N = NUMBER OF PHASES  
TRACK/SS CONTROL  
V
IN  
4.5V TO 20V  
R2  
100k  
R4  
100k  
V
PLLIN TRACK/SS  
IN  
V
OUT  
1.5V  
PGOOD  
V
OUT  
C6 220pF  
24A  
C3  
22μF  
6.3V  
C4 +  
470μF  
6.3V  
MPGM  
RUN  
V
FB  
MARG0  
MARG1  
V
OUT_LCL  
COMP  
INTV  
DRV  
LTM4601A  
CC  
CC  
+
C5*  
100μF  
25V  
DIFFV  
V
OUT  
+
C1  
0.1μF  
OSNS  
LTC6908-1  
+
REFER TO  
TABLE 2  
V
OSNS  
C2  
10μF  
25V  
s2  
1
2
3
6
5
4
118k  
1%  
V
OUT1  
R1  
392k  
f
SGND PGND  
SET  
R
SET  
20k  
100pF  
GND OUT2  
SET  
MOD  
5%  
MARGIN  
MARGIN CONTROL  
2-PHASE  
OSCILLATOR  
CLOCK SYNC  
180o PHASE  
TRACK/SS CONTROL  
4.5V TO 20V  
C7  
0.033μF  
V
IN  
PLLIN TRACK/SS  
PGOOD  
PGOOD  
V
OUT  
+
C4  
470μF  
6.3V  
C3  
22μF  
6.3V  
MPGM  
RUN  
COMP  
INTV  
CC  
DRV  
CC  
V
FB  
MARG0  
MARG1  
C8  
10μF  
25V  
s2  
LTM4601A-1  
REFER TO  
TABLE 2  
V
OUT_LCL  
NC3  
NC2  
NC1  
392k  
f
SGND PGND  
SET  
4601A F19  
*C5 OPTIONAL TO REDUCE ANY LC RINGING.  
NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION  
Figure 19. 2-Phase Parallel, 1.5V at 24A Design  
4601afb  
23  
LTM4601A/LTM4601A-1  
TYPICAL APPLICATIONS  
4601afb  
24  
LTM4601A/LTM4601A-1  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4601afb  
25  
LTM4601A/LTM4601A-1  
PACKAGE DESCRIPTION  
Pin Assignment Table 5  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1 PGND  
E2 PGND  
E3 PGND  
E4 PGND  
E5 PGND  
E6 PGND  
E7 PGND  
PIN NAME  
F1 PGND  
F2 PGND  
F3 PGND  
F4 PGND  
F5 PGND  
F6 PGND  
F7 PGND  
F8 PGND  
F9 PGND  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
B1  
B2  
B3  
B4  
B5  
B6  
V
V
V
V
V
V
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D1 PGND  
D2 PGND  
D3 PGND  
D4 PGND  
D5 PGND  
D6 PGND  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
A7 INTV  
B7 PGND  
B8  
A9 TRACK/SS B9 PGND  
C7 PGND  
C8  
D7  
D8 PGND  
D9 INTV  
-
CC  
A8 PLLIN  
-
-
E8  
-
C9 PGND  
C10 MTP1  
E9 PGND  
CC  
A10 RUN  
B10  
B11 MPGM  
B12  
-
D10 MPT2  
D11 MPT3  
D12 MARG1  
E10  
E11  
-
-
F10  
F11 PGOOD  
F12  
-
A11 COMP  
A12 MPGM  
C11 f  
SET  
f
C12 MARG0  
E12 DRV  
V
FB  
SET  
CC  
PIN NAME  
G1 PGND  
G2 PGND  
G3 PGND  
G4 PGND  
G5 PGND  
G6 PGND  
G7 PGND  
G8 PGND  
G9 PGND  
PIN NAME  
H1 PGND  
H2 PGND  
H3 PGND  
H4 PGND  
H5 PGND  
H6 PGND  
H7 PGND  
H8 PGND  
H9 PGND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
J1  
V
V
V
V
V
V
V
V
V
V
-
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
L1  
V
V
V
V
V
V
V
V
V
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT_LCL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OSNS  
J2  
L2  
J3  
L3  
J4  
L4  
J5  
L5  
J6  
L6  
J7  
L7  
J8  
L8  
J9  
L9  
G10  
-
H10  
-
J10  
J11  
J12  
L10  
L11  
L12  
M10 V  
M11 V  
M12 V  
G11 SGND  
H11 SGND  
H12 SGND  
+
G12 PGOOD  
V
K12 DIFFV  
OUT  
OSNS  
4601afb  
26  
LTM4601A/LTM4601A-1  
PACKAGE DESCRIPTION  
Pin Assignment Table 6  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
D1  
D2  
D3  
D4  
D5  
D6  
D8  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
V
V
V
V
V
V
V
V
V
V
A7  
INTVCC  
PLLIN  
B7  
PGND  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
A8  
B8  
-
A9  
TRACK/SS  
RUN  
B9  
B10  
B11  
PGND  
-
A10  
A11  
A12  
COMP  
MPGM  
MPGM  
C7  
PGND  
-
B1  
B2  
B3  
B4  
B5  
B6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
K12  
L12  
M12  
f
C8  
SET  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C9  
PGND  
MTP1  
MARG0  
MARG1  
C10  
C11  
f
SET  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
DRV  
D7  
-
CC  
D8  
PGND  
INTVCC  
MTP2  
MTP3  
V
FB  
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D9  
PGOOD  
D10  
D11  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
+
E8  
E9  
E10  
E11  
-
V
OSNS  
PGND  
DIFFV  
OUT  
-
-
V
V
OUT_LCL  
F10  
F11  
-
OSNS  
PGOOD  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G10  
G11  
-
SGND  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
H10  
H11  
-
SGND  
J11  
-
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
4601afb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4601A/LTM4601A-1  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC μModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
Basic 10A DC/DC μModule  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no  
Remote Sensing  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600  
6A DC/DC μModule with PLL and Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version has no  
Remote Sensing, Pin Compatible with the LTM4601  
LTM4604A  
LTM4608A  
4A Low Voltage DC/DC μModule  
2.7V ≤ V ≤ 5.5V; 0.8V ≤ V  
≤ 5V,  
IN  
OUT  
9mm × 15mm × 2.3mm (Ultra-thin) LGA Package  
8A Low Voltage DC/DC μModule  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V ≤ 5V;  
IN  
OUT  
9mm × 15mm × 2.8mm LGA Package  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4601afb  
LT 1108 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4601A-1_15

12A Module Regulators with PLL, Output Tracking and Margining
Linear

LTM4601AEV#PBF

LTM4601A/LTM4601A-1 - 12A &#181;Module (Power Module) Regulators with PLL, Output Tracking and Margining; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4601AEV-1-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AEV-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AHV

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVEV-PBF

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVIV-PBF

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVMPV

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVMPV#PBF

LTM4601AHV - 12A, 28VIN DC/DC &#181;Module (Power Module) Regulator with PLL, Output Tracking and Margining; Package: LGA; Pins: 133; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4601AHVMPV-PBF

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVV

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AIV-1-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear