LTM4601 [Linear]

12A DC/DC μModules with PLL, Output Tracking and Margining; 12A DC / DC与PLL ,输出跟踪和裕度μModules
LTM4601
型号: LTM4601
厂家: Linear    Linear
描述:

12A DC/DC μModules with PLL, Output Tracking and Margining
12A DC / DC与PLL ,输出跟踪和裕度μModules

文件: 总28页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4601/LTM4601-1  
12A DC/DC µModules  
with PLL, Output Tracking  
and Margining  
U
DESCRIPTIO  
FEATURES  
The LTM®4601 is a complete 12A step-down switch mode  
DC/DC power supply with onboard switching controller,  
MOSFETs, inductor and all support components. The  
µModuleTM is housed in a small surface mount 15mm  
×15mm × 2.8mm LGA package. Operating over an input  
voltage range of 4.5 to 20V, the LTM4601 supports an  
outputvoltagerangeof0.6Vto5Vaswellasoutputvoltage  
trackingandmargining.Thehighefficiencydesigndelivers  
12A continuous current (14A peak). Only bulk input and  
output capacitors are needed to complete the design.  
Complete Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 20V  
12A DC Typical, 14A Peak Output Current  
0.6V to 5V Output Voltage  
Output Voltage Tracking and Margining  
Parallel Multiple µModules for Current Sharing  
Differential Remote Sensing for Precision  
Regulation (LTM4601 Only)  
PLL Frequency Synchronization  
1.5ꢀ Regulation  
Current Foldback Protection (Disabled at Start-Up)  
The low profile (2.8mm) and light weight (1.7g) pack-  
age easily mounts in unused space on the back side of  
PC boards for high density point of load regulation. The  
µModule can be synchronized with an external clock for  
reducing undesirable frequency harmonics and allows  
PolyPhase® operation for high load currents.  
Pb-Free (e4) RoHS Compliant Package with Gold  
Finish Pads  
Ultrafast Transient Response  
Current Mode Control  
Up to 95% Efficiency at 5V , 3.3V  
IN  
OUT  
Programmable Soft-Start  
A high switching frequency and adaptive on-time current  
mode architecture deliver a very fast transient response  
to line and load changes without sacrificing stability. An  
onboard differential remote sense amplifier can be used  
to accurately regulate an output voltage independent of  
load current. The onboard remote sense amplifier is not  
available in the LTM4601-1.  
, LTC, LT and PolyPhase are registered trademarks of Linear Technology Corporation.  
µModule is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5481178, 5847554, 6580258, 6304066, 6476589,  
6774611, 6677210  
Output Overvoltage Protection  
Small Footprint, Low Profile (15mm × 15mm ×  
2.8mm) SurfaceUMount LGA Package  
APPLICATIO S  
Telecom and Networking Equipment  
Servers  
Industrial Equipment  
Point of Load Regulation  
U
Efficiency and Power Loss  
vs Load Current  
TYPICAL APPLICATIO  
1.5V/12A Power Supply with 4.5V to 20V Input  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
EFFICIENCY  
5V  
IN  
CLOCK SYNC  
V
IN  
4.5V TO 20V  
TRACK/SS CONTROL  
V
PLLIN TRACK/SS  
12V  
V
1.5V  
12A  
IN  
IN  
OUT  
PGOOD  
V
OUT  
100pF  
V
FB  
12V  
IN  
ON/OFF  
RUN  
COMP  
INTV  
DRV  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
C
OUT  
5V  
IN  
LTM4601  
C
IN  
CC  
DIFFV  
CC  
OUT  
+
MPGM  
SGND PGND  
V
V
OSNS  
POWER LOSS  
OSNS  
R1  
392k  
f
SET  
R
SET  
40.2k  
0
2
4
6
8
10  
12  
14  
5% MARGIN  
OUTPUT CURRENT (A)  
4601 TA01a  
4601 TA01b  
4601f  
1
LTM4601/LTM4601-1  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
INTV , DRV , V  
, V  
(V  
≤ 3.3V with  
CC  
CC OUT_LCL OUT OUT  
DIFFV ) .................................................... –0.3V to 6V  
OUT  
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,  
PGOOD, f ..............................0.3V to INTV + 0.3V  
SET  
CC  
V
f
IN  
SET  
RUN ............................................................. –0.3V to 5V  
MARG0  
MARG1  
V , COMP................................................ –0.3V to 2.7V  
FB  
DRV  
CC  
V ............................................................. –0.3V to 20V  
IN  
OSNS  
V
FB  
+
PGND  
V
, V  
.............................0.3V to INTV – 1V  
OSNS CC  
PGOOD  
SGND  
+
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
V
/NC2*  
OSNS  
DIFFV /NC3*  
OUT  
V
V
OUT  
OUT_LCL  
V
/NC1*  
OSNS  
LGA PACKAGE  
118-LEAD (15mm 15mm 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W,  
JA JC  
JMAX  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
*LTM4601-1 ONLY  
ORDER PART NUMBER  
LGA PART MARKING*  
LTM4601EV#PBF  
LTM4601IV#PBF  
LTM4601EV-1#PBF  
LTM4601IV-1#PBF  
LTM4601V  
LTM4601V  
LTM4601V-1  
LTM4601V-1  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Input DC Voltage  
Output Voltage  
4.5  
20  
V
IN(DC)  
C
IN  
= 10µF ×3, C  
= 200µF  
OUT(DC)  
OUT  
V
V
= 5V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.478  
1.5  
1.5  
1.522  
1.522  
V
V
IN  
IN  
OUT  
OUT  
= 12V, V  
= 1.5V, I  
= 0A  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.2  
4
V
IN(UVLO)  
OUT  
I
= 0A. V  
= 1.5V  
INRUSH(VIN)  
OUT  
OUT  
V
V
= 5V  
= 12V  
0.6  
0.7  
A
A
IN  
IN  
I
Input Supply Bias Current  
V
V
= 12V, V  
= 12V, V  
= 1.5V, No Switching  
= 1.5V, Switching  
3.8  
38  
mA  
mA  
Q(VIN,NOLOAD)  
IN  
IN  
OUT  
OUT  
Continuous  
V
V
= 5V, V  
= 5V, V  
= 1.5V, No Switching  
= 1.5V, Switching Continuous  
2.5  
42  
22  
mA  
mA  
µA  
IN  
IN  
OUT  
OUT  
Shutdown, RUN = 0, VIN = 12V  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 12A  
= 12A  
1.81  
3.63  
4.29  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 12A  
OUT  
OUT  
4601f  
2
LTM4601/LTM4601-1  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
INTV  
PARAMETER  
= 12V, RUN > 2V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
No Load  
4.7  
5
5.3  
V
CC  
IN  
Output Specifications  
I
Output Continuous Current Range  
(See Output Current Derating Curves  
V
= 12V, V = 1.5V  
OUT  
0
12  
A
OUTDC  
IN  
for Different V , V  
and T )  
A
IN OUT  
ΔV  
Line Regulation Accuracy  
V
V
= 1.5V, I  
= 0A, V from 4.5V to 20V  
0.3  
%
OUT(LINE)  
OUT  
OUT  
IN  
V
OUT(MIN)  
ΔV  
Load Regulation Accuracy  
= 1.5V, 0A to 12A  
OUT(0A-12A)  
OUT  
V
V
= 12V, Remote Sense Amplifier  
= 12V (LTM4601-1)  
0.25  
1
%
%
IN  
IN  
V
OUT(MIN)  
V
Output Ripple Voltage  
I
I
= 0A, C  
= 2×, 100µF/X5R/Ceramic  
OUT(AC)  
OUT  
V
V
OUT  
= 12V, V  
= 1.5V  
20  
18  
mV  
mV  
IN  
IN  
OUT  
P-P  
P-P  
= 5V, V  
= 1.5V  
OUT  
f
Output Ripple Voltage Frequency  
= 5A, V = 12V, V = 1.5V  
OUT  
850  
kHz  
S
OUT  
IN  
ΔV  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
= 200µF, V  
= 12V  
= 1.5V, I  
= 0A  
OUT(START)  
OUT  
OUT  
OUT  
V
V
20  
20  
mV  
mV  
IN  
IN  
= 5V  
t
Turn-On Time, TRACK/SS = Open  
C
= 200µF, V  
OUT  
= 1.5V, I  
= 1A  
START  
OUT  
OUT  
Resisitive Load  
V
V
= 12V  
= 5V  
0.5  
0.7  
ms  
ms  
IN  
IN  
ΔV  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load,  
= 2 × 22µF/Ceramic, 470µF, 4V Sanyo  
OUTLS  
C
OUT  
POSCAP  
V
IN  
V
IN  
= 12V  
= 5V  
35  
35  
mV  
mV  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50%, or 50% to 0% of Full Load  
SETTLE  
V
= 12V  
25  
µs  
IN  
Output Current Limit  
C
= 200µF, Table 2  
OUTPK  
OUT  
V
IN  
V
IN  
= 12V, V  
= 1.5V  
17  
17  
A
A
OUT  
= 5V, V  
= 1.5V  
OUT  
Remote Sense Amp (Note 3) (LTM4601 Only, Not Supported in the LTM4601-1)  
+
V
, V  
Common Mode Input Voltage Range  
V
= 12V, RUN > 2V  
0
0
INTV – 1  
V
OSNS  
OSNS  
IN  
CC  
CM Range  
DIFFV  
Range  
Output Voltage Range  
Input Offset Voltage Magnitude  
Differential Gain  
V
IN  
= 12V, DIFF OUT Load = 100k  
INTV  
V
mV  
OUT  
CC  
V
1.25  
OS  
A
V
1
3
V/V  
MHz  
V/µs  
kΩ  
GBP  
Gain Bandwidth Product  
Slew Rate  
SR  
2
+
R
Input Resistance  
V
OSNS  
to GND  
20  
100  
IN  
CMRR  
Control Stage  
Common Mode Rejection Mode  
dB  
V
Error Amplifier Input Voltage  
Accuracy  
I
= 0A, V  
= 1.5V  
0.594  
0.6  
0.606  
V
FB  
OUT  
OUT  
V
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Minimum On Time  
1
1.5  
–1.5  
50  
1.9  
–2.0  
100  
V
µA  
RUN  
I
t
V
= 0V  
–1.0  
SS/TRACK  
ON(MIN)  
SS/TRACK  
(Note 4)  
ns  
4601f  
3
LTM4601/LTM4601-1  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
250  
50  
MAX  
UNITS  
ns  
t
Minimum Off Time  
PLLIN Input Resistance  
(Note 4)  
400  
OFF(MIN)  
R
kΩ  
PLLIN  
I
Current into DRV Pin  
V
= 1.5V, I = 1A, Frequency = 850kHz,  
OUT  
CC  
18  
25  
mA  
DRVCC  
CC  
OUT  
DRV = 5V  
R
Resistor Between V  
and V  
FB  
60.098  
60.4  
1.18  
1.4  
60.702  
kΩ  
V
FBHI  
OUT  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
FB  
V
FB  
V
FB  
Rising  
7
10  
–10  
1.5  
13  
%
%
%
FBH  
Falling  
–7  
–13  
FBL  
Returning  
FB(HYS)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4601E/LTM4601E-1 are guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTM4601I/LTM4601I-1  
are guaranteed and tested over the –40°C to 85°C temperature range.  
Note 3: Remote sense amplifier recommended for ≤3.3V output.  
Note 4: 100% tested at wafer level only.  
4601f  
4
LTM4601/LTM4601-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 18 for all curves)  
Efficiency vs Load Current  
with 20VIN  
Efficiency vs Load Current  
with 5VIN  
Efficiency vs Load Current  
with 12V
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
5V  
OUT  
OUT  
OUT  
OUT  
OUT  
0.6V  
OUT  
1.2V  
1.5V  
2.5V  
3.3V  
5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
70  
65  
60  
1.2V  
OUT  
1.5V  
OUT  
2.5V  
OUT  
3.3V  
OUT  
OUT  
0
5
10  
15  
5
10  
0
15  
0
10  
15  
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4601 G02  
4601 G01  
4601 G03  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
I
OUT  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
5A/DIV  
4601 G05  
4601 G04  
4601 G06  
20 s/DIV  
20 s/DIV  
20 s/DIV  
1.5V AT 6A/ s LOAD STEP  
1.2V AT 6A/ s LOAD STEP  
1.8V AT 6A/ s LOAD STEP  
C
OUT  
= 3 • 22 F 6.3V CERAMICS  
C
OUT  
= 3 • 22 F 6.3V CERAMICS  
C
OUT  
= 3 • 22 F 6.3V CERAMICS  
470 F 4V SANYO POSCAP  
C3 = 100pF  
470 F 4V SANYO POSCAP  
C3 = 100pF  
470 F 4V SANYO POSCAP  
C3 = 100pF  
2.5V Transient Response  
3.3V Transient Response  
V
OUT  
V
OUT  
50mV/DIV  
50mV/DIV  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
4601 G08  
4601 G07  
20 s/DIV  
3.3V AT 6A/ s LOAD STEP  
C = 3 • 22 F 6.3V CERAMICS  
470 F 4V SANYO POSCAP  
C3 = 100pF  
20 s/DIV  
2.5V AT 6A/ s LOAD STEP  
C
OUT  
= 3 • 22 F 6.3V CERAMICS  
OUT  
470 F 4V SANYO POSCAP  
C3 = 100pF  
4601f  
5
LTM4601/LTM4601-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 18 for all curves)  
Start-Up, IOUT = 12A  
(Resistive Load)  
Start-Up, IOUT = 0A  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
IN  
I
IN  
1A/DIV  
0.5A/DIV  
4601 G09  
4601 G10  
5ms/DIV  
2ms/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
IN  
IN  
= 1.5V  
= 1.5V  
OUT  
OUT  
OUT  
OUT  
= 470µF  
= 470µF  
3 × 22µF  
3 × 22µF  
SOFT-START = 10nF  
SOFT-START = 10nF  
VIN to VOUT Step-Down Ratio  
Track, IOUT = 12A  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.3V OUTPUT WITH  
130k FROM V  
TRACK/SS  
0.5V/DIV  
OUT  
TO I  
ON  
V
5V OUTPUT WITH  
100k RESISTOR  
FB  
0.5V/DIV  
ADDED FROM f  
TO GND  
SET  
V
OUT  
1V/DIV  
5V OUTPUT WITH  
NO RESISTOR ADDED  
FROM f  
TO GND  
4601 G12  
SET  
2ms/DIV  
2.5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
V
V
C
3
= 12V  
IN  
OUT  
OUT  
= 1.5V  
= 470 F  
22 F  
SOFT-START = 10nF  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
4601 G11  
Short-Circuit Protection, IOUT = 0A  
Short-Circuit Protection, IOUT = 12A  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
I
IN  
1A/DIV  
IN  
1A/DIV  
4601 G13  
4601 G14  
50µs/DIV  
50µs/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
IN  
IN  
= 1.5V  
= 1.5V  
OUT  
OUT  
OUT  
OUT  
= 470µF  
= 470µF  
3 × 22µF  
3 × 22µF  
SOFT-START = 10nF  
SOFT-START = 10nF  
4601f  
6
LTM4601/LTM4601-1  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
PLLIN (Pin A8): External Clock Synchronization Input to  
the Phase Detector. This pin is internally terminated to  
SGND with a 50k resistor. Apply a clock above 2V and  
IN  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
below INTV . See Applications Information.  
CC  
V
(Bank 3): Power Output Pins. Apply output load  
TRACK/SS (Pin A9): Output Voltage Tracking and Soft-  
Start Pin. When the module is configured as a master  
output, then a soft-start capacitor is placed on this pin  
to ground to control the master ramp rate. A soft-start  
capacitor can be used for soft-start turn on as a stand  
alone regulator. Slave operation is performed by putting  
a resistor divider from the master output to the ground,  
and connecting the center point of the divider to this pin.  
See Applications Information.  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins. Review the figure below.  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
V
(PinM12):(–)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the ground remote sense point. The  
remote sense amplifier is used for V ≤3.3V.  
OUT  
MPGM (Pin A12): Programmable Margining Input. A re-  
sistor from this pin to ground sets a current that is equal  
to 1.18V/R. This current multiplied by 10kΩ will equal a  
value in millivolts that is a percentage of the 0.6V refer-  
ence voltage. See Applications Information. To parallel  
LTM4601s, each requires an individual MPGM resistor.  
Do not tie MPGM pins together.  
NC1 (Pin M12): No Connect On the LTM4601-1.  
+
V
(PinJ12):(+)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the output remote sense point. The  
remote sense amplifier is used for V ≤3.3V.  
OUT  
NC2 (Pin J12): No Connect On the LTM4601-1.  
DIFFV (Pin K12): Output of the Remote Sense Ampli-  
fier. This pin connects to the V  
OUT  
f
(Pin B12): Frequency Set Internally to 850kHz. An  
SET  
pin.  
OUT_LCL  
external resistor can be placed from this pin to ground  
to increase frequency. This pin can be decoupled with a  
1000pF capacitor. See Applications Information for fre-  
quency adjustment.  
NC3 (Pin K12): No Connect On the LTM4601-1.  
DRV (Pin E12): This pin normally connects to INTV  
for powering the internal MOSFET drivers. This pin can  
be biased up to 6V from an external supply with about  
50mA capability, or an external circuit shown in Figure 16.  
This improves efficiency at the higher input voltages by  
reducing power dissipation in the module.  
CC  
CC  
V
(Pin F12): The Negative Input of the Error Amplifier.  
FB  
Internally, this pin is connected to V  
pin with a  
OUT_LCL  
60.4k precision resistor. Different output voltages can be  
programmed with an additional resistor between V and  
FB  
SGND pins. See Applications Information.  
INTV (Pin A7): This pin is for additional decoupling of  
the 5V internal regulator.  
CC  
TOP VIEW  
A
B
C
D
E
V
IN  
f
SET  
BANK 1  
MARG0  
MARG1  
DRV  
CC  
PGND  
BANK 2  
F
V
FB  
G
H
J
PGOOD  
SGND  
+
V
/NC2*  
OSNS  
K
L
M
DIFFV /NC3*  
OUT  
V
OUT  
BANK 3  
V
V
OUT_LCL  
/NC1*  
OSNS  
1
2 3 4 5 6 7 8 9 10 11 12  
*LTM4601-1 ONLY  
4601f  
7
LTM4601/LTM4601-1  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
MARG0 (Pin C12): This pin is the LSB logic input for the  
margining function. Together with the MARG1 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
PGOOD (Pin G12): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25µs power bad mask timer expires.  
RUN (Pin A10): Run Control Pin. A voltage above 1.9V  
will turn on the module, and when below 1.9V, will turn  
off the module. A programmable UVLO function can be  
MARG1 (Pin D12): This pin is the MSB logic input for the  
margining function. Together with the MARG0 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
accomplished with a resistor from V to this pin that has  
IN  
a 5.1V zener to ground. Maximum pin voltage is 5V. Limit  
current into the RUN pin to less than 1mA.  
SGND (Pin H12): Signal Ground. This pin connects to  
V
(Pin L12): V  
connects directly to this pin  
OUT_LCL  
OUT  
PGND at output capacitor point.  
to bypass the remote sense amplifier, or DIFFV  
con-  
OUT  
nects to this pin when remote sense amplifier is used.  
COMP (Pin A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
V
V
can be connected to V  
is internally connected to V  
on the LTM4601-1,  
OUT_LCL  
OUT_LCL  
OUT  
OUT  
with 50Ω in the  
LTM4601-1.  
W
W
SI PLIFIED BLOCK DIAGRA  
V
OUT_LCL  
V
OUT  
1M  
>2V = ON  
<0.9V = OFF  
MAX = 5V  
(50, LTM4601-1)  
RUN  
PGOOD  
COMP  
V
IN  
4.5V TO 20V  
+
5.1V  
ZENER  
1.5µF  
C
IN  
60.4k  
INTERNAL  
COMP  
POWER CONTROL  
Q1  
Q2  
SGND  
V
1.5V  
12A  
OUT  
MARG1  
MARG0  
22µF  
V
FB  
50k 50k  
+
f
SET  
R
SET  
40.2k  
C
OUT  
39.2k  
PGND  
MPGM  
TRACK/SS  
PLLIN  
INTV  
CC  
10k  
10k  
C
SS  
V
V
NOT INCLUDED  
OSNS  
+
IN THE LTM4601-1  
+
10k  
50k  
4.7µF  
OSNS  
+
V
V
= NC1  
= NC2  
= NC3  
OSNS  
OSNS  
INTV  
DRV  
CC  
CC  
10k  
DIFFV  
OUT  
DIFFV  
OUT  
4601 F01  
Figure 1. Simplified LTM4601/LTM4601-1 Block Diagram  
4601f  
8
LTM4601/LTM4601-1  
U
W U  
DECOUPLI G REQUIRE E TS  
TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
CONDITIONS MIN  
20  
SYMBOL  
PARAMETER  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
I
= 12A, 3× 10µF Ceramics  
30  
µF  
IN  
OUT  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
= 12A  
100  
200  
µF  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
IN  
OUT  
U
OPERATIO  
Power Module Description  
and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
TheLTM4601isastandalonenonisolatedswitchingmode  
DC/DC power supply. It can deliver up to 12A of DC output  
current with some external input and output capacitors.  
This module provides precisely regulated output voltage  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both Q1 and Q2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
programmable via one external resistor from 0.6V to  
DC  
5.0V over a 4.5V to 20V wide input voltage. The typical  
DC  
When DRV pin is connected to INTV an integrated  
CC  
CC  
application schematic is shown in Figure 18.  
5V linear regulator powers the internal gate drivers. If a  
The LTM4601 has an integrated constant on-time current  
5V external bias supply is applied on the DRV pin, then  
CC  
mode regulator, ultralow R  
FETs with fast switch-  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
DS(ON)  
ing speed and integrated Schottky diodes. The typical  
switching frequency is 850kHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4601 module has sufficient stability margins and  
good transient performance under a wide range of operat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors.  
The LTM4601 has a very accurate differential remote  
sense amplifier with very low offset. This provides for  
very accurate remote sense voltage measurement. The  
MPGM pin, MARG0 pin and MARG1 pin are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 select margining.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. Besides, foldback current limiting is provided in an  
overcurrentconditionwhileV drops.Internalovervoltage  
andundervoltagecomparatorspulltheopen-drainPGOOD  
output low if the output feedback voltage exits a 10%  
window around the regulation point. Furthermore, in an  
overvoltage condition, internal top FET Q1 is turned off  
FB  
The PLLIN pin provides frequency synchronization of the  
device to an external clock. The TRACK/SS pin is used for  
power supply tracking and soft-start programming.  
4601f  
9
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
The typical LTM4601 application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
RPGM resistor on the MPGM pin programs the current.  
Calculate V  
:
OUT(MARGIN)  
V to V  
Step-Down Ratios  
IN  
OUT  
%VOUT  
100  
VOUT(MARGIN)  
=
• VOUT  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
where%V isthepercentageofV youwanttomargin,  
OUT  
OUT  
These constraints are shown in the Typical Performance  
and V  
is the margin quantity in volts:  
OUT(MARGIN)  
Characteristics curves labeled V to V  
Step-Down  
IN  
OUT  
Ratio.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
section of this data sheet.  
VOUT  
1.18V  
10k  
RPGM  
=
0.6V VOUT(MARGIN)  
where RPGM is the resistor value to place on the MPGM  
pin to ground.  
Output Voltage Programming and Margining  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 1M and a 60.4k 0.5%  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
internal feedback resistor connects V  
and V pins  
OUT  
FB  
together. The V  
pin is connected between the 1M  
OUT_LCL  
MARG0  
LOW  
MARG1  
LOW  
MODE  
and the 60.4k resistor. The 1M resistor is used to protect  
against an output overvoltage condition if the V  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
OUT_LCL  
LOW  
HIGH  
LOW  
pin is not connected to the output, or if the remote sense  
HIGH  
HIGH  
amplifier output is not connected to V . The output  
OUT_LCL  
HIGH  
voltage will default to 0.6V. Adding a resistor R  
the V pin to SGND pin programs the output voltage:  
from  
SET  
FB  
Input Capacitors  
60.4k +RSET  
VOUT = 0.6V  
LTM4601moduleshouldbeconnectedtoalowACimped-  
anceDCsource. Inputcapacitorsarerequiredtobeplaced  
adjacent to the module. In Figure 18, the 10µF ceramic  
input capacitors are selected for their ability to handle  
the large RMS current into the converter. An input bulk  
capacitorof100µFisoptional.This100µFcapacitorisonly  
needed if the input source impedance is compromised by  
long inductive leads or traces.  
RSET  
Table 1. Standard 1ꢀ Resistor Values  
R
SET  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
(kΩ)  
V
OUT  
(V)  
4601f  
10  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
For a buck converter, the switching duty-cycle can be  
the corresponding duty cycle and the number of phases  
to arrive at the correct ripple current value. For example,  
the2-phaseparallelLTM4601designprovides24Aat2.5V  
output from a 12V input. The duty cycle is DC = 2.5V/12V  
= 0.21. The 2-phase curve has a ratio of ~0.25 for a duty  
cycle of 0.21. This 0.25 ratio of RMS ripple current to a  
DC load current of 24A equals ~6A of input RMS ripple  
current for the external input capacitors.  
estimated as:  
VOUT  
D=  
V
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IOUT(MAX)  
ICIN(RMS)  
=
D 1D  
(
)
Output Capacitors  
η%  
The LTM4601 is designed for low output voltage ripple.  
In the above equation, η% is the estimated efficiency of  
The bulk output capacitors defined as C  
are chosen  
OUT  
the power module. C can be a switcher-rated electrolytic  
IN  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitor. Note the capacitor ripple current rat-  
ings are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
OUT  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitororaceramiccapacitor.Thetypicalcapacitanceis  
200µF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 5A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
In Figure 18, the 10µF ceramic capacitors are together  
used as a high frequency input decoupling capacitor. In a  
typical 12A output application, three very low ESR, X5R or  
X7R, 10µF ceramic capacitors are recommended. These  
decoupling capacitors should be placed directly adjacent  
to the module input pins in the PCB layout to minimize  
the trace inductance and high frequency AC noise. Each  
10µF ceramic is typically good for 2A to 3A of RMS ripple  
current. Refer to your ceramics capacitor catalog for the  
RMS current ratings.  
0.6  
0.5  
1-PHASE  
2-PHASE  
0.4  
3-PHASE  
4-PHASE  
6-PHASE  
0.3  
12-PHASE  
Multiphase operation with multiple LTM4601 devices in  
parallelwilllowertheeffectiveinputRMSripplecurrentdue  
to the interleaving operation of the regulators. Application  
Note 77 provides a detailed explanation. Refer to Figure 2  
for the input capacitor ripple current requirement as a  
function of the number of phases. The figure provides a  
ratio of RMS ripple current to DC load current as function  
of duty cycle and the number of paralleled phases. Pick  
0.2  
0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
DUTY FACTOR (V /V  
)
OUT IN  
4601 F02  
Figure 2. Normalized Input RMS Ripple Current  
vs Duty Factor for One to Six Modules (Phases)  
4601f  
11  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Multiphase operation with multiple LTM4601 devices in  
parallel will lower the effective output ripple current due to  
the interleaving operation of the regulators. For example,  
each LTM4601’s inductor current of a 12V to 2.5V multi-  
phasedesigncanbereadfromtheInductorRippleCurrent  
versesDutyCyclegraph(Figure3).Thelargeripplecurrent  
at low duty cycle and high output voltage can be reduced  
by adding an external resistor from f to ground which  
SET  
increases the frequency. If the duty cycle is DC = 2.5V/12V  
= 0.21, the inductor ripple current for 2.5V output at 21%  
duty cycle is ~6A in Figure 3.  
Figure4providesaratioofpeak-to-peakoutputripplecur-  
rent to the inductor current as a function of duty cycle and  
the number of paralleled phases. Pick the corresponding  
dutycycleandthenumberofphasestoarriveatthecorrect  
output ripple current ratio value. If a 2-phase operation is  
chosen at a duty cycle of 21%, then 0.6 is the ratio. This  
0.6 ratio of output ripple current to inductor ripple of 6A  
equals 3.6A of effective output ripple current. Refer to Ap-  
plicationNote77foradetailedexplanationofoutputripple  
current reduction as a function of paralleled phases.  
12  
2.5V OUTPUT  
10  
5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
8
6
3.3V OUTPUT WITH  
130k ADDED FROM  
V
OUT  
TO f  
SET  
4
2
0
5V OUTPUT WITH  
100k ADDED FROM  
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output voltage ripple can be calculated with  
the known effective output ripple current. The equation:  
f
TO GND  
SET  
0
20  
40  
60  
80  
DUTY CYCLE (V /V  
)
OUT IN  
4601 F03  
Figure 3. Inductor Ripple Current vs Duty Cycle  
ΔV  
≈ (ΔI /(8 • f • m • C ) + ESR • ΔI ), where f  
OUT(P-P)  
L OUT L  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
O
4601 F04  
Figure 4. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI, Dlr = Each Phase’s Inductor Current  
4601f  
12  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
is frequency and m is the number of parallel phases. This  
calculation process can be easily fulfilled using our Linear  
Technology µModule Design Tool.  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider. Figure 5  
shows an example of coincident tracking. Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 6 shows the coincident output  
tracking characteristics.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
LTM4601 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
MASTER  
OUTPUT  
To further limit current in the event of an overload condi-  
tion,theLTM4601providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
R2  
60.4k  
TRACK CONTROL  
V
IN  
R1  
40.2k  
60.4k FROM  
TO V  
100k  
V
PLLIN TRACK/SS  
V
IN  
OUT  
FB  
SLAVE OUTPUT  
PGOOD  
V
OUT  
Soft-Start and Tracking  
MPGM  
RUN  
COMP  
V
C
FB  
OUT  
MARG0  
MARG1  
V
OUT_LCL  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5µA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltagereferenceminusanymargindelta.Thiswillcontrol  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
LTM4601  
C
IN  
INTV  
CC  
CC  
DRV  
DIFFV  
V
V
OUT  
+
OSNS  
OSNS  
f
SGND PGND  
SET  
R
SET  
40.2k  
4601 F05  
Figure 5  
CSS  
1.5µA  
tSOFTSTART = 0.8V • 0.6V – V  
(
)
OUT(MARGIN)  
WhentheRUNpinfallsbelow1.5V, thentheSSpinisreset  
to allow for proper soft-start control when the regulator  
is enabled again. Current foldback and force continuous  
mode are disabled during the soft-start process. The  
soft-start function can also be used to control the output  
ramp up time, so that another regulator can be easily  
tracked to it.  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
Output Voltage Tracking  
4601 F06  
TIME  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
Figure 6  
4601f  
13  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Run Enable  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
The LTM4601 also provides the external gate driver volt-  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
age pin DRV . If there is a 5V rail in the system, it is  
CC  
recommended to connect DRV pin to the external 5V  
CC  
rail. This is especially true for higher input voltages. Do  
not apply more than 6V to the DRV pin. A 5V output can  
CC  
R1+R2  
be used to power the DRV pin with an external circuit  
VUVLO  
=
1.5V  
CC  
R2  
as shown in Figure 16.  
Power Good  
Parallel Operation of the Module  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
The LTM4601 device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design.  
Figure 19 shows a schematic of the parallel design. The  
voltage feedback equation changes with the variable n as  
modules are paralleled:  
COMP Pin  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Table 2 is provided for most application require-  
ments. A spice model will be provided for other control  
loop optimization.  
60.4k  
+RFB  
n
VOUT = 0.6V  
RFB  
η is the number of paralleled modules.  
Figure19showsanLTM4601andanLTM4601-1usedina  
parallel design. The 2nd LTM4601 device does not require  
the remote sense amplifier, therefore, the LTM4601-1 de-  
vice is used. An LTM4601 device can be used without the  
PLLIN  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
to be locked to the rising edge of the external clock. The  
frequency range is 30% around the operating frequency  
of 850kHz. A pulse detection circuit is used to detect a  
clock on the PLLIN pin to turn on the phase lock loop.  
The pulse width of the clock has to be at least 400ns and  
2V in amplitude. During the start-up of the regulator, the  
phase-lock loop function is disabled.  
+
diff amp. V  
can be tied to ground and the V  
can  
OSNS  
OSNS  
betiedtoINTV .DIFFV  
canoat.Whenusingmultiple  
CC  
OUT  
LTM4601-1 devices in parallel with an LTM4601, limit the  
number to five for a total of six modules in parallel.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to 14 for calculating an approximate θ for the  
JA  
INTV and DRV Connection  
CC  
CC  
modulewithvariousheatsinkingmethods.Thermalmodels  
are derived from several temperature measurements at  
the bench and thermal modeling analysis. Thermal Ap-  
plication Note 103 provides a detailed explanation of the  
analysis for the thermal models and the derating curves.  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
CC  
for driving the internal power MOSFETs. Therefore, if  
the system does not have a 5V power rail, the LTM4601  
can be directly powered by V . The gate driver current  
IN  
Tables 3 and 4 provide a summary of the equivalent θ  
JA  
4601f  
14  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
6
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
20V LOSS  
3.0  
12V LOSS  
2.5  
20V LOSS  
12V LOSS  
2.0  
1.5  
5V LOSS  
1.0  
0.5  
0
0
2
6
8
10  
12  
0
2
4
6
8
10  
12  
4
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4601 F07  
4601 F08  
Figure 7. 1.5V Power Loss  
Figure 8. 3.3V Power Loss  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
2
0
5V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
5V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601 F10  
4600 F09  
Figure 10. BGA Heat Sink 5VIN  
Figure 9. No Heat Sink 5VIN  
4601f  
15  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
5V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
5V , 1.5V  
IN  
0LFM  
200LFM  
400LFM  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
0
5V , 1.5V  
IN  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
5V , 1.5V  
IN  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601 F12  
4601 F11  
Figure 11. No Heat Sink 12VIN  
Figure 12. BGA Heat Sink 12VIN  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
2
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
40  
60  
80  
100  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601 F13  
4601 F14  
Figure 14. 12VIN, 3.3VOUT, BGA Heat Sink  
Figure 13. 12VIN, 3.3VOUT, No Heat Sink  
4601f  
16  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 18), 0A to 6A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
VENDORS  
OUT2  
PART NUMBER  
OUT1  
TDK  
C4532X5R0J107MZ (100UF,6.3V)  
JMK432BJ107MU-T ( 100µF, 6.3V)  
JMK316BJ226ML-T501 ( 22µF, 6.3V)  
SANYO POS CAP  
SANYO POS CAP  
SANYO POS CAP  
6TPE330MIL (330µF, 6.3V)  
2R5TPE470M9 (470µF, 2.5V)  
4TPE470MCL (470µF, 4V)  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
RECOVERY  
TIME (µs)  
LOAD STEP  
R
SET  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
(BULK)  
(CERAMIC)  
(BULK)  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
C
C3  
PEAK (mV)  
140  
70  
(A/µs)  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
(kΩ)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
COMP  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
3 × 22µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
2 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
4 × 100µF 6.3V  
4 × 100µF 6.3V  
NONE  
47pF  
5
70  
35  
30  
20  
20  
30  
30  
20  
20  
20  
35  
30  
30  
30  
35  
30  
25  
25  
30  
20  
30  
30  
30  
30  
30  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
30  
30  
30  
35  
35  
30  
25  
25  
NONE 100pF  
NONE 22pF  
5
5
70  
140  
93  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
40  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
70  
140  
70  
35  
NONE  
22pF  
70  
140  
98  
NONE 100pF  
NONE 100pF  
49  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
48  
100  
109  
84  
NONE  
33pF  
5
54  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
44  
5
61  
118  
100  
109  
89  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
48  
NONE  
33pF  
54  
NONE 100pF  
NONE 100pF  
44  
54  
108  
100  
90  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
NONE  
47pF  
48  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 220pF  
NONE NONE  
NONE 100pF  
NONE 100pF  
NONE NONE  
NONE 220pF  
NONE 220pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 150pF  
NONE 100pF  
NONE 100pF  
5
44  
5
68  
140  
130  
120  
120  
140  
130  
103  
113  
116  
115  
103  
102  
113  
140  
240  
214  
214  
230  
214  
214  
214  
230  
375  
320  
5
65  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
60  
60  
68  
65  
470µF 4V  
330µF 6.3V  
470µF 4V  
NONE  
48  
5
56  
5
57  
5
60  
470µF 4V  
470µF 4V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
7
48  
51  
56  
70  
330µF 6.3V  
470µF 4V  
470µF 4V  
NONE  
120  
110  
110  
114  
110  
110  
110  
114  
188  
159  
7
7
7
470µF 4V  
470µF 4V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
NONE  
NONE  
NONE  
22pF  
22pF  
5
NONE  
4601f  
17  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 3. 1.5V Output at 12A  
DERATING CURVE  
Figures 9, 11  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
15.2  
14  
Figures 9, 11  
Figure 7  
200  
400  
0
None  
Figures 9, 11  
Figure 7  
None  
12  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13.9  
11.3  
10.25  
Figure 7  
200  
400  
Figure 7  
Table 4. 3.3V Output at 12A  
DERATING CURVE  
Figure 13  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
12  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figure 13  
12  
12  
12  
12  
12  
Figure 8  
200  
400  
0
None  
Figure 13  
Figure 8  
None  
Figure 14  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 14  
Figure 8  
200  
400  
Figure 14  
Figure 8  
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: 20069  
Phone: 603-635-2800  
4601f  
18  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
for the noted conditions. These equivalent θ parameters  
• Use large PCB copper areas for high current path, in-  
JA  
are correlated to the measured values, and are improved  
with air flow. The case temperature is maintained at 100°C  
or below for the derating curves. The maximum case  
temperature of 100°C is to allow for a rise of about 13°C  
cluding V , PGND and V . It helps to minimize the  
IN OUT  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
to 25°C inside the µModule with a thermal resistance θ  
JC  
high frequency noise.  
from junction to case between 6°C/W to 9°C/W. This will  
maintain the maximum junction temperature inside the  
µModule below 125°C.  
• Place a dedicated power ground layer underneath the  
unit. Refer frequency synchronization source to power  
ground.  
Safety Considerations  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
The LTM4601 modules do not provide isolation from  
V
IN  
to V . There is no internal fuse. If required, a  
OUT  
slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure.  
• Do not put vias directly on pads.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
Layout Checklist/Example  
The high integration of LTM4601 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
Figure 15 gives a good example of the recommended  
layout.  
V
IN  
C
C
IN  
IN  
GND  
SIGNAL  
GND  
C
C
OUT  
OUT  
V
OUT  
4601 F15  
Figure 15. Recommended Layout  
4601f  
19  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Frequency Adjustment  
14A peak specified value. A 100k resistor is placed from  
to ground, and the parallel combination of 100k and  
f
SET  
The LTM4601 is designed to typically operate at 850kHz  
across most input conditions. The f pin is normally left  
39.2k equates to 28k. The I  
calculation with 28k and  
fSET  
SET  
20V input voltage equals 238µA. This equates to a t of  
ON  
open or decoupled with an optional 1000pF capacitor. The  
switching frequency has been optimized for maintaining  
constant output ripple noise over most operating ranges.  
The 850kHz switching frequency and the 400ns minimum  
off time can limit operation at higher duty cycles like 5V to  
3.3V, and produce excessive inductor ripple currents for  
lower duty cycle applications like 20V to 5V. The 5V and  
3.3V drop out curves are modified by adding an external  
200ns. This will increase the switching frequency from  
~886kHz to ~1.25MHz for the 20V to 5V conversion. The  
minimum on time is above 100ns at 20V input. Since  
the switching frequency is approximately constant over  
input and output conditions, then the lower input voltage  
range is limited to 10V for the 1.25MHz operation due to  
the 400ns minimum off time. Equation: t = (V /V )  
ON  
OUT IN  
• (1/Frequency) equates to a 400ns on time, and a 400ns  
resistor on the f  
pin to allow for lower input voltage  
SET  
off time. The “V to V Step Ratio Curve” reflects an  
IN  
OUT  
operation, or higher input voltage operation.  
operating range of 10V to 20V for 1.25MHz operation with  
a 100k resistor to ground, and an 8V to 16V operation for  
Example for 5V Output  
f
floating. These modifications are made to provide  
SET  
LTM4601 minimum on-time = 100ns;  
wider input voltage ranges for the 5V output designs while  
limiting the inductor ripple current, and maintaining the  
400ns minimum off time.  
t
= ((4.8 • 10pf)/I  
)
ON  
fSET  
LTM4601 minimum off-time = 400ns; t = t – t ,  
where t = 1/Frequency  
OFF  
ON  
Example for 3.3V Output  
Duty Cycle = t /t or V /V  
ON  
OUT IN  
LTM4601 minimum on-time = 100ns;  
Equations for setting frequency:  
t
= ((3.3 • 10pF)/I  
)
ON  
fSET  
I
t
= (V /(3 • R )), for 20V operation, I = 170µA,  
IN fSET SET  
fSET  
LTM4601 minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
= ((4.8 • 10pF)/I ), t = 282ns, where the internal  
ON  
R
fSET ON  
t
OFF  
ON  
is 39.2k. Frequency = (V /(V • t )) = (5V/(20 •  
fSET  
OUT IN ON  
Duty Cycle (DC) = t /t or V /V  
ON  
OUT IN  
282ns)) ~ 886kHz. The inductor ripple current begins to  
get high at the higher input voltages due to a larger voltage  
across the inductor. This is noted in the Typical Inductor  
Ripple Current verses Duty Cycle graph (Figure 3) where  
Equations for setting frequency:  
I
t
R
= (V /(3 • R )), for 20V operation, I  
= 170µA,  
fSET  
IN  
fSET  
fSET  
= ((3.3 • 10pf)/I ), t = 195ns, where the internal  
ON  
fSET ON  
I ≈ 10A at 25% duty cycle. The inductor ripple current  
L
is 39.2k. Frequency = (V /(V • t )) = (3.3V/(20  
fSET  
OUT IN ON  
can be lowered at the higher input voltages by adding an  
195ns))~846kHz. Theminimumon-timeandminimum-  
off time are within specification at 195ns and 980ns. The  
4.5V minimum input for converting 3.3V output will not  
externalresistorfromf togroundtoincreasetheswitch-  
SET  
ing frequency. An 8A ripple current is chosen, and the total  
peak current is equal to 1/2 of the 8A ripple current plus  
the output current. The 5V output current is limited to 8A,  
so the total peak current is less than 12A. This is below the  
meet the minimum off-time specification of 400ns. t  
=
ON  
868ns, Frequency = 850kHz, t = 315ns.  
OFF  
4601f  
20  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Solution  
The I  
current needs to be 24µA for 540kHz operation.  
fSET  
A resistor can be placed from V  
to f  
SET  
to lower the  
OUT  
SET  
Lower the switching frequency at lower input voltages to  
allow for higher duty cycles, and meet the 400ns mini-  
mum off-time at 4.5V input voltage. The off-time should  
be about 500ns with 100ns guard band. The duty cycle  
effective I  
current out of the f  
pin to 24µA. The  
fSET  
f
pin is 4.5V/3 =1.5V and V  
= 3.3V, therefore 130k  
SET  
OUT  
will source 14µA into the f  
node and lower the I  
fSET  
SET  
current to 24µA. This enables the 540kHz operation and  
the 4.5V to 20V input operation for down converting to  
3.3V output. The frequency will scale from 540kHz to 1.1  
MHz over this input range. This provides for an effective  
output current of 8A over the input range.  
for (3.3V/4.5) = ~73%. Frequency = (1 – DC)/t , or  
OFF  
(10.73)/500ns=540kHz.Theswitchingfrequencyneeds  
tobeloweredto540kHzat4.5Vinput. t =DC/frequency,  
ON  
or1.35µs.Thef pinvoltagecomplianceis1/3ofV ,and  
SET  
IN  
the I  
current equates to 38µA with the internal 39.2k.  
fSET  
V
OUT  
TRACK/SS CONTROL  
V
IN  
10V TO 20V  
REVIEW TEMPERATURE  
R2  
R4  
V
PLLIN TRACK/SS  
DERATING CURVE  
V
5V  
8A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C3  
C6 100pF  
+
MPGM  
RUN  
V
100µF  
6.3V  
SANYO POSCAP  
FB  
REFER TO  
TABLE 2  
MARG0  
MARG1  
COMP  
INTV  
DRV  
LTM4601-1  
V
CC  
CC  
OUT_LCL  
NC3  
5% MARGIN  
NC1  
NC2  
R1  
392k  
1%  
C2  
10µF  
f
SGND PGND  
SET  
25V  
C1  
R
R
SET  
8.25k  
10µF  
fSET  
100k  
25V  
MARGIN CONTROL  
IMPROVE  
EFFICIENCY  
SOT-323  
FOR 12V INPUT  
DUAL  
CMSSH-3C3  
4601 F16  
Figure 16. 5V at 8A Design Without Differential Amplifier  
4601f  
21  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
V
OUT  
TRACK/SS CONTROL  
V
IN  
4.5V TO 16V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
10A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
PGOOD  
MPGM  
RUN  
COMP  
V
FB  
MARG0  
MARG1  
C3  
+
100µF  
LTM4601  
6.3V  
INTV  
V
OUT_LCL  
CC  
CC  
SANYO POSCAP  
DRV  
DIFFV  
V
V
OUT  
+
C2  
OSNS  
10µF  
25V  
×3  
R1  
392k  
OSNS  
R
f
fSET  
SGND PGND  
SET  
R
SET  
130k  
13.3k  
5% MARGIN  
MARGIN CONTROL  
4601 F17  
