LTM4604EV#PBF [Linear]

LTM4604 - Low Voltage, 4A DC/DC µModule (Power Module) Regulator with Tracking; Package: LGA; Pins: 66; Temperature Range: -40°C to 85°C;
LTM4604EV#PBF
型号: LTM4604EV#PBF
厂家: Linear    Linear
描述:

LTM4604 - Low Voltage, 4A DC/DC µModule (Power Module) Regulator with Tracking; Package: LGA; Pins: 66; Temperature Range: -40°C to 85°C

开关
文件: 总20页 (文件大小:606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4604  
Low Voltage, 4A DC/DC  
µModule Regulator  
with Tracking  
FeaTures  
DescripTion  
n
Complete Standalone Power Supply  
The LTM®4604 is a complete 4A switch mode step-down  
µModule® (micromodule) regulator. Included in the pack-  
age are the switching controller, power FETs, inductor and  
all support components. Operating over an input voltage  
range of 2.375V to 5.5V, the LTM4604 supports an output  
voltage range of 0.8V to 5V, set by a single resistor. This  
high efficiency design delivers up to 4A continuous cur-  
rent (5A peak). Only bulk input and output capacitors are  
needed to complete the design.  
n
Wide Input Voltage Range: 2.375V to 5.5V  
n
4A DC, 5A Peak Output Current  
n
0.8V to 5V Output  
Output Voltage Tracking  
n
n
2% Maximum Total DC Output Error  
UltraFastTM Transient Response  
n
n
Current Mode Control  
n
n
Current Foldback Protection, Parallel/Current Sharing  
Small and Very Low Profile Package:  
15mm × 9mm × 2.32mm LGA  
The low profile package (2.32mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and  
a current mode architecture enable a very fast transient  
response to line and load changes without sacrificing  
stability. The device supports output voltage tracking for  
supply rail sequencing.  
applicaTions  
n
Telecom and Networking Equipment  
n
Servers, ATCA Cards  
n
Industrial Equipment  
Fault protection features include foldback current protec-  
tion, thermal shutdown and a programmable soft-start  
function. The LTM4604 is offered in a RoHS compliant  
15mm × 9mm × 2.32mm LGA package.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks  
and LTpowerCAD, LTspice and UltraFast are trademarks of Linear Technology Corporation. All  
other trademarks are the property of their respective owners.  
Please refer to the LTM4604A for easier PC board layout  
and assembly due to increased spacing between land  
grid pads.  
Typical applicaTion  
Efficiency vs Output Current  
3.3V to 2.5V/4A µModule Regulator  
100  
V
IN  
V
V
= 3.3V  
IN  
OUT  
3.3V  
= 2.5V  
95  
90  
10µF  
6.3V  
V
IN  
V
2.5V  
4A  
OUT  
85  
80  
75  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
22µF  
6.3V  
V
IN  
RUN/SS TRACK  
GND  
×2  
2.37k  
70  
65  
4604 TA01a  
1
2
4
0
3
OUTPUT CURRENT (A)  
4604 G02  
4604fb  
1
For more information www.linear.com/LTM4604  
LTM4604  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
V , PGOOD ................................................. –0.3V to 6V  
IN  
TRACK  
PGOOD  
A
B
C
D
E
F
G
COMP, RUN/SS, FB, TRACK........................ –0.3V to V  
IN  
V
IN  
SW, V  
...................................... –0.3V to (V + 0.3V)  
OUT  
IN  
COMP  
FB  
1
2
Operating Temperature Range (Note 2)....–40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Reflow (Peak Body) Temperature.......................... 245°C  
RUN/  
SS  
SW  
3
GND  
4
5
6
7
8
9
10  
11  
GND  
V
OUT  
LGA PACKAGE  
66-PIN (15mm × 9mm × 2.32mm)  
For easier PC board layout and assembly due to in-  
creased spacing between land grid pads, please refer  
to the LTM4604A.  
T
= 125°C, θ = 25°C/W, θ  
= 7°C/W,  
JMAX  
JA  
JC(BOT)  
θ
= 50°C/W, WEIGHT = 1.0g  
JC(TOP)  
orDer inForMaTion  
LEAD FREE FINISH  
LTM4604EV#PBF  
LTM4604IV#PBF  
TRAY  
PART MARKING*  
LTM4604V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE (NOTE 2)  
–40°C to 85°C  
LTM4604EV#PBF  
LTM4604IV#PBF  
15mm × 9mm × 2.32mm LGA  
15mm × 9mm × 2.32mm LGA  
LTM4604V  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 15.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input DC Voltage  
Output Voltage, Total Variation  
with Line and Load  
2.375  
5.5  
V
IN(DC)  
C
= 10µF, C  
IN  
IN  
= 22µF ×3, R = 5.69k (Note 3)  
OUT(DC)  
IN  
V
V
OUT FB  
= 2.375V to 5.5V, I  
= 2.375V to 5.5V, I  
1.478  
1.470  
1.5  
1.5  
1.522  
1.522  
V
V
= 0A to 4A, 0°C ≤ T ≤ 85°C  
OUT  
OUT  
A
l
= 0A to 4A  
Input Specifications  
V
Undervoltage Lockout  
Threshold  
Peak Input Inrush Current at  
Start-Up  
I
I
= 0A  
1.75  
2
2.3  
V
IN(UVLO)  
OUT  
I
= 0A, C = 10µF, C  
= 22µF ×3,  
INRUSH(VIN)  
OUT  
IN  
OUT  
RUN/SS = 0.01µF, V  
= 1.5V  
OUT  
0.7  
0.7  
A
A
V
IN  
V
IN  
= 3.3V  
= 5V  
I
Input Supply Bias Current  
V
= 3.3V, No Switching  
60  
28  
100  
35  
7
µA  
mA  
µA  
mA  
µA  
Q(VIN NOLOAD)  
IN  
IN  
IN  
IN  
V
V
V
= 3.3V, V  
= 1.5V, Switching Continuous  
OUT  
= 5V, No Switching  
= 5V, V  
= 1.5V, Switching Continuous  
OUT  
Shutdown, RUN = 0, V = 5V  
IN  
4604fb  
2
For more information www.linear.com/LTM4604  
LTM4604  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 15.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 2.5V, V  
= 3.3V, V  
= 1.5V, I  
= 1.5V, I  
= 4A  
= 4A  
2.9  
2.2  
1.45  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 4A  
OUT  
OUT  
Output Specifications  
I
Output Continuous Current  
Range  
Line Regulation Accuracy  
V
V
= 3.3V, V = 1.5V (Note 3)  
OUT  
4
A
OUT(DC)  
IN  
l
= 1.5V, V from 2.375V to 5.5V, I  
= 0A  
0.1  
0.2  
%
ΔV  
OUT  
IN  
OUT  
OUT(LINE)  
V
OUT  
Load Regulation Accuracy  
V
= 1.5V, 0A to 4A (Note 3)  
= 3.3V  
= 5V  
ΔV  
OUT  
OUT(LOAD)  
l
l
V
IN  
V
IN  
0.3  
0.3  
0.6  
0.6  
%
%
V
OUT  
V
Output Ripple Voltage  
I
I
= 0A, C  
= 22µF X5R Ceramic ×3  
OUT(AC)  
OUT  
OUT  
= 3.3V, V  
= 5V, V  
10  
12  
1.25  
mV  
V
= 1.5V  
OUT  
P-P  
P-P  
IN  
IN  
mV  
V
= 1.5V  
OUT  
f
S
Output Ripple Voltage  
Frequency  
= 4A, V = 5V, V = 1.5V  
OUT  
MHz  
OUT  
IN  
Turn-On Overshoot  
ΔV  
C
= 22µF ×3, V  
= 0A  
= 1.5V, RUN/SS = 10nF,  
OUT(START)  
OUT  
OUT  
IN  
IN  
OUT  
I
20  
20  
mV  
mV  
V
V
= 3.3V  
= 5V  
t
Turn-on Time  
C
= 22µF ×3, V  
= 1.5V, I  
= 1A Resistive Load,  
OUT  
START  
OUT  
OUT  
TRACK = V and RUN/SS = Float  
IN  
= 3.3V  
= 5V  
1.5  
1.0  
ms  
ms  
V
V
IN  
IN  
Peak Deviation for Dynamic  
Load Step  
Load: 0% to 50% to 0% of Full Load,  
= 22µF ×3 Ceramic  
IN  
ΔV  
OUT(LS)  
C
OUT  
V
= 5V, V  
= 1.5V  
OUT  
25  
10  
mV  
µs  
t
I
Settling Time for Dynamic  
Load Step  
Load: 0% to 50% to 0% of Full Load  
= 5V, V = 1.5V  
SETTLE  
OUT(PK)  
V
IN  
OUT  
Output Current Limit  
Voltage at FB Pin  
C
= 22µF ×3  
OUT  
8
8
A
A
V
V
= 3.3V, V  
= 1.5V  
IN  
IN  
OUT  
= 5V, V  
= 1.5V  
OUT  
Control Section  
V
FB  
I
I
= 0A, V  
= 0A, V  
= 1.5V, 0°C ≤ T ≤ 85°C  
0.792  
0.788  
0.8  
0.8  
0.808  
0.812  
V
V
OUT  
OUT  
OUT  
OUT  
A
l
= 1.5V  
I
V
I
V
V
0.2  
0.65  
0.2  
µA  
V
µA  
mV  
V
FB  
RUN/SS Pin On/Off Threshold  
TRACK Pin Current  
Offset Voltage  
0.5  
0.8  
RUN/SS  
TRACK  
TRACK = 0.4V  
30  
TRACK(OFFSET)  
TRACK(RANGE)  
Tracking Input Range  
0
0.8  
R
Resistor Between V  
and  
OUT  
4.965  
4.99  
5.015  
kΩ  
FBHI  
FB Pins  
PGOOD  
PGOOD Range  
PGOOD Resistance  
7.5  
90  
%
Ω
ΔV  
PGOOD  
R
Open-Drain Pull-Down  
150  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
with statistical process controls. The LTM4604I is guaranteed over the full  
–40°C to 85°C operating temperature range.  
Note 3: See output current derating curves for different V , V  
and T .  
A
IN OUT  
Note 2: The LTM4604E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
4604fb  
3
For more information www.linear.com/LTM4604  
LTM4604  
Typical perForMance characTerisTics  
Efficiency vs Output Current  
VIN = 2.5V  
Efficiency vs Output Current  
VIN = 3.3V  
Efficiency vs Output Current  
VIN = 5V  
100  
95  
95  
90  
100  
95  
90  
90  
85  
80  
85  
80  
75  
70  
65  
85  
80  
75  
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
75  
70  
65  
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
V
V
V
V
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
70  
65  
V
V
OUT  
1
2
4
0
3
0
1
2
3
4
1
2
4
0
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4604 G01  
4604 G03  
4604 G02  
Minimum Input Voltage  
at 4A Load  
Load Transient Response  
Load Transient Response  
3.5  
3.0  
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
LOAD  
2.5  
LOAD  
2A/DIV  
2A/DIV  
V
2.0  
1.5  
1.0  
0.5  
OUT  
V
OUT  
20mV/DIV  
20mV/DIV  
4604 G06  
V
V
C
= 5V  
20µs/DIV  
IN  
4604 G05  
V
V
C
= 5V  
20µs/DIV  
IN  
= 1.5V  
OUT  
OUT  
OUT  
= 1.2V  
OUT  
OUT  
OUT  
= 4 × 22µF, 6.3V CERAMICS  
= 0A to 2A  
= 4 × 22µF, 6.3V CERAMICS  
= 0A to 2A  
I
I
0
0
1.5  
2.5  
2
3
3.5  
4 4.5  
5 5.5  
0.5  
1
V
(V)  
IN  
4604 G04  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
LOAD  
LOAD  
2A/DIV  
2A/DIV  
I
LOAD  
2A/DIV  
V
OUT  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
20mV/DIV  
4604 G07  
4604 G08  
4604 G09  
V
V
C
I
= 5V  
20µs/DIV  
V
V
C
I
= 5V  
20µs/DIV  
V
V
C
I
= 5V  
20µs/DIV  
IN  
IN  
IN  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3 × 22µF, 6.3V CERAMICS  
= 0A to 2A  
= 3 × 22µF, 6.3V CERAMICS  
= 0A to 2A  
= 2 × 22µF, 6.3V CERAMICS  
= 0A to 2A  
OUT  
OUT  
OUT  
4604fb  
4
For more information www.linear.com/LTM4604  
LTM4604  
Typical perForMance characTerisTics  
Start-Up  
Start-Up  
V
V
IN  
IN  
2V/DIV  
2V/DIV  
I
IN  
I
IN  
1A/DIV  
1A/DIV  
4604 G10  
4604 G11  
V
V
C
= 5V  
200µs/DIV  
V
V
C
= 5V  
200µs/DIV  
IN  
IN  
= 2.5V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
= 4 × 22µF  
= 4 × 22µF  
NO LOAD  
4A LOAD  
(0.01µF SOFT-START CAPACITOR)  
(0.01µF SOFT-START CAPACITOR)  
VFB vs Temperature  
Current Limit Foldback  
806  
804  
1.6  
1.4  
1.2  
1.0  
802  
800  
0.8  
0.6  
798  
796  
794  
V
OUT  
= 1.5V  
0.4  
0.2  
0
V
V
V
= 5V  
= 3.3V  
= 2.5V  
IN  
IN  
IN  
4
5
7
3
8
-50  
-25  
0
25  
50  
75  
100  
6
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
4604 G13  
4604 G12  
Short-Circuit Protection  
1.5V Short, No Load  
Short-Circuit Protection  
1.5V Short, 4A Load  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
IN  
I
IN  
1A/DIV  
1A/DIV  
4604 G15  
4604 G14  
100µs/DIV  
20µs/DIV  
V
IN  
= 5V  
V
IN  
= 5V  
4604fb  
5
For more information www.linear.com/LTM4604  
LTM4604  
pin FuncTions  
V
(B1, C1, C3-C7, D7, E6 and E7): Power Input Pins.  
COMP(G1):CurrentControlThresholdandErrorAmplifier  
Compensation Point. The current comparator threshold  
increases with this control voltage. Two power modules  
can current share when this pin is connected in parallel  
with the adjacent module’s COMP pin.  
IN  
Apply input voltage between these pins and GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
between V pins and GND pins.  
IN  
V
OUT  
(D8-D11, E8-E11, F6-F11, G6-G11): Power Output  
Pins. Apply output load between these pins and GND  
pins. Recommend placing output decoupling capacitance  
directlybetweenthesepinsandGNDpins. ReviewTable 4.  
PGOOD(F1):OutputVoltagePowerGoodIndicator. Open-  
drain logic output that is pulled to ground when the output  
voltage is not within 7.5% of the regulation point.  
GND (G3-G5, F3-F5, E4-E5, A1-A11, B6-B11, C8-C11):  
RUN/SS (D1): Run Control and Soft-Start Pin. A voltage  
Power Ground Pins for Both Input and Output Returns.  
above 0.8V will turn on the module, and below 0.5V will  
turn off the module. This pin has a 1M resistor to V and  
IN  
TRACK(E1):OutputVoltageTrackingPin.Whenthemodule  
is configured as a master output, then a soft-start capaci-  
tor is placed on the RUN/SS pin to ground to control the  
master ramp rate. Slave operation is performed by putting  
a resistor divider from the master output to ground, and  
connecting the center point of the divider to this pin on  
the slave regulator. If tracking is not desired, then connect  
a 1000pF capacitor to GND. The voltage on the RUN/SS  
pin clamps the control loop’s current comparator thresh-  
old. A RUN/SS pin voltage of 2.375V upon completion of  
soft-start guarantees the regulator can deliver full output  
current.ToturnoffthemodulewhileV remainsactive,the  
IN  
RUN/SS pin should be pulled low with a falling edge ≤ 1µs  
toensurethedevicedoesnottransitionslowlythroughthe  
internal undervoltage lockout threshold. See Applications  
Information section for soft-start information.  
the TRACK pin to V . Load current must be present for  
IN  
tracking. See Applications Information section.  
FB(G2):TheNegativeInputoftheErrorAmplifier.Internally,  
SW (B3 and B4): Switching Node of the circuit is used for  
testing purposes. This can be connected to copper on the  
board to improve thermal performance. Make sure not to  
connect it to other output pins.  
this pin is connected to V  
with a 4.99k precision resis-  
OUT  
tor. Different output voltages can be programmed with an  
externally connected resistor between FB and GND pins.  
Two power modules can current share when this pin is  
connected in parallel with the adjacent module’s FB pin.  
See Applications Information section.  
4604fb  
6
For more information www.linear.com/LTM4604  
LTM4604  
block DiagraM  
V
V
PGOOD  
IN  
V
IN  
2.375V TO 5.5V  
10µF  
6.3V  
×2  
10µF  
6.3V  
R
SS  
1M  
RUN/SS  
C
SS  
C
SSEXT  
1000pF  
M1  
M2  
L
V
OUT  
OUT  
CONTROL,  
DRIVE  
4.99k  
1.5V  
4A  
TRACK  
COMP  
TRACK  
SUPPLY  
22µF  
6.3V  
×3  
R1  
4.99k  
0.5%  
C2  
470pF  
10µF  
6.3V  
5.76k  
INTERNAL  
COMP  
GND  
4604 BD  
FB  
SW  
R
FB  
5.76k  
Figure 1. Simplified LTM4604 Block Diagram  
Decoupling reQuireMenTs T = 25°C. Use Figure 1 Configuration.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
IN  
I
= 4A  
10  
µF  
OUT  
(V = 2.375V to 5.5V, V  
= 1.5V)  
OUT  
C
External Output Capacitor Requirement  
(V = 2.375V to 5.5V, V = 1.5V)  
I
= 4A  
66  
µF  
OUT  
OUT  
IN  
OUT  
4604fb  
7
For more information www.linear.com/LTM4604  
LTM4604  
operaTion  
Power Module Description  
PGOOD output low if the output feedback voltage exits a  
7.5% window around the regulation point. Furthermore,  
in an overvoltage condition, internal top FET M1 is turned  
off and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4604 is a standalone non-isolated switch mode  
DC/DC power supply. It can deliver up to 4A of DC output  
current with few external input and output capacitors.  
This module provides a precise regulated output voltage  
programmable via one external resistor from 0.8V DC to  
5.0V DC over a 2.375V to 5.5V input voltage. A typical  
application schematic is shown in Figure 15.  
Pulling the RUN/SS pin below 0.5V forces the controller  
into its shutdown state, turning off both M1 and M2. At  
low load current, the module works in continuous current  
modebydefaulttoachieveminimumoutputvoltageripple.  
The LTM4604 has an integrated constant frequency cur-  
rent mode regulator with built-in power MOSFETs with  
fast switching speed. The typical switching frequency is  
1.25MHz.Withcurrentmodecontrolandinternalfeedback  
loop compensation, the LTM4604 module has sufficient  
stability margins and good transient performance under a  
wide range of operating conditions and with a wide range  
of output capacitors, even all ceramic output capacitors.  
The TRACK pin is used for power supply tracking. See the  
Applications Information section.  
The LTM4604 is internally compensated to be stable over  
a wide operating range. Table 4 provides a guideline for  
input and output capacitance for several operating con-  
ditions. The LTpowerCAD™ GUI is available for transient  
and stability analysis.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. In addition, foldback current limiting is provided in  
The FB pin is used to program the output voltage with a  
single external resistor connected to ground.  
an overcurrent condition while V  
drops. Internal over-  
OUT  
voltageandundervoltagecomparatorspulltheopen-drain  
4604fb  
8
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
AtypicalLTM4604applicationcircuitisshowninFigure 15.  
External component selection is primarily determined by  
the maximum load current and output voltage. Refer to  
Table 4 for specific external capacitor requirements for a  
particular application.  
IOUT(MAX)  
ICIN(RMS)  
=
D 1D  
(
)
h%  
In the above equation, η% is the estimated efficiency of  
the power module. The bulk capacitor can be a switcher-  
ratedaluminumelectrolyticcapacitor, OS-CONorpolymer  
capacitor. If a low inductance plane is used to power the  
device, then no input capacitance is required. The two  
internal 10µF ceramics are typically rated for 2A to 3A of  
RMS ripple current. The worst-case ripple current for the  
4A maximum current is 2A or less.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
The LTM4604 is 100% duty cycle capable, but the V to  
IN  
V
OUT  
minimum dropout is a function of the load current.  
A typical 0.5V minimum is sufficient (see Typical Perfor-  
mance Characteristics).  
Output Voltage Programming  
Output Capacitors  
ThePWMcontrollerhasaninternal0.8Vreferencevoltage.  
As shown in the Block Diagram, a 4.99k, 0.5% internal  
The LTM4604 is designed for low output voltage ripple.  
The bulk output capacitors defined as C  
are chosen  
OUT  
feedback resistor connects the V  
and FB pins together.  
OUT  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
The output voltage will default to 0.8V with no externally  
OUT  
applied feedback resistor. Adding a resistor R from the  
FB  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitor or an X5R/X7R ceramic capacitor. The typical  
output capacitance range is 22µF to 100µF. Additional  
output filtering may be required by the system designer  
if further reduction of output ripple or dynamic transient  
spikes is required. Table 4 shows a matrix of different  
output voltages and output capacitors to minimize the  
voltage droop and overshoot during a 2A/µs transient.  
The table optimizes the total equivalent ESR and total  
bulk capacitance to maximize transient performance. The  
LTpowerCAD GUI is available for further optimization.  
FB pin to GND programs the output voltage:  
4.99k +RFB  
VOUT = 0.8V •  
RFB  
Table 1. FB Resistor vs Output Voltage  
V
0.8V  
1.0V  
20k  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
R
Open  
5.76k  
4.02k  
2.37k  
1.62k  
FB  
Input Capacitors  
The LTM4604 module should be connected to a low ac-  
impedance DC source. Two 10µF ceramic capacitors are  
included inside the module. Additional input capacitors  
are only needed if a large load step is required up to a  
full 4A level. An input 47µF bulk capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads or traces.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
The LTM4604 has current mode control, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
To further limit current in the event of an overload condi-  
tion, the LTM4604 provides foldback current limiting as  
the output voltage falls. The LTM4604 device has over-  
temperature shutdown protection that inhibits switching  
operation around 150°C.  
For a buck converter, the switching duty cycle can be  
estimated as:  
VOUT  
D =  
V
IN  
4604fb  
9
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
Run Enable and Soft-Start  
V
IN  
5V  
The RUN/SS pin provides dual functions of enable and  
soft-start control. The RUN/SS pin is used to control  
turn on of the LTM4604. While this pin is below 0.5V, the  
LTM4604 will be in a 7µA low quiescent current state. A  
0.8V threshold will enable the LTM4604. This pin can be  
used to sequence LTM4604 devices. The voltage on the  
RUN/SS pin clamps the control loop’s current comparator  
threshold.ARUN/SSpinvoltageof2.375Vuponcompletion  
ofsoft-startguaranteestheregulatorcandeliverfulloutput  
current. The soft-start control is provided by a 1M pull-up  
C
10µF  
6.3V  
IN1  
X5R OR X7R  
V
IN  
V
3.3V  
4A  
MASTER  
PGOOD  
LTM4604  
COMP  
V
OUT  
C
OUT1  
22µF  
FB  
6.3V ×3  
X5R OR  
X7R  
RAMP  
RUN/SS TRACK  
GND  
CONTROL  
R
FB3  
OR V  
C
IN  
1.62k  
SSEXT  
resistor (R ) and a 1000pF capacitor (C ) as shown in  
SS  
SS  
V
IN  
the Block Diagram. An external capacitor can be applied  
to the RUN/SS pin to increase the soft-start time. A typical  
value is 0.01µF. Soft-start time is approximately given by:  
5V  
C
10µF  
6.3V  
IN2  
X5R OR X7R  
V
IN  
V
IN  
V
1.5V  
4A  
tSOFTSTART = ln  
RSS C +C  
(
)
SLAVE  
SS  
SSEXT  
PGOOD  
LTM4604  
COMP  
V
V – 1.8V  
OUT  
FB  
IN  
C
OUT2  
22µF  
where R and C are shown in the Block Diagram of  
6.3V ×3  
X5R OR  
X7R  
SS  
SS  
RUN/SS TRACK  
GND  
Figure 1, 1.8V is the soft-start upper range, and C  
is  
R
FB  
SSEXT  
R
FB2  
5.76k  
5.76k  
theadditionalcapacitanceforfurthersoft-startcontrol.The  
soft-start function can also be used to control the output  
ramp-up time, so that another regulator can be easily  
tracked.Anindependentrampcontrolsignalcanbeapplied  
to the master ramp, otherwise, connect the TRACK pin to  
R
FB1  
4.99k  
4604 F02  
Figure 2. Dual Outputs (3.3V and 1.5V) with Tracking  
V to disable tracking. To turn off the module while V  
IN  
IN  
remains active, the RUN/SS pin should be pulled low with  
afallingedgestoensurethedevicedoesnottransition  
slowlythroughtheinternalundervoltagelockoutthreshold.  
MASTER OUTPUT  
SLAVE OUTPUT  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK pin. The output can be tracked up and  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
sameastheslaveregulator’sfeedbackdividertoimplement  
coincident tracking. The LTM4604 uses a very accurate  
4.99k resistor for the top feedback resistor. Figures 2 and  
3 show an example of coincident tracking.  
TIME  
4604 F03  
Figure 3. Output Voltage Coincident Tracking  
RFB2  
4.99k +RFB2  
VTRACK  
=
VMASTER  
4604fb  
10  
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
V
V
is the track ramp applied to the slave’s TRACK pin.  
applies the track reference for the slave output up  
Parallel Operation  
TRACK  
TRACK  
The LTM4604 device is an inherently current mode con-  
trolled device. Parallel modules will have very good cur-  
rent sharing. This will balance the thermals on the design.  
Figure 16 shows a schematic of the parallel design. The  
voltage feedback changes with the variable N as more  
modules are paralleled. The equation:  
to the point of the programmed value at which V  
proceeds beyond the 0.8V reference value. The V  
pin must go beyond 0.8V to ensure the slave output has  
reached its final value. Load current must be present for  
proper tracking.  
TRACK  
TRACK  
Ratiometric modes of tracking can be achieved by select-  
ing different resistor values to change the output tracking  
ratio. The master output must be greater than the slave  
output for ratiometric tracking to work. LTspice™ can be  
usedtoimplementdifferenttrackingscenarios.TheMaster  
and Slave data inputs can be used to implement the cor-  
rect resistor values for coincident or ratiometric tracking.  
The master and slave regulators require load current for  
tracking down.  
4.99k  
+RFB  
N
VOUT = 0.8V  
RFB  
N is the number of paralleled modules.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 4 and 5 can be used in  
coordination with the load derating curves in Figures 6  
Power Good  
through 13 for calculating an approximate θ for the  
JA  
module with and without heat sinking methods with vari-  
ous airflow conditions. Thermal models are derived from  
several temperature measurements at the bench, and are  
correlated with thermal analysis software. Tables 2 and 3  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 7.5% window around the regulation point.  
provide a summary of the equivalent θ for the noted  
JA  
COMP Pin  
conditions.Theseequivalentθ parametersarecorrelated  
JA  
The COMP pin is the external compensation pin. The  
LTM4604 has already been internally compensated for all  
output voltages. Table 4 is provided for most application  
requirements. The LTpowerCAD GUI is available for other  
control loop optimizations.  
to the measured values and improve with air flow. The  
maximum junction temperature is monitored while the  
derating curves are derived.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
5V TO 2.5V  
POWER LOSS  
0.4  
3.3V TO 2.5V  
POWER LOSS  
0.2  
0
5V TO 1.2V  
POWER LOSS  
0.4  
3.3V TO 1.2V  
POWER LOSS  
0.2  
0
0
2
3
4
5
1
LOAD CURRENT (A)  
0
3
4
5
1
2
4604 F05  
LOAD CURRENT (A)  
4604 F04  
Figure 5. 2.5V Power Loss  
Figure 4. 1.2V Power Loss  
4604fb  
11  
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0LFM  
0LFM  
200LFM  
400LFM  
0.5  
200LFM  
400LFM  
0
90 95  
70 75 80 85  
100 105 110 115  
90 95  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F06  
4606 F07  
Figure 6. 5VIN to 1.2VOUT No Heat Sink  
Figure 7. 5VIN to 1.2VOUT with Heat Sink  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0LFM  
0LFM  
0.5  
0.5  
200LFM  
200LFM  
400LFM  
400LFM  
0
0
90 95  
100 105 110 115  
90 95  
70 75 80 85  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F09  
4606 F08  
Figure 8. 3.3VIN to 1.2VOUT No Heat Sink  
Figure 9. 3.3VIN to 1.2VOUT with Heat Sink  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0LFM  
0LFM  
0.5  
0.5  
200LFM  
200LFM  
400LFM  
400LFM  
0
0
90 95  
70 75 80 85  
100 105 110  
90 95  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F10  
4606 F11  
Figure 10. 5VIN to 2.5VOUT No Heat Sink  
Figure 11. 5VIN to 2.5VOUT with Heat Sink  
4604fb  
12  
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0LFM  
200LFM  
400LFM  
0LFM  
0.5  
200LFM  
400LFM  
0
90 95  
100 105 110 115  
90 95  
70 75 80 85  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F13  
4606 F12  
Figure 12. 3.3VIN to 2.5VOUT No Heat Sink  
Figure 13. 3.3VIN to 2.5VOUT with Heat Sink  
4604fb  
13  
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
Table 2. 1.2V Output  
DERATING CURVE  
Figures 6, 8  
Figures 6, 8  
Figures 6, 8  
Figures 7, 9  
Figures 7, 9  
Figures 7, 9  
V
(V)  
POWER LOSS CURVE  
Figure 4  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
25  
Figure 4  
200  
400  
0
None  
22.5  
21  
Figure 4  
None  
Figure 4  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
21  
Figure 4  
200  
400  
20  
Figure 4  
18  
Table 3. 2.5V Output  
DERATING CURVE  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 5  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
IN  
JA  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
25  
21  
21  
21  
18  
16  
Figures 10, 12  
Figure 5  
200  
400  
0
None  
Figures 10, 12  
Figure 5  
None  
Figures 11, 13  
Figure 5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 11, 13  
Figure 5  
200  
400  
Figures 11, 13  
Figure 5  
Table 4. Output Voltage Response Versus Component Matrix (Refer to Figure 17), 0A to 2A Load Step Typical Measured Values  
C
C
DROOP  
(mV)  
PEAK-TO- RECOVERY LOAD STEP  
R
FB  
IN  
OUT  
(CERAMIC)  
V
(V) (CERAMIC)  
C
(Bulk)  
C
V (V)  
IN  
PEAK(mV)  
(µs)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
12  
12  
12  
15  
15  
15  
(A/µs)  
(kΩ)  
OUT  
IN  
COMP  
1.2  
1.2  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
56µF Aluminum 100µF 6.3V  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
2.5  
21  
23  
24  
19  
21  
21  
25  
30  
30  
22  
25  
25  
22  
25  
25  
43  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
10  
56µF Aluminum  
56µF Aluminum  
3.3  
5
45  
10  
22µF ×4  
22µF ×4  
1.2  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
46  
10  
56µF Aluminum 100µF 6.3V  
2.5  
3.3  
5
41  
5.76  
5.76  
5.76  
4.02  
4.02  
4.02  
2.37  
2.37  
2.37  
1.62  
1.62  
1.62  
56µF Aluminum  
56µF Aluminum  
43  
22µF ×4  
22µF ×4  
43  
56µF Aluminum 100µF 6.3V  
2.5  
3.3  
5
50  
56µF Aluminum  
56µF Aluminum  
60  
22µF ×3  
22µF ×3  
60  
56µF Aluminum 100µF 6.3V  
2.5  
3.3  
5
45  
56µF Aluminum  
56µF Aluminum  
55  
22µF ×3  
22µF ×3  
55  
56µF Aluminum 100µF 6.3V  
2.5  
3.3  
5
50  
56µF Aluminum  
56µF Aluminum  
56  
22µF ×3  
22µF ×3  
56  
4604fb  
14  
For more information www.linear.com/LTM4604  
LTM4604  
applicaTions inForMaTion  
Safety Considerations  
Donotputviasdirectlyonthepadsunlesstheyareꢀ  
capped.  
TheLTM4604µModuleregulatordoesnotprovidegalvanic  
isolation from V to V . There is no internal fuse. If re-  
SWꢀpadsꢀcanꢀbeꢀsolderedꢀtoꢀboardꢀtoꢀimproveꢀthermalꢀ  
performance.  
IN  
OUT  
quired, a slow blow fuse with a rating twice the maximum  
input current needs to be provided to protect each unit  
from catastrophic failure.  
Figure 14 gives a good example of the recommended  
layout. For easier PC board layout and assembly due  
to increased spacing between land grid pads, please  
refer to the LTM4604A.  
Layout Checklist/Example  
The high integration of LTM4604 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
GND  
V
OUT  
C
C
C
OUT  
OUT  
OUT  
Useꢀ largeꢀ PCBꢀ copperꢀ areasꢀ forꢀ highꢀ currentꢀ path,ꢀ  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
Placehighfrequencyceramicinputandoutputcapacitorsꢀ  
next to the V , GND and V  
pins to minimize high  
IN  
OUT  
frequency noise.  
• •  
V
IN  
Placeꢀaꢀdedicatedꢀpowerꢀgroundꢀlayerꢀunderneathꢀtheꢀ  
unit.  
• •  
SW  
Toꢀminimizeꢀtheꢀviaꢀconductionꢀlossꢀandꢀreduceꢀmoduleꢀ  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
C
IN  
GND  
4604 F14  
Figure 14. Recommended PCB Layout  
V
IN  
2.375V TO 5.5V  
C
IN  
10µF  
6.3V  
X5R OR X7R  
V
IN  
V
1.5V  
4A  
OUT  
OPEN-DRAIN  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
PULL UP  
C
OUT  
22µF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
5.69k  
0.5%  
FB  
C
SSEXT  
0.01µF  
4604 F15  
Figure 15. Typical 2.375V to 5.5V Input, 1.5V at 4A Design  
4604fb  
15  
For more information www.linear.com/LTM4604  
LTM4604  
Typical applicaTions  
V
IN  
2.375V TO 5V  
C
10µF  
6.3V  
IN1  
X5R OR X7R  
V
= 0.8V × ((4.99k/N) + R )/R  
FB FB  
OUT  
WHERE N IS THE NUMBER OF PARALLEL DEVICES  
V
IN  
OPEN-DRAIN PULL UP  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT1  
22µF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
FB  
C
SSEXT  
2.87k  
0.01µF  
V
1.5V  
8A  
OUT  
C
10µF  
6.3V  
IN2  
X5R OR X7R  
V
IN  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT2  
22µF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
4604 F16  
Figure 16. Two LTM4604s in Parallel, 1.5V at 8A Design.  
Also See the 8A LTM4608A or Dual 4A per Channel LTM4614  
V
IN  
3.3V TO 5V  
C
10µF  
6.3V  
IN  
50k  
X5R OR X7R  
V
IN  
V
2.5V  
4A  
OUT  
OPEN-DRAIN  
PULL UP  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT  
22µF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
FB  
C
SSEXT  
2.37k  
0.01µF  
4604 F17  
Figure 17. 3.3V to 5V Input, 2.5V at 4A Design  
4604fb  
16  
For more information www.linear.com/LTM4604  
LTM4604  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 3 5 0  
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 4 4 4 5  
0 . 0 0 0  
0 . 4 4 4
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
6 . 3 5 0  
a a a  
Z
4604fb  
17  
For more information www.linear.com/LTM4604  
LTM4604  
package DescripTion  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN ID  
A1  
FUNCTION  
GND  
PIN ID  
B1  
FUNCTION  
PIN ID  
C1  
FUNCTION  
PIN ID  
D1  
FUNCTION  
V
V
IN  
RUN/SS  
IN  
A2  
GND  
B2  
C2  
D2  
A3  
GND  
B3  
SW  
SW  
C3  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D3  
A4  
GND  
B4  
C4  
D4  
A5  
GND  
B5  
C5  
D5  
A6  
GND  
B6  
GND  
GND  
GND  
GND  
GND  
GND  
C6  
D6  
A7  
GND  
B7  
C7  
D7  
V
IN  
A8  
GND  
B8  
C8  
GND  
GND  
GND  
GND  
D8  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
A9  
GND  
B9  
C9  
D9  
A10  
A11  
GND  
B10  
B11  
C10  
C11  
D10  
D11  
GND  
PIN ID  
E1  
FUNCTION  
PIN ID  
F1  
FUNCTION  
PGOOD  
PIN ID  
G1  
FUNCTION  
COMP  
FB  
TRACK  
E2  
F2  
G2  
E3  
F3  
GND  
GND  
GND  
G3  
GND  
E4  
GND  
GND  
F4  
G4  
GND  
E5  
F5  
G5  
GND  
E6  
V
V
F6  
V
V
V
V
V
V
G6  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
E7  
F7  
G7  
E8  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
F8  
G8  
E9  
F9  
G9  
E10  
E11  
F10  
F11  
G10  
G11  
4604fb  
18  
For more information www.linear.com/LTM4604  
LTM4604  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
5/10  
Updated Front Page Text  
1
2
Updated Absolute Maximum Ratings and Pin Configuration Section  
Updated Callouts on Graphs  
5
Added text to Layout Checklist/Example Section  
Updated Figure 16 Title  
15  
15  
2
B
5/14  
Updated thermal resistance and weight  
Updated Minimum Input Voltage graph  
Added output current information to Load Transient Response curves  
Updated RUN/SS Pin Description  
4
4
6
Updated Run Enable and Soft-Start section  
10  
4604fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTM4604  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
10A DC/DC µModule Regulator  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
Basic 10A DC/DC µModule Regulator  
LTC2923  
LTM4600  
LTM4601  
12A DC/DC µModule Regulator with PLL, Output  
Tracking/ Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1 Version has no Remote  
Sensing  
LTM4602  
LTM4603  
6A DC/DC µModule Regulator  
Pin Compatible with the LTM4600  
6A DC/DC µModule Regulator with PLL and Output Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Tracking/Margining and Remote Sensing  
Sensing, Pin Compatible with the LTM4601  
LTM4608A  
8A Low Voltage µModule Regulator  
2.375V ≤ V ≤ 5V, Parallel for Higher Output Current, 9mm × 15mm × 2.82mm  
IN  
4604fb  
LT 0514 REV B • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2007  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4604  

相关型号:

LTM4604EV-PBF

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604IV-PBF

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604V

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4605

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTM4605EV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40°C to 85°C
Linear

LTM4605EV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605IV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40°C to 85°C
Linear

LTM4605IV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605V

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4606

Ultralow EMI 28VIN, 6A DC/DC μModule
Linear

LTM4606EV#PBF

LTM4606 - Ultralow EMI 28VIN, 6A DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40°C to 85°C
Linear