LTM4608A_1 [Linear]

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization; 低VIN , 8A DC / DC模块稳压器与跟踪,裕度调节和频率同步
LTM4608A_1
型号: LTM4608A_1
厂家: Linear    Linear
描述:

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization
低VIN , 8A DC / DC模块稳压器与跟踪,裕度调节和频率同步

稳压器
文件: 总26页 (文件大小:732K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4608A  
Low V , 8A DC/DC µModule  
IN  
Regulator with Tracking, Margining,  
and Frequency Synchronization  
FEATURES  
DESCRIPTION  
The LTM®4608A is a complete 8A switch mode DC/DC  
n
Complete Standalone Power Supply  
n
±1.75% Total DC Output Error (–55°C to 125°C)  
2.7V to 5.5V Input Voltage Range  
8A DC, 10A Peak Output Current  
0.6V Up to 5V Output  
Output Voltage Tracking and Margining  
Power Good Tracks Margining  
power supply with ±±1.75 total output ꢀoltaꢁe error1 ꢂI-  
cluded iI the packaꢁe are the switchiIꢁ coItroller, power  
FETs, iIductor aId all support compoIeIts1 OperatiIꢁ  
oꢀer aI iIput ꢀoltaꢁe raIꢁe of 21.V to 717V, the LTM4608A  
supports aI output ꢀoltaꢁe raIꢁe of 016V to 7V, set by a  
siIꢁleexterIalresistor1ThishiꢁhefficieIcydesiꢁIdeliꢀers  
up to 8A coItiIuous curreIt (±0A peak)1 OIly bulk iIput  
aId output capacitors are Ieeded to complete the desiꢁI1  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Multiphase Operation  
Parallel Current Sharing  
Onboard Frequency Synchronization  
Spread Spectrum Frequency Modulation  
Overcurrent/Thermal Shutdown Protection  
CurreIt Mode CoItrol/Fast TraIsieIt RespoIse  
Selectable Burst Mode® OperatioI  
Up to 975 EfficieIcy  
Output Oꢀerꢀoltaꢁe ProtectioI  
Small, Low Profile 9mm × ±7mm × 218mm  
LGA Packaꢁe (01630mm Pads)  
The low profile packaꢁe (218mm) eIables utilizatioI of  
uIused space oI the back side of PC boards for hiꢁh  
deIsity poiIt-of-load reꢁulatioI1 The 01630mm LGA pads  
with ±12.mm pitch simplify PCB layout by proꢀidiIꢁ staI-  
dard trace routiIꢁ aId ꢀia placemeIt1 The hiꢁh switchiIꢁ  
frequeIcy aId curreIt mode architecture eIable a ꢀery  
fast traIsieIt respoIse to liIe aId load chaIꢁes without  
sacrificiIꢁ stability1 The deꢀice supports frequeIcy syI-  
chroIizatioI, proꢁrammable multiphase aId/or spread  
spectrum operatioI, output ꢀoltaꢁe trackiIꢁ for supply  
rail sequeIciIꢁ aId ꢀoltaꢁe marꢁiIiIꢁ1  
APPLICATIONS  
n
Telecom, NetworkiIꢁ aId ꢂIdustrial EquipmeIt  
Fault protectioI features iIclude oꢀerꢀoltaꢁe protectioI,  
oꢀercurreIt protectioI aId thermal shutdowI1 The power  
module is offered iI a compact aId thermally eIhaIced  
9mm × ±7mm × 218mm surface mouIt LGA packaꢁe1 The  
LTM4608A is Pb-free aId RoHS compliaIt1  
n
Storaꢁe Systems  
n
PoiIt of Load ReꢁulatioI  
L, LT, LTC, LTM, LiIear TechIoloꢁy, the LiIear loꢁo, Burst Mode, µModule aId PolyPhase  
are reꢁistered trademarks aId LTpowerCAD is a trademark of LiIear TechIoloꢁy CorporatioI1  
All other trademarks are the property of their respectiꢀe owIers1 Protected by U1S1 PateIts  
iIcludiIꢁ 748±±.8, 6780278, 6304066, 6±2.8±7, 6498466, 66±±±3±1  
TYPICAL APPLICATION  
Efficiency vs Load Current  
2.7V to 5.5V Input to 1.8V Output DC/DC µModule® Regulator  
100  
V
= 1.8V  
OUT  
CLKIN  
95  
V
= 3.3V  
IN  
CLKIN  
V
V
IN  
2.7V TO 5.5V  
OUT  
1.8V  
90  
85  
V
V
IN  
OUT  
V
= 5V  
IN  
SV  
FB  
IN  
10µF  
100µF  
4.87k  
SW  
I
TH  
LTM4608A  
RUN  
I
THM  
80  
75  
70  
PGOOD  
PLLLPF  
TRACK  
PGOOD  
MGN  
V
OUT  
CLKOUT GND SGND  
4608A TA01a  
0
2
4
6
8
10  
LOAD CURRENT (A)  
4608A TA01b  
4608afc  
1
LTM4608A  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , SV 111111111111111111111111111111111111111111111111111111 –013V to 6V  
ꢂN  
ꢂN  
A
B
C
D
E
F
G
CLKOUT 1111111111111111111111111111111111111111111111111111111 –013V to 2V  
V
GND  
GND  
IN  
1
2
3
4
5
6
7
8
9
PGOOD, PLLLPF, CLKꢂN, PHMODE, MODE 1 –013V to V  
TH THM  
ꢂN  
ꢂN  
RUN  
SGND  
ꢂ , ꢂ  
, RUN, FB, TRACK,MGN, BSEL111111 –013V to V  
SW  
CLKOUT  
V
, SW 11111111111111111111111111111111111111 –013V to (V + 013V)  
OUT  
ꢂN  
PLLLPF  
CLKIN  
PHMODE  
MODE  
ꢂIterIal OperatiIꢁ Temperature RaIꢁe  
SV  
IN  
(Note 2)11111111111111111111111111111111111111111111111111 –77°C to ±27°C  
Storaꢁe Temperature RaIꢁe 111111111111111111 –77°C to ±27°C  
I
THM  
TRACK  
PGOOD  
BSEL  
I
TH  
FB  
MGN  
10  
11  
GND  
V
OUT  
LGA PACKAGE  
68-LEAD (15mm × 9mm × 2.8mm)  
= ±27°C, θ = 27°C/W, θ = .°C/W, θ = 70°C/W, WEꢂGHT = ±10ꢁ  
T
JMAX  
JA  
JCbottom  
JCtop  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4608AEV#PBF  
LTM4608AꢂV#PBF  
TRAY  
PART MARKING* PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
68-Lead (±7mm × 9mm × 218mm) LGA –40°C to ±27°C  
68-Lead (±7mm × 9mm × 218mm) LGA –40°C to ±27°C  
68-Lead (±7mm × 9mm × 218mm) LGA –77°C to ±27°C  
LTM4608AEV#PBF  
LTM4608AꢂV#PBF  
LTM4608AV  
LTM4608AV  
LTM4608AMPV#PBF LTM4608AMPV#PBF LTM4608AMPV  
CoIsult LTC MarketiIꢁ for parts specified with wider operatiIꢁ temperature raIꢁes1 *The temperature ꢁrade is ideItified by a label oI the shippiIꢁ coItaiIer1  
For more iIformatioI oI lead free part markiIꢁ, ꢁo to: http://www1liIear1com/leadfree/  
This product is oIly offered iI trays1 For more iIformatioI ꢁo to: http://www1liIear1com/packaꢁiIꢁ/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
ꢂIput DC Voltaꢁe  
21.  
717  
V
ꢂN(DC)  
V
Output Voltaꢁe, Total VariatioI  
with LiIe aId Load  
C
= ±0µF × ±, C  
= ±00µF Ceramic,  
OUT(DC)  
ꢂN  
OUT  
FB  
±00µF POSCAP, R = 6167k, MODE = 0V  
V
ꢂN  
= 21.V to 717V, ꢂ  
= ꢂ to  
OUT(DC)MꢂN  
±14.2  
±1464  
±149  
±149  
±1708  
±17±6  
V
V
OUT  
l
(Note 3)  
OUT(DC)MAX  
Input Specifications  
V
UIderꢀoltaꢁe Lockout Threshold SV RisiIꢁ  
2107  
±187  
212  
210  
2137  
21±7  
V
V
ꢂN(UVLO)  
ꢂN  
SV FalliIꢁ  
ꢂN  
4608afc  
2
LTM4608A  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ꢂIput Supply Bias CurreIt  
V
ꢂN  
V
ꢂN  
V
ꢂN  
= 313V, No SwitchiIꢁ, MODE = V  
ꢂN  
400  
±1±7  
77  
µA  
mA  
mA  
Q(VꢂN)  
= 313V, No SwitchiIꢁ, MODE = 0V  
= 313V, V = ±17V, SwitchiIꢁ CoItiIuous  
OUT  
V
ꢂN  
V
ꢂN  
V
ꢂN  
= 7V, No SwitchiIꢁ, MODE = V  
470  
±13  
.7  
µA  
mA  
mA  
ꢂN  
= 7V, No SwitchiIꢁ, MODE = 0V  
= 7V, V = ±17V, SwitchiIꢁ CoItiIuous  
OUT  
ShutdowI, RUN = 0, V = 7V  
±
µA  
ꢂN  
ꢂIput Supply CurreIt  
V
ꢂN  
V
ꢂN  
= 313V, V  
= ±17V, ꢂ = 8A  
OUT  
417  
2193  
A
A
S(VꢂN)  
OUT  
= 7V, V  
= ±17V, ꢂ  
= 8A  
OUT  
OUT  
Output Specifications  
Output CoItiIuous CurreIt RaIꢁe V  
(Note 3)  
= ±17V  
OUT(DC)  
OUT  
V
= 313V, 717V  
0
0
8
7
A
A
ꢂN  
ꢂN  
V
= 21.V  
l
LiIe ReꢁulatioI Accuracy  
Load ReꢁulatioI Accuracy  
V
= ±17V, V from 21.V to 717V, ꢂ  
= 0A  
01±  
0127  
5/V  
V  
V  
OUT  
ꢂN  
OUT  
OUT(LꢂNE)  
V
OUT  
V
OUT  
= ±17V (Note 3)  
OUT(LOAD)  
l
l
V
V
= 313V, 717V, ꢂ  
= 0A to 8A  
LOAD  
013  
013  
01.7  
01.7  
5
5
ꢂN  
ꢂN  
V
OUT  
= 21.V, ꢂ  
= 0A to 7A  
LOAD  
V
Output Ripple Voltaꢁe  
= 0A, C  
= ±17V  
= ±00µF X7R Ceramic, V = 7V,  
OUT ꢂN  
OUT(AC)  
OUT  
OUT  
V
±0  
mV  
P-P  
f
f
SwitchiIꢁ FrequeIcy  
SYNC Capture RaIꢁe  
TurI-OI Oꢀershoot  
= 8A, V = 7V, V = ±17V  
OUT  
±127  
01.7  
±17  
±1.7  
2127  
MHz  
MHz  
S
OUT  
ꢂN  
SYNC  
C
= ±00µF, V  
= ±17V, ꢂ  
= 0A  
OUT  
V  
OUT  
V
OUT  
OUT(START)  
= 313V  
= 7V  
±0  
±0  
mV  
mV  
ꢂN  
ꢂN  
V
t
TurI-OI Time  
C
= ±00µF, V  
= ±17V, V = 7V,  
±00  
µs  
START  
OUT  
OUT  
OUT  
ꢂN  
= ±A Resistiꢀe Load, Track = V ,  
ꢂN  
Peak DeꢀiatioI for DyIamic Load Load: 05 to 705 to 05 of Full Load,  
±7  
mV  
V  
OUT(LS)  
C
V
= ±00µF Ceramic, ±00µF POSCAP,  
OUT  
= 7V, V  
= ±17V  
OUT  
ꢂN  
t
SettliIꢁ Time for DyIamic Load  
Step  
Load: 05 to 705 to 05 of Full Load, V = 7V,  
OUT  
±0  
µs  
SETTLE  
ꢂN  
V
= ±17V, C  
= ±00µF  
OUT  
Output CurreIt Limit  
C
= ±00µF  
OUT(PK)  
OUT  
V
= 21.V, V  
= 313V, V  
= ±17V  
= ±17V  
8
±±  
±3  
A
A
A
ꢂN  
ꢂN  
ꢂN  
OUT  
OUT  
V
V
= 7V, V  
= ±17V  
OUT  
Control Section  
V
Voltaꢁe at FB PiI  
= 0A, V  
= ±17V, V = 21.V to 717V  
01790  
0178.  
01796  
01796  
01602  
01606  
V
V
FB  
OUT  
OUT  
ꢂN  
l
SS Delay  
ꢂIterIal Soft-Start Delay  
90  
µs  
012  
µA  
FB  
V
RUN PiI OI/Off Threshold  
RUN RisiIꢁ  
RUN FalliIꢁ  
±14  
±13  
±177  
±14  
±1.  
±17  
V
V
RUN  
4608afc  
3
LTM4608A  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 5V unless otherwise noted. See Figure 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
RUN = V  
MIN  
TYP  
MAX  
UNITS  
TRACK  
TrackiIꢁ Threshold (RisiIꢁ)  
TrackiIꢁ Threshold (FalliIꢁ)  
TrackiIꢁ Disable Threshold  
017.  
01±8  
V
V
V
ꢂN  
RUN = 0V  
V
– 017  
ꢂN  
R
Resistor BetweeI V  
aId FB  
OUT  
9197  
±0  
±0107  
kΩ  
FBHꢂ  
PiIs  
PGOOD RaIꢁe  
±±0  
5
V  
PGOOD  
5MarꢁiIiIꢁ  
Output Voltaꢁe MarꢁiIiIꢁ  
PerceItaꢁe  
MGN = V , BSEL = 0V  
4
9
±4  
–4  
–9  
–±4  
7
6
5
5
5
5
5
5
ꢂN  
MGN = V , BSEL = V  
±0  
±±  
ꢂN  
ꢂN  
MGN = V , BSEL = Float  
±7  
–7  
–±0  
–±7  
±6  
–6  
–±±  
–±6  
ꢂN  
MGN = 0V, BSEL = 0V  
MGN = 0V, BSEL = V  
ꢂN  
MGN = 0V, BSEL = Float  
Note 1: Stresses beyoId those listed uIder Absolute Maximum RatiIꢁs  
may cause permaIeIt damaꢁe to the deꢀice1 Exposure to aIy Absolute  
Maximum RatiIꢁ coIditioI for exteIded periods may affect deꢀice  
reliability aId lifetime1  
The LTM4608Aꢂ is ꢁuaraIteed oꢀer the –40°C to ±27°C iIterIal operatiIꢁ  
temperature raIꢁe aId the LTM4608AMP is tested aId ꢁuaraIteed oꢀer  
the full –77°C to ±27°C iIterIal operatiIꢁ temperature raIꢁe1 Note that  
the maximum ambieIt temperature coIsisteIt with these specificatioIs  
is determiIed by specific operatiIꢁ coIditioIs iI coIjuIctioI with board  
layout, the rated packaꢁe thermal impedaIce aId other eIꢀiroImeItal  
factors1  
Note 2: The LTM4608A is tested uIder pulsed load coIditioIs such that  
T ≈ T 1 The LTM4608AE is ꢁuaraIteed to meet specificatioIs from  
J
A
0°C to ±27°C iIterIal temperature1 SpecificatioIs oꢀer the –40°C to  
±27°C iIterIal operatiIꢁ temperature raIꢁe are assured by desiꢁI,  
characterizatioI aId correlatioI with statistical process coItrols1  
Note 3: See output curreIt deratiIꢁ curꢀes for differeIt V , V  
aId T 1  
A
ꢂN OUT  
4608afc  
4
LTM4608A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
100  
95  
100  
95  
CONTINUOUS MODE  
CONTINUOUS MODE  
CONTINUOUS MODE  
90  
85  
90  
85  
80  
75  
70  
80  
75  
70  
5V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
3.3V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
5V 1.5V  
IN  
2.7V 1.0V  
3.3V 1.5V  
IN  
IN  
OUT  
OUT  
OUT  
5V 1.8V  
IN  
2.7V 1.5V  
IN  
3.3V 1.8V  
IN  
3.3V 2.5V  
IN  
5V 2.5V  
IN  
2.7V 1.8V  
IN  
5V 3.3V  
IN  
0
2
3
4
5
6
7
0
2
4
6
8
1
0
2
4
6
8
LOAD CURRENT (A)  
LOAD CURRENT  
LOAD CURRENT  
4608A G03  
4608A G02  
4608A G01  
Burst Mode Efficiency with  
5V Input  
VIN to VOUT Step-Down Ratio  
VIN to VOUT Step-Down Ratio  
100  
90  
80  
70  
60  
50  
40  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
I
V
V
= 8A  
OUT  
OUT  
OUT  
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
V
V
V
= 1.5V  
= 2.5V  
= 3.3V  
I
V
V
= 6A  
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 1.5V  
= 1.2V  
= 1.5V  
OUT  
OUT  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
LOAD CURRENT (A)  
4
2
3
4
5
6
2
5
6
3
V
(V)  
V
(V)  
IN  
IN  
4608A G04  
4608A G05  
4608A G06  
Supply Current vs VIN  
Load Transient Response  
Load Transient Response  
1.6  
1.4  
1.2  
1
I
LOAD  
1A/DIV  
I
LOAD  
V
= 1.2V PULSE-SKIPPING MODE  
2A/DIV  
O
V
V
IN  
2V/DIV  
V
OUT  
V
OUT  
20mV/DIV  
0.8  
0.6  
0.4  
0.2  
0
20mV/DIV  
AC COUPLED  
AC COUPLED  
= 1.2V BURST MODE  
O
4608A G08  
4608A G09  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V, R = 2.21k  
= 2.5V, R = 3.09k  
FB  
FB  
2A/µs STEP  
= 100µF X5R  
2.5A/µs STEP  
= 100µF X5R  
C
C
OUT  
OUT  
C1 = 100pF, C3 = 22pF FROM FIGURE 18  
C1 = 120pF, C3 = 47pF FROM FIGURE 18  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
4608A G07  
4608afc  
5
LTM4608A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
I
LOAD  
LOAD  
LOAD  
2A/DIV  
2A/DIV  
2A/DIV  
V
OUT  
V
V
OUT  
OUT  
20mV/DIV  
20mV/DIV  
20mV/DIV  
AC COUPLED  
AC COUPLED  
AC COUPLED  
4608A G10  
4608A G11  
4608A G12  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V, R = 4.87k  
= 1.5V, R = 6.65k  
= 1.2V, R = 10k  
FB  
FB  
FB  
2.5A/µs STEP  
= 100µF X5R  
2.5A/µs STEP  
= 100µF X5R  
2.5A/µs STEP  
= 2 × 100µF  
C
C
C
OUT  
OUT  
OUT  
C1 = NONE, C3 = NONE FROM FIGURE 18  
C1 = NONE, C3 = NONE FROM FIGURE 18  
C1 = 100pF, C3 = NONE FROM FIGURE 18  
Start-Up  
VFB vs Temperature  
Load Regulation vs Current  
602  
600  
598  
596  
594  
592  
590  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
OUT  
V
= 5.5V  
0.5V/DIV  
IN  
V
= 3.3V  
IN  
V
IN  
2V/DIV  
V
= 2.7V  
IN  
4608A G13  
V
V
C
= 5V  
50µs/DIV  
FC MODE  
IN  
–0.5  
–0.6  
= 1.5V  
V
V
= 3.3V  
OUT  
OUT  
IN  
OUT  
= 100µF NO LOAD AND 8A LOAD  
= 1.5V  
(DEFAULT 100µs SOFT-START)  
–25  
5
65  
–55  
95  
125  
35  
0
2
4
6
8
TEMPERATURE (°C)  
LOAD CURRENT (A)  
4608A G14  
4608A G15  
Short-Circuit Protection  
(2.5V Short, No Load)  
Short-Circuit Protection  
(2.5V Short, 4A Load)  
2.5V Output Current  
3.0  
2.5  
V
IN  
5V/DIV  
5V/DIV  
2V/DIV  
2V/DIV  
V
V
IN  
OUT  
V
OUT  
2.0  
1.5  
I
LOAD  
OUT  
5A/DIV  
5A/DIV  
I
OUT  
1.0  
0.5  
0
4608A G17  
4608A G18  
V
V
= 5V  
50µs/DIV  
V
V
= 5V  
50µs/DIV  
IN  
OUT  
IN  
OUT  
= 2.5V  
= 2.5V  
0
5
10  
15  
20  
OUTPUT CURRENT (A)  
4608A G16  
4608afc  
6
LTM4608A  
PIN FUNCTIONS  
PLLLPF (E3): Phase Locked Loop Lowpass Filter1 AI iI-  
terIal lowpass filter is tied to this piI1 ꢂI spread spectrum  
mode, placiIꢁ a capacitor here to SGND coItrols the slew  
rate from oIe frequeIcy to the Iext1 AlterIatiꢀely, floatiIꢁ  
this piI allows Iormal ruIIiIꢁ frequeIcy at ±17MHz, tyiIꢁ  
V (C1, C8, C9, D1, D3-D5, D7-D9 and E8): Power ꢂIput  
IN  
PiIs1 Apply iIput ꢀoltaꢁe betweeI these piIs aId GND  
piIs1 RecommeId placiIꢁ iIput decoupliIꢁ capacitaIce  
directly betweeI V piIs aId GND piIs1  
ꢂN  
V
OUT  
(C10-C11, D10-D11, E9-E11, F9-F11, G9-G11):  
this piI to SV forces the part to ruI at ±133 times its  
ꢂN  
Power Output PiIs1 Apply output load betweeI these piIs  
aId GND piIs1 RecommeId placiIꢁ output decoupliIꢁ  
capacitaIce directly betweeI these piIs aId GND piIs1  
See Table ±1  
Iormal frequeIcy (2MHz), tyiIꢁ it to ꢁrouId forces the  
frequeIcytoruIat016.timesitsIormalfrequeIcy(±MHz)1  
PHMODE (B4): Phase Selector ꢂIput1 This piI determiIes  
the phase relatioIship betweeI the iIterIal oscillator aId  
CLKOUT1 Tie it hiꢁh for 2-phase operatioI, tie it low for  
GND (A1-A11, B1, B9-B11, F3, F7-F8, G1-G8): Power  
GrouId PiIs for Both ꢂIput aId Output ReturIs1  
3-phase operatioI, aId float or tie it to V /2 for 4-phase  
ꢂN  
SV (F4): SiꢁIal ꢂIput Voltaꢁe1 This piI is iIterIally coI-  
operatioI1  
IN  
Iected to V throuꢁh a lowpass filter1  
ꢂN  
MGN (B8): MarꢁiIiIꢁ PiI1 ꢂIcreases or decreases the  
output ꢀoltaꢁe by the amouIt specified by the BSEL piI1  
To disable marꢁiIiIꢁ, tie the MGN piI to a ꢀoltaꢁe diꢀider  
SGND (E1): SiꢁIal GrouId PiI1 ReturI ꢁrouId path for all  
aIaloꢁ aId low power circuitry1 Tie a siIꢁle coIIectioI to  
GND iI the applicatioI1  
with70kresistorsfromV torouId1SeetheApplicatioIs  
ꢂN  
ꢂIformatioI sectioI aId Fiꢁure 201  
MODE(B5):ModeSelectIput1TyiIthispiIhiꢁheIables  
Burst Mode operatioI1 TyiIꢁ this piI low eIables forced  
BSEL (B7): MarꢁiIiIꢁ Bit Select PiI1 TyiIꢁ BSEL low se-  
coItiIuous operatioI1 FloatiIꢁ this piI or tyiIꢁ it to V /2  
lects ±75, tyiIꢁ it hiꢁh selects ±±051 FloatiIꢁ it or tyiIꢁ  
ꢂN  
eIables pulse-skippiIꢁ operatioI1  
it to V /2 selects ±±751  
ꢂN  
CLKIN (B3): ExterIal SyIchroIizatioI ꢂIput to Phase  
Detector1 This piI is iIterIally termiIated to SGND with a  
70k resistor1 The phase locked loop will force the iIterIal  
top power PMOS turI oI to be syIchroIized with the  
TRACK (E5): Output Voltaꢁe TrackiIꢁ PiI1 Voltaꢁe track-  
iIꢁ is eIabled wheI the TRACK ꢀoltaꢁe is below 017.V1  
ꢂf trackiIꢁ is Iot desired, theI coIIect the TRACK piI to  
SV 1 ꢂf TRACK is Iot tied to SV , theI the TRACK piI’s  
ꢂN  
ꢂN  
risiIꢁ edꢁe of the CLKꢂN siꢁIal1 CoIIect this piI to SV  
ꢀoltaꢁe Ieeds to be below 01±8V before the chip shuts  
dowI eꢀeI thouꢁh RUN is already low1 Do Iot float this  
piI1 A resistor diꢀider aId capacitor caI be applied to the  
TRACK piI to iIcrease the soft-start time of the reꢁulator1  
See the ApplicatioIs ꢂIformatioI sectioI1 CaI tie toꢁether  
for parallel operatioI aId trackiIꢁ1 Load curreIt Ieeds to  
be preseIt duriIꢁ track dowI1  
ꢂN  
to eIable spread spectrum modulatioI1 DuriIꢁ exterIal  
syIchroIizatioI, make sure the PLLLPF piI is Iot tied to  
V or GND1  
ꢂN  
4608afc  
7
LTM4608A  
PIN FUNCTIONS  
FB(E7):TheNeꢁatiꢀeIputoftheErrorAmplifier1IterIally,  
PGOOD (C7): Output Voltaꢁe Power Good ꢂIdicator1  
OpeI-draiI loꢁic output that is pulled to ꢁrouId wheI the  
output ꢀoltaꢁe is Iot withiI ±±05 of the reꢁulatioI poiIt1  
Disabled duriIꢁ marꢁiIiIꢁ1  
this piI is coIIected to V  
with a ±0k precisioI resistor1  
OUT  
DiffereIt output ꢀoltaꢁes caI be proꢁrammed with aI ad-  
ditioIal resistor betweeI FB aId GND piIs1 ꢂI PolyPhase®  
operatioI, tie FB piIs toꢁether for parallel operatioI1 See  
the ApplicatioIs ꢂIformatioI sectioI for details1  
RUN (F1): RuI CoItrol PiI1 A ꢀoltaꢁe aboꢀe ±17V will turI  
oI the module1  
I
(F6): CurreIt CoItrol Threshold aId Error Amplifier  
TH  
SW (C3-C5): SwitchiIꢁ Node of the Circuit is Used for  
TestiIꢁ Purposes1 This caI be coIIected to aI electri-  
cally opeI circuit copper pad oI the board for improꢀed  
thermal performaIce1  
CompeIsatioI PoiIt1 The curreIt comparator threshold  
iIcreases with this coItrol ꢀoltaꢁe1 Tie toꢁether iI parallel  
operatioI1  
I
(F5): Neꢁatiꢀe ꢂIput to the ꢂIterIal ꢂ DiffereItial  
TH  
THM  
CLKOUT (F2): Output Clock SiꢁIal for PolyPhase Opera-  
tioI1 The phase of CLKOUT is determiIed by the state of  
the PHMODE piI1  
Amplifier1 Tie this piI to SGND for siIꢁle phase operatioI1  
For PolyPhase operatioI, tie the master’s ꢂ  
while coIIectiIꢁ all of the ꢂ  
to SGND  
THM  
piIs toꢁether1  
THM  
4608afc  
8
LTM4608A  
SIMPLIFIED BLOCK DIAGRAM  
SV  
V
IN  
IN  
V
INTERNAL  
FILTER  
IN  
2.7 TO 5.5V  
+
TRACK  
10µF  
10µF  
10µF  
C
IN  
MGN  
BSEL  
SW  
M1  
M2  
PGOOD  
MODE  
0.22µH  
V
OUT  
V
POWER  
CONTROL  
OUT  
RUN  
1.5V  
CLKIN  
CLKOUT  
PHMODE  
22µF  
22pF  
C
OUT  
GND  
FB  
I
TH  
10k  
INTERNAL  
COMP  
PLLLPF  
R
FB  
INTERNAL  
FILTER  
6.65k  
I
THM  
SGND  
4608A BD  
Figure 1. Simplified LTM4608A Block Diagram  
Table 1. Decoupling Requirements. TA = 25°C, Block Diagram Configuration  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
ꢂN  
ExterIal ꢂIput Capacitor RequiremeIt  
ꢂN  
= 8A  
±0  
µF  
OUT  
(V = 21.V to 717V, V  
= ±17V)  
OUT  
C
OUT  
ExterIal Output Capacitor RequiremeIt  
(V = 21.V to 717V, V = ±17V)  
= 8A  
±00  
µF  
OUT  
ꢂN  
OUT  
OPERATION  
The LTM4608A is a staIdaloIe IoIisolated switch mode  
DC/DC power supply1 ꢂt caI deliꢀer up to 8A of DC output  
curreIt with few exterIal iIput aId output capacitors1  
This module proꢀides precisely reꢁulated output ꢀoltaꢁe  
proꢁrammable ꢀia oIe exterIal resistor from 016V DC to  
710V DC oꢀer a 21.V to 717V iIput ꢀoltaꢁe1 The typical  
applicatioI schematic is showI iI Fiꢁure ±81  
The LTM4608A has aI iIteꢁrated coIstaIt frequeIcy cur-  
reIt mode reꢁulator aId built-iI power MOSFET deꢀices  
withfastswitchiIspeed1ThetypicalswitchiIfrequeIcy  
is ±17MHz1 For switchiIꢁ Ioise seIsitiꢀe applicatioIs, it  
caIbeexterIallysyIchroIizedfrom01.7MHzto2127MHz1  
EꢀeI spread spectrum switchiIꢁ caI be implemeIted iI  
the desiꢁI to reduce Ioise1  
4608afc  
9
LTM4608A  
OPERATION  
coIditioIs1TheLiIearTechIoloꢁyµModulePowerDesiꢁI  
Tool is proꢀided for traIsieIt aId stability aIalysis1 The  
FB piI is used to proꢁram the output ꢀoltaꢁe with a siIꢁle  
exterIal resistor to ꢁrouId1  
With curreIt mode coItrol aId iIterIal feedback loop  
compeIsatioI, the LTM4608A module has sufficieIt  
stability marꢁiIs aId ꢁood traIsieIt performaIce with  
a wide raIꢁe of output capacitors, eꢀeI with all ceramic  
output capacitors1  
Multiphase operatioI caI be easily employed with the  
syIchroIizatioIaIdphasemodecoItrols1Upto±2phases  
caI be cascaded to ruI simultaIeously with respect to  
each other by proꢁrammiIꢁ the PHMODE piI to differeIt  
leꢀels1 The LTM4608A has clock iI aId clock out for poly  
phasiIꢁ multiple deꢀices or frequeIcy syIchroIizatioI1  
CurreItmodecoItrolproꢀidescycle-by-cyclefastcurreIt  
limit aId thermal shutdowI iI aI oꢀercurreIt coIditioI1  
ꢂIterIal oꢀerꢀoltaꢁe aId uIderꢀoltaꢁe comparators pull  
the opeI-draiI PGOOD output low if the output feedback  
ꢀoltaꢁe exits a ±±05 wiIdow arouId the reꢁulatioI poiIt1  
Hiꢁh efficieIcy at liꢁht loads caI be accomplished with  
selectableBurstModeoperatioIusiItheMODEpiI1These  
liꢁht load features will accommodate battery operatioI1  
EfficieIcy ꢁraphs are proꢀided for liꢁht load operatioI iI  
the Typical PerformaIce Characteristics1  
PulliIꢁ the RUN piI below ±13V forces the coItroller iIto  
its shutdowI state, by turIiIꢁ off both M± aId M2 at low  
load curreIt1 The TRACK piI is used for proꢁrammiIꢁ the  
output ꢀoltaꢁe ramp aId ꢀoltaꢁe trackiIꢁ duriIꢁ start-up1  
See ApplicatioIs ꢂIformatioI1  
Output ꢀoltaꢁe marꢁiIiIꢁ is supported, aId caI be pro-  
ꢁramedfrom±75to±±75usiItheMGNaIdBSELpiIs1  
The PGOOD piI is disabled duriIꢁ marꢁiIiIꢁ  
The LTM4608A is iIterIally compeIsated to be stable  
oꢀer all operatiIꢁ coIditioIs1 Table 3 proꢀides a ꢁuideliIe  
for iIput aId output capacitaIces for seꢀeral operatiIꢁ  
APPLICATIONS INFORMATION  
The typical LTM4608A applicatioI circuit is showI iI  
Fiꢁure ±81 ExterIal compoIeIt selectioI is primarily  
determiIed by the maximum load curreIt aId output  
ꢀoltaꢁe1 Refer to Table 3 for specific exterIal capacitor  
requiremeIts for a particular applicatioI1  
Io feedback resistor1 AddiIꢁ a resistor R from FB piI  
FB  
to GND proꢁrams the output ꢀoltaꢁe:  
±0k + RFB  
VOUT = 01796V •  
RFB  
Table 2. RFB Resistor vs Output Voltage  
V to V  
Step-Down Ratios  
IN  
OUT  
V
01796V  
OpeI  
±12V  
±0k  
±17V  
±18V  
217V  
313V  
OUT  
There are restrictioIs iI the maximum V to V  
dowI ratio that caI be achieꢀed for a ꢁiꢀeI iIput ꢀoltaꢁe1  
The LTM4608A is ±005 duty cycle, but the V to V  
miIimum dropout is a fuIctioI of its load curreIt1 Please  
refer to the curꢀes iI the Typical PerformaIce Charac-  
teristics sectioI of this data sheet for more iIformatioI1  
step-  
ꢂN  
OUT  
R
6167k  
418.k  
3109k  
212±k  
FB  
ꢂN  
OUT  
Input Capacitors  
The LTM4608A module should be coIIected to a low AC  
impedaIce DC source1 Three ±0µF ceramic capacitors  
are iIcluded iIside the module1 AdditioIal iIput capaci-  
tors are oIly Ieeded if a larꢁe load step is required up to  
the 4A leꢀel1 A 4.µF to ±00µF surface mouIt alumiIum  
electrolytic bulk capacitor caI be used for more iIput bulk  
capacitaIce1 This bulk iIput capacitor is oIly Ieeded if  
the iIput source impedaIce is compromised by loIꢁ iI-  
ductiꢀe leads, traces or Iot eIouꢁh source capacitaIce1  
Output Voltage Programming  
The PWM coItroller has aI iIterIal 01796V refereIce  
ꢀoltaꢁe1 As showI iI the Block Diaꢁram, a ±0k 0175  
iIterIal feedback resistor coIIects V  
toꢁether1 The output ꢀoltaꢁe will default to 01796V with  
aId FB piIs  
OUT  
4608afc  
10  
LTM4608A  
APPLICATIONS INFORMATION  
ꢂf low impedaIce power plaIes are used, theI this 4.µF  
a fuIctioI of stability aId traIsieIt respoIse1 The LiIear  
TechIoloꢁy LTpowerCAD DesiꢁI Tool will calculate the  
outputripplereductioIastheIumberphasesimplemeIted  
iIcreases by N times1  
capacitor is Iot Ieeded1  
For a buck coIꢀerter, the switchiIꢁ duty-cycle caI be  
estimated as:  
VOUT  
Burst Mode Operation  
D =  
V
ꢂN  
TheLTM4608AiscapableofBurstModeoperatioIiIwhich  
the power MOSFETs operate iItermitteItly based oI load  
demaId, thus saꢀiIꢁ quiesceIt curreIt1 For applicatioIs  
where maximiziIꢁ the efficieIcy at ꢀery liꢁht loads is a  
hiꢁh priority, Burst Mode operatioI should be applied1 To  
eIable Burst Mode operatioI, simply tie the MODE piI to  
Without coIsideriIꢁ the iIductor curreIt ripple, the RMS  
curreIt of the iIput capacitor caI be estimated as:  
OUT(MAX)  
CꢂN(RMS)  
=
D ±– D  
(
)
η5  
V 1DuriIthisoperatioI, thepeakcurreItoftheiIductor  
ꢂN  
is set to approximately 205 of the maximum peak curreIt  
ꢀalue iI Iormal operatioI eꢀeI thouꢁh the ꢀoltaꢁe at the  
ꢂI the aboꢀe equatioI, η5 is the estimated efficieIcy of  
the power module1 The bulk capacitor caI be a switcher-  
rated electrolytic alumiIum capacitor, polymer capacitor  
for bulk iIput capacitaIce due to hiꢁh iIductaIce traces  
or leads1 ꢂf a low iIductaIce plaIe is used to power the  
deꢀice, theI oIly oIe ±0µF ceramic is required1 The three  
iIterIal ±0µF ceramics are typically rated for 2A of RMS  
ripple curreIt, so the ripple curreIt at the worse case for  
8A maximum curreIt is 4A or less1  
piI iIdicates a lower ꢀalue1 The ꢀoltaꢁe at the ꢂ piI  
TH  
TH  
drops wheI the iIductor’s aꢀeraꢁe curreIt is ꢁreater thaI  
the load requiremeIt1 As the ꢂ ꢀoltaꢁe drops below 012V,  
TH  
the BURST comparator trips, causiIꢁ the iIterIal sleep  
liIe to ꢁo hiꢁh aId turI off both power MOSFETs1  
ꢂI sleep mode, the iIterIal circuitry is partially turIed off,  
reduciIꢁ the quiesceIt curreIt to about 470µA1 The load  
curreIt is Iow beiIꢁ supplied from the output capacitor1  
Output Capacitors  
WheI the output ꢀoltaꢁe drops, causiIꢁ ꢂ to rise aboꢀe  
TH  
0127V,theiIterIalsleepliIeoeslow,aIdtheLTM4608Are-  
sumesIormaloperatioI1TheIextoscillatorcyclewillturI  
oIthetoppowerMOSFETaIdtheswitchiIcyclerepeats1  
The LTM4608A is desiꢁIed for low output ꢀoltaꢁe ripple  
Ioise1 The bulk output capacitors defiIed as C  
are  
OUT  
choseI with low eIouꢁh effectiꢀe series resistaIce (ESR)  
to meet the output ꢀoltaꢁe ripple aId traIsieIt require-  
Pulse-Skipping Mode Operation  
meIts1 C  
caI be a low ESR taItalum capacitor, a low  
OUT  
ESR polymer capacitor or ceramic capacitor1 The typical  
outputcapacitaIceraIꢁeisfrom4Fto220µF1AdditioIal  
output filteriIꢁ may be required by the system desiꢁIer,  
if further reductioI of output ripple or dyIamic traIsieIt  
spikesisdesired1Table3showsamatrixofdiffereItoutput  
ꢀoltaꢁes aId output capacitors to miIimize the ꢀoltaꢁe  
droop aId oꢀershoot duriIꢁ a 3A/µs traIsieIt1 The table  
optimizes total equiꢀaleIt ESR aId total bulk capacitaIce  
tooptimizethetraIsieItperformaIce1Stabilitycriteriaare  
coIsiderediItheTable3matrix,aIdtheLiIearTechIoloꢁy  
LTpowerCADDesiꢁIToolisaꢀailableforstabilityaIalysis1  
Multiphase operatioI will reduce effectiꢀe output ripple as  
a fuIctioI of the Iumber of phases1 ApplicatioI Note ..  
discusses this Ioise reductioI ꢀersus output ripple cur-  
reIt caIcellatioI, but the output capacitaIce will be more  
ꢂI applicatioIs where low output ripple aId hiꢁh efficieIcy  
at iItermediate curreIts are desired, pulse-skippiIꢁ mode  
should be used1 Pulse-skippiIꢁ operatioI allows the  
LTM4608Atoskipcyclesatlowoutputloads,thusiIcreasiIꢁ  
efficieIcy by reduciIꢁ switchiIꢁ loss1 FloatiIꢁ the MODE  
piI or tyiIꢁ it to V /2 eIables pulse-skippiIꢁ operatioI1  
ꢂN  
ThisallowsdiscoItiIuouscoIductioImode(DCM)opera-  
tioI dowI to Iear the limit defiIed by the chip’s miIimum  
oI-time (about ±00Is)1 Below this output curreIt leꢀel,  
the coIꢀerter will beꢁiI to skip cycles iI order to maiItaiI  
outputreꢁulatioI1IcreasiItheoutputloadcurreItsliꢁhtly,  
aboꢀethemiIimumrequiredfordiscoItiIuouscoIductioI  
mode, allows coIstaIt frequeIcy PWM1  
4608afc  
11  
LTM4608A  
APPLICATIONS INFORMATION  
Table 3. Output Voltage Response Versus Component Matrix (Refer to Figure 18) 0A to 3A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
VALUE  
PART NUMBER  
C
VENDORS  
OUT2  
VALUE  
PART NUMBER  
±0TPD±70M  
PART NUMBER  
±0CE±00FH  
OUT1  
TDK  
22µF, 613V  
22µF, ±6V  
±00µF, 613V  
±00µF, 613V  
C32±6X.S0J226M  
GRM3±CR6±C226KE±7L  
C4732X7R0J±0.MZ  
GRM32ER60J±0.M  
SaIyo POSCAP  
±70µF, ±0V  
Murata  
TDK  
C (BULK) VENDORS VALUE  
IN  
SaIyo  
±00µF, ±0V  
Murata  
V
C
C
C
C
V
(V)  
DROOP PEAK-TO- PEAK  
RECOVERY  
TIME (µs)  
LOAD STEP  
(A/µs)  
R
FB  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
±10  
±10  
±10  
±10  
±10  
±10  
±12  
±12  
±12  
±12  
±12  
±12  
±17  
±17  
±17  
±17  
±17  
±17  
±18  
±18  
±18  
±18  
±18  
±18  
217  
217  
217  
217  
313  
313  
(CERAMIC) (BULK)* (CERAMIC)  
(BULK)  
I
C1  
C3  
(mV)  
±3  
±.  
±3  
±.  
±3  
±.  
±6  
20  
±6  
20  
±6  
±6  
±8  
20  
±6  
20  
±8  
20  
22  
2±  
2±  
2±  
22  
2±  
28  
33  
30  
2±  
38  
39  
DEVIATION (mV)  
(kΩ)  
±41.  
±41.  
±41.  
±41.  
±41.  
±41.  
±0  
TH  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±0µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × ±  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × 2  
22µF × ±  
±00µF × ±  
22µF × ±  
±00µF × ±  
22µF × ±  
±00µF × ±  
22µF × ±  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
±00pF  
NoIe  
68pF  
NoIe  
±00pF  
NoIe  
±00pF  
NoIe  
±00pF  
NoIe  
±00pF  
NoIe  
±00pF  
NoIe  
NoIe  
NoIe  
4.pF  
NoIe  
4.pF  
NoIe  
NoIe  
NoIe  
4.pF  
NoIe  
4.pF  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
NoIe  
7
26  
34  
26  
34  
26  
34  
32  
4±  
32  
4±  
32  
32  
36  
4±  
32  
4±  
36  
4±  
42  
42  
43  
4±  
44  
42  
42  
60  
60  
4±  
.4  
.7  
.
3
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × 2  
±70µF × ±  
±70µF × ±  
±70µF × ±  
NoIe  
68pF  
7
8
3
313  
313  
21.  
21.  
7
.
3
NoIe  
68pF  
±0  
.
3
3
NoIe  
±00pF  
NoIe  
±00pF  
NoIe  
±00pF  
4.pF  
8
3
8
3
7
±0  
8
3
±0  
313  
313  
21.  
21.  
7
3
±0  
±0  
±0  
8
3
±0  
3
±0  
3
±0  
±00pF  
NoIe  
±00pF  
NoIe  
±00pF  
NoIe  
4.pF  
8
3
6167  
6167  
6167  
6167  
6167  
6167  
418.  
418.  
418.  
418.  
418.  
418.  
3109  
3109  
3109  
3109  
212±  
212±  
7
±2  
±0  
±2  
±0  
±2  
8
3
313  
313  
21.  
21.  
7
3
3
3
3
3
NoIe  
±20pF  
NoIe  
±20pF  
NoIe  
±00pF  
22pF  
7
±2  
±2  
±2  
±2  
±4  
±0  
±0  
±0  
±0  
±0  
±2  
3
313  
313  
21.  
21.  
7
3
3
3
3
3
7
3
±00pF  
22pF  
313  
313  
7
3
3
22pF  
3
NoIe  
7
3
*Bulk capacitaIce is optioIal if V has ꢀery low iIput impedaIce1  
ꢂN  
Forced Continuous Operation  
throuꢁhout,aIdthetopMOSFETalwaysturIsoIwitheach  
oscillator pulse1 DuriIꢁ start-up, forced coItiIuous mode  
is disabled aId iIductor curreIt is preꢀeIted from reꢀers-  
iIꢁ uItil the LTM4608A’s output ꢀoltaꢁe is iI reꢁulatioI1  
ꢂI applicatioIs where fixed frequeIcy operatioI is more  
critical thaI low curreIt efficieIcy, aId where the lowest  
outputrippleisdesired,forcedcoItiIuousoperatioIshould  
be used1 Forced coItiIuous operatioI caI be eIabled by  
tyiIꢁ the MODE piI to GND1 ꢂI this mode, iIductor cur-  
reIt is allowed to reꢀerse duriIꢁ low output loads, the ꢂ  
ꢀoltaꢁe is iI coItrol of the curreIt comparator threshold  
Multiphase Operation  
For output loads that demaId more thaI 8A of curreIt,  
multipleLTM4608AscaIbecascadedtoruIoutofphaseto  
TH  
4608afc  
12  
LTM4608A  
APPLICATIONS INFORMATION  
proꢀide more output curreIt without iIcreasiIꢁ iIput aId  
outputoltaꢁeripple1TheCLKꢂNpiIallowstheLTM4608A  
to syIchroIize to aI exterIal clock (betweeI 01.7MHz  
aId 2127MHz) aId the iIterIal phase locked loop allows  
the LTM4608A to lock oIto CLKꢂN’s phase as well1 The  
CLKOUT siꢁIal caI be coIIected to the CLKꢂN piI of the  
followiIꢁ LTM4608A staꢁe to liIe up both the frequeIcy  
aId the phase of the eItire system1 TyiIꢁ the PHMODE  
the 3rd staꢁe, which theI caI ꢁeIerate a CLKOUT siꢁIal  
that’s 420°, or 60° (PHMODE = SV ) for the 4th staꢁe1  
ꢂN  
With the 60° CLKꢂN iIput, the Iext two staꢁes caI shift  
±20° (PHMODE = 0) for each to ꢁeIerate a 300° siꢁIal  
for the 6th staꢁe1 FiIally, the siꢁIal with a 60° phase shift  
oI the 6th staꢁe (PHMODE is floatiIꢁ) ꢁoes back to the  
±st staꢁe1 Fiꢁure 3 shows the coIfiꢁuratioI for ±2-phase  
operatioI1  
piI to SV , SGND or SV /2 (floatiIꢁ) ꢁeIerates a phase  
ꢂN  
ꢂN  
A multiphase power supply siꢁIificaItly reduces the  
amouIt of ripple curreIt iI both the iIput aId output  
capacitors1 The RMS iIput ripple curreIt is reduced by,  
aId the effectiꢀe ripple frequeIcy is multiplied by, the  
Iumber of phases used (assumiIꢁ that the iIput ꢀoltaꢁe  
isreaterthaItheIumberofphasesusedtimestheoutput  
ꢀoltaꢁe)1 The output ripple amplitude is also reduced by  
the Iumber of phases used1  
differeIce (betweeI CLKꢂN aId CLKOUT) of ±80°, ±20°  
or 90° respectiꢀely, which correspoIds to a 2-phase,  
3-phase or 4-phase operatioI1 A total of 6 phases caI be  
cascadedtoruIsimultaIeouslywithrespecttoeachother  
by proꢁrammiIꢁ the PHMODE piI of each LTM4608A to  
differeIt leꢀels1 For a 6-phase example iI Fiꢁure 2, the  
2Id staꢁe that is ±20° out of phase from the ±st staꢁe  
caI ꢁeIerate a 240° (PHMODE = 0) CLKOUT siꢁIal for  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 3  
S
VIN  
PHMODE  
PHASE 5  
PHMODE  
PHASE 2  
PHMODE  
PHASE 4  
PHMODE  
PHASE 6  
4608A F02  
Figure 2. 6-Phase Operation  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 5  
S
VIN  
PHMODE  
PHASE 9  
PHMODE  
PHASE 3  
PHMODE  
PHASE 7  
PHMODE  
PHASE 11  
4608 F02  
+
V
OUT1  
LTC6908-2  
OUT2  
(510)  
150  
(390)  
30  
90  
210  
330  
270  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 4  
PHMODE  
PHASE 8  
S
VIN  
PHMODE  
PHASE 12  
PHMODE  
PHASE 6  
PHMODE  
PHASE 10  
PHMODE  
PHASE 2  
4608A F03  
Figure 3. 12-Phase Operation  
4608afc  
13  
LTM4608A  
APPLICATIONS INFORMATION  
The LTM4608A deꢀice is aI iIhereItly curreIt mode coI-  
trolleddeꢀice1ParallelmoduleswillhaꢀeeryoodcurreIt  
shariIꢁ1 This will balaIce the thermals oI the desiꢁI1  
Spread Spectrum Operation  
SwitchiIꢁ reꢁulators caI be particularly troublesome  
where electromaꢁIetic iIterfereIce (EMꢂ) is coIcerIed1  
Tie the ꢂ piIs of each LTM4608A toꢁether to share the  
TH  
SwitchiIꢁ reꢁulators operate oI a cycle-by-cycle basis to  
traIsfer power to aI output1 ꢂI most cases, the frequeIcy  
ofoperatioIisfixedbasedoItheoutputload1Thismethod  
of coIꢀersioI creates larꢁe compoIeIts of Ioise at the  
frequeIcy of operatioI (fuIdameItal) aId multiples of the  
operatiIꢁ frequeIcy (harmoIics)1  
curreIt eꢀeIly1 To reduce ꢁrouId poteItial Ioise, tie the  
piIs of all LTM4608As toꢁether aId theI coIIect to  
THM  
the SGND at oIly oIe poiIt1 Fiꢁure ±9 shows a schematic  
of the parallel desiꢁI1 The FB piIs of the parallel module  
are tied toꢁether1 With parallel operatioI, iIput aId out-  
put capacitors may be reduced iI part accordiIꢁ to the  
operatiIꢁ duty cycle1  
To reduce this Ioise, the LTM4608A caI ruI iI spread  
spectrum operatioI by tyiIꢁ the CLKꢂN piI to SV 1 ꢂI  
ꢂN  
Input RMS Ripple Current Cancellation  
spread spectrum operatioI, the LTM4608A’s iIterIal  
oscillator is desiꢁIed to produce a clock pulse whose  
period is raIdom oI a cycle-by-cycle basis but fixed  
betweeI .05 aId ±305 of the IomiIal frequeIcy1 This  
has the beIefit of spreadiIꢁ the switchiIꢁ Ioise oꢀer  
a raIꢁe of frequeIcies, thus siꢁIificaItly reduciIꢁ the  
peak Ioise1 Spread spectrum operatioI is disabled if  
ApplicatioI Note .. proꢀides a detailed explaIatioI of  
multiphase operatioI1 The iIput RMS ripple curreIt caI-  
cellatioI mathematical deriꢀatioIs are preseIted, aId a  
ꢁraph is displayed represeItiIꢁ the RMS ripple curreIt  
reductioIasafuIctioIoftheIumberofiIterleaꢀedphases1  
Fiꢁure 4 shows this ꢁraph1  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
IN  
O
4608A F04  
Figure 4. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Phases  
4608afc  
14  
LTM4608A  
APPLICATIONS INFORMATION  
CLKꢂN is tied to ꢁrouId or if it’s driꢀeI by aI exterIal  
frequeIcy syIchroIizatioI siꢁIal1 A capacitor ꢀalue of  
010±µF must be placed from the PLLLPF piI to ꢁrouId to  
coItrol the slew rate of the spread spectrum frequeIcy  
sameastheslaꢀereꢁulator’sfeedbackdiꢀidertoimplemeIt  
coiIcideIt trackiIꢁ1 The LTM4608A uses aI accurate ±0k  
resistor iIterIally for the top feedback resistor1 Fiꢁure 7  
shows aI example of coiIcideIt trackiIꢁ:  
chaIꢁe1 Add a coItrol ramp oI the TRACK piI with R  
SR  
±0k  
aId C refereIced to V 1 Fiꢁure 2± shows aI example  
SR  
ꢂN  
Slaꢀe = ±+  
V  
TRACK  
R
FB4   
for spread spectrum operatioI1  
±
V
V
is the track ramp applied to the slaꢀe’s track piI1  
has a coItrol raIꢁe of 0V to 01796V, or the iIterIal  
RSR  
TRACK  
TRACK  
SR  
01792  
lI ±−  
700 C  
refereIce ꢀoltaꢁe1 WheI the master’s output is diꢀided  
dowI with the same resistor ꢀalues used to set the slaꢀe’s  
output,thisresistordiꢀideriscoIIectedtotheslaꢀe’strack  
piI1 The slaꢀe will theI coiIcideIt track with the master  
uItil it reaches its fiIal ꢀalue1 The master will coItiIue to  
its fiIal ꢀalue from the slaꢀe’s reꢁulatioI poiIt1 Voltaꢁe  
V
ꢂN  
Output Voltage Tracking  
Output ꢀoltaꢁe trackiIꢁ caI be proꢁrammed exterIally  
usiIꢁ the TRACK piI1 The output caI be tracked up aId  
dowIwithaIotherreꢁulator1Themasterreꢁulator’soutput  
is diꢀided dowI with aI exterIal resistor diꢀider that is the  
trackiIꢁ is disabled wheI V  
is more thaI 01796V1  
TRACK  
MASTER  
3.3V  
7A  
CLKIN  
V
IN  
V
V
IN  
OUT  
FB  
5V  
C2  
100µF  
SV  
IN  
100pF  
SW  
TIE TO V  
IN  
LTM4608A  
C3  
R
FB1  
2.21k  
FOR DISABLE  
AND DEFAULT  
RUN  
RUN  
I
TH  
22pF  
PLLLPF  
TRACK  
MODE  
I
100µs SOFT-START  
THM  
V
IN  
TRACK  
PGOOD  
R
C
SR  
SR  
50k  
BSEL  
MGN  
PHMODE  
APPLY A CONTROL  
RAMP WITH R AND  
CLKOUT GND SGND  
SR  
50k  
C
TIED TO V WHERE  
SR  
IN  
t = –(ln (1 – 0.596/V ) • R • C )  
SR  
IN  
SR  
OR APPLY AN EXTERNAL TRACKING RAMP  
SLAVE  
1.5V  
8A  
CLKIN  
V
V
OUT  
IN  
+
C1  
100µF  
C4  
100µF  
SV  
IN  
SW  
FB  
MASTER  
3.3V  
LTM4608A  
R
FB2  
RUN  
RUN  
I
TH  
6.65k  
R
FB3  
PLLLPF  
TRACK  
MODE  
I
THM  
10k  
TRACK  
PGOOD  
BSEL  
R
FB4  
6.65k  
PHMODE  
MGN  
4608A F05  
CLKOUT GND SGND  
Figure 5. Dual Outputs (3.3V and 1.5V) with Tracking  
4608afc  
15  
LTM4608A  
APPLICATIONS INFORMATION  
ThetrackpiIofthemastercaIbecoItrolledbyaIexterIal  
ramp or by R aId C iI Fiꢁure 7 refereIced to V 1 The  
SR  
SR  
ꢂN  
MASTER OUTPUT  
SLAVE OUTPUT  
RC ramp time caI be proꢁrammed usiIꢁ equatioI:  
01796V  
t = lI ±–  
R CSR   
SR  
V
ꢂN  
Ratiometric trackiIꢁ caI be achieꢀed by a few simple  
calculatioIs aId the slew rate ꢀalue applied to the mas-  
ter’s track piI1 As meItioIed aboꢀe, the TRACK piI has  
a coItrol raIꢁe from 0V to 01796V1 The master’s TRACK  
piI slew rate is directly equal to the master’s output slew  
rate iI Volts/Time:  
TIME  
4608A F06  
Figure 6. Output Voltage Coincident Tracking  
MR  
SR  
±0k = RFB3  
For example: MR = 313V/ms aId SR = ±17V/ms1 TheI  
R
= 221±k1 Solꢀe for R to equal to 418.k1  
FB3  
FB4  
where MR is the master’s output slew rate aId SR is the  
slaꢀe’s output slew rate iI Volts/Time1 WheI coiIcideIt  
trackiIꢁ is desired, theI MR aId SR are equal, thus R  
is equal the ±0k1 R is deriꢀed from equatioI:  
ForapplicatioIsthatdoIotrequiretrackiIorsequeIciIꢁ,  
simply tie the TRACK piI to SV to let RUN coItrol the  
ꢂN  
FB3  
turI oI/off1 CoIIectiIꢁ TRACK to SV also eIables the  
ꢂN  
FB4  
~±00µs of iIterIal soft-start duriIꢁ start-up1 Load curreIt  
01796V  
Ieeds to be preseIt duriIꢁ track dowI1  
RFB4  
=
VTRACK  
RFB3  
V
V
FB  
FB  
+
Power Good  
±0k RFB2  
The PGOOD piI is aI opeI-draiI piI that caI be used to  
moIitor ꢀalid output ꢀoltaꢁe reꢁulatioI1 This piI moIitors  
a ±±05 wiIdow arouId the reꢁulatioI poiIt1 As showI  
iI Fiꢁure 20, the sequeIciIꢁ fuIctioI caI be realized iI a  
dualoutputapplicatioIbycoItrolliItheRUNpiIsaIdthe  
PGOOD siꢁIals from each other1 The ±17V output beꢁiIs  
its soft startiIꢁ after the PGOOD siꢁIal of 313V output  
becomes hiꢁh, aId 313V output starts its shut dowI after  
the PGOOD siꢁIal of ±17V output becomes low1 This caI  
be applied to systems that require ꢀoltaꢁe sequeIciIꢁ  
betweeI the core aId sub-power supplies1  
whereV isthefeedbackoltaꢁerefereIceofthereꢁulator  
FB  
aId V  
is 01796V1 SiIce R is equal to the ±0k top  
TRACK  
FB3  
feedback resistor of the slaꢀe reꢁulator iI equal slew rate  
orcoiIcideIttrackiIꢁ,theIR isequaltoR withV =  
FB4  
FB2  
FB  
V
1 Therefore R = ±0k aId R = 6167k iI Fiꢁure 71  
TRACK  
FB3 FB4  
IratiometrictrackiIꢁ, adiffereItslewratemaybedesired  
for the slaꢀe reꢁulator1 R caI be solꢀed for wheI SR  
FB3  
is slower thaI MR1 Make sure that the slaꢀe supply slew  
rate is choseI to be fast eIouꢁh so that the slaꢀe output  
ꢀoltaꢁe will reach it fiIal ꢀalue before the master output1  
4608afc  
16  
LTM4608A  
APPLICATIONS INFORMATION  
Slope Compensation  
hiꢁh, it is ±051 WheI BSEL is floatiIꢁ, it is ±751 WheI  
marꢁiIiIꢁ is actiꢀe, the iIterIal output oꢀerꢀoltaꢁe aId  
uIderꢀoltaꢁe comparators are disabled aId PGOOD re-  
maiIs hiꢁh1 MarꢁiIiIꢁ is disabled by tyiIꢁ the MGN piI  
to a ꢀoltaꢁe diꢀider as showI iI Fiꢁure 201  
The module has already beeI iIterIally compeIsated for  
all output ꢀoltaꢁes1 Table 3 is proꢀided for most applica-  
tioI requiremeIts1 A spice model will be proꢀided for other  
coItrol loop optimizatioI1 For siIꢁle module operatioI,  
coIIect ꢂ  
piI to SGND1 For parallel operatioI, tie ꢂ  
THM  
THM  
Thermal Considerations and Output Current Derating  
piIs toꢁether aId theI coIIect to SGND at oIe poiIt1 Tie  
The power loss curꢀes iI Fiꢁures . aId 8 caI be used  
iI coordiIatioI with the load curreIt deratiIꢁ curꢀes iI  
TH  
piIs toꢁether to share curreIts eꢀeIly for all phases1  
Output Margining  
Fiꢁures 9 to ±6 for calculatiIꢁ aI approximate θ for the  
JA  
modulewithariousheatsiIkiImethods1Thermalmodels  
are deriꢀed from seꢀeral temperature measuremeIts at  
the beIch, aId thermal modeliIꢁ aIalysis1 Thermal Ap-  
plicatioI Note ±03 proꢀides a detailed explaIatioI of the  
aIalysis for the thermal models aId the deratiIꢁ curꢀes1  
For a coIꢀeIieIt system stress test oI the LTM4608A’s  
output, the user caI proꢁram the LTM4608A’s output to  
±75, ±±05 or ±±75 of its Iormal operatioIal ꢀoltaꢁe1  
The marꢁiI piI with a ꢀoltaꢁe diꢀider is driꢀeI with a small  
three-stateateasshowIiIFiꢁure±8,forthethreemarꢁiI  
states (hiꢁh, low, Io marꢁiI)1 WheI the MGN piI is <013V,  
it forces Ieꢁatiꢀe marꢁiIiIꢁ iI which the output ꢀoltaꢁe  
Tables 4 aId 7 proꢀide a summary of the equiꢀaleIt θ  
JA  
for the Ioted coIditioIs1 These equiꢀaleIt θ parameters  
JA  
are correlated to the measured ꢀalues aId improꢀe with  
air flow1 The juIctioI temperature is maiItaiIed at ±27°C  
or below for the deratiIꢁ curꢀes1  
is below the reꢁulatioI poiIt1 WheI MGN is >V 013V,  
ꢂN  
the output ꢀoltaꢁe is forced aboꢀe the reꢁulatioI poiIt1  
The amouIt of output ꢀoltaꢁe marꢁiIiIꢁ is determiIed by  
the BSEL piI1 WheI BSEL is low, it is 751 WheI BSEL is  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.5  
5V 1.5V  
3.3V 1.5V  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
5V 3.3V  
IN  
3.3V 2.5V  
IN  
0
0
4
0
2
6
8
4
0
2
6
8
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4608A F08  
4608A F07  
Figure 7. 3.3VIN, 2.5V and 1.5VOUT Power Loss  
Figure 8. 5VIN, 3.3V and 1.5VOUT Power Loss  
4608afc  
17  
LTM4608A  
APPLICATIONS INFORMATION  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
400LFM  
200LFM  
0LFM  
400LFM  
1
200LFM  
0LFM  
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
AMBIENT TEMPERATURE (°C)  
100 110 120  
AMBIENT TEMPERATURE (°C)  
4608A F10  
4608A F09  
Figure 9. No Heat Sink with 3.3VIN to 1.5VOUT  
Figure 10. BGA Heat Sink with 3.3VIN to 1.5VOUT  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F12  
4608A F11  
Figure 11. No Heat Sink with 5VIN to 1.5VOUT  
Figure 12. BGA Heat Sink with 5VIN to 1.5VOUT  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F14  
4608A F13  
Figure 13. No Heat Sink with 3.3VIN to 2.5VOUT  
Figure 14. BGA Heat Sink with 3.3VIN to 2.5VOUT  
4608afc  
18  
LTM4608A  
APPLICATIONS INFORMATION  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
1
0
2
400LFM  
200LFM  
0LFM  
400LFM  
200LFM  
0LFM  
1
0
80 90  
40 50 60 70  
100 110 120  
80 90  
40 50 60 70  
100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4608A F15  
4608A F16  
Figure 15. No Heat Sink with 5VIN to 3.3VOUT  
Figure 16. BGA Heat Sink with 5VIN to 3.3VOUT  
Table 4. 1.5V Output  
DERATING CURVE  
Fiꢁures 9, ±±  
Fiꢁures 9, ±±  
Fiꢁures 9, ±±  
Fiꢁures ±0, ±2  
Fiꢁures ±0, ±2  
Fiꢁures ±0, ±2  
V
(V)  
POWER LOSS CURVE  
Fiꢁures ., 8  
AIR FLOW (LFM)  
HEAT SINK  
NoIe  
θ
JA  
(°C/W)  
27  
IN  
313, 7  
313, 7  
313, 7  
313, 7  
313, 7  
313, 7  
0
Fiꢁures ., 8  
200  
400  
0
NoIe  
2±  
Fiꢁures ., 8  
NoIe  
20  
Fiꢁures ., 8  
BGA Heat SiIk  
BGA Heat SiIk  
BGA Heat SiIk  
2317  
22  
Fiꢁures ., 8  
200  
400  
Fiꢁures ., 8  
22  
Table 5. 3.3V Output  
DERATING CURVE  
Fiꢁure ±7  
V
(V)  
POWER LOSS CURVE  
Fiꢁure 8  
AIR FLOW (LFM)  
HEAT SINK  
NoIe  
θ
(°C/W)  
IN  
JA  
7
0
27  
2±  
Fiꢁure ±7  
7
7
7
7
7
Fiꢁure 8  
200  
400  
0
NoIe  
Fiꢁure ±7  
Fiꢁure 8  
NoIe  
20  
Fiꢁure ±6  
Fiꢁure 8  
BGA Heat SiIk  
BGA Heat SiIk  
BGA Heat SiIk  
2317  
22  
Fiꢁure ±6  
Fiꢁure 8  
200  
400  
Fiꢁure ±6  
Fiꢁure 8  
22  
4608afc  
19  
LTM4608A  
APPLICATIONS INFORMATION  
Safety Considerations  
•ꢀ Placeꢀhighꢀfrequencyꢀceramicꢀinputꢀandꢀoutputꢀcapaci-  
tors Iext to the V , GND aId V  
piIs to miIimize  
ꢂN  
OUT  
The LTM4608A modules do Iot proꢀide isolatioI from V  
ꢂN  
hiꢁh frequeIcy Ioise1  
to V 1 There is Io iIterIal fuse1 ꢂf required, a slow blow  
OUT  
fuse with a ratiIꢁ twice the maximum iIput curreIt Ieeds  
•ꢀ Placeꢀaꢀdedicatedꢀpowerꢀgroundꢀlayerꢀunderneathꢀtheꢀ  
tobeproꢀidedtoprotecteachuIitfromcatastrophicfailure1  
uIit1  
•ꢀ Toꢀminimizeꢀtheꢀviaꢀconductionꢀlossꢀandꢀreduceꢀmoduleꢀ  
thermal stress, use multiple ꢀias for iItercoIIectioI  
betweeI top layer aId other power layers1  
Layout Checklist/Example  
The hiꢁh iIteꢁratioI of LTM4608A makes the PCB board  
layout ꢀery simple aId easy1 Howeꢀer, to optimize its  
electrical aId thermal performaIce, some layout coI-  
sideratioIs are still Iecessary1  
•ꢀ Doꢀnotꢀputꢀviasꢀdirectlyꢀonꢀtheꢀpads,ꢀunlessꢀtheyꢀareꢀ  
capped1  
•ꢀ UseꢀaꢀseparatedꢀSGNDꢀgroundꢀcopperꢀareaꢀforꢀcom-  
poIeIts coIIected to siꢁIal piIs1 CoIIect the SGND  
to GND uIderIeath the uIit1  
•ꢀ Useꢀ largeꢀ PCBꢀ copperꢀ areasꢀ forꢀ highꢀ currentꢀ path,ꢀ  
iIcludiIꢁ V , GND aId V 1 ꢂt helps to miIimize the  
ꢂN  
OUT  
PCB coIductioI loss aId thermal stress1  
Fiꢁure±.iꢀesaoodexampleoftherecommeIdedlayout1  
GND  
V
OUT  
C
C
C
OUT  
OUT  
OUT  
GND  
C
IN  
V
IN  
C
IN  
GND  
4608A F17  
Figure 17. Recommended PCB Layout  
4608afc  
20  
LTM4608A  
TYPICAL APPLICATIONS  
CLKIN  
CLKIN  
V
2.5V  
8A  
8A AT 5V INPUT  
6A AT 3.3V INPUT  
OUT  
V
IN  
V
V
I
IN  
OUT  
3V TO 5.5V  
C
C1  
C
OUT  
IN  
SV  
IN  
10µF  
220pF  
100µF  
SW  
FB  
LTM4608A  
C3  
47pF  
R
V
IN  
FB  
3.09k  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
100k  
THM  
PGOOD  
PGOOD  
V
(HIGH = 10%)  
(FLOAT = 15%)  
(LOW = 5%)  
BSEL  
50k  
IN  
BSEL  
MGN  
MODE  
PHMODE  
OE  
PHMODE  
1
50k  
5
Y
OUT  
2
4
CLKOUT GND SGND  
U1  
A
IN  
U1: PERICOM PI74ST1G126CEX  
OR TOSHIBA TC7SZ126AFE  
3
4608A F18  
OE  
A
Y
MGN  
MARGIN VALUE  
IN OUT  
H
H
L
H
H
L
Z
H
L
IN  
+ OF BSEL SELECTION  
– OF BSEL SELECTION  
NO MARGIN  
L
X
V
/2  
Figure 18. Typical 3V to 5.5VIN, 2.5V at 8A Design  
V
1.5V  
16A  
OUT  
CLKIN  
V
IN  
V
V
IN  
OUT  
3V TO 5.5V  
C4  
100pF  
100µF  
6.3V  
X5R  
10µF  
SV  
IN  
SW  
FB  
LTM4608A  
3.32k  
RUN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
TRACK  
PGOOD  
BSEL  
C3  
PHMODE  
MGN  
100µF  
6.3V  
X5R  
CLKOUT GND SGND  
CLKIN  
V
IN  
V
OUT  
C2  
10µF  
C1  
SV  
IN  
100µF  
6.3V  
X5R  
SW  
FB  
LTM4608A  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
V
IN  
PGOOD  
BSEL  
50k  
PHMODE  
MGN  
50k  
CLKOUT GND SGND  
4608A F19  
Figure 19. Two LTM4608As in Parallel, 1.5V at 16A Design.  
See Also Dual 8A per Channel LTM4616  
4608afc  
21  
LTM4608A  
TYPICAL APPLICATIONS  
CLKIN  
CLKIN  
V
3.3V  
7A  
OUT2  
V
IN  
5V  
V
V
IN  
OUT  
100µF  
6.3V  
X5R  
C2  
SV  
IN  
100pF  
D1  
MMSD4148  
SW  
FB  
LTM4608A  
R
C3  
22pF  
FB1  
2.21k  
SHDN  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
PGOOD  
BSEL  
100k  
V
IN  
SHDN  
PHMODE  
MGN  
50k  
50k  
CLKOUT GND SGND  
3.3V  
1.5V  
R1  
100k  
R2  
100k  
V
1.5V  
8A  
OUT1  
CLKIN  
V
V
IN  
OUT  
C1  
C4  
+
SV  
FB  
IN  
100µF  
100µF  
D2  
R
FB2  
6.3V  
X5R  
SANYO  
POSCAP  
10mΩ  
MMSD4148  
SW  
I
TH  
6.65k  
LTM4608A  
SHDN  
RUN  
I
THM  
PLLLPF  
TRACK  
MODE  
100k  
PGOOD  
BSEL  
PHMODE  
MGN  
CLKOUT GND SGND  
4608A F20  
Figure 20. Dual LTM4608A Output Sequencing Application.  
See Also Dual 8A per Channel LTM4616  
SV  
IN  
V
OUT  
CLKIN  
V
1.2V/8A  
5A AT  
IN  
2.7V TO 5.5V  
V
V
IN  
OUT  
C2  
C1  
10µF  
100pF  
2.7V INPUT  
SV  
IN  
100µF  
6.3V  
X5R  
100µF  
6.3V  
X5R  
R
SR  
180k  
SW  
FB  
LTM4608A  
10k  
RUN  
I
TH  
PLLLPF  
TRACK  
MODE  
I
THM  
V
IN  
PGOOD  
BSEL  
PGOOD  
BSEL  
0.01µF  
C
SR  
0.22µF  
50k  
50k  
MODE  
PHMODE  
PHMODE  
MGN  
CLKOUT GND SGND  
4608A F21  
Figure 21. 2.7V to 5.5VIN, 1.2VOUT Design in Spread Spectrum Operation  
4608afc  
22  
LTM4608A  
TYPICAL APPLICATIONS  
4608afc  
23  
LTM4608A  
PACKAGE DESCRIPTION  
LGA Package  
68-Lead (15mm × 9mm × 2.82mm)  
(RefereIce LTC DWG # 07-08-±82± Reꢀ Ø)  
DETAIL A  
G
2.72 – 2.92  
PAD 1  
F
E
D
C
B
A
aaa  
Z
1
PAD “A1”  
CORNER  
2
4
3
4
5
12.70  
BSC  
6
15.00  
BSC  
MOLD  
SUBSTRATE  
CAP  
7
0.290 – 0.350  
8
2.200 – 2.600  
DETAIL B  
9
10  
11  
0.630 0.025 Sꢀ. 68ꢁ  
PADS  
1.27  
BSC  
X
Y
SEE NOTES  
9.00  
BSC  
eee  
S X Y  
7.620  
BSC  
3
DETAIL B  
PACKAGE TOP VIEW  
PACKAGE BOTTOM VIEW  
DETAIL A  
6.350  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994  
5.080  
3.810  
2.540  
1.270  
0.000  
1.270  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3
4
LAND DESIGNATION PER JESD MO-222  
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.  
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE  
LTMXXXXXX  
µModule  
5. PRIMARY DATUM -Z- IS SEATING PLANE  
6. THE TOTAL NUMBER OF PADS: 68  
COMPONENT  
PIN “A1”  
2.540  
3.810  
5.080  
6.350  
SYMBOL TOLERANCE  
TRAY PIN 1  
BEVEL  
aaa  
bbb  
eee  
0.15  
0.10  
0.05  
PACKAGE IN TRAY LOADING ORIENTATION  
LGA 68 1207 REV Ø  
SUGGESTED PCB LAYOUT  
TOP VIEW  
PACKAGE PHOTO  
4608afc  
24  
LTM4608A  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
±2/±0 Voltaꢁe chaIꢁed iI the Typical ApplicatioI drawiIꢁ1  
ChaIꢁes made to the Absolute Maximum RatiIꢁs sectioI1  
Updated the PiI CoIfiꢁuratioI packaꢁe dimeIsioIs1  
±
2
2
ChaIꢁes made to the V  
coIditioIs iI the Electrical Characteristics sectioI1  
2
OUT  
Updated Note 2 iI the Electrical Characteristics sectioI1  
Replaced ꢁraphs G07 aId G06 iI the Typical PerformaIce Characteristics sectioI1  
Updated MGN (B8) iI the PiI FuIctioIs sectioI1  
Text chaIꢁes made to the ApplicatioIs ꢂIformatioI sectioI1  
ChaIꢁes made to Fiꢁures 7, ±8, 20, 2±, 231  
Updated the Related Parts table1  
4
7
.
±0, ±±, ±4, ±9  
±7, 2±, 22, 23  
26  
2
C
3/±±  
Updated PiI CoIfiꢁuratioI drawiIꢁ  
Remoꢀed PiI CoIfiꢁuratioI drawiIꢁ from PiI FuIctioIs  
Added ꢀalue of 0122µH to ꢂIductor iI Fiꢁure ±  
Updated Fiꢁure 3  
8
9
±3  
20  
24  
Updated Fiꢁure ±.  
Added Packaꢁe Photo  
4608afc  
ꢂIformatioI furIished by LiIear TechIoloꢁy CorporatioI is belieꢀed to be accurate aId reliable1  
Howeꢀer, Io respoIsibility is assumed for its use1 LiIear TechIoloꢁy CorporatioI makes Io represeIta-  
tioI that the iItercoIIectioI of its circuits as described hereiI will Iot iIfriIꢁe oI existiIꢁ pateIt riꢁhts1  
25  
LTM4608A  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
A± GND  
A2 GND  
A3 GND  
A4 GND  
A7 GND  
A6 GND  
A. GND  
A8 GND  
A9 GND  
A±0 GND  
A±± GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E± SGND  
E2  
E3 PLLLPF F3 GND  
PIN NAME  
PIN NAME  
B± GND  
C±  
C2  
V
D±  
D2  
D3  
D4  
D7  
D6  
V
V
V
V
F± RUN  
G± GND  
ꢂN  
ꢂN  
B2  
B3 CLKꢂN  
B4 PHMODE C4 SW  
B7 MODE C7 SW  
B6 C6  
F2 CLKOUT G2 GND  
C3 SW  
G3 GND  
G4 GND  
G7 GND  
G6 GND  
G. GND  
G8 GND  
G9 VOUT  
G±0 VOUT  
G±± VOUT  
ꢂN  
ꢂN  
ꢂN  
E4  
E7 TRACK  
E6  
E. FB  
E8  
F4 SV  
ꢂN  
THM  
TH  
F7  
F6  
B. BSEL  
B8 MGN  
B9 GND  
B±0 GND  
B±± GND  
C. PGOOD D. VꢂN  
F. GND  
F8 GND  
F9 VOUT  
F±0 VOUT  
F±± VOUT  
C8  
V
V
V
V
D8  
D9  
V
V
V
ꢂN  
ꢂN  
ꢂN  
ꢂN  
C9  
E9 VOUT  
E±0 VOUT  
E±± VOUT  
ꢂN  
C±0  
C±±  
D±0 VOUT  
D±± VOUT  
OUT  
OUT  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply MoIitor with Adjustable Reset Timer  
Power Supply TrackiIꢁ CoItroller  
MoIitors Four Supplies; Adjustable Reset Timer  
LTC2923  
Tracks Both Up aId DowI; Power Supply SequeIciIꢁ  
LTM4600HV  
±0A DC/DC µModule Reꢁulator  
417V ≤ V ≤ 28V; 016V ≤ V  
≤ 7V, LGA Packaꢁe  
ꢂN  
OUT  
LTM4600HVMP Military Plastic ±0A DC/DC µModule Reꢁulator  
GuaraIteed OperatioI from –77°C to ±27°C AmbieIt, LGA Packaꢁe  
LTM460±/  
LTM460±A  
±2A DC/DC µModule Reꢁulator with PLL, Output  
TrackiIꢁ/ MarꢁiIiIꢁ aId Remote SeIsiIꢁ  
SyIchroIizable, PolyPhase OperatioI, LTM460±-±/LTM460±A-± VersioI Has No  
Remote SeIsiIꢁ, LGA Packaꢁe, MP VersioI Aꢀailable  
LTM4602  
LTM46±8  
6A DC/DC µModule Reꢁulator  
PiI Compatible with the LTM4600, LGA Packaꢁe  
SyIchroIizable, PolyPhase OperatioI  
6A DC/DC µModule Reꢁulator with PLL aId Output  
TrackiIꢁ/MarꢁiIiIꢁ aId Remote SeIsiIꢁ  
LTM4604A  
LTM4607  
LTM460.  
LTM8020  
LTM802±  
LTM8022  
LTM8023  
Low V 4A DC/DC µModule Reꢁulator  
213.7V ≤ V ≤ 717V, 018V ≤ V  
≤ 7V, 9mm × ±7mm × 213mm LGA Packaꢁe  
OUT  
ꢂN  
ꢂN  
7A to ±2A Buck-Boost µModule Reꢁulator  
7A to ±2A Buck-Boost µModule Reꢁulator  
417V ≤ V ≤ 20V; 018V ≤ V  
≤ ±6V, ±7mm × ±7mm × 218mm LGA Packaꢁe  
≤ 27V, ±7mm × ±7mm × 218mm LGA Packaꢁe  
≤ 7V, 6127mm × 6127mm × 213mm LGA Packaꢁe  
ꢂN  
OUT  
OUT  
OUT  
417V ≤ V ≤ 36V; 018V ≤ V  
ꢂN  
Hiꢁh V 012A DC/DC Step-DowI µModule Reꢁulator 4V ≤ V ≤ 36V; ±127V ≤ V  
ꢂN  
ꢂN  
Hiꢁh V 017A DC/DC Step-DowI µModule Reꢁulator 3V ≤ V ≤ 36V; 018V ≤ V ≤ 7V, 6127mm × ±±127mm × 218mm LGA Packaꢁe  
OUT  
ꢂN  
ꢂN  
Hiꢁh V ±A DC/DC Step-DowI µModule Reꢁulator  
316V ≤ V ≤ 36V; 018V ≤ V  
≤ ±0V, ±±127mm × 9mm × 218mm LGA Packaꢁe  
≤ ±0V, ±±127mm × 9mm × 218mm LGA Packaꢁe  
ꢂN  
ꢂN  
OUT  
OUT  
Hiꢁh V 2A DC/DC Step-DowI µModule Reꢁulator  
316V ≤ V ≤ 36V; 018V ≤ V  
ꢂN  
ꢂN  
4608afc  
LT 0311 REV C • PRINTED IN USA  
LinearTechnology Corporation  
±630 McCarthy Blꢀd1, Milpitas, CA 97037-.4±.  
26  
l
l
LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-±900 FAX: (408) 434-070. www1liIear1com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY