LTM4604IV-PBF [Linear]

Low Voltage, 4A DC/DC μModuleTM with Tracking; 低电压, 4A DC / DC μModuleTM与跟踪
LTM4604IV-PBF
型号: LTM4604IV-PBF
厂家: Linear    Linear
描述:

Low Voltage, 4A DC/DC μModuleTM with Tracking
低电压, 4A DC / DC μModuleTM与跟踪

文件: 总20页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4604  
Low Voltage, 4A DC/DC  
µModuleTM with Tracking  
FEATURES  
DESCRIPTION  
TheLTM®4604isacomplete4AswitchmodeDC/DCpower  
supply. Included in the package are the switching control-  
ler, power FETs, inductor and all support components.  
Operating over an input voltage range of 2.375V to 5.5V,  
the LTM4604 supports an output voltage range of 0.8V  
to 5V, set by a single resistor. This high efficiency design  
delivers up to 4A continuous current (5A peak). Only bulk  
output capacitors are needed to complete the design.  
Complete Standalone Power Supply  
Wide Input Voltage Range: 2.375V to 5.5V  
4A DC, 5A Peak Output Current  
0.8V to 5V Output  
Output Voltage Tracking  
2% Total DC Error  
UltraFastTM Transient Response  
Power Good Indicator  
Current Mode Control  
Current Foldback Protection, Parallel/Current Sharing  
Up to 95% Efficiency  
Programmable Soft-Start  
Micropower Shutdown: I ≤ 7μA  
Overtemperature Protection  
The low profile package (2.3mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and  
a current mode architecture enable a very fast transient  
response to line and load changes without sacrificing  
stability. The device supports output voltage tracking for  
supply rail sequencing.  
Q
Small and Very Low Profile Package:  
15mm × 9mm × 2.3mm LGA  
Fault protection features include foldback current protec-  
tion, thermal shutdown and a programmable soft-start  
function. The LTM4604 is offered in a space saving and  
thermally enhanced 15mm × 9mm × 2.3mm LGA package  
and is Pb free and RoHS compliant.  
APPLICATIONS  
Telecom and Networking Equipment  
Servers  
Storage Cards  
ATCA Cards  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
μModule and UltraFast are trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Industrial Equipment  
TYPICAL APPLICATION  
Efficiency vs Output Current  
3.3V to 2.5V/4A μModule Regulator  
100  
V
V
= 3.3V  
IN  
OUT  
V
IN  
= 2.5V  
95  
90  
3.3V  
10μF  
6.3V  
V
85  
80  
75  
IN  
V
2.5V  
4A  
OUT  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
22μF  
6.3V  
V
RUN/SS TRACK  
GND  
IN  
×2  
2.37k  
70  
65  
4604 TA01a  
1
2
4
0
3
OUTPUT CURRENT (A)  
4604f  
1
LTM4604  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , PGOOD ................................................. –0.3V to 6V  
TOP VIEW  
TRACK  
IN  
PGOOD  
COMP, RUN/SS, FB, TRACK.........................–0.3V to V  
IN  
A
B
C
D
E
F
G
SW, V ........................................–0.3V to (V + 0.3V)  
OUT  
IN  
V
IN  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
COMP  
FB  
1
2
RUN/  
SS  
SW  
3
GND  
4
5
6
7
8
9
10  
11  
GND  
V
OUT  
LGA PACKAGE  
66-PIN (15mm 9mm 2.3mm)  
= 125°C, θ = 25°C/W, WEIGHT = 0.86g  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
TRAY  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTM4604EV#PBF  
LTM4604IV#PBF  
LTM4604EV#PBF  
LTM4604IV#PBF  
LTM4604V  
LTM4604V  
15mm × 9mm × 2.3mm LGA  
15mm × 9mm × 2.3mm LGA  
–40°C to 85°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 15.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Input DC Voltage  
Output Voltage, Total Variation  
with Line and Load  
2.375  
5.5  
V
IN(DC)  
C
= 10μF × 1, C  
IN  
IN  
= 22μF ×3, R = 5.69k 0.5%  
OUT(DC)  
IN  
V
V
OUT FB  
= 2.375V to 5.5V, I  
= 2.375V to 5.5V, I  
= 0A to 4A, 0°C ≤ T ≤ 85°C  
1.478  
1.470  
1.5  
1.5  
1.522  
1.522  
V
V
OUT  
OUT  
A
= 0A to 4A  
Input Specifications  
V
Undervoltage Lockout  
Threshold  
Peak Input Inrush Current at  
Start-Up  
I
I
= 0A  
1.75  
2
2.3  
V
IN(UVLO)  
OUT  
I
I
= 0A, C = 10μF, C  
RUN/SS = 0.01μF, V  
= 22μF ×3,  
INRUSH(VIN)  
OUT  
IN  
OUT  
= 1.5V  
OUT  
V
IN  
V
IN  
= 3.3V  
= 5V  
= 3.3V, V  
= 3.3V, V  
= 5V, V  
= 5V, V  
0.7  
0.7  
60  
28  
100  
35  
7
A
A
Input Supply Bias Current  
V
= 1.5V, No Switching  
μA  
mA  
μA  
Q(VIN NOLOAD)  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
V
V
V
= 1.5V, Switching Continuous  
= 1.5V, No Switching  
= 1.5V, Switching Continuous  
mA  
μA  
Shutdown, RUN = 0, V = 5V  
IN  
4604f  
2
LTM4604  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V unless otherwise noted. See Figure 15.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 2.5V, V  
= 3.3V, V  
= 1.5V, I  
= 1.5V, I  
= 4A  
= 4A  
2.9  
2.2  
1.45  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 4A  
OUT  
OUT  
Output Specifications  
I
Output Continuous Current  
Range (See Output Current  
Derating Curves for Different  
V
IN  
= 3.3V, V = 1.5V  
OUT  
4
A
OUT(DC)  
V , V  
and T )  
A
IN OUT  
ΔV  
ΔV  
Line Regulation Accuracy  
V
V
= 1.5V, V from 2.375V to 5.5V, I  
= 0A  
0.1  
0.2  
%
OUT(LINE)  
OUT  
IN  
OUT  
V
OUT  
Load Regulation Accuracy  
= 1.5V, 0A to 4A  
= 3.3V  
= 5V  
OUT(LOAD)  
OUT  
V
IN  
V
IN  
0.3  
0.3  
0.6  
0.6  
%
%
V
OUT  
V
Output Ripple Voltage  
I
I
= 0A, C  
= 22μF/X5R/Ceramic ×3  
OUT  
OUT(AC)  
OUT  
V
IN  
V
IN  
= 3.3V, V  
= 1.5V  
10  
12  
1.25  
mV  
mV  
MHz  
OUT  
P-P  
P-P  
= 5V, V  
= 4A, V = 5V, V = 1.5V  
OUT  
= 1.5V  
OUT  
f
Output Ripple Voltage  
Frequency  
S
OUT  
IN  
ΔV  
Turn-On Overshoot  
C
= 22μF ×3, V  
= 0A  
= 1.5V, RUN/SS = 10nF,  
OUT(START)  
OUT  
OUT  
IN  
IN  
OUT  
I
V
V
= 3.3V  
20  
20  
mV  
mV  
= 5V  
t
Turn-on Time  
C
= 22μF ×3, V  
= 1.5V, I  
= 1A Resistive Load,  
OUT  
START  
OUT  
OUT  
TRACK = V and RUN/SS = Float  
IN  
= 3.3V  
= 5V  
V
V
1.5  
1.0  
ms  
ms  
IN  
IN  
ΔV  
OUT(LS)  
Peak Deviation for Dynamic  
Load Step  
Load: 0% to 50% to 0% of Full Load,  
= 22μF ×3 Ceramic  
C
OUT  
V
= 5V, V  
= 1.5V  
25  
10  
mV  
μs  
IN  
OUT  
t
I
Settling Time for Dynamic  
Load Step  
Output Current Limit  
Load: 0% to 50% to 0% of Full Load  
= 5V, V = 1.5V  
SETTLE  
V
IN  
OUT  
C
= 22μF ×3  
OUT(PK)  
OUT  
V
IN  
V
IN  
= 3.3V, V  
= 1.5V  
OUT  
8
8
A
A
= 5V, V  
= 1.5V  
OUT  
Control Section  
V
FB  
Voltage at FB Pin  
I
I
= 0A, V  
= 0A, V  
= 1.5V, 0°C ≤ T ≤ 85°C  
0.792  
0.788  
0.8  
0.8  
0.808  
0.812  
V
V
OUT  
OUT  
OUT  
OUT  
A
= 1.5V  
I
V
0.2  
0.65  
0.2  
μA  
V
μA  
mV  
V
FB  
RUN Pin On/Off Threshold  
TRACK Pin Current  
Offset Voltage  
0.5  
0.8  
RUN  
I
TRACK  
V
V
TRACK = 0.4V  
30  
TRACK(OFFSET)  
TRACK(RANGE)  
Tracking Input Range  
0
0.8  
R
Resistor Between V  
and  
OUT  
4.975  
4.99  
5.025  
kΩ  
FBHI  
FB Pins  
PGOOD  
ΔV  
R
PGOOD Range  
PGOOD Resistance  
7.5  
90  
%
Ω
PGOOD  
PGOOD  
Open-Drain Pull-Down  
150  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4604E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4604I is guaranteed over the full  
–40°C to 85°C temperature range.  
4604f  
3
LTM4604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Output Current  
Efficiency vs Output Current  
VIN = 3.3V  
Efficiency vs Output Current  
VIN = 5V  
V
IN = 2.5V  
100  
95  
95  
90  
100  
95  
90  
90  
85  
80  
85  
80  
75  
70  
65  
85  
80  
75  
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
75  
70  
65  
V
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
V
70  
65  
V
V
1
2
4
0
1
2
3
4
0
3
1
2
4
0
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Minimum Input Voltage  
at 4A Load  
Load Transient Response  
Load Transient Response  
3.5  
3.0  
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
LOAD  
LOAD  
2.5  
2A/DIV  
2A/DIV  
V
OUT  
2.0  
1.5  
1.0  
0.5  
V
OUT  
20mV/DIV  
20mV/DIV  
4604 G06  
V
V
C
= 5V  
20μs/DIV  
IN  
4604 G05  
V
V
C
= 5V  
20μs/DIV  
IN  
= 1.5V  
OUT  
OUT  
= 1.2V  
OUT  
OUT  
= 4 × 22μF, 6.3V CERAMICS  
= 4 × 22μF, 6.3V CERAMICS  
0
0
1.5  
2.5  
2
3
3.5  
4
4.5  
5
5.5  
0.5  
1
V
(V)  
IN  
4604 G04  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
LOAD  
LOAD  
2A/DIV  
2A/DIV  
I
LOAD  
2A/DIV  
V
OUT  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
20mV/DIV  
4604 G07  
4604 G08  
4604 G09  
V
V
C
= 5V  
20μs/DIV  
V
V
C
= 5V  
20 s/DIV  
V
V
C
= 5V  
OUT  
OUT  
20μs/DIV  
= 2 × 22μF, 6.3V CERAMICS  
IN  
IN  
IN  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
= 3 × 22μF, 6.3V CERAMICS  
= 3 22 F, 6.3V CERAMICS  
4604f  
4
LTM4604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up  
Start-Up  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
I
IN  
I
IN  
1A/DIV  
1A/DIV  
4604 G10  
4604 G11  
V
V
C
= 5V  
200μs/DIV  
V
V
C
= 5V  
200μs/DIV  
IN  
IN  
= 2.5V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
= 4 × 22μF  
= 4 × 22μF  
NO LOAD  
4A LOAD  
(0.01μF SOFT-START CAPACITOR)  
(0.01μF SOFT-START CAPACITOR)  
VFB vs Temperature  
Current Limit Foldback  
806  
804  
1.6  
1.4  
1.2  
1.0  
802  
800  
0.8  
0.6  
798  
796  
794  
V
= 1.5V  
0.4  
0.2  
0
OUT  
V
V
V
= 5V  
= 3.3V  
= 2.5V  
IN  
IN  
IN  
-50  
-25  
0
25  
50  
75  
100  
4
5
7
3
8
6
Temperature (C)  
OUTPUT CURRENT (A)  
4604 G12  
Short-Circuit Protection  
1.5V Short, No Load  
Short-Circuit Protection  
1.5V Short, 4A Load  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
I
IN  
IN  
1A/DIV  
4A/DIV  
4604 G14  
4604 G13  
100μs/DIV  
20μs/DIV  
4604f  
5
LTM4604  
PIN FUNCTIONS  
V
(B1, C1, C3-C7, D7, E6 and E7): Power Input Pins.  
resistor. Different output voltages can be programmed  
with an additional resistor between FB and GND pins.  
Two power modules can current share when this pin is  
connected in parallel with the adjacent module’s FB pin.  
See Applications Information section.  
IN  
Apply input voltage between these pins and GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
between V pins and GND pins.  
IN  
V
OUT  
(D8-D11, E8-E11, F6-F11, G6-G11): Power Output  
Pins. Apply output load between these pins and GND pins.  
Recommendplacingoutputdecouplingcapacitancedirectly  
between these pins and GND pins. Review Table 4.  
COMP(G1):CurrentControlThresholdandErrorAmplifier  
Compensation Point. The current comparator threshold  
increases with this control voltage. Two power modules  
can current share when this pin is connected in parallel  
with the adjacent module’s COMP pin.  
GND (G3-G5, F3-F5, E4-E5, A1-A11, B6-B11, C8-C11):  
Power Ground Pins for Both Input and Output Returns.  
PGOOD(F1):OutputVoltagePowerGoodIndicator.Open-  
drain logic output that is pulled to ground when the output  
voltage is not within 7.5% of the regulation point.  
TRACK(E1):OutputVoltageTrackingPin.Whenthemodule  
is configured as a master output, then a soft-start capaci-  
tor is placed on the RUN/SS pin to ground to control the  
master ramp rate. Slave operation is performed by putting  
a resistor divider from the master output to ground, and  
connecting the center point of the divider to this pin on  
the slave regulator. If tracking is not desired, then connect  
RUN/SS (D1): Run Control and Soft-Start Pin. A voltage  
above 0.8V will turn on the module, and below 0.5V will  
turn off the module. This pin has a 1M resistor to V and  
IN  
a 1000pF capacitor to GND. See Application Infomation  
the TRACK pin to V . Load current must be present for  
section for soft-start information.  
IN  
tracking. See Applications Information section.  
SW (B3 and B4): Switching Node of the circuit is used for  
testing purposes. This can be connected to copper on the  
board to improve thermal performance. Make sure not to  
connect it to other output pins.  
FB (G2): The Negative Input of the Error Amplifier. Inter-  
nally, this pin is connected to V  
with a 4.99k precision  
OUT  
TOP VIEW  
TRACK  
PGOOD  
A
B
C
D
E
F
G
V
IN  
COMP  
FB  
1
2
RUN/  
SS  
SW  
3
GND  
4
5
6
7
8
9
10  
11  
GND  
V
OUT  
4604f  
6
LTM4604  
BLOCK DIAGRAM  
V
V
PGOOD  
IN  
V
IN  
2.375V TO 5.5V  
10μF  
6.3V  
×2  
10μF  
R
SS  
6.3V  
1M  
RUN/SS  
C
SS  
C
SSEXT  
1000pF  
M1  
M2  
L
V
1.5V  
4A  
OUT  
OUT  
CONTROL,  
DRIVE  
4.99k  
TRACK  
COMP  
TRACK  
SUPPLY  
22μF  
6.3V  
×3  
R1  
4.99k  
0.5%  
C2  
470pF  
10μF  
6.3V  
5.76k  
INTERNAL  
COMP  
GND  
4604 BD  
FB  
SW  
R
FB  
5.76k  
Figure 1. Simplified LTM4604 Block Diagram  
DECOUPLING REQUIREMENTS T = 25°C. Use Figure 1 Configuration.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 4A  
10  
μF  
IN  
OUT  
(V = 2.375V to 5.5V, V  
= 1.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 2.375V to 5.5V, V = 1.5V)  
I
= 4A  
22  
100  
μF  
OUT  
OUT  
IN  
OUT  
4604f  
7
LTM4604  
OPERATION  
Power Module Description  
drainPGOODoutputlowiftheoutputfeedbackvoltageexits  
a 7.5%windowaroundtheregulationpoint.Furthermore,  
in an overvoltage condition, internal top FET M1 is turned  
off and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4604 is a standalone non-isolated switch mode  
DC/DC power supply. It can deliver up to 4A of DC output  
current with few external input and output capacitors.  
This module provides a precise regulated output voltage  
programmable via one external resistor from 0.8V DC to  
5.0V DC over a 2.375V to 5.5V input voltage. A typical  
application schematic is shown in Figure 15.  
PullingtheRUNpinbelow0.5Vforcesthecontrollerintoits  
shutdown state, turning off both M1 and M2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
The LTM4604 has an integrated constant frequency cur-  
rent mode regulator with built-in power MOSFETs with  
fast switching speed. The typical switching frequency is  
1.25MHz.Withcurrentmodecontrolandinternalfeedback  
loop compensation, the LTM4604 module has sufficient  
stability margins and good transient performance under a  
wide range of operating conditions and with a wide range  
of output capacitors, even all ceramic output capacitors.  
The TRACK pin is used for power supply tracking. See the  
Applications Information section.  
The LTM4604 is internally compensated to be stable over  
a wide operating range. Table 4 provides a guideline for  
input and output capacitance for several operating condi-  
tions. An excel loop analysis tool is provided for transient  
and stability analysis.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. In addition, foldback current limiting is provided  
The FB pin is used to program the output voltage with a  
single resistor connected to ground.  
in an overcurrent condition while V  
drops. Internal  
OUT  
overvoltage and undervoltage comparators pull the open-  
4604f  
8
LTM4604  
APPLICATIONS INFORMATION  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
AtypicalLTM4604applicationcircuitisshowninFigure 15.  
External component selection is primarily determined by  
the maximum load current and output voltage. Refer to  
Table 4 for specific external capacitor requirements for a  
particular application.  
IOUT(MAX)  
ICIN(RMS)  
=
• D • 1D  
(
)
η%  
In the above equation, η% is the estimated efficiency of  
the power module. The bulk capacitor can be a switcher-  
rated electrolytic aluminum capacitor, OS-CON capacitor  
for bulk input capacitance due to high inductance traces  
or leads. If a low inductance plane is used to power the  
device, then no input capacitance is required. The two  
internal 10μF ceramics are typically rated for 2A to 3A of  
RMS ripple current. The worst-case ripple current for the  
4A maximum current is 2A or less.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V and V  
down ratio that can be achieved for a given input voltage.  
The LTM4604 is 100% duty cycle, but the V to V  
minimum dropout is a function of the load current. A typi-  
cal 0.5V minimum is sufficient (see Typical Performance  
Characteristics).  
step-  
IN  
OUT  
IN  
OUT  
Output Voltage Programming  
Output Capacitors  
ThePWMcontrollerhasaninternal0.8Vreferencevoltage.  
As shown in the Block Diagram, a 4.99k, 0.5% internal  
The LTM4604 is designed for low output voltage ripple.  
The bulk output capacitors defined as C  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
feedback resistor connects the V  
and FB pins together.  
OUT  
are chosen  
OUT  
The output voltage will default to 0.8V with no feedback  
resistor. Adding a resistor R from the FB pin to GND  
FB  
OUT  
programs the output voltage:  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitor or an X5R/X7R ceramic capacitor. The typical  
output capacitance range is 22μF to 100μF. Additional  
output filtering may be required by the system designer  
if further reduction of output ripple or dynamic transient  
spike is required. Table 4 shows a matrix of different  
output voltages and output capacitors to minimize the  
voltage droop and overshoot during a 2A/μs transient.  
The table optimizes the total equivalent ESR and total  
bulk capacitance to maximize transient performance. The  
Linear Technology μModule Power Design Tool can be for  
further optimization.  
4.99k +RFB  
VOUT = 0.8V •  
RFB  
Table 1. FB Resistor vs Output Voltage  
V
0.8V  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
R
Open  
5.76k  
4.02k  
2.37k  
1.62k  
FB  
Input Capacitors  
The LTM4604 module should be connected to a low ac-  
impedance DC source. Two 10μF ceramic capacitors are  
included inside the module. Additional input capacitors  
are only needed if a large load step is required up to a  
full 4A level. An input 47μF bulk capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads or traces.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
The LTM4604 has current mode control, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
For a buck converter, the switching duty cycle can be  
estimated as:  
To further limit current in the event of an overload condi-  
tion, the LTM4604 provides foldback current limiting as  
the output voltage falls. The LTM4604 device has over-  
temperature shutdown protection that inhibits switching  
VOUT  
D =  
V
IN  
operation around 150°C.  
4604f  
9
LTM4604  
APPLICATIONS INFORMATION  
Run Enable and Soft-Start  
V
IN  
5V  
C
10μF  
6.3V  
IN1  
The RUN/SS pin provides dual functions of enable and  
soft-start control. The RUN/SS pin is used to control  
turn on of the LTM4604. While this pin is below 0.5V, the  
LTM4604 will be in a 7μA low quiescent current state. A  
0.8V threshold will enable the LTM4604. This pin can be  
usedtosequenceLTM4604devices. Thesoft-startcontrol  
X5R OR X7R  
V
IN  
V
3.3V  
4A  
MASTER  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT1  
22μF  
6.3V ×3  
X5R OR  
X7R  
RAMP  
RUN/SS TRACK  
GND  
is provided by a 1M pull-up resistor (R ) and a 1000pF  
SS  
CONTROL  
R
FB3  
OR V  
C
IN  
1.62k  
capacitor(C )asdrawnintheBlockDiagram.Anexternal  
SSEXT  
SS  
capacitor can be applied to the RUN/SS pin to increase the  
soft-start time. A typical value is 0.01μF. The approximate  
equation for soft-start is:  
V
IN  
5V  
V
IN  
C
10μF  
6.3V  
IN2  
tSOFTSTART = ln  
RSS CSS + CSSEXT  
(
)
V – 1.8V  
IN  
X5R OR X7R  
V
IN  
where R and C are shown in the Block Diagram of  
V
1.5V  
4A  
SS  
SS  
SLAVE  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
Figure 1, 1.8V is the soft-start upper range, and C  
SSEXT  
C
OUT2  
is the additional capacitance for further soft-start contol.  
The soft-start function can also be used to control the  
output ramp-up time, so that another regulator can be  
easily tracked. An independent ramp control signal can  
be applied to the master ramp, otherwise, connect the  
22μF  
6.3V ×3  
X5R OR  
X7R  
RUN/SS TRACK  
GND  
R
FB  
R
FB2  
5.76k  
5.76k  
R
FB1  
4.99k  
4604 F02  
TRACK pin to V to disable tracking.  
IN  
Figure 2  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK pin. The output can be tracked up and  
down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider  
to implement coincident tracking. The LTM4604 uses a  
very accurate 4.99k resistor for the top feedback resistor.  
Figure 2 shows an example of coincident tracking.  
MASTER OUTPUT  
SLAVE OUTPUT  
RFB2  
4.99k +RFB2  
VTRACK  
=
VMASTER  
TIME  
4604 F03  
Figure 3  
V
V
is the track ramp applied to the slave’s TRACK pin.  
applies the track reference for the slave output up  
TRACK  
TRACK  
to the point of the programmed value at which V  
proceeds beyond the 0.8V reference value. The V  
TRACK  
TRACK  
pin must go beyond 0.8V to ensure the slave output has  
reached its final value. Load current must be present for  
proper tracking.  
4604f  
10  
LTM4604  
APPLICATIONS INFORMATION  
Ratiometricmodesoftrackingcanbeachievedbyselecting  
differentresistorvaluestochangetheoutputtrackingratio.  
The master output must be greater than the slave output  
for the tracking to work. Linear Technology Tracker Cad26  
canbeusedtoimplementdifferenttrackingscenarios.The  
Master and Slave data inputs can be used to implement  
the correct resistor values for coincident or ratio tracking.  
The master and slave regulators require load current for  
tracking down.  
Parallel Operation  
The LTM4604 device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design.  
Figure 16 shows a schematic of the parallel design. The  
voltage feedback changes with the variable N as more  
modules are paralleled. The equation:  
4.99k  
+RFB  
N
VOUT = 0.8V •  
Power Good  
RFB  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 7.5% window around the regulation point.  
N is the number of paralleled modules.  
Thermal Considerations and Output Current Derating  
COMP Pin  
The power loss curves in Figures 4 and 5 can be used  
in coordination with the load derating curves in Figures  
The pin is the external compensation pin. The module  
has already been internally compensated for all output  
voltages. Table 4 is provided for most application require-  
ments. A spice model will be provided for other control  
loop optimizations.  
6 through 13 for calculating an approximate θ for the  
JA  
module with and without heat sinking methods with vari-  
ous airflow conditions. Thermal models are derived from  
several temperature measurements at the bench, and are  
correlated with thermal analysis software. Tables 2 and  
3 provide a summary of the equivalent θ for the noted  
JA  
conditions.Theseequivalentθ parametersarecorrelated  
JA  
to the measured values and improve with air flow. The  
maximum junction temperature is monitored while the  
derating curves are derived.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
5V TO 1.2V  
POWER LOSS  
5V TO 2.5V  
POWER LOSS  
0.4  
0.4  
3.3V TO 1.2V  
POWER LOSS  
3.3V TO 2.5V  
POWER LOSS  
0.2  
0
0.2  
0
0
3
4
5
0
2
3
4
5
1
2
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4604 F04  
4604 F05  
Figure 4. 1.2V Power Loss  
Figure 5. 2.5V Power Loss  
4604f  
11  
LTM4604  
APPLICATIONS INFORMATION  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0.5  
0
90 95  
90 95  
100 105 110 115  
70 75 80 85  
100 105 110 115  
70 75 80 85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F06  
4606 F07  
Figure 6. 5VIN to 1.2VOUT No Heat Sink  
Figure 7. 5VIN to 1.2VOUT with Heat Sink  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0.5  
0
0.5  
0
90 95  
90 95  
100 105 110 115  
70 75 80 85  
100 105 110 115  
70 75 80 85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F08  
4606 F09  
Figure 8. 3.3VIN to 1.2VOUT No Heat Sink  
Figure 9. 3.3VIN to 1.2VOUT with Heat Sink  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0LFM  
0LFM  
0.5  
0.5  
200LFM  
200LFM  
400LFM  
400LFM  
0
0
90 95  
70 75 80 85  
100 105 110  
90 95  
70 75 80 85  
100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F10  
4606 F11  
Figure 10. 5VIN to 2.5VOUT No Heat Sink  
Figure 11. 5VIN to 2.5VOUT with Heat Sink  
4604f  
12  
LTM4604  
APPLICATIONS INFORMATION  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0.5  
0
90 95  
90 95  
100 105 110 115  
70 75 80 85  
100 105 110 115  
70 75 80 85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4606 F12  
4606 F13  
Figure 12. 3.3VIN to 2.5VOUT No Heat Sink  
Figure 13. 3.3VIN to 2.5VOUT with Heat Sink  
4604f  
13  
LTM4604  
APPLICATIONS INFORMATION  
Table 2. 1.2V Output  
DERATING CURVE  
Figures 6, 8  
Figures 6, 8  
Figures 6, 8  
Figures 7, 9  
Figures 7, 9  
Figures 7, 9  
V
(V)  
POWER LOSS CURVE  
Figure 4  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
25  
Figure 4  
200  
400  
0
None  
22.5  
21  
Figure 4  
None  
Figure 4  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
21  
Figure 4  
200  
400  
20  
Figure 4  
18  
Table 3. 2.5V Output  
DERATING CURVE  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 5  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
25  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
Figures 10, 12  
Figure 5  
200  
400  
0
None  
21  
Figures 10, 12  
Figure 5  
None  
21  
Figures 11, 13  
Figure 5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
21  
Figures 11, 13  
Figure 5  
200  
400  
18  
Figures 11, 13  
Figure 5  
16  
Table 4. Output Voltage Response Versus Component Matrix (Refer to Figure 17), 0A to 2A Load Step Typical Measured Values  
C
C
DROOP  
(mV)  
PEAK-TO- RECOVERY LOAD STEP  
R
FB  
IN  
OUT  
(CERAMIC)  
V
(V) (CERAMIC)  
C
(Bulk)  
C
V (V)  
IN  
PEAK(mV)  
(μs)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
12  
12  
12  
15  
15  
15  
(A/μs)  
(kΩ)  
OUT  
IN  
COMP  
1.2  
1.2  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
10μF  
56μF Aluminum 100μF 6.3V  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
2.5  
21  
23  
24  
19  
21  
21  
25  
30  
30  
22  
25  
25  
22  
25  
25  
43  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
10  
56μF Aluminum  
56μF Aluminum  
22μF ×4  
22μF ×4  
3.3  
5
45  
10  
1.2  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
46  
10  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
41  
5.76  
5.76  
5.76  
4.02  
4.02  
4.02  
2.37  
2.37  
2.37  
1.62  
1.62  
1.62  
56μF Aluminum  
56μF Aluminum  
22μF ×4  
22μF ×4  
43  
43  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
50  
56μF Aluminum  
56μF Aluminum  
22μF ×3  
22μF ×3  
60  
60  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
45  
56μF Aluminum  
56μF Aluminum  
22μF ×3  
22μF ×3  
55  
55  
56μF Aluminum 100μF 6.3V  
2.5  
3.3  
5
50  
56μF Aluminum  
56μF Aluminum  
22μF ×3  
22μF ×3  
56  
56  
4604f  
14  
LTM4604  
APPLICATIONS INFORMATION  
Safety Considerations  
• Do not put vias directly on the pads unless they are  
capped.  
TheLTM4604modulesdonotprovideisolationfromV to  
IN  
V
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
• SW pads can be soldered to board to improve thermal  
performance.  
OUT  
with a rating twice the maximum input current needs to be  
provided to protect each unit from catastrophic failure.  
Figure14 gives a good example of the recommended  
layout.  
Layout Checklist/Example  
GND  
V
OUT  
The high integration of LTM4604 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
C
C
C
OUT  
OUT  
OUT  
• Use large PCB copper areas for high current path,  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
• Placehighfrequencyceramicinputandoutputcapacitors  
next to the V , GND and V  
pins to minimize high  
• •  
IN  
OUT  
V
IN  
frequency noise.  
• •  
SW  
• Place a dedicated power ground layer underneath the  
unit.  
C
IN  
GND  
• To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
4604 F14  
Figure 14. Recommended PCB Layout  
V
IN  
2.375V TO 5.5V  
C
IN  
10μF  
6.3V  
X5R OR X7R  
V
IN  
V
1.5V  
4A  
OUT  
OPEN-DRAIN  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
PULL UP  
C
OUT  
22μF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
5.69k  
0.5%  
FB  
C
SSEXT  
0.01μF  
4604 F15  
Figure 15. Typical 2.375V to 5.5V Input, 1.5V at 4A Design  
4604f  
15  
LTM4604  
TYPICAL APPLICATIONS  
V
IN  
2.375V TO 5V  
C
IN1  
10μF  
6.3V  
X5R OR X7R  
V
= 0.8V × ((4.99k/N) + R )/R  
FB FB  
OUT  
WHERE N IS THE NUMBER OF PARALLEL DEVICES  
V
IN  
OPEN-DRAIN PULL UP  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT1  
22μF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
FB  
C
SSEXT  
2.87k  
0.01μF  
V
1.5V  
8A  
OUT  
C
IN2  
10μF  
6.3V  
X5R OR X7R  
V
IN  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT2  
22μF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
4604 F16  
Figure 16. Two LTM4604s in Parallel, 1.5V at 8A Design  
4604f  
16  
LTM4604  
TYPICAL APPLICATIONS  
V
IN  
3.3V TO 5V  
C
IN  
50k  
10μF  
6.3V  
X5R OR X7R  
V
IN  
V
2.5V  
4A  
OUT  
OPEN-DRAIN  
PULL UP  
PGOOD  
LTM4604  
COMP  
V
OUT  
FB  
C
OUT  
22μF ×3  
6.3V  
X5R OR X7R  
REFER TO  
TABLE 4  
RUN/SS TRACK  
GND  
R
FB  
C
SSEXT  
2.37k  
0.01μF  
4604 F17  
Figure 17. 3.3V to 5V Input, 2.5V at 4A Design  
4604f  
17  
LTM4604  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 3 5 0  
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 4 4 4 5  
0 . 0 0 0  
0 . 4 4 4 5  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
6 . 3 5 0  
a a a  
Z
4604f  
18  
LTM4604  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
A1 GND  
A2 GND  
A3 GND  
A4 GND  
A5 GND  
A6 GND  
A7 GND  
A8 GND  
A9 GND  
A10 GND  
A11 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
B1  
B2  
V
C1  
C2  
C3  
C4  
C5  
C6  
C7  
V
V
V
V
V
V
D1 RUN/SS E1 TRACK  
F1 PGOOD G1 COMP  
IN  
IN  
D2  
D3  
D4  
D5  
D6  
E2  
E3  
F2  
G2 FB  
B3 SW  
B4 SW  
F3 GND  
F4 GND  
F5 GND  
F6 VOUT  
F7 VOUT  
F8 VOUT  
F9 VOUT  
F10 VOUT  
F11 VOUT  
G3 GND  
G4 GND  
G5 GND  
G6 VOUT  
G7 VOUT  
G8 VOUT  
G9 VOUT  
G10 VOUT  
G11 VOUT  
IN  
IN  
IN  
IN  
IN  
E4 GND  
E5 GND  
B5  
B6 GND  
B7 GND  
B8 GND  
B9 GND  
B10 GND  
B11 GND  
E6  
E7  
V
V
IN  
IN  
D7 VIN  
C8 GND  
C9 GND  
C10 GND  
C11 GND  
D8 VOUT  
D9 VOUT  
D10 VOUT  
D11 VOUT  
E8 VOUT  
E9 VOUT  
E10 VOUT  
E11 VOUT  
4604f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTM4604  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
10A DC/DC μModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
Basic 10A DC/DC μModule  
LTC2923  
LTM4600  
LTM4601  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1 Version has no Remote  
Sensing  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600  
6A DC/DC μModule with PLL and Output Tracking/ Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Margining and Remote Sensing  
Sensing, Pin Compatible with the LTM4601  
LTM4608  
8A Low Voltage μModule  
2.375V ≤ V ≤ 5V, Parallel for Higher Output Current, 9mm × 15mm × 2.8mm  
IN  
4604f  
LT 0807 • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4604V

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4605

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTM4605EV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40°C to 85°C
Linear

LTM4605EV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605IV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40°C to 85°C
Linear

LTM4605IV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605V

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4606

Ultralow EMI 28VIN, 6A DC/DC μModule
Linear

LTM4606EV#PBF

LTM4606 - Ultralow EMI 28VIN, 6A DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -40°C to 85°C
Linear

LTM4606EV-PBF

Ultralow EMI 28VIN, 6A DC/DC μModule
Linear

LTM4606EY#PBF

LTM4606 - Ultralow EMI 28VIN, 6A DC/DC µModule (Power Module) Regulator; Package: BGA; Pins: 133; Temperature Range: -40°C to 85°C
Linear