Figure 17. 3.3V at 10A Design  
CLOCK SYNC  
C5  
0.01µF  
V
OUT  
V
IN  
4.5V TO 20V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
1.5V  
12A  
IN  
100k  
100k  
OUT  
PGOOD  
V
OUT  
C3 100pF  
+
C
C
OUT2  
PGOOD  
MPGM  
RUN  
V
OUT1  
FB  
100µF  
470µF  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
6.3V  
6.3V  
ON/OFF  
COMP  
INTV  
DRV  
LTM4601  
CC  
CC  
DIFFV  
OUT  
+
+
C
IN  
R1  
392k  
V
V
OSNS  
BULK  
OPT  
REFER TO  
TABLE 2 FOR  
DIFFERENT  
OUTPUT  
OSNS  
C
IN  
f
10µF  
25V  
SGND PGND  
SET  
R
SET  
40.2k  
×3 CER  
VOLTAGE  
4601 F18  
5% MARGIN  
Figure 18. Typical 4.5V-20VIN, 1.5V at 12A Design  
4601f  
22  
LTM4601/LTM4601-1  
U
W U U  
APPLICATIO S I FOR ATIO  
60.4k  
+ R  
SET  
V
OUT  
N
V
= 0.6V  
OUT  
R
SET  
CLOCK SYNC  
0° PHASE  
N = NUMBER OF PHASES  
TRACK/SS CONTROL  
V
IN  
4.5V TO 20V  
R2  
100k  
R4  
100k  
V
PLLIN TRACK/SS  
IN  
V
OUT  
1.5V  
PGOOD  
V
OUT  
C6 220pF  
24A  
C3  
MPGM  
RUN  
V
FB  
MARG0  
MARG1  
22µF  
6.3V  
COMP  
INTV  
DRV  
+
LTM4601  
C4  
V
OUT_LCL  
CC  
CC  
470µF  
6.3V  
+
C5*  
100µF  
25V  
DIFFV  
V
OUT  
+
C1  
0.1µF  
OSNS  
LTC6908-1  
+
REFER TO  
TABLE 2  
V
OSNS  
C2  
10µF  
25V  
×2  
1
2
3
6
5
4
118k  
1%  
V
OUT1  
R1  
392k  
f
SGND PGND  
SET  
R
SET  
20k  
100pF  
GND OUT2  
SET  
MOD  
5%  
MARGIN  
MARGIN CONTROL  
2-PHASE  
OSCILLATOR  
CLOCK SYNC  
180° PHASE  
TRACK/SS CONTROL  
4.5V TO 20V  
C7  
0.033µF  
V
PLLIN TRACK/SS  
IN  
PGOOD  
PGOOD  
V
OUT  
+
C4  
470µF  
6.3V  
C3  
22µF  
6.3V  
MPGM  
RUN  
COMP  
INTV  
CC  
DRV  
CC  
V
FB  
MARG0  
MARG1  
C8  
10µF  
25V  
×2  
LTM4601-1  
REFER TO  
TABLE 2  
V
OUT_LCL  
NC3  
NC2  
NC1  
392k  
f
SGND PGND  
SET  
4601 F19  
*C5 OPTIONAL TO REDUCE ANY LC RINGING.  
NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION  
Figure 19. 2-Phase Parallel, 1.5V at 24A Design  
4601f  
23  
LTM4601/LTM4601-1  
U
TYPICAL APPLICATIO S  
4601f  
24  
LTM4601/LTM4601-1  
U
PACKAGE DESCRIPTIO  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4601f  
25  
LTM4601/LTM4601-1  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1 PGND  
E2 PGND  
E3 PGND  
E4 PGND  
E5 PGND  
E6 PGND  
E7 PGND  
PIN NAME  
F1 PGND  
F2 PGND  
F3 PGND  
F4 PGND  
F5 PGND  
F6 PGND  
F7 PGND  
F8 PGND  
F9 PGND  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
V
V
V
V
V
V
-
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
V
V
V
V
V
V
-
D1 PGND  
D2 PGND  
D3 PGND  
D4 PGND  
D5 PGND  
D6 PGND  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
A7 INTV  
D7  
-
-
-
-
-
CC  
A8 PLLIN  
-
-
D8  
E8  
-
-
-
-
A9 TRACK/SS B9  
-
-
D9  
E9  
A10 RUN  
B10  
-
-
D10  
D11  
E10  
E11  
F10  
F11  
F12  
-
A11 COMP  
A12 MPGM  
B11  
B12  
-
-
-
f
C12 MARG0  
D12 MARG1  
E12 DRV  
V
SET  
CC  
FB  
PIN NAME  
G1 PGND  
G2 PGND  
G3 PGND  
G4 PGND  
G5 PGND  
G6 PGND  
G7 PGND  
G8 PGND  
G9 PGND  
PIN NAME  
H1 PGND  
H2 PGND  
H3 PGND  
H4 PGND  
H5 PGND  
H6 PGND  
H7 PGND  
H8 PGND  
H9 PGND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
J1  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
-
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
L1  
V
V
V
V
V
V
V
V
V
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT_LCL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OSNS  
J2  
L2  
J3  
L3  
J4  
L4  
J5  
L5  
J6  
L6  
J7  
L7  
J8  
L8  
J9  
L9  
G10  
G11  
-
-
H10  
H11  
-
-
J10  
J11  
J12  
L10  
L11  
L12  
M10 V  
M11 V  
M12 V  
+
G12 PGOOD  
H12 SGND  
V
K12 DIFFV  
OUT  
OSNS  
4601f  
26  
LTM4601/LTM4601-1  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
D1  
D2  
D3  
D4  
D5  
D6  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
A7  
INTVCC  
PLLIN  
B7  
-
-
-
-
-
IN  
IN  
IN  
IN  
IN  
IN  
PGND  
PGND  
PGND  
PGND  
PGND  
A8  
B8  
A9  
TRACK/SS  
RUN  
B9  
B10  
B11  
A10  
A11  
A12  
COMP  
MPGM  
C7  
-
-
-
-
-
B1  
B2  
B3  
B4  
B5  
B6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
K12  
L12  
M12  
f
C8  
SET  
C9  
MARG0  
MARG1  
C10  
C11  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
DRV  
D7  
-
-
-
-
-
CC  
D8  
V
FB  
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D9  
PGOOD  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
D10  
D11  
SGND  
+
E8  
E9  
E10  
E11  
-
-
-
-
V
OSNS  
DIFFV  
OUT  
V
V
OUT_LCL  
F10  
F11  
-
-
OSNS  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G10  
G11  
-
-
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
H10  
H11  
-
-
J11  
-
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
4601f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4601/LTM4601-1  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC µModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
Basic 10A DC/DC µModule  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC µModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no  
Remote Sensing  
LTM4602  
LTM4603  
6A DC/DC µModule  
Pin Compatible with the LTM4600  
6A DC/DC µModule with PLL and Outpupt Tracking/ Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no  
Margining and Remote Sensing  
Remote Sensing, Pin Compatible with the LTM4601  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4601f  
LT 0107 • PRINTED IN USA  
LinearTechnology Corporation  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2007  

相关型号:

LTM4601-1

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601-1_15

12A Module Regulators with PLL, Output Tracking and Margining
Linear

LTM4601/

Low VIN, 8A DC/DC μModule Regulator
Linear

LTM4601A

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601A-1

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601A-1_15

12A Module Regulators with PLL, Output Tracking and Margining
Linear

LTM4601AEV#PBF

LTM4601A/LTM4601A-1 - 12A &#181;Module (Power Module) Regulators with PLL, Output Tracking and Margining; Package: LGA; Pins: 133; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4601AEV-1-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AEV-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AHV

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVEV-PBF

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AHVIV-PBF

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear